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New parameter sets for the Lagrangian density in the relativistic mean field(RMF) theory, PK1 with
nonlinears- andv-meson self-coupling, PK1R with nonlinears-, v-, andr-meson self-coupling, and PKDD
with the density-dependent meson-nucleon coupling are proposed. They are able to provide an excellent
description not only for the properties of nuclear matter but also for the nuclei in and far from the valley ofb
stability. For the first time in the parametrization of the RMF Lagrangian density, the center-of-mass correction
is treated by a microscopic way, which is essential to unify the description of nuclei from light to heavy regions
with one effective interaction.
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I. INTRODUCTION

In the past decade, the development of unstable nuclear
beams[1,2] has extended our knowledge of nuclear physics
from the stable nuclei and those nearby to the unstable nuclei
far from the stability line. Intense research in this area shows
that there exist lots of unexpected phenomena: strange
nuclear structure such as neutron halo(skin) and proton halo
(skin) [3–10], soft excitation modes[11,12], the enhance-
ment of fusion cross sections induced by the extended matter
distributions[13,14], etc. With further developments, many
other new features will be found. It also becomes very im-
portant to find a reliable theory and improve the reliability
for predicting the properties of even more exotic nuclei out
to the proton and neutron drip lines.

Relativistic mean field(RMF) [15,16] theory has received
wide attention because of its successful description of many
nuclear phenomena during the past years. With a very limited
number of parameters, RMF theory is able to give a satisfac-
tory description for the ground state properties of spherical
[17] and deformed nuclei[18] at and away from the stability
line. The recent reviews on RMF theory can be seen in Refs.
[16–18]. In the simplest version of RMF theory, the mesons
do not interact among themselves, which results in a too
large incompressibility for nuclear matter. Boguta and Bod-
mer [19] therefore proposed to include a nonlinear self-
coupling of thes field, a concept which has been used in
almost all the recent applications. The meson self-coupling
introduces a new density dependence into the Lagrangian
and, consequently, the nuclear matter incompressibility can
be lowered to reasonable values. As an implement, in 1994
the nonlinear self-coupling of thev field is introduced by
Sugahara and Toki[20]. In this paper we will introduce the
nonlinear self-coupling for ther field. Recently RMF theory

with density-dependent(DD) meson-nucleon couplings
[21–27] was developed by various authors. Several applica-
tions to different systems such as neutron star[28,29], super-
nova[30], and hypernuclei[31] have subsequently been per-
formed.

Till now the two versions(the nonlinear self-coupling of
meson fields and the DD meson-nucleon couplings) of RMF
theory have been successfully applied to describe the nuclear
properties, including binding energies, nuclear matter distri-
bution, single-particle spectra, magnetic moments, collective
excited states, dipole sum rule, shell effects in finite nuclei,
pseudospin symmetry, rotating nuclei, superdeformed bands,
etc. In particular, the halo phenomena can be understood
self-consistently in this microscopical model after the proper
treatment of the continuum effect[7,32]. Combining with
Glauber model, the charge-changing cross sections for C, N,
O, and F isotopes are calculated and a good agreement with
the data has been achieved[9,10]. The long existing problem
for the origin of pseudospin symmetry in nuclei is given
naturally as a relativistic symmetry[33–35]. A good agree-
ment with experimental data has also been found recently for
magnetic rotation[36], collective excitations such as giant
resonances[37], and for twin bands in rotating superde-
formed nuclei[38]. It is also noted that cranked RMF theory
provides an excellent description of superdeformed rota-
tional bands in theA=140–150 region[39], in the Sr region
[40], and in the Hg region[41].

Among the existing parametrizations for RMF theory, the
most frequently used are NL1[42], PL-40[43], NL-SH [44],
TM1 [20], and NL3[45] with nonlinear self-coupling of me-
sons, and TW99[24] and DD-ME1 [25] with DD meson-
nucleon coupling. The effective interactions NL1, NL3,
TM1, NL-SH and TW99, DD-ME1 give good results in most
of the cases.

Along theb stability line NL1 gives excellent results for
binding energies and charge radii; in addition it provides an
excellent description of the superdeformed bands[39,40].*Electronic address: mengj@pku.edu.cn
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However, in going away from the stability line the results are
less satisfactory. This can be partly attributed to the large
asymmetry energyJ.44 MeV predicted by this force. In
addition, the calculated neutron skin thickness shows sys-
tematic deviations from the experimental values for the set
NL1.

In the effective interaction NL-SH this problem was
treated in a better way and the improved isovector properties
have been obtained with an asymmetry energy ofJ
.36 MeV. Moreover, NL-SH seems to describe the defor-
mation properties in a better way than NL1. However, the
NL-SH parametrization produces a slight overbinding along
the line of b stability, and in addition it fails to reproduce
successfully the superdeformed minima in Hg isotopes in
constrained calculations for the energy landscape. A remark-
able disagreement between the two parametrizations is the
quite different values predicted for the nuclear matter incom-
pressibility. NL1 predicts a small valuesK=212 MeVd while
with NL-SH a very large valuesK=355 MeVd is obtained.
Both forces fail to reproduce the experimental values for the
isoscalar giant monopole resonances for Pb and Zr nuclei.
The NL1 parametrization underestimates the empirical data
by about 2 MeV while NL-SH overestimates it by about the
similar values. As an improvement, the effective interactions
NL3 and TM1 provide reasonable compression modulus
sKNL3=268.0 MeV,KTM1=281.16 MeVd and asymmetry en-
ergy sJNL3=36.56 MeV,JTM1=36.89 MeVd but fairly small
baryonic saturation densitysrNL3=0.145,rTM1=0.145d. In
order to improve the description of these quantities, we de-
veloped two nonlinear self-coupling parametrizations called
as PK1 with nonlinears- and v-meson nonlinear self-
coupling, and PK1R with nonlinears-, v-, and r-meson
nonlinear self-coupling.

RMF theory with DD meson-nucleon couplings[22,23] is
an alternative approach to the description of nuclear matter
and finite nuclei as compared to the model with the nonlinear
self-interactions of mesons. There exist two representative
parametrizations TW99[24] and DD-ME1[25] for the den-
sity dependence of meson-nucleon coupling. They are able to
describe quantitatively properties of nuclear matter and finite
nuclei with similar quality as the parametrizations of the
nonlinear self-coupling. As a comparison with the nonlinear
self-coupling, we also developed a parametrization named as
PKDD with DD meson-nucleon couplings.

