
Test of pseudospin symmetry in deformed nuclei

J. N. Ginocchio,1,* A. Leviatan,2,† J. Meng,3,‡ and Shan-Gui Zhou4,3,§

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

3School of Physics, Peking University, Beijing 100871, China
4Max-Planck Institute for Nuclear Physics, 69029 Heidelberg, Germany

(Received 25 September 2003; published 2 March 2004)

Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields
equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine
extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to
determine if these eigenfunctions satisfy these pseudospin symmetry constraints.
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I. INTRODUCTION

Pseudospin doublets were introduced more than thirty
years ago into nuclear physics to accommodate an observed
near degeneracy of certain normal parity shell model orbitals
with nonrelativistic quantum numberssnr ,, , j =,+1/2d and
snr −1,,+2,j =,+3/2d where nr, ,, and j are the single-
nucleon radial, orbital, and total angular momentum quantum
numbers, respectively[1,2]. The doublet structure is ex-
pressed in terms of a “pseudo-orbital” angular momentum,
which is an average of the orbital angular momentum of the

two orbits in the doublet,,̃=,+1, coupled to a “pseu-

dospin”, s̃=1/2 with j = ,̃± s̃. For example, the shell model

orbitals fnrs1/2,snr −1dd3/2g will have ,̃=1, fnrp3/2,snr

−1df5/2g will have ,̃=2, for the two states in the doublet.
Then the single-particle energy is approximately independent
of the orientation of the pseudospin leading to an approxi-
mate pseudospin symmetry. These doublets persist for de-
formed nuclei as well[3]. The axially symmetric deformed
single-particle orbits with nonrelativistic asymptotic quan-
tum numbers fN,n3,LgV=L+1/2 and fN,n3,L8=L
+2gV8=L+3/2 arequasidegenerate. HereN is the total har-
monic oscillator quantum number,n3 is the number of quanta
for oscillations along the symmetry axis, taken to be in thez
direction,L and V are, respectively, the components of the
orbital and total angular momentum projected along the sym-
metry axis[4]. In this case, the doublet structure is expressed
in terms of a pseudo-orbital angular momentum projection,

L̃=L+1, which is added to a pseudospin projection,m̃
= ±1/2, toyield the above-mentioned doublet of states with

V=L̃−1/2 andV8=L̃+1/2. This approximate pseudospin
“symmetry” has been used to explain features of deformed
nuclei, including superdeformation[5] and identical bands
[6–9] as well.

Although there have been attempts to understand the ori-
gin of this symmetry[10,11], only recently has it been shown
to arise from a relativistic symmetry of the Dirac Hamil-
tonian [12,13] which we review in Sec. II. This relativistic
symmetry implies conditions on the Dirac eigenfunctions
[14] which we discuss in Secs. II and III. These relationships
have been studied extensively[14–19] for spherical nuclei.
For deformed nuclei, the relationships have been studied
only in a limited way and primarily for the lower compo-
nents of the Dirac eigenfunctions[20–22]. In this paper we
shall test thoroughly these relationships between the upper
and lower components of the two states in the doublet for
realistic deformed relativistic eigenfunctions[23,24].

II. THE DIRAC HAMILTONIAN AND
PSEUDOSPIN SYMMETRY

The Dirac HamiltonianH with an external scalarVSsrWd
and vectorVVsrWd potentials is given by
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FIG. 1. The neutron spectra in MeV for the pseudospin doublets
in 168Er.

PHYSICAL REVIEW C 69, 034303(2004)

0556-2813/2004/69(3)/034303(11)/$22.50 ©2004 The American Physical Society69 034303-1



H = â ·p + b̂ fM + VSsrWdg + VVsrWd, s1d

where â, b̂ are the usual Dirac matrices,M is the nucleon
mass, and we have set"=c=1. The Dirac Hamiltonian is
invariant under a SUs2d algebra for two limits: VSsrWd
=VVsrWd+Cs and VSsrWd=−VVsrWd+Cps, whereCs,Cps are con-
stantsf25g. The former limit has application to the spectrum
of mesons for which the spin-orbit splitting is smallf26g and
for the spectrum of an antinucleon in the mean field of nucle-
onsf27,28g. The latter limit leads to pseudospin symmetry in
nuclei f12g. This symmetry occurs independent of the shape
of the nucleus: spherical, axial deformed, or triaxial.

