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The eigenfunctions and eigenenergies for a Dirac Hamiltonian with equal scalar and vector harmonic
oscillator potentials are derived. Equal scalar and vector potentials may be applicable to the spectrum of an
antinucleon embedded in a nucleus. Triaxial, axially deformed, and spherical oscillator potentials are consid-
ered. The spectrum has a spin symmetry for all cases and, for the spherical harmonic oscillator potential, a
higher symmetry analogous to the SU(3) symmetry of the nonrelativistic harmonic oscillator is discussed.
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I. INTRODUCTION

Recent theoretical investigations have suggested the pos-
sibility that the lifetime of an antinucleon inside a nucleus
could be significantly enhanced[1]. The relativistic mean
fields of antinucleons calculated in a self-consistent Hartree
approximation of a nuclear field theory[2,3] indicate that the
scalarVSsrWd and vector potentialsVVsrWd are approximately
equal. This implies that the antinucleon spectrum will have
an approximate spin symmetry[4,5]. This conclusion is con-
sistent with the fact that the nucleon spectrum has an ap-
proximate pseudospin symmetry[6,7] because the scalar and
vector mean field potentials of a nucleon are approximately
equal but opposite in sign and the vector potential changes
sign under charge conjugation[8]. In fact, the negative en-
ergy states of the nucleon do show a strong spin symmetry
[9]. Of course, whether such states could be observable can
only be reliably estimated if the antinucleon annihilation po-
tential is included in the mean field calculations.

In this paper we shall solve for the eigenfunctions and
eigenenergies of the triaxial, axially deformed, and spherical
relativistic harmonic oscillators for equal scalar and vector
potentials with the expectation that these results could be
helpful in drawing conclusions about the feasibility of ob-
serving the spectrum of an antinucleon in a nuclear environ-
ment. The spherical relativistic harmonic oscillators with
spin symmetry[10–15] and pseudospin symmetry[16,17]
have been studied previously, but in this paper we derive the
eigenfunctions and eigenenergies for the triaxial and axially
deformed harmonic oscillators as well.

II. THE DIRAC HAMILTONIAN AND SPIN SYMMETRY

The Dirac HamiltonianH with an external scalarVSsrWd
and vectorVVsrWd potential is given by

H = a ·p + bfM + VSsrWdg + VVsrWd, s1d

wherea ,b are the usual Dirac matrices,M is the nucleon
mass, and we setc=1. The Dirac Hamiltonian is invariant
under a SUs2d algebra for two limits:VSsrWd=VVsrWd+Cs and
VSsrWd=−VVsrWd+Cps where Cs,Cps are constantsf5g. The
former limit has application to the spectrum of mesons for
which the spin-orbit splitting is smallf18g and for the spec-
trum of an antinucleon in the mean field of nucleonsf8,9g.

The latter limit leads to pseudospin symmetry in nucleif6g.
This symmetry occurs independent of the shape of the
nucleus: spherical, axial deformed, or triaxial.

A. Spin symmetry generators

The generators for the spin SU(2) algebra,Sq, which com-
mute with the Dirac Hamiltonian,fHs,Sqg=0, for the spin
symmetry limitVSsrWd=VVsrWd+Cs, are given by[5]

Sq = Ssq 0

0 s̃q
D = Ssq 0

0 UpsqUp
D , s2d

whereSq=sq/2 are the usual spin generators,sq the Pauli
matrices, andUp=s ·p/p is the momentum-helicity unitary
operatorf19g. Thus the operatorsSi generate an SUs2d in-
variant symmetry ofHs. Therefore each eigenstate of the
Dirac Hamiltonian has a partner with the same energy,

HsFk,m
s srWd = EkFk,m

s srWd, s3d

wherek are the other quantum numbers andm= ± 1
2 is the

eigenvalue ofSz,

SzFk,m
s srWd = mFk,m

s srWd. s4d

The eigenstates in the doublet will be connected by the gen-
eratorsS±,

S±Fk,m
s srWd =ÎS1

2
7 m̃DS3

2
± m̃DFk,m±1

s srWd. s5d

The fact that Dirac eigenfunctions belong to the spinor rep-
resentation of the spin SUs2d, as given in Eqs.s4d and s5d,
leads to conditions on the Dirac amplitudesf20–23g.