In all previous nonlinear self-coupling parametrizations as
mentioned above, the center-of-mass correction is made by a
phenomenological way. In the present parametrizations, the
PK series, the contribution from the center-of-mass motion is
treated in a microscopic way[46]. The systematic behavior
of the center-of-mass correction on nuclear masses is shown
in Fig. 1. From this graph, we can see that it is essential to
choose a proper method to treat the center-of-mass motion
for both light and heavy nuclei. Obviously, the microscopic
method provides more reasonable and reliable results for the
center-of-mass motion(for the details, see Sec. III).

In Sec. II, we will present a short summary of RMF
theory with the nonlinear self-coupling of meson fields and
with DD meson-nucleon coupling and the relationship be-
tween them. The details of our parametrizations are given in

Sec. III. In Secs. IV and V, we study the bulk properties of
nuclear matter and spherical nuclei with the newly obtained
effective interactions. The detailed microscopic structure of
doubly magic nuclei is also investigated in the end of Sec. V.
Finally conclusions are given in Sec. VI.

II. RMF THEORY WITH NONLINEAR SELF-COUPLING
AND DENSITY-DEPENDENT MESON-NUCLEON

COUPLING

A. Lagrangian density

The basic ansatz of the RMF theory[16] is a Lagrangian
density whereby nucleons are described as Dirac particles
which interact via the exchange of various mesons and the
photon. The mesons considered are the scalar sigmassd,
vector omegasvd, and isovector vector rhosrWd. The latter
provides the necessary isospin asymmetry. The Lagrangian
then consists of the free baryon and meson parts and the
interaction part with minimal coupling, together with the
nucleon massM and ms sgsd, mv sgvd, and mr sgrd the
masses(coupling constants) of the respective mesons:

L = c̄Figm]m − M − gss − gvgmvm − grgmtW · rWm

− egm1 − t3

2
AmGc + 1

2]ms]ms − 1
2ms

2s2 − 1
3g2s3 − 1

4g3s4

− 1
4vmnvmn + 1

2mv
2vmvm + 1

4c3svmvmd2− 1
4rWmn · rWmn

+ 1
2mr

2rWm · rWm + 1
4d3srWm · rWmd2 − 1

4AmnAmn, s1d

where the tensor quantities are

vmn = ]mvn − ]nvm, s2ad

rWmn = ]mrWn − ]nrWm + grrWm 3 rWn, s2bd

Amn = ]mAn − ]nAm. s2cd

In this paper we use arrow for isospin vectors and bold type
for space vectors. There are 11 parameters in the Lagrangian
density(1), i.e., four massessM ,ms ,mv ,mrd, three nucleon-

FIG. 1. The microscopic center-of-mass correction, in compari-
son with two phenomenological cases.
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meson coupling constantssgs ,gv ,grd, and four self-coupling
constantssg2,g3,c3,d3d. Generally, the nucleon massM and
r-meson massmr (also sometimes the mass ofv meson in
some parametrizations) are fixed to their free values and the
nonlinear coupling coefficientsc3 andd3 are taken as zeros.
Then the remaining six to seven parameters are determined
by the fitting to the experimental observables.

Different from the nonlinear self-coupling version, the
meson-nucleon interactions are described as density depen-
dent in the DD meson-nucleon coupling RMF theory
[24,25]. The meson-nucleon coupling constantsgs ,gv ,gr be-
come functions of the baryonic densityrv, rv=Îjm jm where

jm=c̄gmc and the nonlinear self-coupling constants
g2,g3,c3,d3 are set to zero in the Lagrangian density(1).

For s andv mesons, the baryonic density dependence of
the coupling constants is adopted as

gisrvd = gisrsatdf isxd for i = s,v, s3d

where

f isxd = ai
1 + bisx + did2

1 + cisx + did2 s4d

is a function ofx=rv /rsat, and rsat denotes the baryonic
saturation density of nuclear matter.

For ther meson, an exponential dependence is utilized as

gr = grsrsatdexpf− arsx − 1dg. s5d

For the functionsf isxd, one has five constraint conditions
f is1d=1, f s9s1d= f v9 s1d, and f 09s0d=0. Then eight parameters
related to density dependence fors-N andv-N couplings are
reduced to three free parameters. As mentioned above, the
masses of nucleon andr meson are fixed in general, and the
nonlinear self-coupling constantsg2,g3,c3, andd3 are set to
zero. With four free parameters for density dependence, there
totally are eight to nine parameters left free in the Lagrangian
density (1) for the density-dependent meson-nucleon cou-
pling RMF theory.

B. Nuclear energy and self-energy

The single-nucleon Dirac equation is derived by the varia-

tion of the Lagrangian density(1) with respect toc̄,

figm]m − sM + SSd − gmSmgc = 0 s6d

with the nucleon self-energiesSm and SS defined by the
following relations:

SS= gss, s7ad

Sm = gvvm + grtW · rWm + e
1 − t3

2
Am + Sm

R, s7bd

where the rearrangement termSm
R comes from the density-

dependence of the meson-nucleon coupling constants
[22,23],

TABLE I. The nonlinear effective interactions PK1, PK1R, and density-dependent effective interactions PKDD. The masses(in MeV)
and meson-nucleon couplings are shown in comparison with TM1[20], NL3 [45], TW99 [24], and DD-ME1[25].

PK1 PK1R PKDD TM1 NL3 TW99 DD-ME1

Mn 939.5731 939.5731 939.5731 938 939 939 938.5000

Mp 938.2796 938.2796 938.2796 938 939 939 938.5000

ms 514.0891 514.0873 555.5112 511.198 508.1941 550 549.5255

mv 784.254 784.2223 783 783 782.501 783 783.0000

mr 763 763 763 770 763 763 763.0000

gs 10.3222 10.3219 10.7385 10.0289 10.2169 10.7285 10.4434

gv 13.0131 13.0134 13.1476 12.6139 12.8675 13.2902 12.8939

gr 4.5297 4.55 4.2998 4.6322 4.4744 3.661 3.8053

g2 −8.1688 −8.1562 0 −7.2325 −10.4307 0 0.0000

g3 −9.9976 −10.1984 0 0.6183 −28.8851 0 0.0000

c3 55.636 54.4459 0 71.3075 0 0 0.0000

d3 0 350 0 0 0 0 0

FIG. 2. The meson-nucleon coupling constants as a function of
baryonic density in nuclear matter. The density dependence ofgr

for PK1R corresponds to nonsymmetric nuclear mattersN/Z=3d.
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SR
m =

jm

rv
S ] gv

] rv
c̄gncvn +

] gr

] rv
c̄gntWc · rWn +

] gs

] rv
c̄csD ,

s8d

which is reduced to zero in RMF theory with the nonlinear
self-coupling.

