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We discuss effective field theory treatments of the problem of three particles interacting via short-range
forces. One case of such a system is neutron-deuteronsndd scattering at low energies. We demonstrate that in
attractive channels the renormalization-group evolution of the 1+2 scattering amplitude may be complicated
by the presence of eigenvalues greater than unity in the kernel. We also show that these eigenvalues can be
removed from the kernel by one subtraction, resulting in an equation which is renormalization-group invariant.
A unique solution for 1+2 scattering phase shifts is then obtained. We give an explicit demonstration of our
procedure for both the case of three spinless bosons and the case of the doublet channel innd scattering. After
the contribution of the two-body effective range is included in the effective field theory, it gives a good
description of thend doublet phase shifts below deuteron breakup threshold.
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I. INTRODUCTION

For over forty years now the three-nucleon problem has,
with considerable success, been used as a testing ground for
the nucleon-nucleon interaction. Usually the three-body
equations used are based on the Schrödinger equation or its
implementation for scattering in the form of the Faddeev[1]
equations with the two-body interaction being one of finite
range. However, discussions of the case in which the range
of the interaction is significantly less than the wavelengths of
interest, i.e.,kR!1, also have a long history. There has been
renewed interest in this case with the advent of effective field
theory(EFT) descriptions of few-nucleon systems at low en-
ergy [2–4]. In an EFT treatment of the problem of two- and
three-body scattering at energies such thatkR!1 the two-
body scattering problem requires renormalization since the
leading-order two-body potential is a three-dimensionald
function.

But in low-energyNN scatteringk andR are not the only
scales in the problem. The presence of a low-energy bound
state in theNN system—the deuteron—means that we must
also account for the deuteron binding momentumg
=Î−med,1/a—with a@R the unnaturally largeNN scatter-
ing length—when we do an EFT analysis of this problem. In
technical terms the presence of an enhanced two-body scat-
tering length—or equivalently a near-zero-energy bound
state—means that there is a nontrivial fixed point in the
renormalization-group evolution of this leading-order poten-
tial. As long as this is accounted for, and a power counting
built around the scale hierarchy:

k , g ! 1/R, s1d

a systematic EFT can be established and renormalized using
a variety of regularization schemesf5–12g. A similar scale
hierarchysand hence a similar EFTd governs the low-energy
interactions of Helium-4 atomsf13–15g. It is also relevant to
the physics of Bose-Einstein condensates, if the external
magnetic field is adjusted such that the atomsse.g.,85Rbd are
near a Feshbach resonancef16,17g.

As a first step in extending this EFT to heavier nuclei, the
three-nucleon system was considered, and the Faddeev equa-
tions for the particular case of a zero-range interaction were
solved. It was soon discovered that the leading-order(LO)
EFT equation for the quartet(total angular momentum 3/2)
channel yielded a unique solution[18,19], while for the dou-
blet (total angular momentum 1/2) channel the correspond-
ing equation did not yield a unique solution—at least in the
absence of three-body forces[13,14,20]. This could be sim-
ply understood on the grounds that in the quartet channel the
effective interaction between the neutron and the deuteron is
repulsive as a result of the Pauli principle, and this ultimately
means that the neutron and deuteron do not experience a
zero-range interaction. In contrast, in the doublet channel the
effective neutron-deuteronsndd interaction is attractive and
the full difficulties of the zero-range interaction manifest
themselves. These difficulties were first elucidated by Tho-
mas, who pointed out that—if two-body forces alone are
employed—the nuclear force must have a finite range if the
binding energy of nuclei is to be finite[21].

The three-body scattering problem for zero-range interac-
tions considered in the seminal work of Bedaque and col-
laborators[13,14,18–20] was first considered in research that
antedates Faddeev’s landmark 1961 paper: by Skorniakov
and Ter-Martirosian[22] and by Danilov[23]. These authors
found similar difficulties to Bedaqueet al., and traced the
nonuniqueness to the fact that in the asymptotic region this
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three-body equation for scattering reduces to a homogeneous
equation whose solution can be added to the solution of the
inhomogeneous equation with an arbitrary weighting—a
point recently reiterated by Blankleider and Gegelia[24–26].

