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Decay rate of triaxially deformed proton emitters
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The decay rate of a triaxially deformed proton emitter is calculated in a particle-rotor model, which is based
on a deformed Woods-Saxon potential and includes a deformed spin-orbit interaction. The wave function of the
I=7/2 ground state of the deformed proton emittétHo is obtained in the adiabatic limit, and a Green’s
function technique is used to calculate the decay rate and branching ratio to the first eXcitate2of the
daughter nucleus. Only for values of the triaxial angle 5° is good agreement obtained for both the total
decay rate and the*Zranching ratio.
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I. INTRODUCTION ¢:_R (r)
N _ V(o) = >, —“REZ(R7AMY, (1)
The fundamental simplicity of the proton decay process in iR~

nuclides whose ground states are unstable to proton emission
has enabled a good deal of nuclear structure information twherel andj are the orbital and total angular momentum of
be obtained on nuclei beyond the proton drip liig. The the particle,R and  are the rotational quantum numbers of
observable quantities are the proton energies and half-live§he rotor, and is the total angular momentum of the nucleus
In the rare-earth region, the proton emitters are predicted tf =j +R). The ket|[ljR7IM) describes the dependence on
have large static quadrupole deformatiof®y. For these spin and angular coordinates of the particle and the orienta-
cases, analysis of the measurements has been carried @@ angle of the rotor, and is given by
using a particle-rotor model, with the unbound proton inter-
acting with an axially symmetric deformed cdi@-11]. The ljR7AM) = > (jmRMS/IM)[R7Mg)|Ijm). 2
result of such analyses over the past several years has been to mMg
e Eperies o s h aboator rame 6 tepresenation as described

i ; . ' ; in Eq. (2) of Ref.[11]. The total Hamiltonian of the proton-
occupation factors, Nilsson orbitals for the decaying protons,, o'¢

) " ystem,
and wave function decompositions.
Adding to the information provided by the observation of H=T+V(r,o) + Vi, o) + Hg, (3)
decay protons, recent measurements have been made of the
level structure of the deformed proton emittéHo by  consists of the relative kinetic enerdy the nuclear plus
means of in-beam-ray spectroscopjl2]. Particle-rotor cal- Coulomb interaction/(r , ), which depends on the position
culations of the energy levels in the rotational band lyingr of the proton and the orientation of the rotor in the
above thd =7/2" ground state suggest that better agreemengpace-fixed system, the deformed spin-orbit potential
with experiment would be obtained if the nuclear shape posv(r,w), and the Hamiltoniatg of the rotor. The detailed
sessed a small amount of static triaxial deformatj@@].  parametrization of the nuclear and Coulomb interactions are
From the standpoint of proton radioactivity it is therefore of given in Appendix A, and the deformed spin-orbit term is
interest to investigate the effect of a static triaxial deforma-discussed in Appendix B. To proceed, we first expand the
tion on the decay rate of a deformed proton emitter. In thispotentialV(r , ) in the D functions, which are related to the
work we present such an analysis, and obtain numerical respherical harmonics:
sults for the decay rate of the deformed proton emitter
1419Ho. Preliminary results have been reported in R&8]. Vr, o) =, V,,(ND(6',¢), (4)
Kruppa and Nazarewicz have also investigated the role of A
nonaxial effects in'*%Ho decay, by introducing coupling
between the'*Dy ground-state rotational band and a low- o\ +1 (1
lying K=2 v-vibrational band 14]. Vyulr) = o d(cos#')
-1

