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Relativistic harmonic oscillator with spin symmetry
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The eigenfunctions and eigenenergies for a Dirac Hamiltonian with equal scalar and vector harmonic
oscillator potentials are derived. Equal scalar and vector potentials may be applicable to the spectrum of an
antinucleon embedded in a nucleus. Triaxial, axially deformed, and spherical oscillator potentials are consid-
ered. The spectrum has a spin symmetry for all cases and, for the spherical harmonic oscillator potential, a
higher symmetry analogous to the @YJsymmetry of the nonrelativistic harmonic oscillator is discussed.
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I. INTRODUCTION The latter limit leads to pseudospin symmetry in nu¢&i
This symmetry occurs independent of the shape of the

Recent theoretical investigations have suggested the PORL cleus: spherical, axial deformed, or triaxial

sibility that the lifetime of an antinucleon inside a nucleus
could be significantly enhanceld]. The relativistic mean
fields of antinucleons calculated in a self-consistent Hartree A. Spin symmetry generators

approximation of a nuclear field theof®,3] indicate that the . ,
scalarV4(F) and vector potentiald/,/(F) are approximately The generators for the spin &) algebraS,, which com-
equal. This implies that the antinucleon spectrum will haveMute with Fh? Dirac HamﬂtomarﬂHs,_Sl]:O, for the spin
an approximate spin symmet#,5]. This conclusion is con- SYMMetry limitV(r)=V\(r)+C,, are given by[5]

sistent with the fact that the nucleon spectrum has an ap-

proximate pseudospin symmef,7] because the scalar and s O Sy 0
vector mean field potentials of a nucleon are approximately &= 0 % = 0 UgsU ' (2)
equal but opposite in sign and the vector potential changes % PP

sign under charge conjugatidB]. In fact, the negative en- B . ,
ergy states of the nucleon do show a strong spin symmetr{nere;=o,/2 are the usual spin generators, the Pauli

[9]. Of course, whether such states could be observable cdRatrices, andJ,=op/p is the momentum-helicity unitary
only be reliably estimated if the antinucleon annihilation po-OPerator[19]. Thus the operator§, generate an S@) in-
tential is included in the mean field calculations. variant symmetry ofHs. Therefore each eigenstate of the

In this paper we shall solve for the eigenfunctions andPirac Hamiltonian has a partner with the same energy,
eigenenergies of the triaxial, axially deformed, and spherical
relativistic harmonic oscillators for equal scalar and vector Hdy (1) = Exdy (7). (3)
potentials with the expectation that these results could be
helpful in drawing conclusmns_ about the feasibility of Qb— wherek are the other quantum numbers a,nd:il is the
serving the spectrum of an antinucleon in a nuclear env'ronéigenvalue oS, 2
ment. The spherical relativistic harmonic oscillators with '
spin symmetry[10-15 and pseudospin symmeti16,17

have been studied previously, but in this paper we derive the Sy (1) = udy ,(F). (4)
eigenfunctions and eigenenergies for the triaxial and axially
deformed harmonic oscillators as well. The eigenstates in the doublet will be connected by the gen-
eratorsS,,
II. THE DIRAC HAMILTONIAN AND SPIN SYMMETRY

The Dirac HamiltonianH with an external scalav(r) S. S (F)= \/(} . ~><§ +~)(Ds P 5

and vectonV,(r) potential is given by :Dic, () 2 TH\27H uea() ®)
H=a-p+p[M+VgD)]+ (1), (1)

The fact that Dirac eigenfunctions belong to the spinor rep-
where a, 8 are the usual Dirac matriced) is the nucleon resentation of the spin §P), as given in Eqs(4) and (5),
mass, and we set=1. The Dirac Hamiltonian is invariant leads to conditions on the Dirac amplitud@9—-23.

under a SW(2) algebra for two limits:V4(r) =V\/()+C, and
Vo) =-V\/(r)+C,s where C,,C,s are constantd5]. The
former limit has application to the spectrum of mesons for
which the spin-orbit splitting is sma]JL8] and for the spec- The Dirac eigenfunction can be written as a four dimen-
trum of an antinucleon in the mean field of nucledBs9]. sional vector