The Klein-Gordon equations for mesons are obtained by
the variation of the Lagrangian density(1) with respect to the
corresponding meson field operators:

f− D + ms
2gs = − gsrs − g2s2 − g3s3, s9ad

f− D + mv
2gv = gvrb − c3v3, s9bd

f− D + mr
2gr = grfrb

snd − rb
spdg − d3r3. s9cd

For the RMF theory with the nonlinear self-coupling, the
self-coupling of mesons can be expressed into the density-
dependence of meson-nucleon coupling by redefining the
coupling constants,

gs = gs + fg2s2 + g3s3g/rs, s10ad

gv = gv − c3v3/rb, s10bd

gr = gr − d3r3/frb
n − rb

pg. s10cd

The behaviors of the coupling constants with respect to the
baryonic density are shown in Fig. 2.

TABLE II. Density-dependent parameters of PKDD for meson-nucleon coupling in comparison with TW99[24] and DD-ME1[25].

as bs cs ds av bv cv dv ar

PKDD 1.327423 0.435126 0.691666 0.694210 1.342170 0.371167 0.611397 0.738376 0.183305

TW99 1.365469 0.226061 0.409704 0.901995 1.402488 0.172577 0.344293 0.983955 0.515000

DD-ME1 1.3854 0.9781 1.5342 0.4661 1.3879 0.8525 1.3566 0.4957 0.5008

TABLE III. Total binding energies(in MeV) calculated with the nonlinear effective interactions PK1, PK1R, and density-dependent
meson-nucleon coupling effective interaction PKDD are shown in comparison with those of TM1[20], NL3 [45], TW99 [24], DD-ME1 [25],
and experimental data[48]. The bold-faced quantities denote the observables used in the parametrizations.

Nucleus Expt. PK1 PK1R PKDD TM1 NL3 TW99 DD-ME1

16O −127.619 −128.094 −128.047 −127.808 −128.951 −127.127 −128.147 −127.926
24O −168.500 −169.558 −169.381 −168.542 −168.858 −170.116 −167.693 −167.949
40Ca −342.052 −342.773 −342.741 −342.579 −344.661 −341.709 −343.352 −343.653
48Ca −415.991 −416.077 −415.974 −415.944 −415.668 −415.377 −416.888 −415.012
56Ni −483.998 −483.956 −484.031 −484.479 −480.620 −483.599 −487.096 −480.869
58Ni −506.454 −504.033 −504.091 −504.013 −501.933 −503.395 −506.128 −501.312
68Ni −590.430 −591.685 −591.559 −591.241 −591.845 −591.456 −592.676 −592.253
90Zr −783.893 −784.781 −784.788 −784.879 −785.281 −783.859 −786.625 −784.206
112Sn −953.529 −954.210 −954.251 −953.730 −955.925 −952.562 −954.991 −952.468
116Sn −988.681 −988.491 −988.460 −988.066 −990.083 −987.699 −989.842 −988.470
124Sn −1049.963 −1049.162 −1048.948 −1048.113 −1049.832 −1049.884 −1051.033 −1049.880
132Sn −1102.920 −1103.503 −1103.053 −1102.648 −1102.163 −1105.459 −1108.363 −1103.857
184Pb −1431.960 −1435.548 −1435.706 −1435.477 −1439.768 −1434.569 −1436.761 −1434.569
194Pb −1525.930 −1525.536 −1525.494 −1525.474 −1528.378 −1525.733 −1529.309 −1524.937
196Pb −1543.250 −1542.592 −1542.502 −1542.545 −1545.163 −1543.085 −1547.012 −1542.262
204Pb −1607.520 −1607.851 −1607.545 −1607.770 −1609.477 −1609.906 −1608.246 −1609.676
208Pb −1636.446 −1637.443 −1637.024 −1637.387 −1638.777 −1640.584 −1644.790 −1641.415
214Pb −1663.298 −1659.382 −1658.718 −1656.084 −1663.706 −1662.551 −1656.086 −1662.011
210Po −1645.228 −1648.443 −1648.102 −1648.039 −1650.819 −1650.755 −1654.271 −1651.482

Da 7.1980 7.4207 9.2744 12.8135 9.1140 17.6762 11.1580

db 0.0102 0.0094 0.0080 0.0192 0.0135 0.0159 0.0152

aThe total square deviation from the experimental valuesD2=oisEi
expt−Ei

calcd2.
bThe relative square deviationd2=oisEi

expt−Ei
calcd2/ sEi

exptd2.
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In order to compare with the experimental nuclear binding
energy of a nucleus, the calculated energy

E = Ermf + Ec.m.+ Epair s11d

is obtained from the mean field contribution by adding cor-
rections due to the center-of-mass and pairing effects for
open shell nuclei. The mean field contributionErmf is de-
rived from a spatial integration of the energy density
given by the time components of the energy-momentum
tensor. In the nonlinearsNLd self-coupling case, it reads

Ermf
NL = o

a=1

A

«akf̄ag0fal +E
V

d3rH−
1

2
gssrs −

1

6
g2s3

−
1

4
g3s4J +E

V
d3rH−

1

2
gvvrb +

1

4
c3v4 −

1

2
grrrb

s3d

+
1

4
d3r4 −

1

2
eA0rb

pJ , s12d

wherefa denotes the single-particle spinor in the nucleus. In

TABLE IV. Charge radii(in femtometer) calculated with the nonlinear effective interactions PK1, PK1R, and density-dependent meson-
nucleon coupling effective interaction PKDD are shown in comparison with those of TM1[20], NL3 [45], TW99 [24], DD-ME1 [25], and
experimental data[50].

Nucleus Exp. PK1 PK1R PKDD TM1 NL3 TW99 DD-ME1

16O 2.693 2.6957 2.6959 2.6988 2.7026 2.7251 2.6799 2.7268
24O 2.8106 2.8108 2.8184 2.8364 2.8286 2.8049 2.8543
40Ca 3.478 3.4433 3.4435 3.4418 3.4541 3.4679 3.4151 3.4622
48Ca 3.479 3.4675 3.4675 3.4716 3.4911 3.4846 3.4510 3.4946
56Ni 3.7085 3.7084 3.7162 3.7471 3.7122 3.6867 3.7315
58Ni 3.776 3.7383 3.7381 3.7442 3.7755 3.7435 3.7158 3.7613
68Ni 3.8621 3.8620 3.8681 3.8901 3.8773 3.8491 3.8926
90Zr 4.270 4.2522 4.2521 4.2534 4.2799 4.2689 4.2278 4.2725
112Sn 4.593 4.5704 4.5701 4.5722 4.6021 4.5861 4.5461 4.5901
116Sn 4.625 4.5984 4.5981 4.6004 4.6303 4.6149 4.5758 4.6212
124Sn 4.677 4.6536 4.6533 4.6567 4.6874 4.6685 4.6331 4.6781
132Sn 4.7064 4.7061 4.7102 4.7442 4.7183 4.6842 4.7270
184Pb 5.3806 5.3801 5.3807 5.4156 5.3996 5.3511 5.4002
194Pb 5.442 5.4327 5.4322 5.4329 5.4712 5.4506 5.4017 5.4539
196Pb 5.449 5.4438 5.4433 5.4440 5.4826 5.4614 5.4123 5.4645
204Pb 5.482 5.4869 5.4864 5.4877 5.5261 5.5027 5.4837 5.5038
208Pb 5.504 5.5048 5.5043 5.5053 5.5444 5.5204 5.4750 5.5224
214Pb 5.559 5.5658 5.5653 5.5635 5.6052 5.5820 5.5603 5.5779
210Po 5.5370 5.5365 5.5371 5.5762 5.5539 5.5070 5.5544