B. Dirac eigenfunctions and spin symmetry

The Dirac eigenfunction can be written as a four dimen-
sional vector
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Fk,msrWd =1
gk,m

+ srWd
gk,m

− srWd
i f k,m

+ srWd
i f k,m

− srWd
2 , s6d

where gk,m
+ srWd are the “upper Dirac components” where +

indicates spin up and − spin down andfk,m
+ srWd are the “lower

Dirac components” where + indicates spin up and − spin
down. However, spin symmetry imposes conditions on these
eigenfunctionsf22,23g which are derived from Eqs.s4d and
s5d:

gk,1/2
+ srWd = gk,−1/2

− srWd = gksrWd, s7ad

gk,−1/2
+ srWd = gk,1/2

− srWd = 0, s7bd

fk,1/2
+ srWd = − fk,−1/2

− srWd = fksrWd, s7cd

S ]

] x
+ i

]

] x
D fk,−1/2

+ srWd = S ]

] x
− i

]

] x
D fk,1/2

− srWd, s7dd

]

] z
fk,71/2
± srWd = ± S ]

] x
7 i

]

] x
D fk,±1/2

± srWd. s7ed

Thus for spin symmetry the Dirac spin doublets are

Fk,1/2
s srWd =1

gksrWd
0

i f ksrWd
i f k,1/2

− srWd
2, Fk,−1/2

s srWd =1
0

gksrWd
i f k,−1/2

+ srWd
− i f ksrWd

2 .

s8d

C. Second order differential equation
for the eigenfunctions

The Dirac Hamiltonian, Eq.(1), gives first order differen-
tial relations betweengksrWd and fksrWd and fk,71/2

± srWd. In the
usual way we turn these equations into a second order dif-
ferential relation for the upper component. In the limit of
spin symmetry this second order equation becomes

fp2 + 2sẼk + M̃dVsrWd − Ẽk
2 + M̃2ggksrWd = 0, s9d

whereVSsrWd=VsrWd+VS
0, VVsrWd=VsrWd+VV

0, M̃ =M +VS
0, andẼk

=Ek−VV
0. From Eq.s1d and setting"=1, the lower compo-

nents become

fksrWd =
− 1

sM̃ + Ẽd

]

] z
gksrWd, s10ad

fk,71/2
± srWd =

− 1

sM̃ + Ẽd
S ]

] x
7 i

]

] y
DgksrWd. s10bd

These relations are consistent with the conditions on the
eigenfunctions imposed by spin symmetry in Eq.(7).

Equation (9) is basically the energy-dependent
Schrödinger equation without any spin dependence. Hence
any potential, which can be solved analytically with the non-
relativistic Schrödinger equation, is solvable in the spin
limit, but the energy spectrum will be different because of
the nonlinear dependence on the energy. Hence the Coulomb
and harmonic oscillator are solvable. The Coulomb potential
has been solved(for general scalar and vector potentials) [6]
and applied to meson spectroscopy[18]. More appropriate
for nuclei is the harmonic oscillator.

III. HARMONIC OSCILLATOR

First we shall discuss the triaxial harmonic oscillator, then
the axially symmetric harmonic oscillator, and finally the
spherical harmonic oscillator.

