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The first 2+ states inN=20 isotones including neutron-rich nuclei32Mg and 30Ne are studied by the
Hartree-Fock-Bogoliubov plus quasiparticle random phase approximation method based on the Green’s func-
tion approach. The residual interaction between the quasiparticles is consistently derived from the Hamiltonian
density of Skyrme interactions with explicit velocity dependence. TheBsE2,01

+→21
+d transition probabilities

and the excitation energies of the first 2+ states are well described within a single framework. We conclude that
pairing effects account largely for the anomalously largeBsE2d value and the very low excitation energy in
32Mg.
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I. INTRODUCTION

The pioneering observation in 1975 of the anomalous
binding energy gain in very neutron rich Na isotopes re-
vealed the breaking of theN=20 shell closure and the pos-
sibility of deformation[1]. The evidences of the breaking of
N=20 shell closure in neutron-rich Mg and Ne isotopes are
more clearly seen from the observations ofE2 properties, the
largeBsE2d value, and the low excitation energies of the first
2+ states in32Mg and 30Ne [2–6].

Several theoretical studies have been done to describe the
anomalous binding energy andE2 properties in neutron-rich
nuclei aroundN=20. Constrained Hartree-Fock(HF) calcu-
lations of Na isotopes[7] have been performed and31Na was
suggested as deformed. Early studies made by Wildenthalet
al. [8] and Chung showed that shell model calculations
within the sd shell model space cannot explain the extra
binding energies in this region. Subsequent shell model cal-
culations[9–11] have demonstrated that the inclusion of the
fp shell into the shell model active space is essential. The
effects of the breaking of theN=20 shell closure are clearly
shown in the description of theBsE2d values and the excita-
tion energies in32Mg and 30Ne [12–15]. The neutron 2p-2h
configurations across theN=20 shell imply deformation of
these nuclei. However, in the framework of the mean-field
approximation, such as Skyrme Hartree-Fock-Bogoliubov
(HFB) calculations, the calculated ground states in32Mg and
30Ne turn out to be spherical(see, e.g., Refs.[16,17]). One
possible way to describe the(dynamical) deformation is to
include correlations beyond the mean field. Generator coor-
dinate method[18–20] and antisymmetrized molecular dy-
namics calculations[21] have been done in this direction.

Nevertheless, the experimental evidence of deformation
in 32Mg is not well established. The energy ratios of the first
4+ and 2+ states,Es4+d /Es2+d, are 3.0 in24Mg [22] and 3.2 in
34Mg [23], and these values are very close to the rigid rotor
limit of 3.3. On the other hand, the ratio is 2.6 in32Mg
[23,24], and this value is in between the rigid rotor limit and
the harmonic vibration limit 2.0. Moreover, theBsE2d value
(in single-particle units) is 15.0±2.5 in32Mg [2]. This value
is larger than in the other stableN=20 isotones but smaller

than in other deformed Mg isotopes(21.0±5.8 in24Mg [22]
and 19.2±3.8 in34Mg [25]).

Generally speaking, the neutron 2p-2h configurations can
originate not only from deformation effects but also from
neutron pairing correlations. In the32Mg nucleus these two
effects may coexist and make the largeBsE2d value and the
low excitation energy of the 2+ state. In shell model studies it
is not clear which effect is more essential to describe these
anomalous properties.

The purpose of this paper is to emphasize how neutron
pairing correlations play an essential role in the description
of E2 properties in32Mg and30Ne. The existence of neutron
pairing correlations means the breaking of theN=20 shell
closure. As we will see, the appearance of neutron pairing
correlations is related to a special mechanism in loosely
bound systems. We study the first 2+ states inN=20 isotones
in the framework of self-consistent quasiparticle random
phase approximation(QRPA) with Skyrme interactions[26].
The QRPA equations are solved in coordinate space by using
the Green’s function method[27]. To emphasize the role of
neutron pairing correlations, spherical symmetry is imposed
on our QRPA calculations. The residual interaction between
the quasiparticles is self-consistently derived from the
Hamiltonian density of Skyrme interaction that has an ex-
plicit velocity dependence. We will show that theBsE2d val-
ues and the excitation energies of the first 2+ states inN
=20 isotones, from the stable nucleus38Ar to the neutron-
rich nuclei32Mg and30Ne are well described within a single
framework and a fixed parameter set. The paper is organized
as follows. In Sec. II we briefly describe the HFB plus QRPA
calculations that we have done. In Sec. III we present the
general results for the ground states of theN=20 isotones
studied here. In Sec. IV we discuss the calculated and experi-
mentalE2 properties of these nuclei. In Sec. V we show how
self-consistent treatment of the residual interactions plays
crucial role in describing very low lying states in32Mg and
30Ne. Conclusions are drawn in Sec. VI.