Da 0.0708 0.0712 0.0655 0.0941 0.0625 0.1436 0.0588

db 0.0178 0.0179 0.0166 0.0185 0.0169 0.0346 0.0163

aThe total square deviation from the experimental valuesD2=oisr i
expt−r i

calcd2.
bThe relative square deviationd2=oisr i

expt−r i
calcd2/ sr i

exptd2.

TABLE V. Nuclear matter properties calculated with the nonlinear effective interactions PK1, PK1R, and the density-dependent effective
interactions PKDD are shown in comparison with TM1[20], NL3 [45], TW99 [24], and DD-ME1[25].

Interaction rsat sfm−3d Eb sMeVd K sMeVd J sMeVd M* /Msnd M* /Mspd

PK1 0.148195 −16.268 282.644 37.641 0.605525 0.604981

PK1R 0.148196 −16.274 283.674 37.831 0.605164 0.604620

PKDD 0.149552 −16.267 262.181 36.790 0.571156 0.570565

NL3 0.145115 −16.005 267.998 36.558 0.603761 0.603761

TM1 0.145218 −16.263 281.161 36.892 0.634395 0.634395

TW99 0.153004 −16.247 240.276 32.767 0.554913 0.554913

DD-ME1 0.151962 −16.201 244.719 33.065 0.577960 0.577960
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the DD case, the high-ordersù3d terms of mesons in Eq.
s12d are replaced by a “rearrangement” term,

Ermf
DD = o

a=1

A

«akf̄ag0fal +E
V

d3rH−
1

2
gssrs −

1

2
gvvrb

−
1

2
grrrb

s3d −
1

2
eA0rb

p − SRrbJ , s13d

where

SR =
1

rsat
fgvsrsatdfv8 sxdr0v − argrsrsatde−arsx−1dr0

s3dr3

+ gssrsatdfs8sxdrssg s14d

is the time component ofSR
m fsee Eq.s8dg.

C. Center-of-mass correction and pairing correlation

The correction from the center-of-mass motion is calcu-
lated from the projection after variation in first-order ap-
proximation[46]:

Ec.m.
mic = −

1

2MA
kPc.m.

2 l, s15d

where the center-of-mass momentumPc.m.=oi
Api and the ex-

pectation value of its squarekP̂c.m.
2 l reads

kPc.m.
2 l = o

a
va

2paa
2 − o

a,b
va

2vb
2pab ·pab

* + o
a,b

vauavbubpab ·pāb̄

s16d

with the occupation probabilitiesva
2 and ua

2=1−va
2 account-

ing for pairing effects, wherea,b denote the BCS statesssee
belowd.

The prescription(15) is based on nonrelativistic consider-
ations. It must be noted that it does not preserve Lorentz
invariance. Furthermore, it also breaks the complete self-
consistence of the variational scheme since it is not included
in the self-consistent procedure. Compared with the binding
energy, this center-of-mass correction is sizable in light nu-
clei (about 9% in16O) but much less important in medium
and heavy nuclei(about 0.4% in208Pb) as we have seen in
Fig. 1.

For the nuclear radii, the effects from the center-of-mass
motion are also taken into account as follows. Because of its
fairly small effects, a rather rough correction is adopted for
protons

dRp
2 = −

2

Z
o
a

A

kfauRc.m.·o
i

Z

r iufal + o
a

A

kfauRc.m.
2 ufal,

s17d

where the center-of-mass coordinateRc.m.=1/Aoi
Ar i. Then

we get

dRp
2 = −

2

A
Rp

2 +
1

A
RM

2 , s18d

whereRp andRM denote the proton and matter radii. Here we
only consider the direct-term contributions in Eq.s17d to
keep with the spirit of RMF theory. For the neutron radii, we
use the same procedure as for protons. The charge radius is
obtained from the proton radius combining with the proton
and neutron size, and the center-of-mass corrections18d is
included inRp

2 f20g,

Rch
2 = Rp

2 + s0.862 fmd2 − s0.336 fmd2N/Z. s19d

The contribution from the pairing correlationsEpair are
treated in the BCS approximation,

Epair = − Do
a

vaua, s20d

with the pairing gapD taken from the calculation of relativ-
istic continuum Hartree-BogoliubovsRCHBd theory with
zero-range pairing interactionf32g.

FIG. 3. The binding energy per particleE/A in nuclear matter as
function of the baryonic densityr, calculated with the density-
dependent meson-nucleon coupling effective interactions PKDD,
TW99, DD-ME1 and the nonlinear effective interactions PK1,
PK1R, TM1, NL3. The shaded area indicates the empirical value
and the filled circles represent corresponding saturation points. The
filled triangle presents the data taken from Ref.[49] as comparison.

FIG. 4. The density dependence ofgr for PK1R with respect to
the neutron-proton ratioN/Z.
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III. PARAMETRIZATION OF EFFECTIVE LAGRANGIAN
AND NUMERICAL DETAILS

The aim of the present investigation is to provide new
improved effective interactions for the Lagrangian density
(1) with the nonlinear self-coupling and density-dependent
meson-nucleon coupling in RMF theory. A multiparameter
fitting was performed with the Levenberg-Marquardt method
[47]. Two nonlinear self-coupling effective interactions have
been obtained, PK1 withs- andv-meson self-coupling, and
PK1R with s-, v-, andr-meson self-coupling(see Table I).

A density-dependent meson-nucleon coupling effective inter-
action has also been obtained with PKDD(see Tables I and
II ). In our parametrization, the masses of neutron and proton
are fixed to their free values:Mn=939.5731 MeV andMp
=938.2796 MeV, and the mass ofr meson is fixed to its
experimental value 763.0 MeV. The mass ofv meson is
slightly adjusted in obtaining the effective interactions PK1
and PK1R while fixed to 783.0 MeV for the effective inter-
action PKDD.