A. Pseudospin symmetry generators

The generators for the pseudospin SU(2) algebra,S̃i si
=x,y,zd, which commute with the Dirac Hamiltonian

fHps,S̃ig=0 for the pseudospin symmetry limitVSsrWd
=−VVsrWd+Cps, are given by[13]

S̃i = Ss̃i 0

0 si
D = SUpsiUp 0

0 si
D , s2d

where si =si /2 are the usual spin generators,si the Pauli
matrices, andUp=ss ·pd /p is the momentum-helicity unitary

operator introduced in Ref.f11g. Thus the operatorsS̃i gen-
erate an SUs2d invariant symmetry ofHps. Therefore, each

FIG. 2. Wave functions insFermid−3/2 as a
function of z and r=1,3,and 5 fm for theneu-
tron pseudospin doublet f402g5/2 and

f404g7/2sL̃=3d in 168Er. In each segment, the
top row shows(from left to right) the relations in
(i) Eq. (12a), involving f

h̃,L̃,−1/2

+
and f

h̃,L̃,1/2

−
, (ii )

Eq. (12b), involving f
h̃,L̃,−1/2

−
and f

h̃,L̃,1/2

+
, (iii ) Eq.

(12c), involving g
h̃,L̃,1/2

+
and −g

h̃,L̃,−1/2

−
. The bot-

tom row shows(from left to right) the left-hand
side and right-hand side of(i) Eq. (13a), involv-
ing g

h̃,L̃,1/2

−
andg

h̃,L̃,−1/2

+
, (ii ) Eq. (13b), involving

g
h̃,L̃,−1/2

+
and g

h̃,L̃,+1/2

+
, (iii ) Eq. (13b), involving

g
h̃,L̃,+1/2

−
andg

h̃,L̃,−1/2

−
.
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eigenstate of the Dirac Hamiltonian has a partner with the
same energy,

HpsFk̃,m̃

ps srWd = Ek̃Fk̃,m̃

ps srWd, s3d

where k̃ are the other quantum numbers andm̃= ± 1
2 is the

eigenvalue ofS̃z,

S̃zFk̃,m̃

ps srWd = m̃F
k̃,m̃

ps srWd. s4d

The eigenstates in the doublet will be connected by the gen-

eratorsS̃±=S̃x± iS̃y,

S̃±F
k̃,m̃

ps srWd =ÎS1

2
7 m̃DS3

2
± m̃DF

k̃,m̃±1

ps srWd. s5d

The fact that Dirac eigenfunctions belong to the spinor rep-
resentation of the pseudospin SUs2d, as given in Eqs.s4d and
s5d, leads to the conditions on the corresponding Dirac am-
plitudes that are explored in this paper and developed in the
following section.

B. Dirac eigenfunctions and pseudospin symmetry

An eigenstateF
k̃,m̃

ps srWd of the Dirac HamiltonianHps, Eq.
(3), is a four-dimensional vector

FIG. 3. Wave functions insFermid−3/2 as a
function of r and z=1,3,and 5 fm for theneu-
tron pseudospin doublet f402g5/2 and

f404g7/2sL̃=3d in 168Er. The content of the
graphs in each segment as in Fig. 2.
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F
k̃,m̃

ps srWd =1
g

k̃,m̃

+ srWd

g
k̃,m̃

− srWd

i f
k̃,m̃

+ srWd

i f
k̃,m̃

− srWd
2 , s6d

whereg
k̃,m̃

± srWd are the “upper Dirac components” andf
k̃,m̃

± srWd
are the “lower Dirac components.” The superscript +s−d in-
dicates spin upsspin downd.

The connections between the Dirac eigenstates of the dou-
blet sm̃= ± 1

2
d resulting from Eqs.(4) and(5) lead to relation-

ships between the Dirac amplitudes in Eqs.(6) [14],

f
k̃,−1/2

+ srWd = f
k̃,1/2

− srWd = 0, s7ad

f
k̃,1/2

+ srWd = f
k̃,−1/2

− srWd ; f k̃srWd, s7bd

g
k̃,1/2

+ srWd = − g
k̃,−1/2

− srWd ; gk̃srWd, s7cd

and to first order differential equations,

S ]

] x
− i

]

] y
Dg

k̃,1/2

− srWd = S ]

] x
+ i

]

] y
Dg

k̃,−1/2

+ srWd, s8ad

]

] z
g

k̃,71/2

± srWd = ± S ]

] x
7 i

]

] y
Dg

k̃,±1/2

± srWd. s8bd

Thus pseudospin symmetry reduces the eight amplitudes for
the two states in the doublet to four amplitudes. In the fol-

FIG. 4. Same as in Fig. 2 but for the neutron

pseudospin doubletf400g1/2 and f402g3/2sL̃
=1d in 168Er.
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lowing section we shall discuss these relations in Eqs.(7)
and (8) for axially deformed nuclei.