II. HFB PLUS QRPA CALCULATIONS

A. Formulation

We use the approach of self-consistent HFB plus QRPA
calculations with Skyrme interactions[26,27]. By self-
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consistent we mean that the HFB mean fields are determined
self-consistently from an effective force and the residual in-
teraction of the QRPA problem is derived from the same
force. The QRPA problem is solved by the response function
method in coordinate space. A detailed account of the
method can be found in Ref.[27]. Here, we just recall the
main steps of the calculation. The QRPA Green’s functionG
is solution of a Bethe-Salpeter equation,

G = G0 + G0VG . s1d

The knowledge ofG allows one to construct the response
function of the system to a general external field, and the
strength distribution of the transition operator corresponding
to the chosen field is just proportional to the imaginary part
of the response function.

In Eq. (1) the unperturbed Green’s functionG0 is defined
as

G0
absrs,r8s8;vd = o

i,j

Wi,j
a1srsdfWi,j

b1*sr8s8dg−

"v − sEi + Ejd + ih

−
Wi,j

a2*srsdfWi,j
b2sr8s8dg−

"v + sEi + Ejd + ih
, s2d

where the functionsWsrsd are introduced as

Wi,jsrsd = 1 UisrsdVjsrsd Visr,sdUjsrsd
UisrsdUjsrs̄d VisrsdVjsrs̄d

− VisrsdVjsrs̄d − UisrsdUjsrs̄d
2 . s3d

Here, theUsrd ,Vsrd are quasiparticle wave functions, the in-
dex asa=1,2,3d stands for particle-holesphd, particle-
particle sppd, and hole-holeshhd channels. The notation
fsrs̄d;−2sfsr −sd indicates time reversal andfWi,jg−

;Wi,j −Wj ,i.
The residual interactionV between quasiparticles is de-

rived from the Hamiltonian densitykHl of Skyrme interac-
tion by the so-called Landau procedure,

Vabsrst,r8s8t8d =
]2kHl

] rbsr8s8t8d ] rāsrstd
. s4d

The notationā means that whenevera is pp shhd then ā is
hh sppd. The normal and abnormal densities are defined as

1rphsrsd
rppsrsd
rhhsrsd

2 = 1rsrsd
ksrsd
k̄srsd

2 = 1 k0uc†srsdcsrsdu0l
k0ucsrs̄dcsrsdu0l

k0uc†srsdc†srs̄du0l
2 . s5d

The sph,phd channel of the residual interaction has an ex-
plicit momentum dependence,

Vph,phsrst,r8s8t8d = ha + bsDQU + DQV + DW U + DW Vd

+ bs¹QU − ¹QVd · s¹W U − ¹W Vd

+ cs¹QU + ¹QVd · s¹W U + ¹W Vdjdsr − r8d,

s6d

where the coefficientsa, b, and c are functions of Skyrme

parametersf28,29g. The operators with←s→d act on the
coordinatersr8d, and the operators with the indexUsVd op-
erate on the quasiparticle wave functionsUsrd fVsrdg only. In
the previous studyf27g, the Landau-Migdal limit of the
sph,phd residual interaction, where the interacting particle
and hole have the Fermi momentum and the transferred mo-
mentum is zerof30g, was used to reduce the numerical task,
but the full momentum dependence is now explicitly treated
in the present calculations. The spin-spin parts of the residual
interaction are dropped, because we calculate only natural
parity snon-spin-flipd excitations. The Coulomb and spin-
orbit residual interactions are also dropped.

In a fully consistent calculation the spurious center-of-
mass state should come out at zero energy. But, in practice,
several approximations are imposed on the self-consistent
residual interaction, Eq.(6), to reduce the computational ef-
forts. Then, the self-consistency between the mean field and
the residual interaction is broken. To recover the self-
consistency approximately, the residual interaction has to be
renormalized,V → fRV, so as to have the spurious state at
zero energy. Here,fR is a renormalization factor. InN=20
isotones, for example,fR<0.93 is used for calculations with
self-consistent residual interaction Eq.(6). About 7% devia-
tion from unity is coming from the approximation that we
drop the spin-spin, spin-orbit, and Coulomb parts of the re-
sidual interaction. If the terms depending on¹ operator are
neglected,fR<0.76. If the Landau-Migdal force is used,fR
<0.60.