B. Dirac eigenfunctions and spin symmetry
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g*k“M(F) quugtion 9 _is bgsically the_ energy-dependent
Schrodinger equation without any spin dependence. Hence

= %) any potential, which can be solved analytically with the non-
Dy, (F) , (6) PR : e ; .
ify (D) relativistic Schrodinger equation, is solvable in the spin
if; () limit, but the energy spectrum will be different because of
0

the nonlinear dependence on the energy. Hence the Coulomb
where gk (r) are the “upper Dirac components” where + and harmonic oscillator are solvable. The Coulomb potential
|nd|cates spin up and - spin down aﬁ@ (r) are the “lower  has been solvetfor general scalar and vector potent)dl§]
Dirac components” where + indicates spin up and — spirand applied to meson spectroscddy8]. More appropriate
down. However, spin symmetry imposes conditions on theséor nuclei is the harmonic oscillator.
eigenfunctiong22,23 which are derived from Eqg4) and
(5):
ngr,llz(F) _ gi,—l/z('?) _ gk(F), (7a) I1l. HARMONIC OSCILLATOR
First we shall discuss the triaxial harmonic oscillator, then
Ok —1/21) = Gy 1/2(F) =0, (7b)  the axially symmetric harmonic oscillator, and finally the
spherical harmonic oscillator.

f1/oF) = = fic_ajoF) = Fi(F), (70

A. Triaxial harmonic oscillator

a .9 ) .4
—+i—|fi- (F)=(— )f (N, (7d
(éx ax) K712 aX r7X kw2l For the potentiaV/(r) = (M/2)(w1x + w3y’ + w32%), the sec-

ond order differential equatiof®) becomes

J ., d
g DESP (L <_ Fi— )fk+1/2(f) (7e)
Jdz X (72 (92 (92 o
2,2 2.2 2
Thus for spin symmetry the Dirac spin doublets are LX 97 (Enl npny ¥ MIM(0pC + 03y* + 037)
r 0
gk(j +E§ n,,n 2 On..n,n (N =0. (11)
0 6() ety T Fnat
o3, () = , = ..
k121 if () k-1l = if7 ()
if i 172(F) = if (1) 1. Eigenfunctions
®) Introducing the product ansatz for the eigenfunction
gnl,nz,ns(r“) ocgnl(x)gnz(y)g ns(2), we derive the three equations
C. Second order differential equation
for the eigenfunctions p
The Dirac Hamiltonian, Eq(1), gives first order differen- {ﬁ = XC+ 2y + 1] On (%) =0, (12)
1

tial relations betweem () and f,(f) and fi -,,,("). In the
usual way we turn these equations into a second order dif-
ferential relation for the upper component. In the limit of wherex;=\; X, ;=\, Y, X3=\3 z, and
spin symmetry this second order equation becomes

[p? + 2B+ M)V(D) ~ Bz + Mg () =0, (9) N =[En iy, + MM, (133

where V() =V() +V, V(1) = V() + VY, M=M +V3, andE,
:Ek—V{’,. From Eq.(1) and settingz=1, the lower compo-
nents become

NpN2:N3

E? —|\7|2:22 x?(ni+%>. (13b)

-1
f(N) =——— (108
M+

The bound eigenstates are given by

fiez1/2(1) = W -1 (i + |_>9k(n (10b)

+ E) IX gnl,nz,ns(r) = N( Enl,nz,n3)gn1(xl) gnZ(XZ)gng(XS) ’ (14)

These relations are consistent with the conditions on the
eigenfunctions imposed by spin symmetry in Eg). where
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gn(xi)=\/% & PHy (%), (1) NE = 4| 2EXM (18
3

and Hni(xi) is the Hermite polynomial which means

that gn n,n,(F) hasny,n,,n; nodes in thex,y, andz direc- 2. Eigenenergies

tions, respectlvely/\/(Enl n,n;) 1S the normalization deter- ~ From Eq.(13) the eigenvalue equation is
mined by JZaxfZ de dz[|gn1n2 Ny F)|2 |fn n2n3,u F)|2 3
|f;1vn2,n3'/L(F)|2] 1. \/Enl'nz'“s * 1(6n1'n2’n3 “D=2 Ci(nl ) ’ (19
i=1

From Eq.(10) the lower components are
where &, n n, ~”1”2 IM, C= 2w/M and n;=0,1,.

