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The decay rate of a triaxially deformed proton emitter is calculated in a particle-rotor model, which is based
on a deformed Woods-Saxon potential and includes a deformed spin-orbit interaction. The wave function of the
I =7/2− ground state of the deformed proton emitter141Ho is obtained in the adiabatic limit, and a Green’s
function technique is used to calculate the decay rate and branching ratio to the first excited 2+ state of the
daughter nucleus. Only for values of the triaxial angleg,5° is good agreement obtained for both the total
decay rate and the 2+ branching ratio.
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I. INTRODUCTION

The fundamental simplicity of the proton decay process in
nuclides whose ground states are unstable to proton emission
has enabled a good deal of nuclear structure information to
be obtained on nuclei beyond the proton drip line[1]. The
observable quantities are the proton energies and half-lives.
In the rare-earth region, the proton emitters are predicted to
have large static quadrupole deformations[2]. For these
cases, analysis of the measurements has been carried out
using a particle-rotor model, with the unbound proton inter-
acting with an axially symmetric deformed core[3–11]. The
result of such analyses over the past several years has been to
obtain a good description of the ground-state properties of
deformed rare-earth proton emitters, including deformations,
occupation factors, Nilsson orbitals for the decaying protons,
and wave function decompositions.

Adding to the information provided by the observation of
decay protons, recent measurements have been made of the
level structure of the deformed proton emitter141Ho by
means of in-beamg-ray spectroscopy[12]. Particle-rotor cal-
culations of the energy levels in the rotational band lying
above theI =7/2− ground state suggest that better agreement
with experiment would be obtained if the nuclear shape pos-
sessed a small amount of static triaxial deformation[12].
From the standpoint of proton radioactivity it is therefore of
interest to investigate the effect of a static triaxial deforma-
tion on the decay rate of a deformed proton emitter. In this
work we present such an analysis, and obtain numerical re-
sults for the decay rate of the deformed proton emitter
141gHo. Preliminary results have been reported in Ref.[13].
Kruppa and Nazarewicz have also investigated the role of
nonaxial effects in141gHo decay, by introducing coupling
between the140Dy ground-state rotational band and a low-
lying K=2 g-vibrational band[14].

II. COUPLED EQUATIONS IN THE R REPRESENTATION

We generalize the treatment of Esbensen and Davids[11],
extending it to include the case of nuclei without axial sym-
metry. Using Eq.(5A-2) of Ref. [15], we write the wave
function of an odd-A even-N nucleus consisting of a proton
coupled to an even-even triaxially deformed rotor, in the
laboratory(space-fixed) system as

CIMsr ,vd = o
l jRt

fl jRt
I srd

r
ul jRtIM l, s1d

wherel and j are the orbital and total angular momentum of
the particle,R andt are the rotational quantum numbers of
the rotor, andI is the total angular momentum of the nucleus
sI = j +Rd. The ket ul jRtIM l describes the dependence on
spin and angular coordinates of the particle and the orienta-
tion angle of the rotor, and is given by

ul jRtIM l = o
mMR

k jmRMRuIM luRtMRlul jml. s2d

This is the laboratory frame orR-representation as described
in Eq. s2d of Ref. f11g. The total Hamiltonian of the proton-
core system,

H = T + Vsr ,vd + Vlssr ,vd + HR, s3d

consists of the relative kinetic energyT, the nuclear plus
Coulomb interactionVsr ,vd, which depends on the position
r of the proton and the orientationv of the rotor in the
space-fixed system, the deformed spin-orbit potential
Vlssr ,vd, and the HamiltonianHR of the rotor. The detailed
parametrization of the nuclear and Coulomb interactions are
given in Appendix A, and the deformed spin-orbit term is
discussed in Appendix B. To proceed, we first expand the
potentialVsr ,vd in theD functions, which are related to the
spherical harmonics:

Vsr ,vd = o
lm

VlmsrdDm0
l su8,f8d, s4d

Vlmsrd =
2l + 1

4p
E

−1

1

dscosu8d

3E
0

2p

df8Dm0
l* su8,f8d Vsr,u8,f8d, s5d

whereu8 ,f8 refer to the angles of the particle with respect to
the three-axis of the rotor. Because of reflection symmetry,l
and m are restricted to even valuesssee Appendix Ad. Pro-
jecting with ul jRtIM l on the Schrödinger equationHCIM
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=ECIM we obtain a set of coupled equations in the radial
wave functions

shlj + ERt − Edfl jRt
I srd = − o

l8 j8R8t8
o

l.0,m
kl jRtIM uDm0

l su8,f8d

3ul8 j8R8t8IM lVlmsrdfl8 j8R8t8
I srd

− o
l8 j8R8t8

kl jRtIM uVlssr ,vd

3ul8 j8R8t8IM lfl8 j8R8t8
I srd, s6d

where

hlj =
"2

2m0
S−

d2

dr2 +
lsl + 1d

r2 D + V0srd,

andV0srd is the monopole part of the Coulomb plus nuclear
potential. Herem0 is the proton reduced mass andERt is the
energy of the rotational stateuRtMRl. In Appendix B we will
extract the monopole part of the spin-orbit potential for in-
clusion inhlj .

III. THE K REPRESENTATION

The matrix elements on the right-hand side of Eq.(6) are
easiest to evaluate if we go over into theK representation of
Ref. [11], which is expressed in the body-centered coordi-
nates of the rotor. In this system the quantum numbert is
identified with the projectionKR of R on the rotor’s three-
axis. For clarity, the quantum numbersm, MR, andM in Eq.
(2) all refer to angular momentum projections on thez axis
of the space-fixed coordinate system due to the particle, ro-
tor, and nucleus, respectively, while the corresponding pro-
jections on the three-axis in the body-fixed system are de-
noted byV, KR, andK (see Fig. 1). As a consequence, the
following relations hold:

M = MR + m, s7d

K = KR + V. s8d

In theK representation we can write the transformed rotor
wave function as(see Eqs.(4)–(7) of Ref. [15])

kvuRtMRl = kvuRKRMRl =Î2R+ 1

8p2 DMRKR

R svd, s9d

which is a function of the orientationv of the rotor in the
laboratory frame. For an axially symmetric rotor, we would
have KR=0, resulting inV=K from Eq. s8d. The particle
wave function is

ul jml = o
V

DmV
j svdul j Vl, s10d

where the single-particle wave functionul j Vl is evaluated in
the body-fixed frame of the rotor.

After inserting Eqs.(9) and (10) into Eq. (2), we may
contract it using Eq.(1A-43) of [15], with the result

ul jRKRIM l =Î2R+ 1

8p2 o
K,V

k jVRKRuIKlDMK
I svdul j Vl.

s11d

Because the rotor possesses symmetry after rotating 180°
around any of its three axes, it is convenient to have the
projection K appear only as a positive number. Symmetry
properties of the wave function require that the quantityKR
=K−V be an even integers0, ±2, ±4, . . .d [16]. We then
have

ul jRKRIM l =Î2R+ 1

8p2 o
K.0,V

k jVRKRuIKlfDMK
I svdul j Vl

+ s− 1dI−jDM−K
I svdul j V̄lg, s12d

whereV̄ stands for −V. Since we are only interested in the
low-lying states of the rotor whereR=0,2,4, . . ., werewrite
Eq. s12d as

ul jRKRIM l = o
K.0,V

AjV,RKR

IK ul j VKIM l, s13d

where

AjV,RKR

IK =Î2R+ 1

2I + 1
k jVRKRuIKlÎ1 + s− 1dR s14d

and

ul j VKIM l =Î2I + 1

16p2 fDMK
I svdul j Vl

+ s− 1dI−jDM−K
I svdul j V̄lg. s15d

For an axially symmetric nucleus,KR vanishes, makingV
=K, and Eqs.s14d ands15d become identical to Eqs.s14d and
s15d of Ref. f11g.

Inserting Eq.(13) into Eq. (1) we can now express the
total wave function in terms of the new basis(15):

CIM = o
l j

o
K.0

o
V

fl j V
IK srd
r

ul j VKIM l, s16d

where the radial wave functions are

FIG. 1. (a) Relationship of the angular momentum vectorsj , R,
and I in the axially symmetric case.(b) Same as(a) except for the
triaxial case. In both casesK is the projection of the total angular
momentumI on the three-axis of the body-centered system.
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fl j V
IK srd = o

RKR

AjV,RKR

IK fl jRKR

I srd. s17d

Note that the triaxial radial wave functions depend on the
particle quantum numberV in addition tol j .