A. Triaxial harmonic oscillator

For the potentialVsrWd=sM̃ /2dsv1
2x2+v2

2y2+v3
2z2d, the sec-

ond order differential equation(9) becomes

F ]2

] x2 +
]2

] y2 +
]2

] z2 − sẼn1,n2,n3
+ M̃dM̃sv1

2x2 + v2
2y2 + v3

2z2d

+ Ẽn1,n2,n3

2 − M̃2Ggn1,n2,n3
srWd = 0. s11d

1. Eigenfunctions

Introducing the product ansatz for the eigenfunction
gn1,n2,n3

srWd~gn1
sxdgn2

sydgn3szd, we derive the three equations

F ]2

] xi
2 − xi

2 + 2ni + 1Ggni
sxid = 0, s12d

wherex1=l1 x, x2=l2 y, x3=l3 z, and

li = fsẼn1,n2,n3
+ M̃dM̃vi

2g1/4, s13ad

Ẽn1,n2,n3

2 − M̃2 = 2o
i

li
2Sni +

1

2
D . s13bd

The bound eigenstates are given by

gn1,n2,n3
srWd = NsEn1,n2,n3

dgn1
sx1dgn2

sx2dgn3
sx3d, s14d

where
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gnsxid =Î li

Îp2nini!
e−xi

2/2Hni
sxid, s15d

and Hni
sxid is the Hermite polynomial which means

that gn1,n2,n3
srWd hasn1,n2,n3 nodes in thex,y, and z direc-

tions, respectively.NsEn1,n2,n3
d is the normalization deter-

mined by e−`
` dxe−`

` dye−`
` dzfugn1,n2,n3

srWdu2+ ufn1,n2,n3,m
+ srWdu2

+ ufn1,n2,n3,m
− srWdu2g=1.
From Eq.(10) the lower components are

fn1,n2,n3
srWd = NsEn1,n2,n3

dgn1
sx1dgn2

sx2dfn3+1sx3d, s16ad

fn1,n2,n3,71/2
s±d srWd = NsEn1,n2,n3

dffn1+1sx1dgn2
sx2d

7 ign1
sx1dfn2+1sx2dggn3

sx3d, s16bd

where

fni+1sxid = liÎ li

Îp2nini!
e−xi

2SHni+1sxid

2
− nHni−1sxidD .

s17d

Clearly the functionfn+1sxd is a polynomial of ordern
+1. Evaluation for lown demonstrates that it hasn+1 nodes
so we assume that it hasn+1 nodes for alln. This means that
fn1,n2,n3

srWd has one more node in thez direction than
gn1,n2,n3

srWd and the same number of nodes in thex and y
directions asgn1,n2,n3

srWd. On the other hand the amplitudes
fn1,n2,n3,71/2

s±d srWd have the same number of nodes in thez direc-
tion asgn1,n2,n3

srWd.
Using these amplitudes the normalization becomes

NsEd =Î2sẼ + M̃d

3Ẽ + M̃
. s18d

2. Eigenenergies

From Eq.(13) the eigenvalue equation is

ÎEn1,n2,n3
+ 1sEn1,n2,n3

− 1d = o
i=1

3

CiSni +
1

2
D , s19d

where En1,n2,n3
=Ẽn1,n2,n3

/M̃, Ci =2vi /M̃, and ni =0,1, . . ..

Thus both the eigenfunctions and the eigenenergies are inde-
pendent of spin.

This eigenvalue equation is solved onMATHEMATICA ,

En1,n2,n3
= M̃FBsAn1,n2,n3

d +
1

3
+

4

9BsAn1,n2,n3
dG + VV

0 ,

s20d

where

BsAn1,n2,n3
d = FAn1,n2,n3

+ÎAn1,n2,n3

2 −
32

27
G2/3

, s21d

andAn1,n2,n3
=oi=1

3 Cisni +
1
2

d.
The eigenvaluesEn1,n2,n3

are real for all values ofn1,n2,n3

as long asCi ,VS,V
0 are real. Although true it is not obvious

becauseBsAn1,n2,n3
d is not real for allAn1,n2,n3

real. From Eq.
(21), BsAn1,n2,n3

d is clearly complex forAn1,n2,n3
,Î32/27.

However, we now show analytically thatEn1,n2,n3
will still be

real even ifBsAn1,n2,n3
d is complex as long asuBsAn1,n2,n3

du
=2/3.