Thus both the elgenfunctlons and the eigenenergies are inde-
pendent of spin.

fnl,nz,ns('?) = N(Enl,nz,n3)gn1(xl)gn2(xz) fn3+1(X3) ’ (163)

fgtl?nz,n3,11/2(|;) = MEn, nn [ +1(X1)Gn,(X2) This eigenvalue equation is solved BIRTHEMATICA,
— ~ 1 4
+ |gn1(xl)fn2+1(X2)]gn3(X3)1 (16b) Enl,nz,na =M B(Anl,nz,n3) + o — |+ V?/,
N 3 9B(An n,n,)
where (20)
[\ _2f Hnsa(X) where
fria(X) =N — I_ e ( - an-—l(Xi)> .
i N 77.2r1|ni! 2 i ) 32 2/3
(17) B(Anl,nz,ns) = Anl,nz,n3 + Anl,nz,n3 - 2_7 ) (21)
Clearly the functionf,.;(x) is a polynomial of ordem andAnl,nz,n3_E? lC(n +1)
+1. Evaluation for lown demonstrates that it has+ 1 nodes The eigenvaluek, ,, ,, are real for all values afiy,ny,ng

so we assume that it has-1 nodes for alh. This means that as long asC,,VO are real Although true it is not obvious

foyn,n,(f) has one more node in the direction than becauseB(An, n, n) is not real for allA, , . real. From Eq.
gnlnzna (r) and the same number of nodes in theandy (21), B(An o, n) is clearly complex forAn s <\32/27.
dg)ectlons asgn, n,n,(N. ON the other hand the amplitudes oyever, we now show analytically tht, ,n, Will still be
f_n Ny, n3,$1/2(|7) have the same number of nodes in #irec- real even ifB(A, ,,n,) is complex as Iong aisB(An )|
tion asgn, n,n,("- =2/3.

Using these amplitudes the normalization becomes The imaginary part o&, n n, IS

4 4 *

1 1

S e || Bt e |
1.No.Ng 10213

N1,N5,N3 - 2|

(22)

Writing B(An. 1. 1) =|B(An. . n)|€Y,

Nny,Np.Ng Nn;,N,,N3

, Enynyng = |\7|<1+A%+---> +\0 (24)

Im Enl ny, n3 <|B(An1 ny, n3)| 9|B(An1’n2’n3)| )Sln dla

(23) and therefore the binding energ¥,  n, -M=~ ~33 lwl(n,
)+VE’,, in agreement with the nonrelatlwstlc harmonic os-

and thereforeE, , , is real if [B(A, n,n)|=2/3 indepen- C|Ilator For largeA,, p,,, the spectrum goes as

dent of ¢. One can show numencally thaB(A, n,n,)|
=2/3 for all A, n,n, in the range from zero tam, 0
<Aqnyn, <V32/27. For A, o =132/27 B(A ) is
clearly real and hencEn N |s real

The spectrum is nonllnear in contrast to the nonrelativistiovhich, in lowest order, agrees with the spectrum Xbr 0
harmonic oscillator. However, for smdNnrnZ,nB [11].

Enl,nz,n3 = M (A2/3 + % e ) + V?/' (25

N1,N5,Ng

nl,nz,n3
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B. Axially symmetric harmonic oscillator
For the axially symmetric harmonic oscillates, = w,
=w, and, hence, the potential depends onlyrgnand not
the azimuthal angle, V(1) =(M/2)(w?r? + w3 7%), wherex
=r ,cos¢,y=r sin ¢. This independence of the potential on

¢ implies that the Dirac Hamiltonian is invariant under rota-
tions about thez axis[Hg,L,]=0, where

52

0 7%,
and £ =r X p andz:UpEUp. The Dirac eigenstates will then
be an eigenfunction df, andJ,=L,+S,.

LZ(I)IS\I,H3,A,,LL(F) = A(I)il,n:;,A,/,L(F) 3

L, (26)

(273

‘]Z(I)N,n?’,A,M(F) = Q(Dls\l,n3,A,,,L(F)’ Q=A+ s (27b)

whereN is the total harmonic oscillator quantum number and

n; is the number of harmonic oscillator quanta in theli-
rection, and are discussed in more detail below.