Il. COUPLED EQUATIONS IN THE R REPRESENTATION

27
. ] X /D)\* /7 "V , r, ’ ,
We generalize the treatment of Esbensen and D4¥itls 0 d4'D (6, 4") V(1. 0", ") ®

extending it to include the case of nuclei without axial sym-

metry. Using Eq.(5A-2) of Ref. [15], we write the wave Wwheref’, ¢’ refer to the angles of the particle with respect to
function of an oddA evenN nucleus consisting of a proton the three-axis of the rotor. Because of reflection symmaitry,
coupled to an even-even triaxially deformed rotor, in theand u are restricted to even valuésee Appendix A Pro-
laboratory(space-fixegl system as jecting with |[ljR7IM) on the Schrodinger equatiod¥,y,
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2R+1
(@RMR) = (0IRKeMe) = \| 2 5D e (0, (9

which is a function of the orientatiom of the rotor in the
laboratory frame. For an axially symmetric rotor, we would
have Kg=0, resulting inQ)=K from Eq. (8). The particle
wave function is

llimy = > D o (w)[1j ), (10
QO

®)

where the single-particle wave functidip()) is evaluated in
FIG. 1. (a) Relationship of the angular momentum vectprR, the body-fixed frame of the rotor.
and| in the axially symmetric casg¢b) Same aga) except for the After inserting Eqs.(9) and (10) into Eq. (2), we may

triaxial case. In both cases is the projection of the total angular contract it using Eq(1A-43) of [15], with the result
momentuml on the three-axis of the body-centered system. '

2R+1

=EV¥,y we obtain a set of coupled equations in the radial IRKRIM) = 877 %QQRKR“K)DMK(“’)“Jm'
wave functions ’
(11)
_ | - _ H A ’ ’
(hyj + Err — E) (1) = 2 ) Dzo: (iR7IM |D#0(0 4" Because the rotor possesses symmetry after rotating 180°
IR * around any of its three axes, it is convenient to have the
><|I’j’R’T’IM)Vm(r)d):,er,Tr(F) projectionK appear only as a positive number. Symmetry
properties of the wave function require that the quarkity
- > (JRAM|V,s(r, @) =K-Q) be an even intege(0,+2,+4,..) [16]. We then
'j'R' 7 have
X|VTR T IM) B (1), (6) R+ 1
IRKRIM) = /=55~ 2 (ORKRIK)Diyc(@)]1j )
where 87 k>00
S (] - 1)"iD! i)
hy =_(__2+ a )) VD), +(= 17D}y (@l )], (12)
2ug\ dr r

where() stands for €). Since we are only interested in the
andV(r) is the monopole part of the Coulomb plus nuclearjow-lying states of the rotor whei@=0,2,4, ..., werewrite
potential. Hergu, is the proton reduced mass aBg, is the  Eq.(12) as

energy of the rotational stajB7Mg). In Appendix B we will

extrz_ict t_he monopole part of the spin-orbit potential for in- [lIRKgIM) = E A}SKI,RKR|”QKIM>’ (13)
clusion inhy;. K>0,0
where
lll. THE K REPRESENTATION
K _ [2R+1 R
The matrix elements on the right-hand side of E).are Aore™ \ 551 1<JQRKR||K>\’1 +(=1) (14

easiest to evaluate if we go over into tKeepresentation of
Ref. [11], which is expressed in the body-centered coordi-and

nates of the rotor. In this system the quantum numbéer ST

identified with the projectiorKgy of R on the rotor’s three- . _ + I :

axis. For clarity, the quantum numbers Mg, andM in Eq. I 2KIM) = 1672 [Duk(@)lj2)

(2) all refer to angular momentum projections on thaxis _ —

of the space-fixed coordinate system due to the particle, ro- +(= 1" IDy(w)[ljD)]. (15
tor, and nucleus, respectively, while the corresponding pro:

jections on the three-axis in the body-fixed system are de'-:Or an axially symmetric nucleur vanishes, making

noted by, Kg, andK (see Fig. 1 As a consequence, the =K, and Eqgs(14) and(15) become identical to Eq$14) and

. ; ) (15) of Ref.[11].
following relations hold: Inserting Eq.(13) into Eq. (1) we can now express the

M=Mg+m, (7)  total wave function in terms of the new basis):
Sia(n)
K=Kg+ Q. ®) Wiy =2 2 2 S l0KIM), (16)
lj K>0 Q

In theK representation we can write the transformed rotor
wave function agsee Eqs(4)—«7) of Ref.[15]) where the radial wave functions are
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- IK [ We now obtain the coupled equations in teaepresen-
"Q(r) E 0 RKRd)”RKR(r) o tation by multiplying Eq. (G;Oby Ali RKq and summi‘?\g over
RKg, using Egs(17) and(18). The presence of the rotational
energyERKR requires the use of Eq19) for the radial wave
function. Thus we obtain

Note that the triaxial radial wave functions depend on the
particle quantum numbe® in addition tolj.

