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The problem of describing resonances when the continuum is represented by a discrete set of normalizable
states is addressed. In particular, here the description of resonances in a transformed harmonic oscillator basis
is presented. A method to disentangle the resonances from the nonresonant continuum is proposed. The
Ginocchio potential is used to model a case in which resonances appear in the continuum and a reference case
in which only nonresonant continuum appears.
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I. INTRODUCTION formation [12—-14 which is such that converts the bound

Recently there has been much interest in investigating th@round state radial wave function of the weakly bound sys-
effect of the continuum in the properties of quantum systemgl€m ¢g(r) into the ground state harmonic oscillator radial
In nuclear physics, the advent of unstable beam facilities hagave function ¢5(s)=(4/\m)?s exd-s*/2] [8-11. The
allowed the study of systems which have a very small bindfunction s(r) defines the local scale transformation and it is
ing energy. The properties of such weakly bound nuclei argjiven for a three-dimensional problem under central forces
strongly affected by the states in the continuum and, consepy
quently, both bound and unbound states have to be included
in any realistic description of the system. In molecular phys-
ics, new experimental laser techniques have allowed to reach
energy regions where chemical activity is significant. This
implies breaking of molecular bonds in order to produce new Then, by using the generalized Laguerre polynomials
rearrangement or even dissociation. In such a situation thky(2) one generates a set of orthogonal wave functions
continuum part of the spectrum plays an important role ands(r)=L¥4([s(r)]?) ¢s(r), such that the state with=0 co-
its effects cannot be neglected. incides with the bound ground state, and the states mit®

An explicit consideration of the continuum in structure describe the continuum, or other bound states if they exist.
and reaction calculations is made difficult because the conFhen, one takes a finite basis, which is uniquely determined
tinuum wave functions have an infinite range and are noby the numbeN of THO states considered, and diagonalizes
normalizable. Because of that it is necessary to use sonthe Hamiltonian in this basis. The resulting eigenstates and
discretization procedure to substitute the continuum ofigenvalues are taken as representatives of the continuum.
breakup states by a finite number of normalizable state¥Ve showed in previous papei@-11] that, as the number of
which, in the adequate limit, should represent the effect ofstates in the THO basis increases, the eigenstates appear
coupling to the true continuum. There are in the literaturedensely packed close to the breakup threshold, although
several discretization procedures that have been used there are eigenstates that appear at higher energies. Besides,
nuclear, molecular, and atomic physics each one with advarwe demonstrated that global structure magnitudes related to
tages and drawbacks. Here we will mention few of them. Thahe coupling to the continuum, such as sum rules, were very
Gamow stateg1] are non-normalizable solutions of the accurately described using relatively small THO basis.
Schrédinger equation corresponding to outgoing boundary The THO method does not explicitly take into account the
conditions characterized by complex energies. The methostructure of the continuum in the discretization procedure.
of continuum discretization coupled channg?$ discretizes Thus, the only information which is required in order to
the continuum by means of taking fixed intervals, or bins, ofbuild the THO basis, and even to evaluate the matrix ele-

k values in the continuum states. A Sturmian basis is obments of the Hamiltonian, is the ground state wave function.
tained when one uses bound states of scaled potentials whittowever, it is known that not all the continuum states couple
are orthogonal when weighted with the potenti@s5. The  equally to the ground state. In general, the continuum states
Gaussian expansion method takes a nonorthogonal basigich are near to the resonances play a much more important
composed of Gaussian functions in geometric progressiorole than the nonresonant continuum. This is related to the
[6]. A complete basis of single particle wave functions, suchfact that, when the energy is close to a resonance, the prob-
as the harmonic oscillator, can be used to expand both bourability that the continuum state is in the range of the potential
and scattering statg3]. is larger than for the nonresonant part.