1. Eigenfunctions

Since the potential has np dependence the second order
differential equation(9) separates into an equation fgrand
an equation fop,

P2
[(9_)(% = X3+ 23+ 10, (X3) =0,

(283

Z,
(?pz

1 - 4A2
4p2

|

wherep=\,r,, n; =2n,+A, and

—pP2n, + 2] v’;gnp(p) =0, (28D

Oy A () = G (P)Gn (€, (293
AL = [(Enn, + MIMe? M4, (29b)
Eﬁ,’nB—Mhz{)\i(nl+1)+)\§<n3+%>} (290

The quantum number®,n, ,n3,A are the “asymptotic”
gquantum numberf24], whereN=n, +n; is the total number
of oscillator quantaN=0,1,... n, is the number of oscil-
lator quanta in the | direction,n; =0,1,... N, ny is the
number of oscillator quanta in thez direction, nj
=0,1,... N, and A is the angular momentum along tlze
axis,A=+n,,x(n, -2),...,%1,0. Theupper components of
the eigenstates are given by

Agn,!
. n
m\w2™(n, + A) ! ng!

Oy A (1) = MEnn)N,, \/
(2 2 i
X g (kg+0°)I2 pALg/:)( pz)e'M’H ns(xs)' (30)

(A) . . .
where an (p?) is the Laguerre polynomial which

PHYSICAL REVIEW @9, 034318(2004)

means thath,nS,A(F) has n,,n; nodes in ther, and z
directions, respectively.N(EN’ns) is the normalization
determined by  [5Tdefor . dr [Z.dZ|gnn, (D
+|m,n3,A,,u(F)|2+|fl_\l,n3,A,,u(F)|2]:1 and is the same function as
given in Eq.(18). These upper components do not depend on
the orientation of the spin.

The lower components are

N(EN,nS,A) n!

2
fnnga() == o +EN’n3 ’2) 7T(an+A)! P20
X Lﬁﬁ)(pz)e““ﬁfnsﬂ(xg), (31
m,ns,A,—l/z(F) == I\NJ;/(+E~|:‘n3) 5 W(nnt_’: o P12\
Nng o
X[(n, + DL (p) + (0, + A)
XL (D)1 g (), (31b)

N(EN,n )
A,1/2(F) -
M+ Eyp,
XILE ™ (0% + L (p9)]e Mg, (x3),

(310

n)! 2
- N p e P2 A1
m(n,+ A)! P

N,ng,

p

where gy (X3), fn,(x3) are defined in Eqgs(15) and (17).
Clearly the function‘N,nS,A(F) hasns+1 nodes in the direc-

tion, one more node than the upper component, but the same
number of nodes in ther, direction. The amplitude
fﬁ,n@A,—l/z(F) has the same number of nodes in #direction

as the upper component. However, it llgs-1 nodes in the

r, direction for lown, and we assume it hag,+1 node for

all n,; that is, one more node in the direction than the
upper component. On the other hand the amplitude
fﬁ,n@A,l/z(F) has the same number of nodes in #hairection

and ther | direction as the upper component.

2. Eigenenergies

From Eqg.(29) the eigenvalue equation is
Vénn, * Unn, =D =C (n, +1)+Cs(ng+3), (32

where EanszEanslM,Cl:Zwl/M, and n,,n;=0,1,....
Thus the eigenenergies not only have a degeneracy due to
spin symmetry but they have an additional degeneracy in that
they only depend oM andn; and not onA.