It is easy to show that the amplitud€sd) form an ortho-
normal transformation between tieand theR representa-

tion, i.e., (hj—B)alfa(n + > X W 61500
E E " K'>0 Q'
AK AR = Sarbk ke
o JHRRTIORKy T IRRTKGR R :—EE{ > QDA )T QW (1)
I/J-/ Q' )\>0/.L
REA}B,RKRAJB, ri, = P07 S (18) +<IJQ|V.s(r>|I'j'n'>}¢.',ﬁ,ﬂ,<r>, (22)

Thus we can transform the results obtained in one represefzhare
tation into the other. After inverting Eq17) we obtain

K" _ IK IK
¢|IjRKR(r E E Ajg, RKR</>|JQ r. (19 V\/J'(ﬂﬂ’ B F%RAJ'QRKRERKRAJQ’ RKg’ (23
To recover the axially symmetric case we 8st()’' =K, and
A. Coupled equations in theK representation ©=0in Egs.(22) and(23). This removes the sums ovér,
We continue with the evaluation of the matrix elements onf<r: @ndu.

the right-hand sideRHS) of Eq. (6). Inserting expression
(13) for the spin-angular wave functions in tRerepresenta- B. Adiabatic limit

tion we obtain For a comparison with the results obtained in Réfl],

(liRKgIM|D? o0, ¢ )I'j'R'Kg/ IM) we will solve the coupled equation®2) in the adiabatic
limit, where the rotational energida‘ﬁqKR of the core are set to
=2 X XA AlS RKR<IjQKIM IDho(6, ") zero. This sets equal to zero the second term on the left-hand
K>0k'>00,0' side of EQ.(22). In this case we have

><I”QKIM>A,,, ,
Iy o (h-Blen=- 3 { S (0D ¢)
and a similar expression for the matrix element of the spin- i (0u

orbit potential. The advantage of using tkeepresentation, X[ Q"W (1) + (1 Q[ Vig(r)

Eg. (15), now becomes evident because each matrix element _ K

is the product of two parts. The first part involves integrating X[I'] ’Q’>}¢|qrm(f)- (24)
a product of orthogondD functions over the orientation co-

ordinatesw of the rotor, and yields the important resgt. .
The second part involves the single-particle wave function
in the body-fixed rest frame of the rotor:

él’he important thing to notice is that the coupled equations
are then diagonal iK, but includeQ) mixing. In other words,

in the adiabatic limitK is still a good quantum number, but,
<|JQ|D 0(9' SHI'QY=(- 1)>\<j%)\o|j’%><j'Q’)\M“Q)_ ?n addition to theQ:K component, 'ghe interaction mixes
into the wave function components with=K+2 ,K+4, etc.,

(20 subject to the restrictiof{}|<j. It should also be noted that
Thus the Clebsch-Gordan coefficient in EO0) is nonzero only
. N . whenQ'+u=0Q.
(lIRKRIM[Do(6", "I}’ R'KgiIM)) The consequence of thid mixing is that the number of
K’ , e coupled equations will be substantially larger than is found
= 2 2 AGre(IQIDL(6, 611 Q >A 10/ RiKg in the axially symmetric case. As an example, consider the
K'>0 0.0 combinations ofj and ) needed to solve the equations for
(21 the I=K=1" ground state of the deformed proton emitter
For the spin-orbit potential we have a similar expression. we l_HO The ‘spherical states involved will be 3, 5
show how to evaluate the matrix elements of the spin-orbits , and% . In addition toQ=K, for eachj there will be

interaction in Appendix B. Because the matrix elements ar@SSOClated up to seven more valuegofTable | shows the
diagonal inK, Eqg. (8) shows that the particle projections permissiblej, ) combinations for the= K_E ground state