The imaginary part ofEn1,n2,n3
is

Im En1,n2,n3
=

FBsAn1,n2,n3
d + 1

3 +
4

9BsAn1,n2,n3
dG − FBsAn1,n2,n3

d + 1
3 +

4

9BsAn1,n2,n3
dG*

2i
. s22d

Writing BsAn1,n2,n3
d= uBsAn1,n2,n3

dueic,

Im En1,n2,n3
= SuBsAn1,n2,n3

du −
4

9uBsAn1,n2,n3
duDsin c,

s23d

and thereforeEn1,n2,n3
is real if uBsAn1,n2,n3

du=2/3 indepen-
dent of c. One can show numerically thatuBsAn1,n2,n3

du
=2/3 for all An1,n2,n3

in the range from zero toÎ32/27, 0

øAn1,n2,n3
øÎ32/27. For An1,n2,n3

ùÎ32/27,BsAn1,n2,n3
d is

clearly real and henceEn1,n2,n3
is real.

The spectrum is nonlinear in contrast to the nonrelativistic
harmonic oscillator. However, for smallAn1,n2,n3

,

En1,n2,n3
< M̃S1 +

An1,n2,n3

Î2
+ ¯D + VV

0 s24d

and therefore the binding energy,En1,n2,n3
−M̃ <oi=1

3 visni

+ 1
2

d+VV
0, in agreement with the nonrelativistic harmonic os-

cillator. For largeAn1,n2,n3
the spectrum goes as

En1,n2,n3
< M̃sAn1,n2,n3

2/3 + 1
3 + ¯d + VV

0 , s25d

which, in lowest order, agrees with the spectrum forM̃→0
f11g.
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B. Axially symmetric harmonic oscillator

For the axially symmetric harmonic oscillatorv1=v2
=v' and, hence, the potential depends only onr' and not

the azimuthal anglef, VsrWd=sM̃ /2dsv'
2 r'

2 +v3
2 z2d, wherex

=r'cosf,y=r'sin f. This independence of the potential on
f implies that the Dirac Hamiltonian is invariant under rota-
tions about thez axis fHs,Lzg=0, where

Lz = S,z 0

0 ,̃z

D , s26d

and,W =rW3pW and ,̃
W
=Up,WUp. The Dirac eigenstates will then

be an eigenfunction ofLz andJz=Lz+Sz.

LzFN,n3,L,m
s srWd = LFN,n3,L,m

s srWd, s27ad

JzFN,n3,L,msrWd = VFN,n3,L,m
s srWd, V = L + m, s27bd

whereN is the total harmonic oscillator quantum number and
n3 is the number of harmonic oscillator quanta in thez di-
rection, and are discussed in more detail below.

1. Eigenfunctions

Since the potential has nof dependence the second order
differential equation(9) separates into an equation forx3 and
an equation forr,

F ]2

] x3
2 − x3

2 + 2n3 + 1Ggn3
sx3d = 0, s28ad

F ]2

] r2 +
1 − 4L2

4r2 − r2 + 2n' + 2GÎrgnr
srd = 0, s28bd

wherer=l'r', n'=2nr+L, and

gN,n3,LsrWd = gnr
srdgn3

szdeiLf, s29ad

l' = fsẼN,n3
+ M̃dM̃v'

2 g1/4, s29bd

ẼN,n3

2 − M̃2 = 2Fl'
2 sn' + 1d + l3

2Sn3 +
1

2
DG . s29cd

The quantum numbersN,n' ,n3,L are the “asymptotic”
quantum numbers[24], whereN=n'+n3 is the total number
of oscillator quanta,N=0,1, . . . ,n' is the number of oscil-
lator quanta in ther' direction, n'=0,1, . . . ,N, n3 is the
number of oscillator quanta in thez direction, n3
=0,1, . . . ,N, and L is the angular momentum along thez
axis,L= ±n',±sn'−2d , . . . , ±1,0. Theupper components of
the eigenstates are given by

gN,n3,LsrWd = NsEN,n3
dlrÎ l3nr!

pÎp2n3snr + Ld ! n3!