In their 1999 papers[13,14], Bedaqueet al. introduced a
three-body force into the leading-order three-body EFT equa-
tion, so as to obtain a unique solution for 1+2 phase shifts.
They adjusted this force in order to reproduce the experimen-
tal 1+2 scattering length. The energy dependence of the 1
+2 phase shift was then predicted[13,14,20]. The introduc-
tion of this three-body force is unexpected if naive dimen-
sional analysis is used to estimate the size of various effects
in the EFT, but it is apparently necessary if the equations are
to yield sensible, unique predictions for physical observ-
ables. This also accords with the 1995 paper of Adhikhari,
Frederico, and Goldman, who pointed out that the diver-
gences in the kernel of the Faddeev equations for a zero-
range interaction may necessitate the introduction of a piece
of three-body data so that these divergences can be renormal-
ized away [27]. (But see Refs.[24–26] for a conflicting
view.)

In an attempt to get some insight into alternative ways to
establish a unique solution to the three-body scattering prob-
lem at leading order in the effective field theory, we try to
bridge the gap between the Faddeev approach—in which the
interaction has a finite range—and the EFT formulation of
this problem. In Sec. II, we examine the Amado model[28]
for the case of three spinless bosons. Here we look at scat-
tering in which the interaction of an incident particle on a
composite system of the other two is considered within the
framework of the Lagrangian for the Lee model[29,30]. If
three-body forces are neglected then the only difference be-
tween this approach and those at LO in the EFT of Refs.
[5–12] is that in the Lee model Lagrangian one may intro-
duce a form factor that plays the role of a cutoff in the
theory. In this way we can connect the LO EFT equations
(without a three-body force) to those found in the Amado
model, by taking the limit as the range of the interaction goes
to zero. The resulting equation has a noncompact kernel un-
less a cutoff is imposed on the momentum integration. We
then reproduce and reiterate the results of Refs.
[13,14,22,23], demonstrating that the low-energy solution of
the equation changes radically as the cutoff is varied. Using
a renormalization-group analysis we trace this unreasonable
cutoff dependence to the presence of eigenvalues equal to 1
in the kernel of the integral equation.

In Sec. III we use a subtraction originally developed by
Hammer and Mehen[31] to remove these eigenvalues. Our
analysis of Sec. II then allows us to demonstrate that the
subtracted three-body equation is renormalization-group in-
variant. The subtraction of Ref.[31] was employed at a spe-
cific energy, and used experimental data from the three-body
system to determine the half-off-shell behavior of the 1+2
amplitude. Here we go further, and show that using low-
energy two-body data plus just one piece of experimental
data for the three-body system—the 1+2 scattering
length—we can predict the low-energy three-body phase
shifts. We do this by first solving the subtracted integral
equation for the half-off-shell threshold 1+2 amplitude. We
then use this result to derive unique predictions for the full

off-shell behavior of the 112 threshold amplitude, and
thence for the 1+2 amplitude at any energy. The equations
derived in this way are equivalent to those of Bedaqueet al.,
but represent a reformulation of the problem in which only
physical, renormalized quantities appear. In consequence, the
leading-order three-body force of Refs.[13,14] does not ap-
pear in our equations. Our single subtraction ultimately al-
lows us to generate predictions for the energy dependence of
the 1+2 phase shifts at leading order in the EFT without the
presence of an explicit three-body force. The subtraction
does, though, require data from the three-body system
(namely, the 1+2 scattering length) before other three-body
observables can be predicted.

In Sec. IV we apply the formalism of Secs. II and III to
the—conceptually identical but technically more
complicated—case of the doublet channel innd scattering.
Here, we compare the numerical solution to our once-
subtracted equation with phase-shift data. In Sec. V we con-
sider higher-order corrections to the LO EFT and illustrate
that the results from the EFT are in good agreement with the
nd data below three-nucleon breakup threshold if the sub-
leading(two-body) terms in the EFT expansion are adjusted
so as to reproduce the asymptoticS-state normalization of
deuterium. The resulting description of the doublet phase
shifts is very good up to the deuteron breakup threshold.
Finally in Sec. VI we present some concluding remarks re-
garding the limitations of this method and discuss the con-
vergence and usefulness of the EFT.

II. THREE-BOSON SCATTERING AT LOW ENERGY

Consider a system of three bosons at energies so low that
the details of their interaction are not probed. Suppose, in
addition, that two of the bosons can form a bound state—
“the dimer,” with binding energy −ed. In this section we will
compute the amplitude for boson-dimer scattering in a low-
energy effective theory. This problem has been studied for
almost 50 years[22], and has recently been revisited in the
context of EFT[13,14,24,32,33]. In Sec. II A we derive the
Faddeev equations for this system, in order to establish the
notation used elsewhere in the paper. We then show in Sec.
II B that this equation is not renormalization-group(RG) in-
variant, i.e., changing the regularization procedure used in
the integral equation alters its physical predictions signifi-
cantly. In particular, we will demonstrate that this lack of RG
invariance is due to the existence of eigenvalues equal to one
in the kernel of the integral equation.