It is easy to show that the amplitudes(14) form an ortho-
normal transformation between theK and theR representa-
tion, i.e.,

o
K.0

o
V

AjV,RKR

IK AjV,R8KR8

IK = dR,R8dKR,KR8
,

o
RKR

AjV,RKR

IK AjV8,RKR

IK8 = dV,V8dK,K8. s18d

Thus we can transform the results obtained in one represen-
tation into the other. After inverting Eq.(17) we obtain

fl jRKR

I srd = o
K.0

o
V

AjV,RKR

IK fl j V
IK srd. s19d

A. Coupled equations in theK representation

We continue with the evaluation of the matrix elements on
the right-hand side(RHS) of Eq. (6). Inserting expression
(13) for the spin-angular wave functions in theR representa-
tion we obtain

kl jRKRIM uDm0
l su8,f8dul8 j8R8KR8IM l

= o
K.0

o
K8.0

o
V,V8

AjV,RKR

IK kl j VKIM uDm0
l su8,f8d

3ul8 j8V8K8IM lAj8V8,R8KR8

IK8

and a similar expression for the matrix element of the spin-
orbit potential. The advantage of using theK representation,
Eq. s15d, now becomes evident because each matrix element
is the product of two parts. The first part involves integrating
a product of orthogonalD functions over the orientation co-
ordinatesv of the rotor, and yields the important resultdK,K8.
The second part involves the single-particle wave functions
in the body-fixed rest frame of the rotor:

kl j VuDm0
l su8,f8dul8 j8V8l = s− 1dlk j 1

2l0u j81
2lk j8V8lmu jVl.

s20d

Thus

kl jRKRIM uDm0
l su8,f8dul8 j8R8KR8IM l

= o
K8.0

o
V,V8

AjV,RKR

IK8 kl j VuDm0
l su8,f8dul8 j8V8lAj8V8,R8KR8

IK8 .

s21d

For the spin-orbit potential we have a similar expression. We
show how to evaluate the matrix elements of the spin-orbit
interaction in Appendix B. Because the matrix elements are
diagonal inK, Eq. s8d shows that the particle projections
V ,V8 are restricted byuV−V8u=an even integer. Westill
have the previously determined restrictionsl even and
uK−Vu=an even integer.

We now obtain the coupled equations in theK represen-
tation by multiplying Eq.(6) by AjV,RKR

IK and summing over
RKR, using Eqs.(17) and(18). The presence of the rotational
energyERKR

requires the use of Eq.(19) for the radial wave
function. Thus we obtain

shlj − Edfl j V
IK srd + o

K8.0

o
V8

WjVV8
KK8 fl j V8

IK8 srd

= − o
l8 j8

o
V8
H o

l.0,m
kl j VuDm0

l su8,f8dul8 j8V8lVlmsrd

+ kl j VuVlssr dul8 j8V8lJfl8 j8V8
IK srd, s22d

where

WjVV8
KK8 = o

RKR

AjV,RKR

IK ERKR
AjV8,RKR

IK8 . s23d

To recover the axially symmetric case we setV=V8=K, and
m=0 in Eqs.s22d ands23d. This removes the sums overV8,
KR, andm.

B. Adiabatic limit

For a comparison with the results obtained in Ref.[11],
we will solve the coupled equations(22) in the adiabatic
limit, where the rotational energiesERKR

of the core are set to
zero. This sets equal to zero the second term on the left-hand
side of Eq.(22). In this case we have

shlj − Edfl j V
IK srd = − o

l8 j8V8
H o

l.0,m
kl j VuDm0

l su8,f8d

3ul8 j8V8lVlmsrd + kl j VuVlssr d

3ul8 j8V8lJfl8 j8V8
IK srd. s24d

The important thing to notice is that the coupled equations
are then diagonal inK, but includeV mixing. In other words,
in the adiabatic limit,K is still a good quantum number, but,
in addition to theV=K component, the interaction mixes
into the wave function components withV=K±2,K±4, etc.,
subject to the restrictionuVuø j . It should also be noted that
the Clebsch-Gordan coefficient in Eq.s20d is nonzero only
whenV8+m=V.