3e−sx3
2+r2d/2rLLnr

sLdsr2deiLfHn3
sx3d, s30d

where Lnr

sLdsr2d is the Laguerre polynomial which

means thatgN,n3,LsrWd has nr ,n3 nodes in ther' and z
directions, respectively.NsEN,n3

d is the normalization
determined by e0

2pdfe0
`r'dr'e−`

` dzfugN,n3,LsrWdu2

+ ufN,n3,L,m
+ srWdu2+ ufN,n3,L,m

− srWdu2g=1 and is the same function as
given in Eq.s18d. These upper components do not depend on
the orientation of the spin.

The lower components are

fN,n3,LsrWd = −
NsEN,n3,Ld

M̃ + ẼN,n3

lr
2Î nr!

psnr + Ld!
e−r2/2rL

3Lnr

sLdsr2deiLffn3+1sx3d, s31ad

fN,n3,L,−1/2
+ srWd = −

NsEN,n3
d

M̃ + ẼN,n3

lr
2Î nr!

psnr + Ld!
e−r2/2rL−1

3fsnr + 1dLnr+1
sL−1dsr2d + snr + Ld

3Lnr

sL−1dsr2dgeisL−1dfgn3
sx3d, s31bd

fN,n3,L,1/2
− srWd = −

NsEN,n3
d

M̃ + ẼN,n3

lr
2Î nr!

psnr + Ld!
e−r2/2rL+1

3fLn
sL+1dsr2d + Lnr−1

sL+1dsr2dgeisL+1dfgn3
sx3d,

s31cd

where gn3
sx3d, fn3

sx3d are defined in Eqs.(15) and (17).
Clearly the functionfN,n3,LsrWd hasn3+1 nodes in thez direc-
tion, one more node than the upper component, but the same
number of nodes in ther' direction. The amplitude
fN,n3,L,−1/2
+ srWd has the same number of nodes in thez direction

as the upper component. However, it hasnr+1 nodes in the
r' direction for lownr and we assume it hasnr+1 node for
all nr; that is, one more node in ther' direction than the
upper component. On the other hand the amplitude
fN,n3,L,1/2
− srWd has the same number of nodes in thez direction

and ther' direction as the upper component.

2. Eigenenergies

From Eq.(29) the eigenvalue equation is

ÎEN,n3
+ 1sEN,n3

− 1d = C'sn' + 1d + C3sn3 + 1
2d , s32d

where EN,n3
=ẼN,n3

/M̃ ,C'=2v' /M̃, and nr ,n3=0,1, . . ..
Thus the eigenenergies not only have a degeneracy due to
spin symmetry but they have an additional degeneracy in that
they only depend onN andn3 and not onL.

The discussion about eigenenergies is the same as for tri-
axial nuclei and the energy spectrum is given by

EN,n3
= M̃FBsAn',n3

d +
1

3
+

4

9BsAn',n3
dG + VV

0 , s33d

whereAn',n3
=C'sn'+1d+C3sn3+ 1

2
d.

JOSEPH N. GINOCCHIO PHYSICAL REVIEW C69, 034318(2004)

034318-4



C. Spherical harmonic oscillator

For a spherical harmonic oscillatorvi =v and hence the
potential depends only on the radial coordinate,r
=Îx2+y2+z2, and is independent of the polar angle,u, z
=r cossud, as well asf. The Dirac Hamiltonian will be in-
variant with respect to rotations about all three axes,
fLi ,Hsg=0 where

LW = S,W 0

0 ,W
D , s34d

and hence invariant with respect to a SULs2d3SUs2d group
where SULs2d is generated by the orbital angular momen-

tum operatorsLW . Since the total angular momentum,JW

=LW +SW, is also conserved, rather than using the four row
basis for this eigenfunction, it is more convenient to in-
troduce the spin functionxm explicitly. The states that are
a degenerate doublet are then the states withj =,± 1

2 and
they have the two row formf22g:

Cnr,,,j ,M
s srWd = S gnr,,

srdfYs,dsu,fdxgM
s jd

i f nr,,,jsrdfYs, jdsu,fdxgM
s jd D , s35d

where , j =,±1 for j =,± 1
2 ,Ym

s,dsu ,fd is the spherical har-
monic of order, ,nr is the number of radial nodes of the
upper amplitude, andfYs,dsu ,fdxgM

s jd is the coupled ampli-
tude ommCmmM

,s1/2d jYm
s,dsu ,fdxm. Thus the spherical symmetry

reduces the number of amplitudes in the doublet even further
from four to three.