A. The Amado equations in the limit of zero-range
interactions

Consider a field theory of bosonsN, in which the two-
boson bound state(“dimer”) D is included as an explicit
degree of freedom. In this model the Lagrangian can be writ-
ten as[34,35]

L = N†Si]0 +
¹2

2M
DN + D†DD − gfD†NN+ DN†N†g. s2d

HereD is the bare inverse free propagator for the dimer. This
is basically the Lee modelf29g for D↔NN. Historically, in
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order to obtain a finite amplitude for boson-dimer scattering,
a regularization scheme has been invoked. This can be
achieved either through the introduction of a cutoff in all
momentum integrals or by including a form factor in the
interaction Lagrangian, i.e., replacingg→gspd, with p the
relative momentum of the two bosons inD→NN. The
Amado modelf28,30g entails the second choice for the regu-
larization. As a result the equation for boson-dimer scatter-
ing, after partial-wave expansion, takes the form1 f28g

X,sq,q8;Ed = 2Z,sq,q8;Ed +E
0

`

dq9 q922Z,sq,q9,Ed

3tSEs+d −
q92

2n
D X,sq9,q8;Ed s3d

with Es+d=E+ ih, h a positive infinitesimal. The Born term
Z,sq,q8 ;Ed is the amplitude for one-boson exchange, and is
given by

Z,sq,q8;Ed =
l

2
E

−1

+1

dx
gsKdgsQd

E −
1

m
sq2 + q82 + qW ·q8W d

P,sxd,

s4d

wherex= q̂·q̂8, P, is the Legendre function of order,, and
l=1 for three identical bosons. In Eq.s4d the relative mo-
menta of the pair in the verticesD↔NN are given by

K = uq8W + 1
2qWu and Q = uqW + 1

2q8W u . s5d

Note that the convention of Lovelace[36] for the recou-
pling coefficientl differs from this by a factor of −1. In fact,
as originally shown by Lovelace[36], Eqs.(3) and (4) also
governnd scattering in theI = 1

2; S= 3
2 channel, i.e., the quar-

tet, but withl=−1/2 (in the convention used in this work).
The details of the recoupling algebra for the bosonic,nd
quartet, andnd S= 1

2 channel, are given in Appendix A.
The off-shell two-bodyNN amplitude for this Lagrangian

is of the form

tsp,p8;Ed = gspdtsEdgsp8d, s6d

where the dressed dimer propagator is given by

tsEd =
SsEd

E − ed
, s7d

with ed the energy of the dimer bound statesed,0d. The
function SsEd is

SsEd = 3E0

` dp p2g2spd

SE −
p2

m
DSed −

p2

m
D4

−1

, s8d

and the residue of theNN propagator at the dimer pole is
then clearlySsedd.

At this stage the regularization functiongspd is present in
the dressing of the dimer propagatortsEd, and also in the
one-nucleon exchange amplitudeZ,sq,q8 ;Ed. In writing Eqs.
(7) and (8), we have imposed the renormalization condition
that the binding energy of the dimer takes its physical value.
After this renormalization is performed, the subtracted inte-
gral in Eq. (8) is finite and the cutoff functiongspd can be
taken to be 1. In that limit

tsEd =
SsEd

E − ed
=

2

pm2

g + Î− mE

E − ed
s9d

with g;Î−med. The form of the two-body amplitudes6d
is—in the limit g→1—exactly that obtained at leading
order in an effective field theory with short-range interac-
tions alonef5–12g.

This allows us to write the integral equation for 112 scat-
tering in the limitgspd→1 as

X,sq,q8;Ed = 2Z,sq,q8;Ed +E
0

`

dq9 q92 2Z,sq,q9;Ed

3

SSEs+d −
3q92

4m
D

Es+d −
3q92

4m
− ed

X,sq9,q8;Ed, s10d

where, for,=0, the Born term 2Z0sq,q8 ;Ed is given by

2Z0sq,q8;Ed ; Zsq,q8;Ed = − l
m

qq8
lnFq2 + q82 + qq8 − mE

q2 + q82 − qq8 − mE
G

s11d

and

SSE −
3q2

4m
D ; SsE;qd =

2

pm2Fg +Î3

4
q2 − mEG .

s12d

Here, we have included the factor of 2 resulting from the
symmetrization for identical particles in Eq.s3d in the defi-
nition of Z. These equations are identical to those employed
in the EFT of Refs.f14,33g, although with different normal-
ization for the amplitudeX,. The relationship between our
conventions and those of Refs.f14,33g is elucidated further
in Appendix B.