The consequence of thisV mixing is that the number of
coupled equations will be substantially larger than is found
in the axially symmetric case. As an example, consider the
combinations ofj and V needed to solve the equations for
the I =K= 7

2
−

ground state of the deformed proton emitter
141Ho. The spherical states involved will bej = 7

2
−
, 9

2
−
, 11

2
−
,

13
2

−
, and 15

2
−
. In addition toV=K, for each j there will be

associated up to seven more values ofV. Table I shows the
permissiblej ,V combinations for theI =K= 7

2
−

ground state
of 141Ho. The total number of wave function combinations is
30, which is to be contrasted with only 5 for the axially
symmetric case.
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C. Decay rate calculation

We obtain the partial decay rate for proton emission from
a state having angular momentumI =K in the adiabatic limit
via either the direct method(Dir) or the distorted wave(DW)
Green’s function method using Eq.(7) of Ref. [11]. While in
the axially symmetric case the daughter states were labeled
only by the quantum numberR, in the triaxial case we need
the second labelt or KR as well:

GRKR

I = o
l j

Gl jRKR

I =
"2kR

m
o
l j

uNljRKR

I,Dir /DWu2, s25d

where

NljRKR

I,Dir =
fl jRKR

I srd

GlskRrd
at r = rm,

NljRKR

I,DW = −
2m

"2kR
o

l8 j8R8KR8

E
0

rint

drFlskRrdkl jRKRIM uVsr ,vd

+ Vlssr ,vd −
ZDe2

r
ul8 j8R8KR8IM lfl8 j8R8KR8

I srd.

s26d

Here kR is the proton wave number for the decay to the
daughter state with quantum numbersRKR. Having obtained
the radial wave functionfl j V

IK srd for a givenK= I in the adia-
batic limit, we can construct the associated radial wave func-
tions in theR representation,

fl jRKR

I srd = o
V

AjV,RKR

IK fl j V
IK srd, s27d

by means of Eq.s19d. Inserting this wave function into Eq.
s26d, we obtain for the direct method

NljRKR

I,Dir =
1

GlskRrmd
Î2s2R+ 1d

2I + 1 o
V

k jVRKRuIKlfl j V
IK srmd.

s28d

Using this equation we can immediately see the effect of the
triaxial shape on the decay rate: for decay to the ground state
sR=0d, the Clebsch-Gordan coefficient has the valued j ,IdV,K.
Thus only theV=K component of the wave function will
participate in this decay branch, effectively reducing its de-
cay rate relative to that for the axially symmetric case since
there are now otherV components present in the triaxial
wave function.

For the Green’s function method, after performing the
same operations that led to Eq.(21) to obtain the matrix
elements of the interaction in Eq.(26), the second orthogo-
nality relation in Eq.(18) allows the summations overR8 and
KR8 to be performed. The final expression for the Green’s
function method is

NljRKR

I,DW = −
2m

"2kR
o
l8 j8

o
V,V8

AjV,RKR

IK E
0

rint

drFlskRrdkl j VuVsr ,vd

+ Vlssr ,vd −
ZDe2

r
ul8 j8V8lfl8 j8V8

IK srd. s29d

This expression reduces to the analogous one for an axially
symmetric nucleus whenK is set equal toV and the sums
over V andV8 are removed.

IV. APPLICATIONS

In this section we use the formalism described above to
calculate decay rates for the deformed proton emitter141Ho
sI =K=7/2−d, in both the axially symmetric and triaxial
cases. The calculations have been performed in the adiabatic
limit, using the potential parameters found in Ref.[11]. The
ground-state wave function was expanded in spherical com-
ponents withj =7/2−, 9/2−, 11/2−, 13/2−, and 15/2−. All
multipole expansions were carried out up tol=14. The re-
sults are compared with experimental values for the total
decay width and the branching ratio for decay to the first
excited 2+ state in the daughter nucleus140Dy.