The Dirac eigenstates will then be an eigenfunction of

LW ·LW , JW ·JW, andJz,

JW ·JWCnr,,,j ,M
s srWd = js j + 1dCnr,,,j ,M

s srWd, s36ad

LW ·LWCnr,,,j ,M
s srWd = ,s, + 1dCnr,,,j ,M

s srWd, s36bd

JzCnr,,,j ,M
s srWd = MCnr,,,j ,M

s srWd. s36cd

The differential equation forgnr,,
srd becomes

3 d2

dx2 −
,s, + 1d

x2 − x2 +
sẼN

2 − M̃2d

FsẼN + M̃d
M̃v2

2
G1/24rgnr,,

srd = 0,

s37d

whereẼN=EN−VV
0 ,M̃ =M +VS

0,x=lr, and

l = fsẼN + M̃dM̃v2g1/4, s38ad

ẼN
2 − M̃2 = 2l2SN +

3

2
D . s38bd

1. Eigenfunctions

The solutions to this differential equation are well known
and lead to the upper amplitudes of the eigenfunctions,

gnr,,
srd = NsEN,,dÎ 2l3n!

GS, + n +
3

2
De−x2/2x,Lnr

s,+1/2dsx2d,

s39d

where NsENd is the normalization determined by
e0

2pdfe−p
p sinsuddue0

`r2drfugnr,,
srWdu2+ ufnr,,,jsrWdu2g=1 and is

the same function as given in Eq.s18d. Clearlygnr,,
srd has

nr nodes in the radial direction.
The lower components are

fnr,,,j=,−1/2srWd = −
NsENd

M̃ + ẼN

Î 2l5n!

Gs, + nr + 3
2d

e−x2/2x,−1fsnr + 1d

3Lnr+1
s,−1/2dsx2d + snr + , + 1

2dLnr

s,−1/2dsx2dg, s40d

fnr,,,j=,+1/2srWd = −
NsENd

M̃ + ẼN

Î 2l5n!

Gs, + nr + 3
2d

e−x2/2x,+1

3fLnr

s,+3/2dsx2d + Lnr−1
s,+3/2dsx2dg. s41d

Clearly the functionfnr,,,j=,−1/2srWd hasnr +1 nodes, one more
node than the upper component. The amplitudefnr,,,j=,−1/2srWd
has the same number of nodes as the upper component. This
agrees with the general theorem relating the number of radial
nodes of the lower components to the number of radial nodes
of the upper componentf25g.

2. Energy eigenvalues

The eigenvalue equation is

ÎEN + 1sEN − 1d = CsN + 3
2d, s42d

where EN=ẼN/M̃ ,C=2v /M̃, and N is the total oscillator
quantum number,N=2n+,=0,1, . . .. Wenote that there is
not only a degeneracy due to spin symmetry but there is also
the usual degeneracy of the nonrelativistic harmonic oscilla-
tor; namely, that the energy depends only on the total har-
monic oscillator quantum number and the states with orbital
angular momentum,=N,N−2, . . . ,0 or 1 and angular mo-
mentum projectionm=, ,,−1, . . . ,, are all degenerate.

Again the eigenvalue is

EN = M̃FBsANd +
1

3
+

4

9BsANdG + VV
0 , s43d

andAN=CsN+ 3
2

d.