The discussion about eigenenergies is the same as for tri-
axial nuclei and the energy spectrum is given by

~ 1
Enng =M| B(Ay o) + 2+ BA |7 W, (33

o)

WhereAni’nsz CL(nL + 1) +C3(n3+ %)
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C. Spherical harmonic oscillator 1. Eigenfunctions

For a spherical harmonic oscillates;=w and hence the The solutions to this differential equation are well known
potential depends only on the radial coordinate, and lead to the upper amplitudes of the eigenfunctions,
=\x?+y?+7°, and is independent of the polar angh, z

=r cos(#h), as well as¢p. The Dirac Hamiltonian will be in- o o) = MEp) 2\°n! e_lezngE]“l/Z)(Xz),
variant with respect to rotations about all three axes, " ' F( crn+ 3 '
[L;,Hs]=0 where 2
N (E o) (39
L= 2, (34 where N(Ey) is the normalization determined by
0 ¢ 57 [ T sin(6)dOf5r2drl|gn o(D|*+f ¢j(D]=1 and is

the same function as given in EQ.8). Clearlygnryf(r) has
n, nodes in the radial direction.
The lower components are

and hence invariant with respect to a,$2) X SU(2) group
where SY(2) is generated by the orbital angular momen-

tum operatorsL. Since the total angular momenturd, .
=L+S, is also conserved, rather than using the four row ¢ v ipero) = = MEy) | 2nvn! e—x2/2x€—1[(n +1)
basis for this eigenfunction, it is more convenient to in- """ M +EN I'€+n + g) '

troduce the spin functioly, explicitly. The states that are o1 L o1
a degenerate doublet are then the states yvith+ 3 and ><I-$1r+1 (08) +(ne+ €+ E)Lgr ()], (40
they have the two row fornmp22]:

i N(Ey) 2)\°n! 2
NIYY (e, (3) fr pizes1o§) == == X2y l+1
‘PﬁuM(F)=<.gnr’€( Y60, &) x 1 | (35 Ny €, j=€+1/2 M+, rC+rn+3)
s i

o e (DIY D0, O XY

XILE¥208) + Ly 23200)]. (41)
where ¢;=¢+1 for j:H%,Yﬁf)(e,qb) is the spherical har-
monic of order{,n, is the number of radial nodes of the ;
upber amplitude armﬂY(“(a ) ](j) ic the counled ampli- node than the upper component. The amplltqugjzg_l,z(r*)

PP B(l/zn {0 ' PV X I up P has the same number of nodes as the upper component. This
tude =, Crony Y (0, #)x,. Thus the spherical symmetry 4grees with the general theorem relating the number of radial
reduces the number of amplitudes in the doublet even furthegges of the lower components to the number of radial nodes

from four to three. _ _ . of the upper componef5].
The Dirac eigenstates will then be an eigenfunction of

Clearly the functiorfnr,(,jze_l,z(r”) hasn,+1 nodes, one more

L-L,J-J, andJ, 2. Energy eigenvalues
> oz . The eigenvalue equation is
330 =i+ DY D, (36a d g
VEN+ LUEN-1) =C(N+D), (42)
L LW (P = €€+ W5 (), (36D  where £y=Ey/M,C=2w/M, and N is the total oscillator

quantum numberN=2n+¢=0,1,.... Wenote that there is
not only a degeneracy due to spin symmetry but there is also

LWE im0 =MWE o w(). (360 the usual degeneracy of the nonrelativistic harmonic oscilla-
tor; namely, that the energy depends only on the total har-
The differential equation fog, ((r) becomes monic oscillator quantum number and the states with orbital
angular momenturd=N,N-2,...,0 or 1 and angular mo-
@ e+1) ) (E’%l - ITAZ) =0 me:tur_n %oje(_:tiormzlé’,{—l, ... £ are all degenerate.
SIS ~ = MwZJl/Z rgn (1) =0, gain the eigenvalue is
EntM)—— ~
{( NEMT En=M B(AN)+}+—4 +Vy, (43)
37 3 9B(Ay)

_ _ and Ay=C(N+3).
whereEy=Ey—V3,M=M+V2 x=\r, and
\ = [(EN + I\~/I)I\~/Iw2]1’4, (383) D. Energy spectrum
In Fig. 1 we plot the spherical harmonic oscillator Dirac
binding energie€p=Ey—M with Ey given in Eq.(43), the
E2-M2= 2)\2<N + §> (3gp ~ Solid curve, as a function 0d. We chose the parameters to fit
2 the lowest eigenenergies of the spectrum of an antiproton
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1500 T T T [ T T T ] T T T L E*
I s (MeV) Spherical Deformed n03
s 1200 ny 1=
Exact 20
1000 - — — - Perturbation 7 10 = n g—i:
----- Asymptotic 7 R
7 G — n 0___3: 6o
i Y 1000 i e
- O 3 ™ 6 O
500 |- s n, 1=i= =0
7 i e b
800 —3m6
—_ ny Zi=g—
5 0 ¢ —3= =
T n, 1T
(Mev) 600 o 3— 6=
500 : 4 ny %:45:
i 400 3 - 2:?&:
n 2 w—
M 7 03_3....
’ g 2 - —_
-1000 £7° N
Fe 200 03‘_
L T - 1
4500 Lo 0o e o N 1 2 3 4 5 6 7 8 9 10
0] 2 4 6 8 10