In Sec. V, we discuss how the self-consistency of the re-
sidual interaction plays a crucial role in obtaining QRPA
low-lying solutions close to the critical energy.

B. Inputs

We apply the above formalism to study the first 2+ states
in N=20 isotones,30Ne, 32Mg, 34Si, 36S, and 38Ar. The
ground states are given by Skyrme-HFB calculations. The
HFB equation is diagonalized on a Skyrme-HF basis calcu-
lated in coordinate space with a box boundary condition
[31–33]. The box radius is 20 fm. Spherical symmetry is
imposed on quasiparticle wave functions. The quasiparticle
cutoff energy is taken to beEcut=50 MeV, and the angular
momentum cutoff islmax=7" in our HFB and QRPA calcu-
lations.

The Skyrme parameters SkM*[34] and SkP[35] are used
for the HF mean field, and the density-dependent, zero-range
pairing interaction

Vpairsr,r8d = VpairF1 −Srsrd
rc

DaGdsr − r8d s7d

is adopted for the pairing field. The parametersa andrc are
fixed asa=1 andrc=0.16 fm−3. The strengthVpair is deter-
mined so as to reproduce the experimental neutron pairing
gap in 30Ne, Dn,expt.s30Ned=1.26 MeV. 30Ne is the lightest
mass even-evenN=20 nucleus. The experimental pairing
gaps are extracted by using the three-point mass differ-
ence formulaf38g, DnsNd;Dn

s3dsN−1d=fs−1dN/2gfEsN−2d
+EsNd−2EsN−1dg. On the other hand, the average pairing
gap in HFB calculations is defined as the integral of the
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pairing field, D̄n=edrWr̃nsrWdDnsrWd /edrWr̃nsrWd f39g. The pairing
strength adopted for SkM* isVpair=−418 MeV fm−3, and
for SkP,Vpair=−400 MeV fm−3. Figure 1 shows the experi-
mental and the calculated pairing gaps in26,28,30Ne. With
these Skyrme parameters and pairing strengths, we get
finite pairing gap in30Ne svanishing ofN=20 shell gapd
and zero pairing gap in26Ne sappearance ofN=16 shell
gapd at the same time.

III. GROUND STATE PROPERTIES

Figure 2 shows the neutron single-particle levels inN
=20 isotones calculated in HF with SkM*. Results with SkP
are qualitatively the same. TheN=16 shell gaps change from
2.4 MeV in 40Ca to 4.0 MeV in30Ne. Within HF we can
describe the appearance ofN=16 magic number. On the
other hand, theN=20 shell gaps change slowly from
4.2 MeV in 40Ca to 3.4 MeV in30Ne, because 2d3/2 and 1f7/2
orbits do not vary much around zero energy due to the large
centrifugal barriers[40]. It seems difficult to explain the
breaking of theN=20 shell closure within HF.

An important feature in Fig. 2 is the behavior of low-l
orbits, 2p3/2 and 2p1/2, in the fp shell. As the proton number
decreases, the single-particle energies of the high-l orbit 1f7/2
change almost linearly while the changes of 2p3/2 and 2p1/2
energies become very slow around zero energy. Moreover,
the spin-orbit splitting of 2p3/2 and 2p1/2 states becomes
smaller. As pointed out by Hamamotoet al. [40], these ef-
fects can be understood by differentl dependences of the

kinetic energy and the spin-orbit form factor as the single-
particle energy comes close to zero, originating from the
difference of the height of the centrifugal barriers. Because
of these differentl dependences of the single-particle ener-
gies, the level density in thefp shell becomes higher with
decreasing proton number, and the three orbits 1f7/2, 2p3/2,
and 2p1/2 become almost degenerate in30Ne. We can de-
scribe this behavior naturally by solving the HF and HFB
equations in coordinate space but it is difficult to get this
property by the methods based on the harmonic oscillator
basis.