III. PSEUDOSPIN SYMMETRY FOR AXIALLY
DEFORMED NUCLEI

If the potentials are axially symmetric, that is, indepen-
dent of the azimuthal anglef, VS,VsrWd=VS,Vsr ,zd, r
=Îx2+y2, then the Dirac Hamiltonian has an additional U(1)
symmetry in the pseudospin limit. The conservedUs1d gen-
erator is given by[13]

L̃z = S,̃z 0

0 ,z

D , s9d

where ,̃z=Up,zUp and ,z=sr 3pdz. In this case, the Dirac

eigenstates ofHps are simultaneous eigenstates ofL̃z, with

eigenvalueL̃, and of the total angular momentum generator

Jz=S̃z+ L̃z, with eigenvaluesV=L̃+m̃=L̃± 1
2

L̃zFh̃,L̃,m̃,V

ps srWd = L̃F
h̃,L̃,m̃,V

ps srWd,

JzFh̃,L̃,m̃,V

ps srWd = VF
h̃,L̃,m̃,V

ps srWd. s10d

Here h̃ denotes additional quantum numbers that may be
needed to specify the states uniquely.

The conventional method of labeling the eigenstates of
axially deformed single-particle states in nuclei is to use the
asymptotic quantum numberssN,n3,L ,Vd, mentioned in the
Introduction, which emerge in the limit of a nonrelativistic
axially symmetric deformed harmonic oscillator with spin
symmetry. For the relativistic axially deformed harmonic os-

FIG. 5. Same as in Fig. 3 but for the neutron

pseudospin doubletf400g1/2 and f402g3/2sL̃
=1d in 168Er.
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cillator with spin symmetry[29] the eigenfunctions can also
be labeled by these quantum numbers. However, only the
spatial amplitudes of the upper components of the doublet
will necessarily have the nodes suggested by these quantum
numbers, whereas the spatial amplitudes of the lower com-
ponents may have different nodal structure. For spherically
symmetric potentials a general theorem relates the nodal
structure of the upper and lower Dirac amplitudes, and has
been used to explain the nonrelativistic radial quantum num-
bers characterizing pseudospin doublets in spherical nuclei
[30]. A corresponding theorem for axially deformed poten-
tials in the pseudospin and spin limits of the Dirac Hamil-
tonian appears to hold under certain conditions, which the
relativistic harmonic oscillator satisfies, but which do not
generally apply for realistic axially symmetric potentials

[31]. For the latter, only the quantum numbersL̃ and V in
Eq. (10) are conserved in the pseudospin limit. The fact that
the axial symmetry of the potentials determines thef depen-
dence of the Dirac wave functions, leads to the following
form for the relativistic pseudospin doublet eigenstates[14]

F
h̃,L̃,−1

2
,V=L̃−1

2

ps srWd =1
g

h̃,L̃,−1
2

+
sr,zdeisL̃−1df

− gh̃,L̃sr,zdeiL̃f

0

i f h̃,L̃sr,zdeiL̃f
2, V = L̃ −

1

2
,

s11ad

FIG. 6. Same as in Fig. 2 but for the neutron

pseudospin doubletf501g3/2 and f503g5/2sL̃
=2d in 168Er.
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F
h̃,L̃,1

2
,V8=L̃+1

2

ps srWd =1
gh̃,L̃sr,zdeiL̃f

g
h̃,L̃,1

2

−
sr,zdeisL̃+1df

i f h̃,L̃sr,zdeiL̃f

0
2, V8 = L̃ +

1

2
.

s11bd

The two states in the doublet have the same pseudo-
orbital angular momentum projection along the symmetry

axis, L̃, but different total angular momentum projections

V=L̃− 1
2 andV8=L̃+ 1

2. As seen from Eqs.(11a) and(11b),
the pseudospin projectionm̃= ± 1

2 andL̃ are respectively the
ordinary spin projection and ordinary orbital angular mo-
mentum projection of the nonvanishing lower component

f h̃,L̃sr ,zd. The corresponding dominant upper components
g

h̃,L̃,−1/ 2

+ sr ,zd and g
h̃,L̃, 1 / 2

− sr ,zd have orbital angular mo-

mentum projectionsL=L̃−1 and L8=L̃+1 respectively,
hence L8=L+2. Accordingly, V=L+1/2 and V8=L8
−1/2=L+3/2.These assignments agree with the nonrelativ-
istic pseudospin quantum numbers discussed in the Introduc-
tion. The generic labelh̃ in F

h̃,L̃,m̃,V

ps srWd replaces the har-
monic oscillator labelsN andn3, which are not conserved for
realistic axially deformed potentials in nuclei.