The masses of the spherical nuclei16O, 40Ca, 48Ca, 56Ni,
68Ni, 90Zr, 116Sn,132Sn,194Pb, and208Pb are fitted to give the
effective interactions PK1, PK1R, and PKDD. The experi-
mental inputs for finite nuclei used in the fitting procedure
are shown in Table III. These inputs have been used to mini-
mize the least square error:

TABLE VI. Total binding energies of Pb isotopes(in MeV) calculated with the nonlinear self-coupling effective interactions PK1, PK1R,
and the density-dependent meson-nucleon coupling effective interaction PKDD, in comparison with the experimental values[48] and the
results of TM1, NL3, TW99, and DD-ME1.

A Expt. PK1 PK1R PKDD TM1 NL3 TW99 DD-ME1

182 −1411.650 −1416.431 −1416.619 −1416.309 −1420.872 −1415.184 −1417.202 −1415.216

184 −1431.960 −1435.548 −1435.706 −1435.477 −1439.768 −1434.569 −1436.761 −1434.569

186 −1451.700 −1454.258 −1454.382 −1454.192 −1458.222 −1453.511 −1455.879 −1453.306

188 −1470.900 −1472.586 −1472.673 −1472.504 −1476.272 −1472.056 −1474.640 −1471.639

190 −1489.720 −1490.555 −1490.603 −1490.468 −1493.958 −1490.247 −1493.109 −1489.657

192 −1508.120 −1508.197 −1508.201 −1508.116 −1511.317 −1508.130 −1511.329 −1507.411

194 −1525.930 −1525.536 −1525.494 −1525.474 −1528.378 −1525.733 −1529.309 −1524.937

196 −1543.250 −1542.592 −1542.502 −1542.545 −1545.163 −1543.085 −1547.012 −1542.262

198 −1560.070 −1559.378 −1559.236 −1559.329 −1561.685 −1560.199 −1564.338 −1559.403

200 −1576.365 −1575.893 −1575.697 −1575.831 −1577.942 −1577.076 −1581.344 −1576.365

202 −1592.202 −1592.095 −1591.843 −1592.022 −1593.905 −1593.679 −1598.084 −1593.133

204 −1607.520 −1607.851 −1607.545 −1607.770 −1609.477 −1609.906 −1614.197 −1609.676

206 −1622.340 −1623.126 −1622.765 −1623.167 −1624.530 −1625.725 −1630.122 −1625.966

208 −1636.446 −1637.443 −1637.024 −1637.387 −1638.777 −1640.584 −1644.790 −1641.415

210 −1645.568 −1644.844 −1644.345 −1643.643 −1647.245 −1647.969 −1650.888 −1648.312

212 −1654.524 −1652.155 −1651.573 −1649.873 −1655.549 −1655.289 −1657.020 −1655.174

214 −1663.298 −1659.382 −1658.718 −1656.084 −1663.706 −1662.551 −1663.196 −1662.011

FIG. 5. The deviation of the theoretical binding energies of Pb
isotopes, calculated with the nonlinear effective interactions PK1,
PK1R and density-dependent meson-nucleon coupling effective in-
teractions PKDD from the experimental values[48]. The results
calculated in TM1, NL3 and TW99, DD-ME1 are shown for com-
parison. FIG. 6. Same as Fig. 5, for Sn isotopes.
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x2sad = o
i=1

N Fyi
expt− ysxi ;ad

si
G2

, s21d

wherea is the ensemble of parameters to be fitted,yi
expt and

si are the experimental observable and corresponding
weight.

In the fitting procedure, only the masses of the spherical
nuclei mentioned above, the compression modulusK, the
baryonic density at saturationrsat, and the asymmetry energy
J of nuclear matter are included. Here, we should mention
that the radii are excluded because we found that the values
of the compression modulus and baryonic saturation density
are essential to give a good description of the masses and
radii. For a fixed value of compression modulus, a large
baryonic saturation density will give a small charge radius.
By this way, we can choose the appropriate value for these
two quantities to give a proper description for both mass and
charge radius of the chosen nuclei. To give a fairly precise
description on the masses, the center-of-mass correction is
essential for both light and heavy nuclei. As it can be seen in
Fig. 1, the deviation between the microscopic and phenom-

enological results is considerably large not only for the light
nuclei but also for the heavy ones. We also find that there
exist very remarkable shell effects in the microscopic results
which are impossible to obtain with the phenomenological
methods. Hence, we choose the microscopic center-of-mass
correction[46] to deal with the center-of-mass motion.

The numerical procedure in obtaining the parameter set
PK1 is as follows.

(1) First, we start from an initial effective interaction and
fix the mass ofv meson, let the other parameters to be ad-
justed by the Levenberg-Marquardt method[47].

(2) Basing on the binding energies and charge radii of the
selected nuclei obtained in the first step, we do some adjust-
ment on the expectation of compression modulus and bary-
onic saturation density to improve the description on the
spherical nuclei. Also, the weights of the observables would
be slightly adjusted to improve the parametrization.

(3) Choose another initial effective interaction and take
the same procedure as in step 2. Then, taking the average of
these two obtained interactions as the new initial effective
interaction, we do the minimizing procedure under the new
weights which come from the previous results.

(4) Introduce the adjustment on the mass ofv meson to
obtain the effective interaction PK1.

FIG. 7. The two-neutron separation energies in O and Ca iso-
topes calculated with the nonlinear effective interactions PK1,
PK1R, and the density-dependent meson-nucleon effective interac-
tion PKDD, in comparison with those of TM1, NL3, TW99, and
DD-ME1, and the experimental data[48].

FIG. 8. Same as Fig. 7, for Ni and Zr isotopes.

FIG. 9. Same as Fig. 7, for Sn and Pb isotopes.

FIG. 10. The two-neutron separation energies calculated with
the nonlinear effective interaction PK1 and the density-dependent
meson-nucleon coupling one PKDD, as a function of the neutron
number.
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Because the contribution to the nuclear mass from the
nonlinearr-meson term is fairly small, we fix the nonlinear
self-coupling constantd3 to 350.0 and adjust other param-
eters to obtain the effective interaction PK1R.

To obtain the density-dependent meson-nucleon coupling
effective interaction PKDD, we leave the density-dependent
parametersas ,ds, anddv to be adjusted and the five others
to be determined by the constrain conditions on the functions
f isxd , i =s ,v. The mass ofv meson is fixed to 783.0 MeV.