In the above analysis we considered the integral equation
for the scattering amplitude orT matrix. At any finitek the
kernel of the integral equation has a pole, coming from the
dimer propagator[see Eq.(10)]. Furthermore, above the
breakup threshold, the Born amplitudeZ develops moving
logarithmic singularities that need to be dealt with when this
equation is solved numerically, for instance, by performing a
contour rotation that avoids these singularities. In this work
we restrict the analysis to energies below the dimer-breakup
threshold, and so the logarithmicNNN cut is not an issue. In
this energy domain a reformulation of Eq.(10) that elimi-
nates theD pole is useful.

The reformulation involves writing theDN propagator:

1This is Eq.(21) of Amado[28] written in the notation commonly
used, and is the Faddeev equation for a rank-one separable two-
body potential.
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1

Es+d − ed −
3q92

4m

= P 1

E − ed −
3q92

4m

− ipdSE − ed −
3q92

4m
D .

s13d
We can then calculate the amplitudeX0 of Eq. s10d by first
calculating the boson-dimerS-waveK matrix using the inte-
gral equation:

Ksq,q8;Ed = Zsq,q8;Ed + PE
0

`

dq9 q92 Zsq,q9;Ed

3
SsE;q9d

E − ed −
3q92

4m

Ksq9,q8;Ed. s14d

Below the three-body breakup thresholdK is a real symmet-
ric matrix, and this equation is free of singularities. It is
therefore numerically advantageous to solve this equation
rather than Eq.s10d, and this is the approach we have used in
generating our numerical results.

The relationship of the phase shifts to the on-shellK ma-
trix Ksk,k;Ed, is provided by first employing the relation

X0sq,q8;Ed = Ksq,q8;Ed

−
2impk

3
Ksq,k;EdSsE;kdX0sk,q8;Ed. s15d

Then, to determine theS-wave on-shell scattering amplitude
and therefore theS-wave phase shift, we need to multiply the
result from Eq.s15d by the residue of the dimer propagator,
i.e., define

T0sq,q8;Ed = S1/2sE;qdX0sq,q8;EdS1/2sE;q8d. s16d

The boson-dimerS-wave scattering phase shifts are then re-
lated to the amplitudeT0 at the on-shell point by

T0sk,k;Ed = −
3

2mpk
eidsin d, s17d

where the on-shell momentumk is defined by the relation

E −
3k2

4m
= ed. s18d

Using the relationshipss15d and s17d we find that

Ksk,k;Ed = −
3m

8gk
tan d. s19d

Since we will be using the boson-dimer scattering length
to renormalize our integral equation, we are particularly in-
terested in the caseE=ed in Eq. (19). Using the boson-dimer
effective-range expansion

k cot d = −
1

a3
+

1

2
r3k

2 + ¯ s20d

with a3 andr3 being, respectively, the boson-dimer scattering
length and effective range, we find

Ks0,0;edd =
3ma3

8g
. s21d

B. Renormalization-group invariance

Now consider the convergence properties of the integrals
in Eq. (14). If q and q9 are both large thenZ behaves as
1/qq9, while Sscales asq9. Therefore the convergence of the
integral in Eq.(14) depends on the behavior ofXsq9 ,k;Ed at
largeq9. Perturbation theory suggests that at largeq9,

Ksq9,k;Ed , Zsq9,k;Ed , 1/q92, s22d

and thus the integral equation will be well behaved without
the need to impose any sort of regulator on the integral.
However, this conclusion is erroneous.