We have recently proposed an alternative procedure, In this paper we address the question of how adequate is
based on the use of a transformed harmonic oscil@#HiO)  the THO basis to describe the resonant structure of the con-
basis, to describe the effect of the continufi®-11. The tinuum. For that purpose, we use the Ginocchio potential
basic idea in the THO method is to define a local scale trang-15], which can be solved analytically and has resonances

J |pg(r)|?dr’ = ifs s'? ex-s'?]ds’. (1)
0 mJ0
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even forL=0 states. The Pdschl-Tell¢PT) potential [16],
which does not have resonances, is a particular case of the
Ginocchio potential. We will compare the continuum states
of the PT potential with those of a GinocchiG) potential
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that presents resonant states, to investigate the effect of the | /-
resonances in the continuum discretization. In Sec. Il we
review the Ginocchio potential, and present the results of
continuum discretization in the G and PT cases. In Sec. llI
we present a procedure to obtain the resonance wave func-
tion from the THO basis. Section IV is for discussion on the
coupling of the ground state to the continuum. Finally, Sec.
V is for summary and conclusions.

II. CONTINUUM DISCRETIZATION FOR RESONANT

AND NONRESONANT POTENTIALS ) )
FIG. 1. GinocchioA=10 andv=1.58 and P&schl-Telle(A=1

We consider thd=0 bound and continuum states of a and v=2) potentials, together with the corresponding ground state
two-body system characterized by a reduced nmassid an  wave functions. The wave functions have been multiplied by 8 in
interactionU(R). The radial wave functiong(R) are eigen- order to display them and the potentials in the same figuk.
states of the Hamiltonian guantities plotted are dimensionless.

2 d2
2mdR?
The physical variabl® can be taken aR=Sr, wherer is a
dimensionless quantity an8 sets the length scale of the
problem. Similarly, the potentiaU(R) can be written as
(h?12mS)v(r), whereu(r) is a dimensionless potential and

#2/2m$ sets the energy scale of the problem. So, a dimen
sionless Hamiltonian can be written as

energy is(in dimensionless unijseg=-1 and its mean
square radius is 1.35. As a resonant case, we take a Ginoc-
chio potential whose parameters are10 andv=1.58. This
potential has also one bound state. Choosing the appropriate
length scale this state has enerp=-1 and mean square
radius 1.35. These potentials, along with the corresponding
wave functions for the bound ground state, are plotted in Fig.
1. These two wave functiorigabeled PT and G hereafiens
mentioned above, have the same binding energy and mean
d? square radius. The difference between them is related to the
hz'@”’(r)- ©) fact that, while the PT potential has no resonances, the G
potential has resonances, the first three of which have ener-
The Ginocchio potential has been described in the literagies 4.55, 14.99, and 30.08 and widths 2.32, 6.59, and 12.73.
ture [15]. In this paper we will make use of a simplified The difference between the two bound wave functions is
version of it, which may be written as related to the larger slope with which the G wave function
decreases in the range of values which corresponds to the

H= +U(R). (2)

1-\2 .
v(N)==Nu(r+1)(1-y)+ ( )(1 -y)[2-(7-\)y?  barrier(r=2). .
4 We have calculated the local scale transformatisim$
+5(1-N\)y4, (4)  which convert the PT and G wave functions in the ground

state HO wave function. These transformations are given by
Eqg. (D). The results are plotted in Fig. 2. It should be noticed
that the difference between the resonant and the nonresonant
cases is reflected in the curvature of the funcgam for the
resonant case at the distance corresponding to the barrier.

(5) Once the local scale transformation is obtained, the THO
basis can be built for both cases as

where
1
r(y) = P{arctanmy) +[\? - 1]Y2arctarf[ A% - 1]%%y)}.

Thus, the potential depends on two paramekeend v.

When\ =1, the potential becomes the Pdschl-Teller potential
P P (r[THO) = yTHO(r) = CLY(s P ge(n),  (7)

n=- 222 © zat |
v(r)= cosi(r)’ where the normalization constant is
When the parametev has sufficiently large values, it pro- 7T (n+1)
duces a potential barrier, and generates resonant states in the Cn= 2r(n+3/2) (8)

continuum. The parameter is related to the number of

bound states that the potential supports. Whetwk 3, the The Po6schl-Teller and Ginocchio potentials have analytic

system supports just one bound state withO. continuum wave functiong15]. Thus, the overlap of the
We take as a nonresonant reference case the Poschl-TellBHO wave functions with the true continuum staig,r)

potential with »=2. This has only one bound state, whosecan be expressed as
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r FIG. 3. Energy levels in the THO basis for the PT and G Hamil-

tonians as a function of the number of states included in the THO
basis. The known energies of the first three resonances in the G case
are shown by dotted linegAll quantities in the plot are dimension-