A. Axially symmetric case: The deformed proton
emitter 141Ho

To verify the formulation, we have computed the decay
half-life and branching ratio to the 2+ state in the daughter
nucleus for the deformed proton emitter141Ho, using de-
formed spin-orbit matrix elements for the axially symmetric
case sg=m=0, V=V8=Kd calculated from Eq. (B17),
which, again forl.0, now reads

kl jK uVlssr,udul8 j8Kl = 2Vsoo
l.0

k j8Kl0u jKl
Î2j + 1

3kl j if= flmsrdDm0
l sr̂ dg · s− i =

3 ŝdil8 j8l, s30d

TABLE I. Combinations of j and V for I =K= 7
2

−
originating

from j = 7
2

−→ 15
2

−
. The bullet s•d denotes states occurring in the

axially symmetric case.

j V Axially symmetric j V Axially symmetric

7
2

− −5
2

13
2

− −13
2

7
2

− −1
2

13
2

− −9
2

7
2

− 3
2

13
2

− −5
2

7
2

− 7
2 • 13

2
− −1

2
9
2

− −9
2

13
2

− 3
2

9
2

− −5
2

13
2

− 7
2 •

9
2

− −1
2

13
2

− 11
2

9
2

− 3
2

15
2

− −13
2

9
2

− 7
2 • 15

2
− −9

2
11
2

− −9
2

15
2

− −5
2

11
2

− −5
2

15
2

− −1
2

11
2

− −1
2

15
2

− 3
2

11
2

− 3
2

15
2

− 7
2 •

11
2

− 7
2 • 15

2
− 11

2
11
2

− 11
2

15
2

− 15
2
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where the reduced matrix element is that calculated in Eq.
sB16d. The results of the calculations are shown in Table II,
and are identical with those obtained using the axially sym-
metric deformed spin-orbit term of Ref.f11g. It should be
noted that the numbers obtained here and in Ref.f11g differ
slightly, since the 2+ excitation energy of 202 keV in the
daughter nuclide140Dy used here has only recently been
measuredf19,20g, and was not known when the calcula-
tions in Ref.f11g were carried out. In that work an exci-
tation energy of 166 keV was used.

B. Triaxial case: The deformed proton emitter 141Ho

As previously mentioned, particle-rotor calculations of
the energy levels in the rotational band lying above theI
=7/2− ground state of the deformed proton emitter141Ho
were reported in Ref.[12]. These calculations suggest that
better agreement with experiment would be obtained with
the introduction of a small amount of static triaxial deforma-
tion. In order to assess the effect on the proton decay rates of
adding such a deformation, we have used the formalism de-
veloped in the present work to compute, in the adiabatic
limit, the decay rate and 2+ branching ratio for this proton
emitting nuclide, as a function of the angle of triaxialityg.
The calculations were performed withb2=0.244, b4
=−0.046.

Figure 2 shows the product of calculated total decay
width Gcalc and spectroscopic factorScalc=u2=0.6 for the
141Ho ground state, plotted as a function of the triaxial angle
g. The spectroscopic factor was obtained from a BCS calcu-
lation, using a proton pairing gapDp of 0.9 MeV. The
shaded area represents the experimental measurement, and
the error bar attached to the calculated curve represents the
uncertainty in the calculated width due to the uncertainty in
the proton energy. It is seen that calculation and experiment
agree well for small values ofg.

Figure 3 shows the calculated 2+ branching ratio, plotted
as a function ofg, along with the experimental value,
0.0070(15) [18]. The small error bar on the calculated curve
is due to the uncertainty in the proton energy. The agreement
between calculation and experiment is excellent for small
values ofg, and this suggests that a static triaxial deforma-
tion, if present, is limited to an angle ofø5°.

Plotted in Fig. 4 are the amplitudes for the allowedV
values of +7/2−, +3/2−, −1/2−, and −5/2− for the j =7/2
spherical component of the141Ho ground-state wave func-
tion. As expected, forg=0, only theV= +7/2− component is

present, but with increasingg, otherV components differing
by ±2, ±4, . . .begin to mix into the wave function. The de-
cay proceeds primarily to the daughter ground state, and only
the V= +7/2− component participates in this branch. Thus
the decrease in the total decay width with increasingg seen
in Fig. 2 tracks with the decrease in theV= +7/2− wave
function component, which itself follows from the increasing
appearance of otherV values in the wave function.