In obtaining the expressions in Eq.(11) we have used the
relations in Eq.(7), which for axially deformed potentials
read[14]

f
h̃,L̃,−1/2

+ sr,zd = f
h̃,L̃,1/2

− sr,zd = 0, s12ad

FIG. 7. Same as in Fig. 3 but for the neutron

pseudospin doubletf501g3/2 and f503g5/2sL̃
=2d in 168Er.
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f
h̃,L̃,1/2

+ sr,zd = f
h̃,L̃,−1/2

− sr,zd ; f h̃,L̃sr,zd, s12bd

g
h̃,L̃,1/2

+ sr,zd = − g
h̃,L̃,−1/2

− sr,zd ; gh̃,L̃sr,zd, s12cd

and the differential relations(8) become

S ]

] r
+

L̃ + 1

r
Dg

h̃,L̃,1/2

− sr,zd = S ]

] r
−

L̃ − 1

r
Dg

h̃,L̃,−1/2

+ sr,zd,

s13ad

]

] z
g

h̃,L̃,71/2

± sr,zd = ± S ]

] r
±

L̃

r
Dg

h̃,L̃,±1/2

± sr,zd. s13bd

We shall now test to see if the pseudospin symmetry condi-
tions in Eqs.(12) and (13) are valid for realistic relativistic
mean field eigenfunctions in deformed nuclei.

IV. COMPARISON WITH REALISTIC RELATIVISTIC
EIGENFUNCTIONS

The single-particle energies and wave functions for168Er
are calculated by the relativistic Hartree theory with the pa-
rameter set NL3 in a Woods-Saxon basis[23,24]. This
method has been developed from relativistic theory in coor-

FIG. 8. Same as in Fig. 2 but for the neutron

pseudospin doubletf510g1/2 and f512g3/2sL̃
=1d in 168Er.
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dinate space[32–34] and has the advantage that it easily
generalizes to include both deformation and pairing correc-
tion self-consistently. The pairing correlation is treated with
the BCS approximation. These calculations lead to a theoret-
ical average binding energyB/A=8.107 MeV, a quadrupole
deformationb=0.3497 and a root mean square radiusR
=5.376 fm, which reproduce the data well. For these realistic
eigenfunctions the harmonic oscillator quantum numbers are
not conserved, but the orbitals are labeled by the quantum
numbers of the main spherical basis state in the expansion of
the dominant upper component in the Dirac eigenfunctions.

In Fig. 1, the calculated single-neutron energies«=E
−M for the pseudospin doublets in168Er are presented. From
left to right, the panels correspond to the pseudo-orbital an-

gular momentum projectionL̃=1,2,3, and 4,respectively.
The energy splitting between members of pseudospin dou-

blets decreases as the single-particle binding energy -« de-
creases. For pseudospin doublets with binding energy larger
than 5 MeV, the spin-up(pseudospin down) state is higher
than the spin-down(pseudospin up) one. On the other hand,
for the bound doublets with binding energy less than 5 MeV,
the opposite is observed.

Four pairs of neutron pseudospin partners are chosen to
illustrate the relations given above.(i) The statesf402g 5

2 and

f404g 7
2sL̃=3d , which have a large energy splitting(about

2 MeV). The single-particle energies are respectively
«f402g5/2=−12.083 and«f404g7/2=−14.160 MeV.(ii ) The states

f400g 1
2 and f402g 3

2sL̃=1d, which have a small energy split-
ting (about 0.4 MeV). The single-particle energies are re-
spectively «f400g1/2=−10.2073 and«f404g7/2=−10.603 MeV.