FIG. 2. Local scale transformatiorgr) for the PT and G
ground state wave function@All quantities are dimensionless.

less)
(KTHO,n) = 4"k = f drygm k). (9) |
Note that in our units the energy is jukt. For large dis- ngl(THO,m|h|THO,n><THO,n|N,h;i>
tances, beyond the range of the potential, the continuum _ _
wave functions behave as = E(N;i){THO,m|N,h;i). (14)
Bk,r) — gsin(kr+ 8, (10) Iq Fig. 3.we-plot the energy I_evelf.s(N;i) obtained from the _
™ diagonalization of both Hamiltonians, PT and G, as the di-

mension of the THO basis is increased. In both cases, the
structure of the energy levels is very similar. The density of
states is larger close to the breakup threshold, which occurs
fdrgb(k,r)d)(k’,r) =8k-K'). (11 at E=0. However, a closer inspection of the two figures in-
dicates that while the level density decreases continuously in
It is convenient to define an operat®(N) which projects the nonresonant PT case as the energy increases, the levels
into the space generated by the THO states frond to N. have a slight tendency to cluster around the energies of the

Note that the state with=0 is the bound ground state of the resonances in the G case. It was shown in REf] that, for
Hamiltonian. So, the case of narrow resonances, the diagonalization of the

Hamiltonian in a discrete basis with sufficiefaithough not

too large dimension gives some eigenstates whose energies

P(N) = > [THO,n)(n, THO. (12)  are very stable as the dimension of the basis is increased, and
n=0 this can be taken as a signature for the resonances. However,

Note that asN tends to infinity the THO basis tends to be this is not the case for the relatively wide resonances consid-
complete and®(N) approaches the unity operator. ered here. _ . . . .
Remember that we are considering cases in which there is The exploration of Fig. 3, and the inspection of the eigen-

just one bound state which is decoupled from the rest by thatates of the Hamiltonian in the THO basis indicate that the
Hamiltonian. Thus, considering the THO ba&§§HO, n),n resonant states do not appear explicitly as eigenstates of the
=0, ... N} implies havingN states describing the continuum. Haml_ltonlan. This is showr_1 in Fig. 4, where the Tad'a' wave
The Hamiltonian can be diagonalized in such a basis obtainf-uncuonS of the two Ham||t9n|an elgenstat_es with energies
ing its eigenstates and eigenvalues. This is formally equiva(—:Iose to the energy of the first resonance in the G potential

lent to diagonalizeP(N)hP(N). The eigenstates in the con- are plotted. It can be seen that none of them present a clear
tinuum will be orthonormal combinations of the states in theresonant character. For a resonance one expects a large pres-

THO basis diven b ence probability at small distances reflected in a large ampli-
9 y tude of the wave function inside the potential well. In Fig. 4,

and they fulfil the orthogonality condition

N

N it is clear by visual inspection that this is not the case. Thus,
|THO,N,h;i>:2 (THO,n|N,h;)|THO,NY, i=1,... N, one should conclude that, in a discrete basis, the resonant
n=1 character is distributed among several states with energies in

the vicinity of the resonance.
(13 . :
This can be seen even more clearly by showing the over-
which satisfy lap of the eigenstates of the Hamiltonian in the discrete basis
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FIG. 4 V\_/ave_funct_lons for the Hamiltonian elgenstates n a FIG. 6. Momentum distributiop(k) for the PT and G potentials
THO basis withN=15 with the energy closer to the first resonance, _ AR -
for N=15. The momentum distributions for the first three reso-

E=4.55.(All quantities plotted are dimensionies. nances of the G potential are also shown in bold dashed lines. The
thin dashed lines indicate the position of the resonarn@dlsquan-

with the true continuum states. For a resonance, one expediges are dimensionless.