D. Energy spectrum

In Fig. 1 we plot the spherical harmonic oscillator Dirac
binding energiesED=EN−M with EN given in Eq.(43), the
solid curve, as a function ofN. We chose the parameters to fit
the lowest eigenenergies of the spectrum of an antiproton
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outside of 16O in the relativistic mean field approximation

[1] and they are C=1.33, M̃ =252 MeV, and VV
0 =

−677 MeV.
The dashed curve isED using the pertubation approxima-

tion of EN given in Eq.(24). The short-dashed curve isED
using the asymptotic limit ofEN given in Eq.(25). Clearly
the eigenenergies are in the relativistic asymptotic regime
and not the linear regime of the nonrelativistic harmonic os-
cillator.

In Fig. 2 we plot the spherical harmonic oscillator excita-
tion energiesEN

* =EN−E0 for differentN on the far left. Each
level has asN+2dsN+1d degeneracy because of spin symme-
try and because the allowed orbital angular momenta are,
=N,N−2, . . . ,0 or 1 and the allowed orbital angular momen-
tum projections arem=, ,,−1, . . . ,−,. In the right of Fig. 2
we plot the deformed excitation energiesEN,n3

* =EN,n3
−E0,0.

The deformed excitation energies are staggered in groups of
each N and each group contains the levels ofn3
=0,1, . . . ,N with the excitation energy increasing with de-
creasingn3. The dimensionless oscillator strengths are deter-
mined by C3=C'

2 C3 and assuming a deformationd=0.33
which leads toC'=1.49,C3=1.05 [24]. Each level has a
2sN−n3d+1 degeneracy forsN−n3d even and a 2sN−n3+1d
degeneracy forsN−n3d odd because of spin symmetry and
because the allowed orbital angular momenturm projections
areL= ± sN−n3d , ±sN−n3−2d , . . . , ±1 or 0. The splitting of
the levels within eachN appears to be approximately linear
with n3.

E. Relativistic contribution

The normalizationNsEd has the same functional form in-
dependent of whether the harmonic oscillator is triaxial, axi-
ally deformed, or spherical. This normalization has also been

calculated independently by usinge−`
` dxe−`

` dye−`
` dzfufm

+srWdu2

+ ufm
−srWdu2g=e−`

` dxe−`
` dye−`

` dz gsrWd*p2/ sẼ+M̃d2gsrWd and we
find agreement between the two different ways of calculating
NsEd.

This also tells us that the probability of the lower compo-
nent to the upper component is given by

Rk =

E
−`

`

dxE
−`

`

dyE
−`

`

dzfufk,m
+ srWdu2 + ufk,m

− srWdu2g

E
−`

`

dxE
−`

`

dyE
−`

`

dzugksrWdu2
=

Ẽk − M̃

2sẼk + M̃d
.

s44d

Thus for Ẽk<M̃ the system is not very relativistic and the

contribution of the lower components is small. ForẼk@M̃,
this ratio approaches12. For free particles this ratio ap-
proaches unity which indicates that the harmonic oscillator
reduces the relativistic effect.

In Fig. 3 we plot this ratio for the spherical harmonic
oscillator,RN, as a function ofN. Even for the most bound
states this probability is about 20% and thus the antinucleon
bound inside the nucleus is much more relativistic than a
nucleon inside a nucleus for which this probability is about
1%.

FIG. 1. The Dirac binding energiesED for the spherical har-
monic oscillator as a function ofN. The exact energies are the solid
line, the perturbation approximation is the dashed line, and the
asymptotic approximation is the short dashed line.

FIG. 2. On the left the excitation energiesE* for the spherical
harmonic oscillator are plotted for eachN. Each level has asN
+2dsN+1d degeneracy because of spin symmetry and because the
allowed orbital angular momenta are,=N,N−2, . . . ,0 or 1 and
the allowed orbital angular momentum projections arem
=, ,,−1, . . . ,−,. On the right the excitation energiesE* for the
deformed harmonic oscillator are plotted in staggered groups for
eachN. Each group contains the levels forn3=0,1, . . . ,N. Each
level has a 2sN−n3d+1 degeneracy forsN−n3d even and a 2sN
−n3+1d degeneracy forsN−n3d odd because of spin symmetry and
because the allowed orbital angular momentum projections areL
= ± sN−n3d , ±sN−n3−2d , . . . , ±1 or 0.
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IV. HIGHER ORDER SYMMETRY