Thus obtained parameter sets are shown in Tables I and II
in comparison with other effective interactions TM1[20],
NL3 [45], TW99 [24], and DD-ME1[25]. In Tables III and
IV we list the masses and charge radii, respectively, of finite
nuclei which have been used in obtaining these seven effec-
tive interactions. Compared with other effective interactions,
our newly obtained ones reproduce well the experimental

masses[48]. For these new effective interactions, only 4–5
nuclear masses deviate by more than 1 MeV(see Table III).
The new effective interactions PK1, PK1R, and PKDD also
well describe the charge radii for these nuclei, especially for
Pb isotopes. One can get a clear idea about the improvement
of the new parameter sets on the description of bulk proper-
ties for finite nuclei from the root of relative square(rrs)
deviationd. In the last row of Table III(IV ), the rrs deviation
of the calculated total binding energy(charge radius) from
the data is given. For the total binding energy, the rrs devia-
tions from the new parameter sets are much smaller than
those from old ones. For the charge radius, the rrs deviations
from the new interactions are comparable with those from
NL3 and DD-ME1, but a bit smaller than those from TM1
and TW99.

Table V lists the nuclear matter quantities calculated with
the newly obtained effective interactions PK1, PK1R, and
PKDD, in comparison with other interactions. All the new
effective interactions give proper value of the compression

TABLE VII. Charge radii of Pb isotopes(in femtometer), calculated with the nonlinear effective interactions PK1, PK1R, and the
density-dependent meson-nucleon coupling effective interaction PKDD, in comparison with those of TM1, NL3, TW99, DD-ME1, and
experimental values[50,51].

A Expt. PK1 PK1R PKDD TM1 NL3 TW99 DD-ME1

190 5.4273 5.4112 5.4107 5.4115 5.4486 5.4295 5.3814 5.4325

192 5.4347 5.4219 5.4214 5.4221 5.4599 5.4400 5.3915 5.4433

194 5.4416 5.4327 5.4322 5.4329 5.4712 5.4506 5.4017 5.4539

196 5.4487 5.4438 5.4433 5.4440 5.4826 5.4614 5.4123 5.4645

198 5.4564 5.4551 5.4546 5.4555 5.4940 5.4722 5.4241 5.4748

200 5.4649 5.4664 5.4659 5.4673 5.5052 5.4830 5.4366 5.4850

202 5.4741 5.4773 5.4768 5.4786 5.5161 5.4934 5.4493 5.4947

204 5.4820 5.4869 5.4864 5.4877 5.5261 5.5027 5.4571 5.5038

206 5.4930 5.4954 5.4949 5.4960 5.5352 5.5109 5.4653 5.5125

208 5.5040 5.5048 5.5043 5.5053 5.5444 5.5204 5.4750 5.5224

210 5.5231 5.5252 5.5247 5.5247 5.5645 5.5411 5.4935 5.5409

212 5.5415 5.5455 5.5450 5.5441 5.5846 5.5616 5.5122 5.5594

214 5.5591 5.5658 5.5653 5.5635 5.6052 5.5820 5.5310 5.5779

FIG. 11. The isotope shifts of the charge radius in Pb isotopes
(in fm2), calculated with the nonlinear effective interactions PK1,
PK1R, and the density-dependent meson-nucleon coupling effective
interaction PKDD, in comparison with those of TM1, NL3, TW99,
DD-ME1, and experimental values, whereDrc

2=rc
2sAd−rc

2s208d and
DrLD

2 =rLD
2 sAd−rLD

2 s208d.

FIG. 12. The radius differencern−rp calculated with the non-
linear effective interaction PK1 and density-dependent meson-
nucleon coupling one PKDD, with respect to the neutron number.
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modulusK. Compared with the nonlinear self-coupling ef-
fective interactions TM1[20] and NL3 [45], the new ones
give more reasonable baryonic saturation density.

IV. DESCRIPTION OF NUCLEAR MATTER

We first discuss properties of nuclear matter obtained with
PK1, PK1R, and PKDD. In Table V we compare the bulk
properties of nuclear matter with the results calculated using
TM1, NL3, TW99, and DD-ME1. In Fig. 3, the behavior of
the binding energy per particleE/A as a function of the
baryonic densityr is shown. We can see that all density-
dependent meson-nucleon coupling effective interactions
give softer results than the nonlinear self-coupling ones. The
behaviors predicted by PK1 and PK1R are much softer than
by NL3 and a little harder than by TM1. The results from
PKDD are slightly softer than those from DD-ME1 and
much harder than those from TW99 at high density. All these
behaviors can be explained in the density-dependent meson-
nucleon coupling framework. The nonrelativistic calculation
for the symmetric nuclear matter[49] is also given in Fig. 3
as comparison, which predicts much softer behavior than
relativistic ones.

As we have mentioned in expressions(10), the meson-
nucleon coupling constants in the nonlinear self-coupling of
mesons can be expressed as some kind of density depen-
dence. Figure 2 shows this density dependence for the non-
linear self-coupling effective interactions and the results for
the density-dependent version are also given for comparison.
We can see that almost all the density-dependent coupling
constants decrease with increasing density except forgs of
NL3, which has a strongs self-couplingsg3=−28.8851d. On
the other hand, the coupling constantsgs and gv of TM1,
which has relatively weaks self-couplingsg3=0.6183d and
strong v self-coupling sc3=71.3075d, are smaller than the

others, which means that TM1 provides relatively weaker
scalar and vector potentials. This is the reason why TM1
presents the softer behavior than other nonlinear self-
coupling effective interactions. In Fig. 3, TW99 predicts the
softest results because of its relatively smallgv as compared
with DD-ME1, PKDD, and NL3, and largegs as compared
with PK1, PK1R, and TM1 in Fig. 2. As we know, the re-
pulsive potential would be dominant at high density. In Fig.
3, NL3 gives the hardest results because of its constant and
largegv even though itss-N coupling constantgs increases
with the density. For the new parameter sets PK1, PK1R, and
PKDD, which present the mid soft behaviors in Fig. 3, the
coupling constants also lie between the largest and the small-
est in Fig. 2. For the parameter set PK1R, the density depen-
dence of thegr is fairly weak as compared with that of the
density-dependent meson-nucleon coupling effective interac-
tions. It can be explained by a very weakr field, which
generates neutron-proton symmetry field. The behavior ofgr

with respect to the neutron-proton ratio is shown in Fig. 4.
As one can expect, the behavior is symmetric with respect to
lnsN/Zd and the density dependence becomes more remark-
able with the increase of the baryonic density and the
neutron-proton asymmetry.

V. DESCRIPTION OF SPHERICAL NUCLEI

A. Binding energy and two-neutron separation energy

We calculate the even-even nuclei of Pb and Sn isotopic
chains with the newly obtained parameter sets. In Table VI,
we compare the masses calculated with PK1, PK1R, and
PKDD with the other effective interactions and with experi-
mental values[48]. Shown in Fig. 5 are the deviations of the
masses of Pb isotopes from the data[48]. The results for Sn
isotopes are shown in Fig. 6. In Figs. 5 and 6 we also give
the results obtained with TM1, NL3, TW99, and DD-ME1

FIG. 13. Density distributions
of Ca isotopes and Zr isotopes.
The small figures inside show the
configurations and occupations
near the Fermi surface where the
dot lines present the Fermi sur-
face.