Figure 3 shows the HFB neutron and proton pairing gaps
in N=20 isotones calculated with SkM* and SkP. The pairing
strengths are adjusted so as to reproduce the experimental
neutron pairing gap in30Ne. As the proton number increases,
the neutron pairing gaps decrease monotonically and eventu-
ally, the neutron pairing gap becomes zero(for both SkM*

and SkP) in 38Ar as expected in stableN=20 nuclei. The
interesting point is that theN=20 shell gap itself changes
very moderately but the calculated neutron pairing gap
changes considerably from 1.26 MeV in30Ne to zero in
38Ar. The mechanism can be understood by the increase of
the level density in thefp shell when the proton number
decreases, as noted above. Within HFB calculations with
spherical symmetry, theN=20 shell gap is naturally broken
by neutron pairing correlations. Since the neutron pairing
gap is adjusted in30Ne it remains close in32Mg for both
Skyrme parameters, but large differences are seen in34Si and
36S. On the other hand, the calculated proton pairing gaps
with both Skyrme parameters are quantitatively similar.

FIG. 2. HF neutron single-particle levels inN=20 isotones cal-
culated with SkM*. Solid lines correspond to bound and resonance-
like states, dashed lines to positive energy discretized states.

FIG. 1. HFB neutron pairing gaps in26,28,30Ne calculated with
SkM* and SkP. The pairing strengthsVpair are fixed so as to repro-
duce the experimental neutron gap in30Ne. The experimental pair-
ing gaps are extracted by using the three-point mass difference for-
mula [38].

FIG. 3. The neutron and pro-
ton pairing gaps inN=20 isotones
calculated in HFB with SkM* and
SkP.
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Figure 4 shows the average number of neutronsNfp in the
fp shell inN=20 isotones, calculated in HFB with SkM* and
SkP. According to the change of the neutron pairing gaps,
Nfp decreases monotonically from.0.8 in 30Ne to .0.5 in
32Mg. These values are very different from the prediction of
the “island of inversion,”Nfp=2 [11] and Monte Carlo shell
model,Nfpù2 in 30Ne and32Mg [14].

Because Skyrme parameters are usually adjusted by using
properties of selectedb-stable nuclei, theN=20 shell gaps in
neutron-rich nuclei calculated with various Skyrme param-
eters have large discrepancies. The shell gap in30Ne is
3.4 MeV in SkM* and 3.7 MeV in SkP. On the other hand,
the modern version of Skyrme parameters, for example,
SLy4 [36] and SkI4[37] that are considered to have better
isospin properties, give very large shell gaps, 5.2 MeV and
6.9 MeV, respectively. The description of the ground state
properties such as neutron pairing correlations, and the low-
lying collective states are very sensitive to the shell structure.
We found that SkM* and SkP having smallerN=20 shell gap
can reproduce not only the ground state properties shown
above, but also, as seen in the following section, theE2
properties inN=20 isotones very well within a single param-
eter set consistently. On the other hand, it is difficult to de-
scribe the breaking of theN=20 shell closure with SLy4 and
SkI4. The Skyrme parameter dependence of the shell struc-
ture in N=20 isotones is extensively studied in Ref.[17].

In the framework of the mean-field approximation, irre-
spective of relativistic or nonrelativistic approaches, the
ground states of30Ne and 32Mg have been found to be

spherical(see, for example, Refs.[16–20,41–45]). Reinhard
et al. [17] have made systematic studies of quadrupole de-
formation aroundN=20 neutron-rich nuclei by Skyrme-HF
plus BCS pairing approach with ten kinds of Skyrme param-
etrizations and different pairing treatments, surface-type and
volume-type pairing. They found that all Skyrme parametri-
zations give spherical ground state in30Ne and32Mg irre-
spective of treatments of pairing correlations. Terasakiet al.
[16] have studied quadrupole deformations of Mg isotopes
by means of Skyrme-HFB calculations. They also found a
spherical ground state in32Mg.

In our spherical Skyrme-HFB calculations, we used a
large cutoff energy of 50 MeV, and the pairing strength is
adjusted in30Ne. On the other hand, in deformed Skyrme-HF
plus BCS or Skyrme-HFB calculations, small cutoff ener-
gies, typically 5 MeV, are used and the pairing strengths are
adjusted in different mass regions. Therefore, it is not clear
that the ground states in30Ne and 32Mg are spherical in
calculations with the same inputs as ours. The existence of
spherical solutions is clear, because we get QRPA solutions
as shown in the following section. In principle, we cannot
exclude the possibility that the prolate states become the
ground states. However, we expect that the ground states are
spherical because all mean-field calculations that have been
already performed give spherical ground states, irrespective
of relativistic or nonrelativistic approaches with various
types of effective interactions, as noted above.

IV. B„E2… VALUES AND EXCITATION ENERGIES

We have calculated the first 2+ states inN=20 isotones in
HFB plus QRPA with Skyrme interactions, assuming spheri-
cal symmetry. Our aim is to investigate whether these 2+

states can be described as vibrational states built on the
spherical ground states.