Q,Q' are restricted byQ—-Q’|=an even integer. Wetill  of *!Ho. The total number of wave function combinations is
have the previously determined restrictionseven and 30, which is to be contrasted with only 5 for the axially
|[K-Q|=an even integer. symmetric case.
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TABLE I. Combinations ofj and () for I:Kzg_ originating | Dir 1 2(2R+1)

from j=2~—27. The bullet(+) denotes states occurring in the  Nijrk, = Gk > E( QRKR||K>¢|JQ(rm)-
. . | er) I+1

axially symmetric case.

(28
: @ Axally symmetric ] @ Adally symmetric Using this equation we can immediately see the effect of the
%‘ _g 153‘ _133 triaxial shape on the decay rate: for decay to the ground state
7- _1 13- _9 (R=0), the Clebsch-Gordan coefficient has the vaiigdg k-
Z. Z Z. Z Thus only theQQ=K component of the wave function will
g_ g 1?3_ _g participate in this decay branch, effectively reducing its de-
2 2 ¢ 2 2 cay rate relative to that for the axially symmetric case since
&= 3 2 3 there are now othef) components present in the triaxial
9- _5 13- 7 . wave function.
5 _i 5 1_21 For the Green’s function method, after performing the
2 2 2 2 same operations that led to E(1) to obtain the matrix
9 3 15 13 . . .
2 2 2 2 elements of the interaction in E(R6), the second orthogo-
g' % . 155' —% nality relation in Eq(18) allows the summations ov& and
u- 9 - _5 Kgr to be performed. The final expression for the Green’s
il- _é is- _i function method is
il_ _i 5 g fint
n-oo: B I , Nijrie = = ﬁzk > 2 Aflreg f drF (ke V(T )
2 2 2 2 Ri7ir 0,0 0
- z . 15- 1
121— 121 125— 125 Z rirey!
u u 5 2 +Vis(r, ) = _|| Q >¢|/ rar(r). (29

. This expression reduces to the analogous one for an axially
C. Decay rate calculation symmetric nucleus wheK is set equal td) and the sums

We obtain the partial decay rate for proton emission fromOver {2 and()" are removed.
a state having angular momentumK in the adiabatic limit
via either the direct metho@ir) or the distorted waveéDW)
Green'’s function method using E¢Y) of Ref.[11]. While in IV. APPLICATIONS

the axially symmetric case the daughter states were labeled | this section we use the formalism described above to
only by the quantum numbe, in the triaxial case we need ca|culate decay rates for the deformed proton emittéo

the second labet or Kg as W92” (1=K=7/2), in both the axially symmetric and triaxial
=Tl = wz |NI_,Dir/DW2 (25) cases. The calculations have been performed in the adiabatic
KR IjRK IiRKg ' I . . .
limit, using the potential parameters found in R@fl]. The
ground-state wave function was expanded in spherical com-
where ponents withj=7/2", 9/2°, 11/2°, 13/Z, and 15/2. All
' oir ¢|IJRKR(T) multipole expansions were carried out upNe 14. The re-
u’RKR:—Gl(er) atr=rp, sults are compared with experimental values for the total

decay width and the branching ratio for decay to the first
excited Z state in the daughter nucle&&Dy.