to have a Lorentzian distribution in energy, which corre-

sponds to an asymptotic momentum distribution given by

N
p(k) = (KIP(N)[K) = > ¢H9k)%. (16)
n=1

p(k)dk= k ! k. (15

d
2 2 2
(k- B)"+ (T12) This sum is a measurement of the completeness of the THO
In Fig. 5, this Lorentzian form is compared with the momen-P2Sis in momentum space. If the basis was truly complete,
tum distribution of the two eigenstates of the Hamiltonian?(K) would be infinite for all the values ok. So, for each
that have eigenvalues close to the energy of the first resdlalt!e ofk, the_ value ofp(k) tells us how well suited is the _
nance. There it can be seen that the momentum distributiorf3Sis to describe that momentum range. It can be seen in Fig.
of these two eigenstates of the Hamiltonian do not resembl€ that for the nonresonant case the functjai) reduces
the expected form for a resonance, although both are close fonotonically ask increases, for the resonant case it has
it in energy. relative maxima which corresponds exactly to the reso-
However, we expect that the THO basis should be able tGances, both in position and width.
describe the resonances. This is because the THO basis canS0, wWe can conclude that the resonant states should be
describe accurately the Hilbert space that corresponds to thiell described within the Hilbert space generated by the
range of distances within the potential, which is the mostlHO basis, although they do not correspond to eigenstates of
relevant for the resonances. To see this more explicitly, w& in that basis. In the following section, we describe a pro-
have plotted in Fig. 6 the sum of the momentum distributionscedure to disentangle the resonances from the nonresonant

of all the states in the THO basis, continuum in the THO basis.

L IIl. DISENTANGLING THE RESONANCES
AN I IN THE THO BASIS

e e=3.12
e g=471

When there are resonances, the continuum states have dif-
ferent behavior depending on whether their energy is close to
one of them or not. The continuum states whose energy is
close to a resonance have a relatively large probability den-
sity of being in the interior of the potential well. Moreover,

7 all the continuum states whose energy is close to a resonance

have a similar shape in the interior of the potential, although

they oscillate differently outside of the potential.

AT e A VIR TN The THO basis should be, when the size of the basis is

0 1 2 " 3 4 sufficiently large, an adequate representation of the con-
tinuum. Our aim in this section is to find a single discrete

FIG. 5. Momentum distributions for the Hamiltonian eigenstatesState in the THO basis which represents the behavior of the
in a THO basis withN=15 with the energy close to the first reso- continuum states within the potential well at energies around
nance in the G potential, compared to the momentum distributior® resonance. This state will not be, in general, an eigenstate
expected for a resonandéorentzian shape (All quantities are  Of the Hamiltonian in the THO basis as shown in the preced-

dimensionless. ing section.

Sk

0.5

034308-4



DESCRIBING RESONANCES IN A DISCRETE BASIS PHYSICAL REVIEW €9, 034308(2004)

L B A S W W ORI A0 Y
Poschl-Teller ) 1 Ginocchio .

To build the resonances in the THO basis we consider the 30
eigenstates of the operatd? defined by the expression -

A?=P(N)(h - eg)Q(N)(h - eg)P(N)
=P(N)(h-eg)?P(N) - [P(N)(h - eg) P(N)]?, (17)

whereh is the Hamiltonian of the systeneg is the ground %15
state energy, an@(N)=1-P(N) is the operator that projects I
out of the THO basis. The meaning of the operatéiis the
following: The expectation value af? in a state belonging

to the subspace generated by the THO basis measures ha I . 1o / \
strongly does the Hamiltonian couple this state to the states | % LD - el
outside the THO subspace. If the operatdr(which is posi- 10 12 14 16 8 1012 14 16
tive definite is diagonalized in the THO basis, then the N N
eigenstatgs which have small eigenvalues will correspond to FIG. 7. Expectation value of the energy for the eigenstates’ of
states WhICh are weakly coupled to f[he states. outside thiﬁ a THO basis as a function of the dimension of the basis for the
THO basis. So, the opgratﬂrz has .the Intgrpretatlon of the PT and G cases. The resonances are marked by special symbols.
square of an _energy width, associated with the fact that th?he known energies of the first three resonances in the G case are
THO states will eventually evolve to abandon the THO sub-gpqyn by dotted linegAll quantities are dimensionless.

space. Thusk/\A? would be related to the time a given
state remains in the space generated by the THO basi

which is also related to the time that a given state remain : ) S
monotonically asN increases. This is expected because a

in the vicinity of the potential. I8_nger time should be associated with a smaller velocity and