The nonrelativistic spherical harmonic oscillator has an
SUs3d symmetry [26]. This symmetry is generated by the

orbital angular momentum xsoperators,̃ and the quadrupole
operators

qm = frr gm
s2dlNR

2 +
fppgm

s2d

lNR
2 , s45d

Where frr gm
s2d means coupled to angular momentum rank 2

and projectionm andlNR=ÎMv. This quadrupole operator
is then a function of the dimensionless variablexWNR
=lNRrW. These generators connect the degenerate states of
the harmonic oscillator.

The same degeneracy that appears in the nonrelativistic
spectrum appears in the relativistic spectrum. The upper
component of the relativistic eigenfunction given in Eq.(35)
has the same form as the nonrelativistic harmonic oscillator
eigenfunction except that it is function of the relativistic di-
mensionless variablexW =lrW. Therefore if the generators are
written in terms of the relativistic dimensionless variable
they will connect the upper components of all the degenerate
states of the relativistic harmonic oscillator in the same man-
ner as the nonrelativistic quadrupole in Eq.(45) connects the
degenerate eigenstates of the nonrelativistic harmonic oscil-
lator. Likewise, since the lower components are proportional
to Up operating on the upper components, the dimensionless
quadrupole operator transformed byUp connects the lower
components of the degenerate states in the same manner as
the nonrelativistic quadrupole operator in Eq.(45) connects
the degenerate eigenstates of the nonrelativistic harmonic os-
cillator. However,l depends on the energy[see Eq.(38a)]
and therefore the relativistic quadrupole generator is

Qm = Sfrr gm
s2d 0

0 Upfrr gm
s2dUp

DvÎM̃sHs − VV
0 + M̃d1

+ fppgm
s2d 1

vÎM̃sHs − VV
0 + M̃d

, s46d

sinceUp commutes withpW . These generators along with the

orbital angular momentumLW , given by Eq.s34d, connect the
degenerate states with each other. Work on the algebra is in

progress. ForM→` ,Qm→Q̄m,

Q̄m = Sfrr gm
s2d 0

0 Upfrr gm
s2dUp

DvM +
fppgm

s2d

vM
, s47d

which forms an SUs3d algebra withLW .

V. SUMMARY AND CONCLUSIONS

We have derived the eigenfunctions and eigenenergies for
a Dirac Hamiltonian with triaxial, axially deformed, and
spherical harmonic oscillator potentials and with equal scalar
and vector potentials. In all cases the Dirac Hamiltonian is
invariant with respect to the SU(2) spin symmetry and thus
the eigenenergies are independent of spin. For axially sym-
metric potentials the Dirac Hamiltonian is invariant with re-
spect to a SUs2d3Us1d group and the eigenenergies are de-
generate with respect to the orbital angular momentum
projection along thez axis which generates the U(1). For the
spherical oscillator the eigenenergies are degenerate with re-
spect to the orbital angular mometum and hence invariant
under the SULs2d3SUs2d group. These energies also have a
higher degeneracy which is the same as the nonrelativistic
harmonic oscillator; that is, they depend only on the total
harmonic oscillator quantum number. The generators that
connect these degenerate states have been derived but a
larger symmetry group analogous to SU(3) symmetry has yet
to be identified. However, for infinite mass, the spherical
relativistic harmonic oscillator is invariant with respect to an
SUs3d3SUs2d group.

The eigenenergies have the same functional form for tri-
axial, axially deformed, and spherical potentials and depend
on one variable which is a linear combination of the oscilla-
tor quanta in a given direction weighted by the strength of
the oscillator potential in that direction. The spectrum is in-
finite and the eigenenergies and are linear in the harmonic
oscillator quanta for small oscillator strength but increase
slower than linear for large oscillator strength.
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FIG. 3. The ratio of the probability of the lower components to
the upper components,RN, for the spherical harmonic oscillator as a
function of N.
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