FIG. 14. Same as Fig. 13, for
Ni and Sn isotopes.
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for comparison. All results are calculated using the RCHB
theory [32] where the pairing correlations are treated self-
consistently by a zero-ranged force. The box radius is 20 fm
and the pairing strength of the zero-ranged force is
−650 MeV. The microscopic center-of-mass corrections(15)
and (16) are used in all the calculations.

As we can see in Table VI and Figs. 5 and 6, the newly
obtained effective interactions PK1, PK1R, and PKDD pro-
vide good descriptions on the masses of both isotopic chains.
In Fig. 5, all the effective interactions overestimate the bind-
ing energy in the beginning of the isotopic chain. However,
from 190Pb to 210Pb, the newly obtained interactions give
better descriptions than all the others. For the Sn isotopes,
the density-dependent effective interaction DD-ME1 repro-
duces the data very well since four Sn isotopes were used in
its parametrization[25]. From 116Sn to132Sn, the new effec-
tive interactions PK1, PK1R, and PKDD slightly underesti-
mate the binding energy(less than 1 MeV). Compared with
the others, the new ones still provide a better description.
There exist however systematic deviations out of the neutron
magic numbers, e.g., in134Sn and214Pb. For the older effec-
tive interactions, the deviations in214Pb are smaller but fairly
large in 208Pb.

From the binding energies we can extract the systematics
in two-neutron separation energiesS2n=EBsN,Zd−EBsN
−2,Zd. Figures 7–9 exhibit two-neutron separation energies
predicted by the nonlinear self-coupling effective interac-
tions PK1, PK1R, and the density-dependent meson-nucleon
coupling one PKDD. In comparison, the results obtained
with TM1, NL3, TW99, and DD-ME1 and the experimental
values extracted from Ref.[48] are also given. In Fig. 10, the
systematic behaviors of two-neutron separation energies with
respect to neutron number, predicted by the new effective
interactions PK1 and PKDD, are shown. From these figures
one can see that the newly obtained interactions give a fairly
good description on the systematic behaviors in two-neutron
separation energies. In Fig. 8, we can see that the deviations
of theoretical results from experiment are rather large for Ni
isotopes with N=30–42 and for Sn isotopes withN
=52–58. Here it should be mentioned that all the theoretical
results are extracted from the calculation of the spherical
RCHB calculations[32] where deformation effects are not
included while they can play a significant role in these nu-
clei. Furthermore, in Fig. 10 we can see some unusual phe-
nomena along the neutron drip line which will be discussed
in the following section.

From the plots for two-neutron separation energies(Figs.
7–10), the position of the neutron-drip line for each element
seems to be determined delicately. For the new effective in-
teraction PK1, it predicts the neutron-drip numberN=50 for
Ca, 70 for Ni, 96 for Zr, and 126 for Sn. In general, the
density-dependent meson-nucleon coupling effective interac-
tion PKDD predicts smaller neutron number of the neutron-
drip nucleus except for Ni. This may be due to its fairly
small effective mass(see Table V), which reduces the strong
attractive potential in the core and makes the coupling be-
tween the core and valence orbital weaker. As for the
density-dependent effective interactions, TW99 predicts
smaller neutron numbers of neutron-drip nucleus for Ca, Ni,
and Zr while DD-ME1 gives smaller ones for Ca and Sn.
Another reason for the deviations among the effective inter-
actions is that the density-dependent effective interactions
give relatively larger-N coupling at lower densities(see Fig.
2).

B. Charge radii and neutron distributions

Although the radii are not included in our fitting proce-
dure, the newly obtained effective interactions reproduce the
charge radii of stable nuclei fairly well(see Table IV). The
comparison between experimental data[50,51] and theoreti-
cal results for the charge radii(19) of Pb isotopes are shown
in Table VII. We can see that the new effective interactions
PK1, PK1R, and PKDD reproduce better the experimental
values, as compared to overestimations by TM1, NL3, and
DD-ME1 and underestimations by TW99. We also calculate
the isotope shift of charge radii for Pb isotopes with these
effective interactions. The results are shown in Fig. 11. The
kink around208Pb is well reproduced by all the interactions.
The inset of Fig. 11 shows that the density-dependent meson-
nucleon coupling effective interactions represent more rea-
sonable agreement with the experimental values than the

FIG. 15. The single-particle energies in208Pb, calculated with
PK1, PK1R, and PKDD, in comparison with the results of TM1,
NL3, TW99, DD-ME1, and experimental values.

FIG. 16. Same as Fig. 15, for132Sn.
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nonlinear self-coupling ones. The new parameter sets PK1
and PK1R give slightly better results than TM1 and NL3.

Besides the charge radii, we have also used the new ef-
fective interactions to investigate the systematic behavior of
the neutron skin(the difference between neutron and proton
radii) along the isotope chains: O, Ca, Ni, Zr, Sn, and Pb.
Figure 12 shows the radii differencern−rp calculated with
the new sets PK1 and PKDD. As we have seen in Fig. 10,
there are several weakly bound nuclei near the neutron-drip
line of Ca, Ni, Zr, and Sn, whose two-neutron separation
energies stay around zero over a range of numbers. This is in
general a kind of signal for the existence of a neutron skin or
halo. However from Fig. 12 one can see that the difference
rn−rp tends to be a constant near the drip line for the Ni and
Sn isotopes thus indicating a neutron skin rather than a neu-
tron halo. On the other hand, the results support the existence
of a neutron halo in Ca isotopes[52] and a giant neutron halo
in Zr isotopes[8] because their neutron distributions tend to
be more dispersive andrn−rp keeps increasing rapidly. These
characters are also supported well by the neutron distribu-

tions in Figs. 13 and 14. In Fig. 13, it shows that the neutron
distributions tend to be more extended with the increasing of
neutron number. It can be well interpreted by the configura-
tions and occupations near the Fermi surface for those drip
line nuclei (see the small figures in Fig. 13). For Ca and Zr
isotopes, the valence orbits of the drip line nuclei ares or p
states which lead to fairly weak centrifugal potential and
mainly account for the extended distributions. Whereas, Fig.
14 shows that the neutron distributions tend to be dispersive
until 162Sn for Sn isotopes and90Ni for Ni isotopes where the
low orbits accounting for these extended distributions. After
that, the valence neutrons stay in high orbit(see small figures
in Fig. 14) which reduce remarkable centrifugal potential. It
makes the distributions to be contractible and stops the for-
mation of a halo structure.