We expect that a resonance, as opposed to the nonresg .
. . - : ence a smaller energy. However, for the resonant potential,
nant continuum with similar energy, should remain for a

longer time at the vicinity of the potential. These configura—'t can be seen that the trend is not always the same. There are

tions are well described in the THO basis. Thus, the state thgto?;]z ?/glslfes é?A\'ZVhécrhaﬁr;r:gggggei’:rlﬂgdtir:%ng? ae?;;f:r?(?e
describes the resonance in the THO basis should not coup\ X P

strongly to states outside the THO basis. Hence, we shoul@°%¢ to _the potential, is accompanieq by an increase in the
look for the resonance between the eigenstates?oihich expectation value of the energy. _In F|_g_. 7 we have marked
have low eigenvalues with symbols the states we have identified as resonances be-

On the other hand, as Fig. 6 shows, the THO basis gecause they have a large probability of being within the po-
' : ' ential. As it can be seen in Fig. 7, there is a clear correspon-

scribes more accurately the states with low excitation energ Hence between resonances and eigenstatad which have

resonant or not. Hence, not all the eigenstates®fith low )

eigenvalues correspond to resonances. The relevant states %peﬁnomalously large expectation va_lue of the energy. Also,

those with low values of\2 but which have. at the same 't S ould be noticed that the expectation value for the energy

time, relatively high values’of the energy. ' is consistent with the known average energy of the reso-
The eigenstates ak? will be orthonormal combinations ancc)siasir?é;vigcmgugizé?\iia:te:sogﬁar\]/(v:i?ﬁ '2 tlgfg-gHg]g%ijs can

of the states in the THO basis given by which deviates from the decreasing tendencyNass in-

25

201

10~

N_
~F
ok
ool

Eal, we can see that the expectation valueshodecrease

N creased. The wave functions of the resonance are given by
ITHO,N,AZ;i) = >, (THO,n|N,AZ;i)| THO,n), "
n=1
r)= >, (THO,n|N,AZ; i)y (1), 20
1N . edr) = 2 (THONN. A%, (20
which satisfy in configuration space, and
N N
> (THO,mA%THO,nNXTHO,n|N, h; i) UredK) = 2 (THONIN, AZ; i)y "O(K), (21
n=1 n=1
= A2(N;i){THO,m|N,AZ;j). (19)

in momentum space. In this paper, since we are keeping a
In Fig. 7 we have plotted, for the G and PT cases, thesmall dimension of the THO basis, we expect to get a good
expectation value dfi for the eigenstates &f?, as a function description only of the first resonance. However, we also
of the dimension of the basis. We have joined by lines theshow in Fig. 7 the second and third resonances in the G
values corresponding to the lowest eigenstates’dbr each  potential, which appear at energies consistent with the
value of N, then the next one, and so on. Note thatNas known values.
increases along a given line, the eigenvaluadtlecreases, We have investigated the robustness of this method as the
and, consequently, the time that the state remains in the vsize of the basis is increased. In Fig. 8 we plot the identified
cinity of the potential increases. For the nonresonant poterfirst resonant wave functiofupper paneli=1) as the size of
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T T T T T T
1r i=1 o N=I13 ] — Lorentzian
- N=14 --- N=I5
A
i

FIG. 8. THO resonances for different values of the basis size: FIG. 10. Momentum distribution for the first THO resonance
N=13,14, and 15. The upper panel is for the first, the middle paneith N=15, compared to the expected resonance distribution
for the second, and the lower panel for the third resonan@ds.  (Lorentzian shape (All quantities plotted are dimensionles.
quantities are dimensionless.

continuum wave functions satisfy E@ll). However, any
the basis is increasdt=13,14,15 we see that the form of wave packet which is constructed with the continuum wave
the wave function in the interior of the potential well is prac- functions at energies close to the resonance is square normal-
tically unaffected. We show in this figure, the secgndddle  izable, and hence it can be compared to the THO resonance.
panel,i=2) and the third resonanc¢®wer paneli=3) too.  Thus, we have also compared in Fig. 9 the THO resonance
It can be seen that also these resonances are relatively staéh an average of continuum wave functio@sbin) which
inside the well although they are changing more than the firsis taken in the range frorg=E,+I'/2 to E=E,-I'/2 (I' is
one due to the size of the basis that covers well the energpe width of the resonange
region of the first resonance but scarcely the energy region of In Fig. 10, we compare the Lorentzian form expected for
the other resonances. the first resonance with the momentum distribution of this