NiRk, =~ 2 > J drF (ker ) (liRKRIM V(1 , )
R fi kRI,J,R K ,

7 2 A. Axially symmetric case: The deformed proton
+Vig(r,0) = = R KR IM) B, (1) emitter “4iHo
' To verify the formulation, we have computed the decay
(26) half-life and branching ratio to the*Zstate in the daughter

nucleus for the deformed proton emitté'Ho, using de-
formed spin-orbit matrix elements for the axially symmetric
case (y=u=0, Q=0'=K) calculated from Eq.(B17),

which, again for\ >0, now reads

Here kg is the proton wave number for the decay to the
daughter state with quantum numb&%Kg. Having obtained
the radial wave functio|(,(r) for a givenK =1 in the adia-
batic limit, we can construct the associated radial wave func?”

tions in theR representation, ) L D (j"K\O[jK)
Fir) = Z A A0, (27) KV OI7K) =202 = 2=

X {lj A -
by means of Eq(19). Inserting this wave function into Eq. WV (D] - =1V
(26), we obtain for the direct method xao)l'j"), (30
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TABLE Il. Comparison of calculated and experimental values}fdo(7/2") total decay rate and*Zoranching ratio. Input values are
E,(2%) in 1*Dy=202 keV, 3,=0.244, andB,=-0.046. Calculations were done in the adiabatic limit, with no static triaxiality, and uncer-
tainties coming from the measured proton energy of 186ReV [17] and the decay half-life of 4(2) ms[17] have been taken into account.
The experimental spectroscopic facty is defined ad’ ¢,/ I'caic The calculated spectroscopic fac®g=Uu? is obtained from a BCS
calculation(see texx

Fcalc(lo_lg MeV) Fexpl(:l-o_19 MeV) S:alc %xpt BR(2+) calc B R(2+)expt
1.5153 1.0910 0.6 0.7231¢ 0.00715) 0.007Q@15)°
*Referencd17].
bReference{18].

where the reduced matrix element is that calculated in Egpresent, but with increasing, other(Q) components differing
(B16). The results of the calculations are shown in Table Il,by £2,+4,...begin to mix into the wave function. The de-
and are identical with those obtained using the axially sym-<€ay proceeds primarily to the daughter ground state, and only
metric deformed spin-orbit term of Refl1]. It should be the Q=+7/2 component participates in this branch. Thus
noted that the numbers obtained here and in Ref] differ ~ the decrease in the total decay width with increasjrggen
slightly, since the 2 excitation energy of 202 keV in the in Fig. 2 tracks with the decrease in tiie=+7/2" wave
daughter nuclidé**®Dy used here has only recently been function component, which itself follows from the increasing
measured 19,20], and was not known when the calcula- appearance of othd values in the wave function.

tions in Ref.[11] were carried out. In that work an exci-

tation energy of 166 keV was used. V. CONCLUSIONS

In this work we have developed a formalism to include
B. Triaxial case: The deformed proton emitter **'Ho the effect of static triaxial deformation on calculations of the
As previously mentioned, particle-rotor calculations of decay rate for a deformed nucleus. The main complications
the energy levels in the rotational band lying above the OVer the axially symmetric case are the additional depen-
=7/2 ground state of the deformed proton emitié#Ho  dence of the interaction potential on the proton azimuthal
were reported in Ref[12]. These calculations suggest that @ngle#, and a consequent increase in the complexity of the
better agreement with experiment would be obtained witrfléformed spin-orbit potential. The extra dimension causes
the introduction of a small amount of static triaxial deforma-2additional {} components to be introduced into the wave
tion. In order to assess the effect on the proton decay rates fanction. The matrix elements of the spin-orbit interaction
adding such a deformation, we have used the formalism de-

veloped in the present work to compute, in the adiabatic 1.4 ' ' ' '
limit, the decay rate and*2branching ratio for this proton
emitting nuclide, as a function of the angle of triaxiality 12k 1

The calculations were performed witi8,=0.244, B,
=-0.046.

Figure 2 shows the product of calculated total decay
width T'cy and spectroscopic factd®.,=u?=0.6 for the
14140 ground state, plotted as a function of the triaxial angle
v. The spectroscopic factor was obtained from a BCS calcu-
lation, using a proton pairing gap, of 0.9 MeV. The
shaded area represents the experimental measurement, andg&
the error bar attached to the calculated curve represents the
uncertainty in the calculated width due to the uncertainty in
the proton energy. It is seen that calculation and experiment
agree well for small values of.