C. Single-particle energy and spin-orbit splitting

The RMF theory is a microscopic theory with a limited
number of parameters. It can give the detailed microscopic

FIG. 17. The single-particle energies in48Ca
and 56Ni, calculated with PK1, PK1R, and
PKDD, in comparison with experimental values.

FIG. 18. Same as Fig. 17, for16O and40Ca.
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structure of nuclei. Figures 15–18 show the single-particle
energies of the doubly magic nuclei calculated with the
newly obtained parameter sets PK1, PK1R, and PKDD. In
Figs. 15 and 16 the results obtained with TM1, NL3, TW99,
and DD-ME1 are also given for comparison. As we know, it
is not straightforward to compare with the experimental re-
sults away from Fermi energies because of dynamical cou-
pling not included in RMF. Here, the experimental values are
extracted from one-nucleon separation energies[48] and
resonance energies[53]. In these plots, we find systematic
agreements with the experimental results. The single-particle
energies near the magic numbers agree well with the experi-
mental values. For levels far away from the Fermi energies
systematic deviations appear. The states below the Fermi en-
ergy seem to be too strongly bound, whereas the states above
the Fermi energy show underbinding as compared to the ex-
perimental values. In fact, the experimental resonances are
not simply single-particle states. The coupling with core ex-
citations through the residual interaction, which is obviously
not included in the mean field model, leads in general to a
shift of the resonance energies in the direction of the Fermi
energy. In these plots of single-particle energies, the ordering
of levels is well described by the new effective interactions
except for somewhat different ordering of neutron levels in
132Sn and208Pb, a common feature of all the effective inter-
actions.

From the single-particle energies mentioned above, we
can extract the spin-orbit splittings. Table VIII shows the
spin-orbit splitting calculated with the newly obtained effec-
tive interactions in the doubly magic nuclei. The experimen-
tal values and the results calculated with other interactions
are also given for comparison in Table VIII. The new effec-
tive interactions reproduce well the spin-orbit splittings. For
the density-dependent meson-nucleon coupling effective in-
teraction PKDD, the spin-orbit splitting turns out to be larger
than the experimental values(except for the neutron 2p in
48Ca and the neutron 3p in 208Pb). The nonlinear self-

coupling effective interactions PK1 and PK1R predict
smaller splitting and improve the agreement with the experi-
ment. The behavior can be explained by the relatively large
self-energies predicted in our parametrization, which deter-
mine the strength of spin-orbit splitting. As shown in Table
V, the nonlinear self-coupling effective interactions predict a
larger effective mass than the density-dependent meson-
nucleon coupling ones: the smaller the effective mass, the
larger the spin-orbit splitting. This is also the reason why
TM1 gives the smallest splitting and TW99 the largest.

VI. SUMMARY

In this work, we have searched for new effective interac-
tions to describe both stable and unstable nuclei in the RMF
theory with nonlinear self-coupling or density-dependent
meson-nucleon coupling. In order to give a more precise
description on the mass of nuclei, the microscopic center-of-
mass correction is introduced, which makes it possible to
give a unified description with one effective interaction for
the nuclei from the light area to heavy area. As an elicitation
from the density-dependent meson-nucleon coupling RMF
theory, we introduce the nonlinear self-coupling forr field.
We obtain three new effective interactions: PK1 with nonlin-
ear self-coupling ofs field andv field, PK1R with nonlinear
self-coupling ofs field, v field, andr field, and PKDD with
density-dependent meson-nucleon coupling.

With the newly obtained parameter sets, we investigate
the behavior of the binding energy per particle and the
meson-nucleon coupling constants with respect to the bary-
onic density in nuclear matter. The new sets PK1, PK1R, and
PKDD provide an appropriate description. Compared with
TM1 and NL3, the new ones give a more reasonable bary-
onic saturation density.

We then calculated the usual reference nuclei and Pb, Sn
isotope chains and compared the masses with the available

TABLE VIII. The theoretical(calculated with the nonlinear effective interactions PK1, PK1R, TM1[20], NL3 [45] and the density-
dependent ones PKDD, TW99[24], DD-ME1 [25]) and experimental spin-orbit splittings(in MeV) of neutronsnd and protonspd levels in
doubly magic nuclei.

Nucleus State PK1 PK1R PKDD Expt. TM1 NL3 TW99 DD-ME1

16O
n1p 6.550 6.550 6.950 6.180 5.660 6.480 7.480 6.320

p1p 6.490 6.500 6.900 6.320 5.610 6.400 7.410 6.250

48Ca
n1f 7.411 7.417 8.028 8.380 6.486 7.493 8.687 7.498

n2p 1.238 1.237 1.459 2.020 1.142 1.330 1.567 1.458

56Ni
n1f 8.223 8.231 8.670 7.160 6.907 8.703 9.274 8.067

n2p 1.141 1.142 1.442 1.110 1.105 1.112 1.573 1.388

132Sn

n2d 1.659 1.662 1.990 1.650 1.515 1.661 2.257 1.940

p1g 5.900 5.910 6.450 6.080 5.010 6.152 7.108 6.210

p2d 1.704 1.706 2.005 1.750 1.556 1.690 2.203 1.893

208Pb

n2f 2.005 2.008 2.356 1.770 1.812 2.011 2.648 2.268

n1i 6.492 6.503 7.126 5.840 5.634 6.665 7.761 6.748

n3p 0.742 0.742 0.879 0.900 0.657 0.764 0.992 0.866

p2d 1.626 1.622 1.832 1.330 1.436 1.628 2.031 1.736

p1h 5.448 5.458 5.976 5.560 4.653 5.661 6.576 5.749
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data. The nonlinear self-coupling effective interactions PK1,
PK1R, and density-dependent meson-nucleon coupling ef-
fective interaction PKDD reproduce well the data. As com-
pared with other existing effective interactions, the new ones
also provide a good description of the charge radii of the
usual stable nuclei and Pb isotopes.

We have also studied the systematics of two-neutron sepa-
ration energies and neutron skin in isotopic chains. The two-
neutron separation energies provided by the new interactions
PK1, PK1R, and PKDD are in good agreement with the ex-
periment. We have also investigated the behavior of two-
neutron separation energies and neutron skin near the
neutron-drip line and given a reasonable interpretation of the
formation of neutron halos.

The single-particle energies and spin-orbit splittings in
doubly magic nuclei predicted by the new parameter sets are
compared with the experimental values and with other effec-
tive interactions. The new effective interactions PK1, PK1R,

and PKDD give a reasonable description of spin-orbit split-
tings and single-particle energies as compared with the ex-
perimental results. The systematic behavior of the spin-orbit
splitting is interpreted in comparison with other effective in-
teractions.

Combining with the above information, we come to a
conclusion that the new parameter sets PK1, PK1R, and
PKDD give a better description for finite nuclei than other
effective interactions.
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