V. CONCLUSIONS

In this work we have developed a formalism to include
the effect of static triaxial deformation on calculations of the
decay rate for a deformed nucleus. The main complications
over the axially symmetric case are the additional depen-
dence of the interaction potential on the proton azimuthal
anglef, and a consequent increase in the complexity of the
deformed spin-orbit potential. The extra dimension causes
additional V components to be introduced into the wave
function. The matrix elements of the spin-orbit interaction

TABLE II. Comparison of calculated and experimental values for141Hos7/2−d total decay rate and 2+ branching ratio. Input values are
Exs2+d in 140Dy=202 keV,b2=0.244, andb4=−0.046. Calculations were done in the adiabatic limit, with no static triaxiality, and uncer-
tainties coming from the measured proton energy of 1169s8d keV [17] and the decay half-life of 4.2s4d ms[17] have been taken into account.
The experimental spectroscopic factorSexpt is defined asGexpt/Gcalc. The calculated spectroscopic factorScalc=u2 is obtained from a BCS
calculation(see text).

Gcalcs10−19 MeVd Gexpts10−19 MeVd Scalc Sexpt BRs2+dcalc BRs2+dexpt

1.51−0.28
+0.34 1.09(10)a 0.6 0.72−0.15

+0.17 0.0071(5) 0.0070(15)b

aReference[17].
bReference[18].

FIG. 2. Calculated total decay width, in units of 10−19 MeV, for
141gHo, plotted as a function of the triaxial angleg. The shaded area
represents the experimental measurement, and the error bar attached
to the calculated curve represents the uncertainty in the calculated
width due to the uncertainty in the proton energy.
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have been calculated using a tensor algebra approach, as de-
scribed in Appendix B.

We have applied the above mentioned methodology to
calculations of the decay rate of the deformed proton emitter

141gHo, which has spin-parity 7/2−. In Ref.[11] it was shown
that the nonadiabatic coupled-channels approach does not
yield results for141gHo decay which agree with experiment,
either for the absolute decay rate or the branching ratio for
decay to the first 2+ of the daughter nucleus140Dy. This is
because of the presence of Coriolis mixing, which is particu-
larly strong for high spin states. Empirically it is known that
it is necessary to quench the Coriolis mixing in order to
obtain good agreement with data[21,22]. It was found in
Ref. [11] that good agreement with experiment was obtained
in the adiabatic limit, where the energies of the rotational
states of the daughter nucleus are set to zero. For this reason
we have performed the triaxial calculations in the adiabatic
limit.

After first checking the results of the calculation against
an axially symmetric code, triaxiality was introduced, rang-
ing up to ag angle of 40°. While the sensitivity of the re-
sulting total decay rate to triaxial angleg was not high, the
calculation of the branching ratio for decay to the first 2+

state of the daughter showed a strong dependence ong, es-
sentially ruling out angles greater than 5°. We believe that
the branching ratio calculation is quite reliable, since factors
such as absolute spectroscopic factors tend to cancel.

In conclusion, we do not believe that a static triaxial de-
formation plays an important role in helping to explain the
decay rate of the deformed proton emitter141gHo. Triaxiality
may still exert an influence on the nuclear structure of this
nuclide, but most likely at higher spins and excitation ener-
gies.
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APPENDIX A: PARAMETRIZATION OF THE
INTERACTION POTENTIAL

For triaxial nuclei, the degree of triaxiality is denoted by
the angleg, which is one of the Hill-Wheeler[23] coordi-
nates. We parametrize the nuclear interaction between the
valence proton and the deformed core nucleus in terms of the
Fermi functionfsxd=f1+expsxdg−1 as

VNsr,u,fd = VN
s0dfS r − Rsu,fd

asud
D , sA1d

whereVN
s0d is the depth of the nuclear potential,asud is an

angle-dependent diffuseness as in Eq.sA6d of Ref. f11g, and

Rsu,fd = RNH1 + o
m=−2,even

2

a2mY2msu,fd

+ o
m=−4,even

4

a4mY4msu,fdJ . sA2d

Heresu ,fd are the angles betweenr and the three-axis of the
core, and

FIG. 3. Calculated branching ratio in percent for the decay of
141gHo to the 2+ state of140Dy at an excitation energy of 202 keV,
plotted as a function of the triaxial angleg. The shaded area repre-
sents the experimental measurement, and the error bar attached to
the calculated curve represents the uncertainty in the calculated
branching ratio due to the uncertainty in the proton energy.

FIG. 4. Amplitudes for variousV values of thej =7/2− compo-
nent of the141gHo wave function, plotted as a function of the tri-
axial angleg.
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a20 = b2 cosg, a22 = a2−2 =
b2 sin g

Î2
,

a40 =
1

6
b4s5 cos2 g + 1d,

sA3d

a42 = a4−2 = −
1

12
b4

Î30 sin 2g,

a44 = a4−4 =
1

12
b4

Î70 sin2 g.