In Fig. 5 our results of QRPA calculations with SkM* are
compared with the results of the Monte Carlo shell model
(MCSM) [14], and the available experimental data
[2,3,6,22]. Our QRPA results are in good agreement with the
experimental data and they are consistent with the MCSM
prediction of theBsE2d value in 30Ne. The latter case has
been measured very recently, but the error bar is still large
[6]. The QRPA calculations have been done with SkM* and

FIG. 4. Average number of neutrons in thefp shell in N=20
isotones calculated in HFB with SkM* and SkP.

FIG. 5. The BsE2,01
+→21

+d
transition probabilities and excita-
tion energies of the first 2+ states
in N=20 isotones calculated in
QRPA with SkM*. For compari-
son the calculations of MCSM
[14] and the available experimen-
tal data[2,3,6,22] are shown.
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the fixed pairing strengthV0=−418 MeV fm−3, the choice of
which is explained in Sec. II B. The general properties of the
first 2+ states inN=20 isotones, namely, very largeBsE2d
values and very low excitation energies in32Mg and30Ne are
well reproduced within a single framework.

To check the interaction dependence we have carried out
QRPA calculations with SkP. Figure 6 shows theBsE2d val-
ues and excitation energies of the first 2+ states with SkM*

and SkP. Concerning theBsE2d values we get similar results,
especially very largeBsE2d values in32Mg and30Ne. On the
other hand, large differences are seen in the excitation ener-
gies in34Si and36S. This can be understood by the difference
in the neutron pairing correlations shown in Fig. 3. In30Ne,
32Mg, and 38Ar the neutron pairing gaps calculated with
SkM* and SkP are almost the same while they are somewhat
different in 34Si and 36S. Because the neutron pairing gaps
are larger in SkP than in SkM*, the excitation energies be-
come lower with SkP than with SkM*.

We now explain how the neutron pairing correlations are
important to make theBsE2d values larger and the excitation
energies lower. To see which two-quasiparticle configura-

tions contribute to make the low-lying 2+ states, we show the
unperturbed isoscalar quadrupole strength functions inN
=20 isotones calculated with SkM* in Fig. 7. The peaks in-
dicated by solid(dotted) arrows correspond to proton(neu-
tron) two-quasiparticle configurations. All these neutron two-
quasiparticle configurations appear because of the neutron
pairing correlations. Many peaks of the neutron configura-
tions are seen in30Ne, 32Mg. On the other hand, the neutron
configurations are negligible in34Si and they completely dis-
appear in36S. TheBsE2d values are primarily made of the
proton configurations in thesdshell but the neutron configu-
rations assist to make theBsE2d values larger by coherence
between protons and neutrons. Actually, if the neutron pair-
ing correlations are neglected theBsE2d values become very
small and the excitation energies are sizably higher in32Mg
and30Ne, as shown in Fig. 8. Under these considerations, we
can conclude that the very largeBsE2d values and the very
low excitation energies in32Mg and 30Ne appear thanks to
the presence of the neutron pairing correlations. We have
seen in Sec. III that, around the drip line the origin of neu-
tron pairing correlations lies in the different behavior of the

FIG. 6. The BsE2,01
+→21

+d
transition probabilities and excita-
tion energies of the first 2+ states
calculated in QRPA with SkM*

and SkP.

FIG. 7. The unperturbed iso-
scalar quadrupole strength func-
tions in N=20 isotones calculated
with SkM*. The peaks indicated
by solid (dotted) arrows corre-
spond to proton(neutron) two-
quasiparticle configurations.
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single-particle levels with different orbital angular momen-
tum l as the levels approach the separation threshold.

Generally speaking, neutron 2p-2h configurations across
N=20 can originate from deformation effects or pairing ef-
fects. Both effects cana priori contribute in the nucleus
32Mg. We have shown that a spherical QRPA description,
i.e., putting emphasis on the pairing aspects and neglecting
the possible deformation effects, can give very satisfactory
results. In the previous studies based on shell model calcu-
lations [12–14] the importance of neutron 2p-2h configura-
tions for describing theBsE2d values in 32Mg, 30Ne was
shown, but the respective roles of pairing and deformation
were not clear.