. - . . FIG. 2. On the left the excitation energi&$ for the spherical

F.lG' 1'. The Dirac bmdmg energiessp for the _spherlcal har-_ harmonic oscillator are plotted for eadth Each level has &N
monic oscillator as a function dd. The exact energies are the solid +2)(N+1) degeneracy because of spin symmetry and because the
line, the perturbation approximation is the dashed line, and th%llowed orbital angular momenta afs=N,N-2 0 or 1 and
asymptotic approximation is the short dashed line. the allowed orbital angular momentum projections ame

) ) o ) _ ) =¢,£-1,...,~. On the right the excitation energi€s* for the
outside of%0 in the relativistic mean field approximation deformed harmonic oscillator are plotted in staggered groups for
[1] and they are C=1.33, M =252 MeV, and VS’,: eachN. Each group contains the levels fog=0,1,... N. Each
-677 MeV. level has a BN-ng)+1 degeneracy fofN-nz) even and a @

The dashed curve B using the pertubation approxima- ~Ns*1) degeneracy fofN-ng) odd because of spin symmetry and
tion of Ey given in Eq.(24). The short-dashed curve &, ?ecause the allowed orbital angular momentum projections\are
using the asymptotic limit o€y given in Eq.(25). Clearly = *(N=ng),#(N-ns=2),.... 1 or 0.
the eigenenergies are in the relativistic asymptotic regime _ _ )
and not the linear regime of the nonrelativistic harmonic os<alculated independently by usifd..dx/~.dy/~.dZ|f}(")[?
cillator. . . . _ HEOF=SZdXdyf . dz gF) p*/ (E+M)%g() and we
~ InFig. 2 we plot the spherical harmonic oscillator excita-find agreement between the two different ways of calculating
tion energiedy =Ey~E, for differentN on the far left. Each  AqE).
level has &N+2)(N+1) degeneracy because of spin symme-  Thjs also tells us that the probability of the lower compo-
try and because the allowed orbital angular momentafare nent to the upper component is given by
=N,N-2,...,0 or 1 and the allowed orbital angular momen-
tum projections aren=¢,¢-1,...,~. In the right of Fig. 2 " . "
we plot the deformeq excnano_n energ|E§’n3:EN,n$—Eo,o. f de dyJ di|f;’#(r")|2+ |f;¥M(f’)|Z] o
The deformed excitation energies are staggered in groups cgzk_ -0 - -0 _

Kk

each N and each group contains the levels of o °° °° =EEVIS
=0,1,... N with the excitation energy increasing with de- f dxf dyJ d4gu(N? 2B+ M)
creasingns. The dimensionless oscillator strengths are deter- T T

mined by C3=C2C; and assuming a deformatiofi=0.33 (44)

which leads toC, =1.49C;=1.05 [24]. Each level has a
2(N=ng)+1 degeneracy fofN-n,) even and adN-ng+1) o o forEc~M the system is not very relativistic and the
degeneracy fo(N-n;) odd because of spin symmetry and o _ ~ 2
because the allowed orbital angular momenturm projection§ontribution of the lower components is small. Fge>M,
areA=+(N-ny), +(N-n3=2), ..., +1 or 0. The splitting of this ratio approache%. For free particles this ratio ap-

the levels within eactN appears to be approximately linear proaches unity w_hicr_] indicates that the harmonic oscillator
with ng. reduces the relativistic effect.