Figure 3 shows the calculated Branching ratio, plotted
as a function ofy, along with the experimental value,
0.007@15) [18]. The small error bar on the calculated curve 0 ' ' ' '
is due to the uncertainty in the proton energy. The agreement 0 10 20 30 40
between calculation and experiment is excellent for small
values ofy, and this suggests that a static triaxial deforma-

tion, if present, is limited to an angle &f5°. FIG. 2. Calculated total decay width, in units of #dMeV, for

Plotted in Fig. 4 are the amplitudes for the allowBd 14340, piotted as a function of the triaxial angle The shaded area
values of +7/2, +3/2°, -1/2°, and -5/2 for the j=7/2  represents the experimental measurement, and the error bar attached
spherical component of th&!Ho ground-state wave func- to the calculated curve represents the uncertainty in the calculated
tion. As expected, foyy=0, only theQ)=+7/2" componentis width due to the uncertainty in the proton energy.

(107° MeV)

calc

y (degrees)
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5 ' 141940, which has spin-parity 7/2In Ref.[11] it was shown
that the nonadiabatic coupled-channels approach does not
yield results for'*®Ho decay which agree with experiment,
either for the absolute decay rate or the branching ratio for
decay to the first 2 of the daughter nucleu¥®Dy. This is
because of the presence of Coriolis mixing, which is particu-
larly strong for high spin states. Empirically it is known that
. it is necessary to quench the Coriolis mixing in order to
obtain good agreement with dafal,22. It was found in
Ref.[11] that good agreement with experiment was obtained
in the adiabatic limit, where the energies of the rotational
states of the daughter nucleus are set to zero. For this reason
we have performed the triaxial calculations in the adiabatic
limit.
, After first checking the results of the calculation against
an axially symmetric code, triaxiality was introduced, rang-
ing up to ay angle of 40°. While the sensitivity of the re-
sulting total decay rate to triaxial anglewas not high, the
0 : calculation of the branching ratio for decay to the firt 2

0 10 20 30 40 state of the daughter showed a strong dependencg es-
sentially ruling out angles greater than 5°. We believe that
the branching ratio calculation is quite reliable, since factors

FIG. 3. Calculated branching ratio in percent for the decay ofSUCh as absqlute spectroscoplq factors tend tq Ca‘f‘ce.'-
1410Ho to the 2 state of*Dy at an excitation energy of 202 keV, In cpnclusmn, we do not bellevg that a static tnamgl de-
plotted as a function of the triaxial angte The shaded area repre- formation plays an important role in helping to explain the
sents the experimental measurement, and the error bar attachedd§cay rate of the deformed proton emittéPHo. Triaxiality
the calculated curve represents the uncertainty in the calculate@@y still exert an influence on the nuclear structure of this
branching ratio due to the uncertainty in the proton energy. nuclide, but most likely at higher spins and excitation ener-
ies.
have been calculated using a tensor algebra approach, as c?e—
scribed in Appendix B.
We have applied the above mentioned methodology to

calculations of the decay rate of the deformed proton emitter We wish to acknowledge valuable discussions with K.

Hagino. This work was supported by the U.S. Department of

2* Branching Ratio for '*'9Ho Decay

Branching Ratio (%)

y (degrees)
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Q=7/2 APPENDIX A: PARAMETRIZATION OF THE
025 I ] INTERACTION POTENTIAL

For triaxial nuclei, the degree of triaxiality is denoted by

% the angley, which is one of the Hill-Wheelef23] coordi-
s 02 ] nates. We parametrize the nuclear interaction between the
§ valence proton and the deformed core nucleus in terms of the
2 Fermi functionf(x)=[1+expdx)]™* as
2 015 | .
< r —R(6,¢)
Q=3/2 Vn(T, 6, ) :v<N°>f(—¢>, (A1)
01 Q=-1/2, E a(e)
052" wherevf\?) is the depth of the nuclear potential(6) is an
0.05 I i angle-dependent diffuseness as in Ep) of Ref.[11], and
/\ 2
. ‘ ‘ . RO =R\ 1+ 2 a,Y5(0.0)
p=—2geven
0 10 20 30 40 4
¥ (dEQrees) + E a'4,uY4,u( 01 ¢) . (AZ)
p=—4even