(iii ) The statesf501g 3
2 andf503g 5

2sL̃=2d, which have a small

FIG. 9. Same as in Fig. 3 but for the neutron

pseudospin doubletf510g1/2 and f512g3/2sL̃
=1d in 168Er.
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energy splitting(less than 0.4 MeV). The single-particle en-
ergies are respectively«f501g 3 / 2 =−1.349 and «f503g5/2

=−0.9603 MeV.(iv) The statesf510g 1
2 and f512g 3

2sL̃=1d,
which have a tiny energy splitting(less than 0.01 MeV). The
single-particle energies are respectively«f510g1/2=−3.8436
and«f512g3/2=−3.8378 MeV.

Plots for the above four pairs of neutron pseudospin part-
ners are shown in Figs. 2, 4, 6, and 8, as a function ofz for
three segments:r=1,3,and 5 fm, and inFigs. 3, 5, 7, and 9,
as a function ofr for three segments:z=1,3,and 5 fm. In
each segment the top row displays the relationships between
lower component amplitudes given in Eqs.(12a) and (12b),
and the relationship between upper component amplitudes
given in Eq.(12c). The bottom row displays the differential
relationships between upper component amplitudes given in
Eq. (13).

From these figures, we can draw a number of conclusions.
First, while the amplitudesf

h̃,L̃,−1/2

+ sr ,zd, f
h̃,L̃,1/2

− sr ,zd are not

zero as predicted by Eq.(12a), they are much smaller than
f

h̃,L̃,−1/2

− sr ,zd, f
h̃,L̃,1/2

+ sr ,zd. Furthermore, f
h̃,L̃,1/2

+ sr ,zd and

f
h̃,L̃,−1/2

− sr ,zd have similar shapes as predicted by Eq.(12b).

In Figs. 2 and 3 for thef402g5/2,f404g7/2,L̃=3 doublet
there is some discrepancy in the shapes but the shapes be-
come more equal as both the pseudo-orbital angular momen-

tum projection L̃ decreases(see Figs. 4 and 5 for the

f400g1/2,f402g3/2,L̃=1 doublet) and the binding energy

decreases(see Figs. 6 and 7 for thef501g3/2,f503g5/2,L̃
=2 doublet).

The amplitude −g
h̃,L̃,−1/2

− sr ,zd has the same shape as the

amplitude g
h̃,L̃,1/2

+ sr ,zd, in line with the prediction of Eq.

(12c), but they differ in magnitude. Again the discrepancy
decreases as the pseudo-orbital angular momentum projec-

tion L̃ decreases(compare Figs. 2 and 3 for the

f402g5/2,f404g7/2,L̃=3 doublet with Figs. 8 and 9 for the

f510g1/2,f512g3/2,L̃=1 doublet) and the binding energy
decreases (compare Figs. 2 and 3 for the

f402g5/2,f404g7/2,L̃=3 doublet with Figs. 6 and 7 for the

f501g3/2,f503g5/2,L̃=2 doublet or Figs. 8 and 9 for the

f510g1/2,f512g3/2,L̃=1 doublet). These amplitudes are
much smaller than the other upper amplitudes,g

h̃,L̃,71/2

± sr ,zd.
The differential relation in Eq.(13a) between the domi-

nant upper components,g
h̃,L̃,1/2

− sr ,zd and g
h̃,L̃,−1/2

+ sr ,zd, is

well obeyed in all cases. The differential relations in Eq.
(13b) relate the dominant upper components,g

h̃,L̃,71/2

± sr ,zd
to the small upper componentsg

h̃,L̃,±1/2

± sr ,zd. The shapes of

the left-hand side and of the right-hand side of Eq.(13b) are
the same, but the corresponding amplitudes are quite differ-
ent. Therefore, the differential relations in Eq.(13b) are less
satisfied. These differences might partly originate from the
differences in the magnitudes of the small upper components
in Eq. (12c).

V. SUMMARY

We have reviewed the conditions that pseudospin symme-
try places on the Dirac eigenfunctions. We have shown that
the conditions on the lower amplitudes, Eqs.(12a) and(12b),
are approximately satisfied for axially deformed nuclei. The
differential relation between the dominant upper component
amplitudes, Eq.(13a), is also approximately satisfied. How-
ever, both the relation between the amplitudes of the small
upper components, Eq.(12c), and the differential equations,
Eq. (13b), that relate the dominant upper components with
the small upper components are not well satisfied. The pseu-
dospin symmetry improves as the binding energy and
pseudo-orbital angular momentum projection decrease,
which is consistent with previous tests of pseudospin sym-
metry in spherical nuclei.
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