The radius is calculated as

RN = r0S AD

Csb2,b4,gdD
1/3

, sA4d

where

Csb2,b4d =E dV

4p
S1 + o

m=−2,even

2

a2mY2msu,fd

+ o
m=−4,even

4

a4mY4msu,fdD3

sA5d

is the volume preserving factor andAD is the mass number of
the core. EquationssA2d and sA5d reduce to Eqs.sA1d and
sA2d of Ref. f11g for the axially symmetric casesm=g=0d.
Values ofr0=1.25 fm anda=0.65 fm areused in our cal-
culations.

We parametrize the charge density of the core in a similar
way, using the slightly different radial parameters ofr0
=1.22 fm andaC=0.56 fm, as was done in Ref.[11].

APPENDIX B: DEFORMED SPIN-ORBIT POTENTIAL
For the solution of the coupled equations, Eq.(24), matrix

elements of the spin-orbit potentialkl j VuVlssr ,u ,fdul8 j8V8l
are needed. As in Ref.[11] we use a deformed spin-orbit
potential, but with the addition off-dependent terms not
found there. We follow the tensor algebra approach of
Hagino[24], who has calculated matrix elements of the spin-
orbit interaction in the context of particle-vibration coupling
for spherical nuclei.

The starting point is to express the deformed spin-orbit
interaction in the Thomas form[11] with the deformed Fermi
function of Eq.(A1):

Vlssr,u,fd = 4VsoSF¹ fS r − Rsu,fd
asud

DG 3 p ·sD . sB1d

We now make a multipole expansion of the Fermi function
fsr,u,fd = o

lm

flmsrdDm0
l sr̂ d, sB2d

flmsrd =
2l + 1

4p
E Dm0

l* sr̂ dfsr,u,fddscosuddf,

dflmsrd
dr

=
2l + 1

4p
E Dm0

l* sr̂ d
dfsr,u,fd

dr
dscosuddf.

sB3d

So

Vlssr,u,fd = 4Vsoso
lm

f= flmsrdDm0
l sr̂ dg 3 p ·sd

= 4VsoS1

r

df00srd
dr

D00
0 sr̂ dsr 3 pd ·s

+ o
l.0,m

f= flmsrdDm0
l sr̂ dg 3 p ·sD

= 4VsoS1

r

df00srd
dr

l ·s

+
1

2 o
l.0,m

f= flmsrdDm0
l sr̂ dg · s− i = 3 ŝdD .

sB4d

The first term on the RHS of Eq.sB4d is the monopole part
of the spin-orbit potential,

Vls
0 srd = 4Vso

1

r

df00srd
dr

l ·s, sB5d

which can easily be incorporated into the monopole part of
the Hamiltonian. The second term,

dVlssr,u,fd = Vlssr,u,fd − Vls
0 srd, sB6d

can be decomposed into a sum of angular momentum tensors
involving the spherical harmonicsYlmsr̂ d, using the gradient
formula, Eq.s5.9.17d of Ref. f25g:

f= flmsrdDm0
l sr̂ dg · s− i = 3 ŝd

= −
Î4psl + 1d

2l + 1
Sdflmsrd

dr
−

l

r
flmsrdD

3fYl+1s− i = 3 ŝdglm

+
Î4pl

2l + 1
Sdflmsrd

dr
+

l + 1

r
flmsrdD

3fYl−1s− i = 3 ŝdglm

=
Î4p

2l + 1
hÎlQlmsrdT−

lm − Îl + 1PlmsrdT+
lmj, sB7d

where

T±
lm = fYl±1s− i = 3 ŝdglm, sB8d

Plmsrd =
dflmsrd

dr
−

l

r
flmsrd,

and

Qlmsrd =
dflmsrd

dr
+

l + 1

r
flmsrd.