V. STABILITY OF LOW-LYING QRPA SOLUTIONS

As is well known, when a QRPA eigenvalue is approach-
ing zero the solution suffers instability and the transition
probability diverges. Since our QRPA solutions for32Mg and
30Ne have very low energies, we have to check whether the
calculatedBsE2d values are really meaningful or just spuri-
ous results. Figure 9 shows the dependence of theBsE2d
value, excitation energy, and average neutron pairing gap on
the pairing strengthVpair in 32Mg. Here, the cutoff energy is
fixed atEcut=50 MeV. The solid line is calculated with the
self-consistent residual interaction Eq.(6), the dotted line
with a Landau-Migdal force without explicit velocity depen-

dence, while the dashed line is obtained with a residual in-
teraction where the terms in= have been dropped.

If uVpairu increases, the excitation energy decreases and the
BsE2d value increases. This behavior is the result of two
competing effects. First, the pairing gap and also the quasi-
particle energies increase with increasinguVpairu. Therefore,
the two-quasiparticle energies and the QRPA excitation en-
ergies should increase and theBsE2d values should decrease.
Second, ifuVpairu increases, many two-quasiparticle configu-
rations can contribute to the 2+ state and the collectivity in-
creases. In this case the QRPA excitation energies would
decrease and theBsE2d values would increase. In the32Mg
case the second effect wins(cf. Fig. 9). In the calculation
with the self-consistent residual interaction, asuVpairu is in-
creasing, the excitation energy becomes lower and theBsE2d
value increases linearly up touVpair u .422 MeV fm−3. Above
uVpairu.426 MeV fm−3 theBsE2d value starts to diverge. Be-
cause our adopted pairing strength isVpair
=−418 MeV fm−3, we confirm that our QRPA solution is
meaningful.

If simplified residual interactions are used(see the dashed
and dotted curves of Fig. 9), the low-lying solutions are al-
ready collapsed atuVpairu=418 MeV fm−3. These calculations
clearly show that a self-consistent treatment of the residual
interaction plays a crucial role in describing these very low
lying states.

On the other hand, if the solution is far enough from the

FIG. 8. The BsE2,01
+→21

+d
values and the excitation energies
of the first 2+ states inN=20 iso-
tones calculated with/without neu-
tron pairing correlations. Proton
pairing is included in both cases.

FIG. 9. TheBsE2d value and
excitation energy of the first 2+

state in32Mg calculated in QRPA
with SkM*, as a function of the
pairing strengthVpair. Three types
of approximations for the residual
interaction are examined: the solid
line is a calculation with the self-
consistent residual interaction, Eq.
(6); the dashed line is obtained
with a residual interaction where
terms in= are dropped; the dotted
line corresponds to the Landau-
Migdal force.
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critical energy like in34Si, 36S, and38Ar, the calculations
with the self-consistent and the approximated residual inter-
actions give stable solutions. In34Si, for instance, theBsE2d
value decreases by about 16% and the excitation energy in-
creases by about 0.2 MeV at the adopted pairing strength
when going from the self-consistent residual interaction to
the Landau-Migdal force.

Another example can be found with the residual interac-
tion dependence ofE2 properties in oxygen isotopes[46].
The BsE2d value in 20O calculated with the self-consistent
residual interaction is 34.1e2 fm4. On the other hand, the
BsE2d value calculated with a Landau-Migdal force is
20.9e2 fm4. In this case, theBsE2d value increases by 64%.
Thus, the self-consistent treatment of the residual interaction
is always important for describing the low-lying states and
for quantitative comparisons with experimental data, and it
plays a crucial role qualitatively to describe very low-lying
states like in32Mg and 30Ne.

VI. CONCLUSION

We have studied the first 2+ states inN=20 isotones by
the HFB plus QRPA model with Skyrme interactions. The
residual interaction is consistently derived from the Skyrme
Hamiltonian, keeping all its explicit momentum dependence.

Because of the different behaviors of the neutron 1f7/2,

2p3/2, and 2p1/2 levels when the single-particle energies are
approaching zero, the neutron pairing gaps have finite val-
ues. This mechanism breaks theN=20 magicity in32Mg and
30Ne.

Within our consistent QRPA calculation with spherical
symmetry theBsE2d values and the excitation energies of the
first 2+ states inN=20 isotones including neutron-rich32Mg
and 30Ne are well described. The existing experimental data
are reproduced quantitatively. The important role of the neu-
tron pairing correlations is emphasized. If the neutron pairing
is dropped, we cannot get the correctBsE2d value and exci-
tation energy in32Mg and 30Ne. In the real32Mg nucleus,
both neutron pairing and deformation effects may coexist
and help to make the largeBsE2d value, but our calculation
shows that neutron pairing correlations are essential.
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