In Fig. 3 we plot this ratio for the spherical harmonic
oscillator, Ry, as a function ofN. Even for the most bound
states this probability is about 20% and thus the antinucleon

The normalizationV(E) has the same functional form in- bound inside the nucleus is much more relativistic than a
dependent of whether the harmonic oscillator is triaxial, axi-nucleon inside a nucleus for which this probability is about
ally deformed, or spherical. This normalization has also beei%.

E. Relativistic contribution
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0.5 e ) - -
: : Qm=<["]"" ° )wVM(HS—V%M)l

(2)
0  Urr]U,

04 [

+[pply —= —, (46)
0 \WI(Hy = V) + W)
sinceU, commutes withp. These generators along with the

orbital angular momenturh, given by Eq.(34), connect the
] degenerate states with each other. Work on the algebra is in

progress. FOM — 0, Qp— Qp,

[ ] B @ @
1§ ] mz([rr]m 0 )M+[pp]m

03 |

0.2

, 47

0 UrmI?u, /T oM .
0 I I 1 " | ) ) L ) | L L L L 1 L L L L ] 1 1 u
o p 700 Y 200 which forms an SIB) algebra withL.

N

V. SUMMARY AND CONCLUSIONS
FIG. 3. The ratio of the probability of the lower components to

the upper componentRy, for the spherical harmonic oscillatorasa  We have derived the eigenfunctions and eigenenergies for
function of N. a Dirac Hamiltonian with triaxial, axially deformed, and
spherical harmonic oscillator potentials and with equal scalar
IV. HIGHER ORDER SYMMETRY and vector potentials. In all cases the Dirac Hamiltonian is
L i i i invariant with respect to the SB) spin symmetry and thus
The nonrelativistic sphencal harmo_nlc oscillator has any,q eigenenergies are independent of spin. For axially sym-
SU3) symmetry [26]. This symmetry is generated by the neqic potentials the Dirac Hamiltonian is invariant with re-
orbital angular momentum xsoperatdrsind the quadrupole spect to a S(2) X U(1) group and the eigenenergies are de-
operators generate with respect to the orbital angular momentum
) projection along the axis which generates the(l). For the
%, (45) spherical oscillator the eigenenergies are degenerate with re-
E,R spect to the orbital angular mometum and hence invariant
under the SWJ(2) X SU(2) group. These energies also have a
higher degeneracy which is the same as the nonrelativistic
harmonic oscillator; that is, they depend only on the total
harmonic oscillator quantum number. The generators that
ggnnect these degenerate states have been derived but a

. .. _larger symmetry group analogous to @Ysymmetry has yet
The same degeneracy that appears in the nonrelatlws% be identified. However, for infinite mass, the spherical

spectrum appears in .the'relgtlwstm S.peCtT“m- _The UPPEfe|ativistic harmonic oscillator is invariant with respect to an
component of the relativistic eigenfunction given in E8b) SU(3) X SU(2) group

has the same form as the nonrelativistic harmonic oscillator
eigenfunction except that it is function of the relativistic di-
mensionless variabl&=\r. Therefore if the generators are

Om= [rr]sﬁ))\ﬁR"'

Where[rr]ﬁ? means coupled to angular momentum rank 2
and projectiorm and A\yg=VMw. This quadrupole operator
is then a function of the dimensionless variabfgg
=\\&- These generators connect the degenerate states
the harmonic oscillator.

The eigenenergies have the same functional form for tri-
axial, axially deformed, and spherical potentials and depend
on one variable which is a linear combination of the oscilla-

mgttewni"'réotr?rrlg]; tc;]fetl:]e g?l?g\r;;Stécn:r:geor}S;ﬁrlﬁesséevzghaebrztor guanta in a given direction weighted by the strength of
y PP P 9 fhe oscillator potential in that direction. The spectrum is in-

iﬁtzs; ?r:éhﬁorf:;t;\;;\slit;g2;23?&%8;5’::Irl]aé%l%ncgfn:gethn;anﬁnitg and the eigenenergies an_d are linear in the harmonic

degenerate eigenstates of the nonrelativistic harmonic osci?scmatOr qugnta for small osc'lllator strength but increase
i . . . lower than linear for large oscillator strength.

lator. Likewise, since the lower components are proportiona

to U, operating on the upper components, the dimensionless

quadrupole operator transformed bl connects the lower ACKNOWLEDGMENTS
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