FIG. 4. Amplitudes for variou$) values of thg =7/2" compo- )
nent of thel*Ho wave function, plotted as a function of the tri- Here(6, ¢) are the angles betweerand the three-axis of the

axial angley. core, and
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0= B> COS7y, ay=ay,= Pe Sén '}’, Vls(r 0, d’) 4Vso(%3 [V f)\,u(r)D o(r)] Xp- S)
\/!
1 _ 1df00(r) ~
0= a5 cod y+1), —4Vso(; dr Doo(F)(r X p) -
(A3)
+ 2 [VHLUND)()] X p-s
Q= 84-2=~ _34\ 30 sin 2, A>0,u
1df
o _4\/50(_ oo(r)I _
A=Ay 4= 2,84\s’70 Sirt . rodr
o 1 R . R
The radius is calculated as s + §A>20 [Vfw(r)D;‘LO(r)] (-iV X 0')).
Ry=ro| ——>— ) , (A4) "
N BB y) (B4)
where 40 2 The first term on the RHS of EdB4) is the monopole part
C(B,, Bs) = f 4_(1 + > 8, Y2,(6,4) of the spin-orbit potential,
™ pu=-2even 1df (I’)
. . V(r) = Wss, gor | -s, (B5)
+ 2 AV, ¢)) (A5)
u=—4even which can easily be incorporated into the monopole part of

is the volume preserving factor adg is the mass number o
the core. Equation§A2) and (A5) reduce to Eqs(Al) and
(A2) of Ref.[11] for the axially symmetric casgu=y=0).
Values ofry=1.25 fm anda=0.65 fm areused in our cal-
culations.

f the Hamiltonian. The second term,

Vis(r, 6,4) = Vie(r, 6, ) = V), (B6)

can be decomposed into a sum of angular momentum tensors
involving the spherical harmonic, ,(f), using the gradient

We parametrize the charge density of the core in a similaformula, Eq.(5.9.17 of Ref.[25]:

way, using the slightly different radial parameters rgf
=1.22 fm anda:-=0.56 fm, as was done in Rqfl1].

APPENDIX B: DEFORMED SPIN-ORBIT POTENTIAL

For the solution of the coupled equations, E2f), matrix
elements of the spin-orbit potentidj Q|Vi(r,8,o)|I"j’ Q")
are needed. As in Refll] we use a deformed spin-orbit
potential, but with the addition ofy-dependent terms not
found there. We follow the tensor algebra approach of
Hagino[24], who has calculated matrix elements of the spin-

[V (D)1 (-1 V X &)

_V4m(A +1) (dfm(r) N (r))
20 +1 drr M

X[Yyua(=1V X )M

Vam\ dfM(r) A+1 )
N 1( dr f”“(r)

X[Yy-1 (-1 V X (})]m

orbit interaction in the context of particle-vibration coupling \,477 N N
for spherical nuclei. = o e {\ KQA#(Y)T F-N+ 1Pm(r)T “, (B7)
The starting point is to express the deformed spin-orbit
interaction in the Thomas foriid 1] with the deformed Fermi
. where
function of Eq.(Al): N . .
r-R(6,¢) T =[Y\u(=1V X a)*, (B8)
Vis(r,0,¢) =4Vl | VIl ——————| | X p-s|. (B1)
a(o) df,, () A
i - i i Pyu(r) = === —f,(1),
We now make a multipole expansion of the Fermi function M dr r M
f(r,6,4) = 2 f,,(ND}(P), (B2)
A and
22 +1 * o (r)
fru(r) = “am D}o(F)f(r, 6, ¢)d(cos O)deb, Quulr) = dr fm( r.
df,(r) _2a+1 () df(r, ’d))d(cos 6)ds. To solve the coupled radial equations we need to obtain
dr At the matrix elements of the operator
(B3) EDOM[VfW(r)D oM)]-(= iVxEr) or specifically, the ma-
trix elements ofEDo” T\ between spin-angular momen-
So tum states. This is done by using the Wigner-Eckart theorem,
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AT ’J’>