We have performed several checks to see that the res#esonance in the THO basis witt=15. There it can be seen
nances we obtain from the eigenstatesAdfin the THO  that the momentum distribution does resemble the expected
basis correspond to other definitions of resonances. First, wierm for a resonance. Note also that both the position and
have compared our resonance with the actual continuurwidth of the resonance is well reproduced.
wave function at the enerdy=E,. We see in Fig. 9 that the
two wave functions coincide within the range of the potential
well. Outside of it, the THO wave function vanishes, while IV. COUPLING OF THE BOUND STATE WITH THE
the continuum state oscillates. It is remarkable that the two CONTINUUM
wave functions show similar values within the potential, al-

though they have different normalization criteria. While the ¢ Itn ihlsthsectlo? we co\?VS|der thg C?ﬁp“ng tqf thle grOl;ndf
resonant wave function in the THO basis is normalized s@ at¢ ‘0 the continuum. We consider the matrix elements o

that the integral of the square of the wave function is one, théhe operatorr_be'_[weer_l the bound state and the continuum
States. Our aim is to investigate the difference between the

— resonan{Ginocchig and nonresonarnPoschl-Telley cases,
— THON=15 and to evaluate the adequateness of the THO basis to de-
T - Commum BE, | ibe these differences
.-+ Bin (E-T/2, E+T72) scribe : . .
We evaluate the bound-to-continuum amplitudes as

N
A(g.5.K) = (g.s|r|k) = >, (g.s|r|THO,n{THO,n|k).
n=1

(22)

The strength function of the operatoris given by S(k)

=|A(g.s. K)|2. In Fig. 11, it can be clearly seen that, in the

. . . . . nonresonant case, the strength function is a smooth func-

0 2 4 6 8 10 tion of the momentum. However, in the resonant case a

clear structure associated with the resonance appears in
FIG. 9. THO resonance for a badi&=15 compared with the the range ofk values which correspond to the first reso-

actual continuum wave function, and the bin wave function. See th@ance. In Fig. 11 we have plottedull line) the exact

text for details(All quantities are dimensionlegs. strength function S(k)=|A(g.s. K)|>*=[(g.s|r|k)|> and the
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04—
Poschl-Teller

LI tinuum in both cases. The Hamiltonian have been diagonal-

ized in the THO basis, for a given number of states, and the

eigenstates and eigenvalues have been obtained. Although
0.3 s there are small differences between the spectra of the PT and
-=+ Resonance N=15 G cases, there is not a clear signal which allows us to iden-
tify the resonance in the G case. The same can be said about
. the wave functions of the eigenstates.

We have developed a procedure to obtain the state in the
THO basis which represents the resonance. We start consid-
. ering the eigenstates of the operatoi=PhQhP, which is
/ \ related to the matrix elements of the Hamiltonian which
L . | couple states within the THO basis with states outside it. As
g 1 I e the size of the bqsis i_ncreases, we show that the expectation

k Kk value of the Hamiltonian for the eigenstatesAdfdecreases

in general. However, when there are resonances, some eigen-
FIG. 11. Strength functioS(k) for the operator as a function  states display an unexpected increase in the expectation

of the momentum for the PT and G potentials. The exact values andalue of the energy. These states, which are eigenstatk% of
the value obtained for a THO basis witt=15 (which are almost and show a large expectation value of the energy, are identi-
indistinguishablg are presented for both cases. The contribution offied with the resonances in the THO basis.
just the first THO resonance in the G case is also shawi. The THO resonance has a radial behavior within the po-
quantities are dimensionlegs. tential well which is very similar to that of the continuum
states with energies close to the resonance energy. Outside
strength function obtained for aN=15 THO basisS(k) the potential, the THO resonance decreases smoothly. The
=|A(g.s. K)[2=|=N (g.s]r| THO,n)(THO,n|k)[? (dot ling). ~ THO resonance can be expanded in terms of states of the
Both results are basically the same for PT and G potenfOntinuum, and it displays a structure which is consistent in
tials. One can evaluate the contributionS@) of the THO ~ Position and width with a Breit-Wigner distribution.
resonances. The amplitude that corresponds to the resg']>_- We haye mvegtlgated the comple‘geness properties of the
nancei is given by HO basis, both in the resonant .an.d in the nonresonant case.
When the number of states is infinite, the THO basis de-
ARI(K) =(g.s]r[THO,N,A%;i{THO,N,A?;ilk). (23)  scribes the complete continuum. Nevertheless, for a finite
I number of THO states, the description of states with low
We have evaluated the_ contribution of the .THO State o mentum is more accurate than that of high momentum. In
which corresponds to the first resonance. This is plotted n