To solve the coupled radial equations we need to obtain
the matrix elements of the operator
ol.0,mf=flmsrdDm0

l sr̂ dg ·s−i = 3ŝd, or specifically, the ma-
trix elements ofol.0,m T±

lm between spin-angular momen-
tum states. This is done by using the Wigner-Eckart theorem,
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kl j VuT±
lmul8 j8V8l = k j8V8lmu jVl

kl j iT±
lil8 j8l

Î2j + 1
, sB9d

along with reduced matrix elements given in Eqs.s58d and
s59d of Ref. f26g and Eq.sA2.14d of Ref. f27g. EquationsB9d
is the point of departure between axially symmetric and tri-
axial calculations of the spin-orbit matrix elements, since the
reduced matrix elements are independent of the projection
quantum numbersV8, V, andm. For axial symmetry we will
setV=V8=K andg=m=0.

PuttingL±=l±1 we have

kl j iT±
lil8 j8l = kl j ifYL±

s− i = 3 ŝdglil8 j8l

= o
la ja

s− 1dl+j+j8+1

3Î36s2l + 1ds2j8 + 1ds2ja + 1d

3 HL± 1 l

j8 j j a
J5

la l8 1

1

2

1

2
1

ja j8 1
6kl j iYL±

ila jal

3kYla
i = iYl8l, sB10d

where

kl j iYL±
ila jal = s− 1d1/2+jÎs2j + 1ds2L± + 1ds2ja + 1d

4p

31 j L± ja

1

2
0 −

1

2
2 sB11d

and

kYla
i = iYl8l = Î2l8 + 1kl8010ula0lF d

dr
+

1

r
+

1

2r
hl8sl8 + 1d

− lasla + 1djG . sB12d

From the properties of the Clebsch-Gordan coefficient in Eq.
sB12d it can be seen thatla can take on only two valuesl8±1,
indicating that the parity ofla ja is opposite to that ofl8 j8 and
l j . The permissible values ofja in the summation in Eq.
sB10d are ja= la±1/2, and may befurther restricted by the
triangle relations for the 6j symbol, namely,DsL± j j ad and
Ds j81jad. Additionally, for the calculation of the matrix ele-
ments, thed/dr term in Eq. sB12d needs to be modified,
since the coupled equations are in the wave functionflsrd,
while the Hamiltonians3d acts on the wave functions1d,
which containsflsrd / r. Since

r
d

dr
Sflsrd

r
D =

dflsrd
dr

−
flsrd

r
, sB13d

we see that the operatord/dr must be replaced bysd/dr
−1/rd in the coupled equations forflsrd. This replacement
has been performed below.

Finally, after noting thatl is always even in this applica-
tion, we have

Î4p

2l + 1
kl j iT±

lil8 j8l = Cls j8 jL±do
la ja

Als ja j8 jL±d

3F d

dr
+

1

2r
hl8sl8 + 1d − lasla + 1djG ,

sB14d

where

Cls j8 jL±d = s− 1d j8+1/2

3Î36s2j8 + 1ds2L± + 1ds2j + 1ds2l8 + 1d
s2l + 1d

,

sB15d

and

Als ja j8 jL±d = s2ja + 1dHL± 1 l

j8 j j a
J5

la l8 1

1

2

1

2
1

ja j8 1
6

31 j L± ja

1

2
0 −

1

2
2kl8010ula0l.

After some rearrangement, we can write the reduced ma-
trix element of the operatorf=flmsrdDm0

l sr̂ dg ·s−i = 3ŝd as

kl j if= flmsrdDm0
l sr̂ dg · s− i = 3 ŝdil8 j8l

= HÎlQlmsrdCls j8 jL−do
la ja

Als ja j8 jL−d

− Îl + 1PlmsrdCls j8 jL+do
la ja

Als ja j8 jL+dJ d

dr

+
1

2r HÎlQlmsrdCls j8 jL−do
la ja

Als ja j8 jL−dfl8sl8 + 1d

− lasla + 1dgJ −
1

2r
hÎl + 1PlmsrdCls j8 jL+d

3o
la ja

Als ja j8 jL+dfl8s8l8 + 1d − lasla + 1dgj. sB16d

Recall that our original goal is to compute the spin-angular
coupling matrix elements of the deformed spin-orbit interac-
tion. For l.0 we have, from Eqs.sB4d and sB9d,

kl j VudVlssr,u,fdul8 j8V8l = 2Vso o
l.0,m

k j8V8lmu jVl
Î2j + 1

3kl j if= flmsrdDm0
l sr̂ dg · s− i =

3 ŝdl8 j8. sB17d
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