GOTHNT Q) = (O Nulj0) = = 2 +1 (B9)

along with reduced matrix elements given in E¢88) and
(59) of Ref.[26] and Eq.(A2.14) of Ref.[27]. Equation(B9)

is the point of departure between axially symmetric and tri-
axial calculations of the spin-orbit matrix elements, since the
reduced matrix elements are independent of the projection

quantum number8’, ), andu. For axial symmetry we will
set()=0'=K and y=u=0.
PuttingL,.=A+1 we have

QTN = QYL -1V < o)1)
- 2 (_ 1))\+j+j’+l

Ia]a

X\36(2\ + 1)(2]" + 1)(2j,+ 1)
L, 1" 1
x{F* ! .k} SRR IR,
i 00l 2 2 :
jo i1
XY VIV, (B10)

where

2j+D@L +D(2j,+1)

YL ) = (= DY

A
J Li ja
x|t , _1 (B11)
2 2

and

— d 1 1
Y, | VI]Y;y=v2I'+ KI'0101 0)| —+—-+—{I"(I"+1
M VI =y (I'014l, {dr ; 2r{ (I"+1)

ol + 1)}} : (B12)

From the properties of the Clebsch-Gordan coefficient in Eq.

(B12) it can be seen thay, can take on only two valudé+1,
indicating that the parity df,j, is opposite to that of j* and

[j. The permissible values df, in the summation in Eqg.
1/2, and may bdurther restricted by the

(B10) arej, =l t
triangle relations for the j6symbol, namely A(L.jj,) and

A(j'1j,). Additionally, for the calculation of the matrix ele-
ments, thed/dr term in Eq.(B12) needs to be modified,

since the coupled equations are in the wave functgn),
while the Hamiltonian(3) acts on the wave functioiil),
which containsg,(r)/r. Since

g( ¢|(r)> _dgi(r)  (r)
r =
dr

, B13
r dr r ( )

we see that the operatal/dr must be replaced byd/dr

-1/r) in the coupled equations fap(r). This replacement

has been performed below.

PHYSICAL REVIEW (59, 034314(2004)

Finally, after noting thak is always even in this applica-

tion, we have

rir C)\ L+ A)\ L+
2)\1 )= (JJ)lz (ol iLs)

oda

d 1 . B
X[_+Z{I (1" +1) =1

” L+ D} |,

(B14)
where

CNj'jLy) = (- 1))"*42
" \/36(2]’ +1)(2L, + 1)(2) + 121" + 1)

2N+ 1)
(B15)
and
[, 1" 1
L, 1 X 11
A)\(jaj,jL+):(2ja+1){-/_ . . } - X 1
B " JJaJ|2 2
Jo 171
J Li ja
X1 0 _} (1'0101,0).
2 2

After some rearrangement, we can write the reduced ma-
trix element of the operat({erM(r)DZO(f)] (-iVXo) as

VDX - (-1 ¥ X &)1}
- {\"XQM(r)C“(j LS AN L)

da

W+ IP(NCN( L) S AN J|-+)}
|

aJa

1
+2—{\th,¢<000 LS AN LoD + 1)

aJa

ull 1)]} - LR IR, OO L)

X2 ANl JLAL (1 + 1) =1, (1, + DT (B16)

lada
Recall that our original goal is to compute the spin-angular
coupling matrix elements of the deformed spin-orbit interac-
tion. ForA>0 we have, from EqgB4) and(B9),

i"Q'AuljQ
1jQIV(r, 0, HI']' Q") = 2Vg, > w
>ou N2 +1
><<Ij||[VfM(r)D”0(r)] (-iv
X o)l'j’. (B17)
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