Fia. 11 dashed line. Th K ob din th 'FEe resonant case, however, the description of the continuum
9. as a dashed line. The peak observed In the streng) e accurate in the range of the resonances than outside

function at arounck=2 is clearly reproduced by this single it. Regarding completeness in configuration representation, it
state, while the peak belok=1 has nothing to do with the . g g b g P '

is seen that, in the nonresonant case, smaller distances are

resonance. . better described than larger distances, while for the resonant
The contributions of the second and third resonances c%
c

Ginocchio

0.2 + ;

S(k)

. . se, the distances close to the potential barrier are best de-
also be evaluated. It should be noticed that the amplitudes ribed P
tEe resonances can |_nterfere with each other, and also wit We have investigated the coupling of the bound state to
the nonresonant continuum. the continuum. It is found that, for the nonresonant case, the
strength function is a smooth function of the momentum of
V. SUMMARY AND CONCLUSIONS the continuum state, while in the resonant case there is a

characteristic resonant structure for the momenta close to the
We have applied the THO method to investigate the roleesonance. The THO basis, with a small number of states,

of resonances in the continuum. For that purpose, we haveescribes accurately the strength function in both cases.
used the wave functions of the Ginocchio potential, which isMoreover, the THO resonance is found to describe the
analytically solvable. This potential is determined by two strength contribution at the energies of the resonance.
dimensionless parametersand \, so thaty determines the In summary, we have shown that the THO basis provides
number of bound states while determines the shape of the an adequate representation of the continuum, both resonant
potential barrier and generates the resonances. In this pap@and nonresonant. It allows us to identify a single state that
we have concentrated on resonances wiith0. We have represent each resonance. The difference between the
considered two cases: The Pdschl-TellBiT) case, corre- strength functions in resonant and nonresonant cases can be
sponding ton=1, where no resonances appear, and the casenderstood and calculated accurately in the THO basis.

of A=10, to which we refer as the Ginocchi@) case which We consider that the results presented here for a particular
displays resonances. The values of thparameter and the potential shape and just one bound state Wwit0 should be
scale length have been chosen so that both potentials haegplicable in more realistic cases. The extension to arbitrary
only one bound state, with the same mean square radius apatential shapes with ground state known either analytically

binding energy. or numerically, several bound states, and angular momentum
We have applied the THO method to discretize the condifferent from zero is straightforward. The extension to cases
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in which the resonances have a many-body nature is more (s'|A2s) :<s’|h2|s>—2 (s'|hlg’%'|hls)

involved but it can be done. If the explicit expression of the &

Hamiltonian is known, then the matrix elementshdfcan be

evaluated, and the procedure outlined here can be directly = > (s'lhle)¢lhls) = X (s'|h[s")(s"|h]s).
applied. If one does not know the explicit form of the Hamil- ¢ s’

tonian but knows how to calculate matrix elements of the (24)

Hamiltonian in a many-particle configuration space, as it is theA? matrix i tructed th trix el i
the case, for instance, in the nuclear shell model, the methognCe matrix 1S constructed from tne matrix elements

) of h one can proceed as shown in this paper to study the
presented here can be used. One has to define a large basis . ;

. . i resonances in the restricted space.

(e.g., many harmonic oscillator sheltsut of which a smaller
set of states is selectéel.g., one harmonic oscillator shedls
an approximated basis for a reduced configuration space.
Then, one can study the resonances in this reduced space This work was supported in part by the Spanish MCyT
with the method presented here. Let us call schemati¢@lly under Project Nos. FPA2002-04181-C04-04 and BFM2002-

to the states in the large basis dagdto the basis states in the 03315. We acknowledge useful discussions with R. Liotta
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