In fact, the kernel of Eq.(14) has infinitely many eigen-
values of order unity, as pointed out in Ref.[23], and dis-
cussed in detail by Amado and Noble[37]. The argument of
Amado and Noble may be heuristically paraphrased as fol-
lows. Calculating the trace of the kernel of Eq.(14) at E
=ed we obtain

trskerneld =
8l

3p
E

0

` dq9

q9
lnS3q92 + g2

q92 + g2 DF g

q9
+Î3

4
+ S g

q9
D2G ,

s23d

an integral which diverges, and does so logarithmically.
Since the corrections proportional tosg /q9d2 do not affect
the ultraviolet behavior of this integral, if a cutoffL is im-
posed we have

trskerneld → 4 l ln 3
Î3p

lnsLd s24d

as L→`. Simple power-counting arguments demonstrate
that the trace of allspositive-integerd powers of the kernel
contains a logarithmic divergence too. Since it is also the
case that the largest eigenvalue of the kernel is finite, the
only way we can have

trskernelnd , lnSL

g
D s25d

for all nù1 is if the number of eigenvalues larger than 1
grows logarithmically withL—a result in accord with the
analysis of Danilovf23g and Efimovf38,39g.

As we will discuss in more detail below, the presence of
these order-1 eigenvalues means that the perturbation theory
estimate ofK’s large-momentum behavior is incorrect. Con-
sequently, a cutoff must be imposed on the integral in Eq.
(14), as otherwise the integrals diverge. Once this is done the
integral equation yields a unique solution for a fixed value of
L. In this work we impose a sharp cutoffL, but choosing
other, smoother cutoff functions does not alter the essence of
the following argument.

This regularization results in an equation:
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KLsq,q8;Ed = Zsq,q8;Ed + PE
0

L

dq9q92 Zsq,q9;Ed
SSE −

3q92

4m
D

E − ed −
3q92

4m

KLsq9,q8;Ed, s26d

where the presence of the cutoff has madeK implicitly dependent onL. If the predictions of the theory are to be sensible we
must have

L
dKLsq,q8;Ed

dL
, 0 for q,q8 ! L. s27d

In other words, the low-energy predictions of our boson-dimer scattering calculation should not be affected by the imposition
of a cutoff at a momentum scale far above the ones that are physically of interest. The demands27d represents the RG for this
problem.

Applying Lsd/dLd to both sides of Eq.(26) we find that

L
dKL

dL
sq,q8;Ed = L3Zsq,L;Ed

SsE;Ld

E − ed −
3L2

4m

KLsL,q8;Ed + PE
0

L

dq9 q92 Zsq,q9;Ed
SsE;q9d

E − ed −
3q92

4m

L
dKL

dL
sq9,q8;Ed. s28d

For q,k!L

Zsq,L;Ed ,
1

L2, SsE;Ld , L, s29d

and, using the factswhich can be justifieda posteriorid thatKsL ,q8 ;Ed,1/L for L@q8 the first term on the right hand side
drops out of the integral equations28d leaving

L
dKL

dL
sq,k;Ed = PE

0

L

dq9 q92Zsq,q9;Ed
SsE;q9d

E − ed −
3q92

4m

L
dKL

dL
sq9,k;Ed. s30d

At this point it is tempting to argue that since Eq.(30) has a trivial solution, it follows thatKL is RG invariant[up to terms
of Os1/Ld]. Such a conclusion is hasty, however. Nontrivial solutions to Eq.(30) exist if the kernel has an eigenvalue of 1. In
fact, the presence of eigenfunctions of this kernel corresponding to eigenvalue 1 has been proven rigorously in the asymptotic
regimeq@g ,k by Danilov [23] and by Amado and Noble[37]. Here we repeat the analysis of Bedaqueet al. [13,14], which
demonstrates the presence of such an eigenvector. The impact of this “zero mode” on the spectrum of the kernel has also been
discussed by Gegelia and Blankleider[25,26] and by Bedaqueet al. [33].

ConsiderE=ed, i.e., scattering at the threshold for theND channel. Further, consider off-shell momentaq such thatg
!q!L. In this limit we may neglect terms proportional tog in SsE;qd andZsq,q9 ;Ed, and so the integrand becomes scale
invariant,

L
dKL

dL
sq,0;edd =

4l

Î3p

1

q
E

0

`

dq9lnFq2 + q92 + qq9

q2 + q92 − qq9
GL

dKL

dL
sq9,0;edd. s31d

Inspired by the absence of any physical scale under the inte-
gral we seek a power-law solution

L
dKL

dL
sq,0;edd , qs−1 s32d

As shown in Refs.f13,14,23g, such a solution exists provided
that s obeys the transcendental equation

8l

Î3s

sin Sps

6
D

cosSps

2
D = 1. s33d

If l=1 this equation has complex rootss= ± is0 with s0
=1.0062.Thus in this case the RG equation has nontrivial
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solutions, which, providedL@q@g, are of the form

fsqd =
1

q
C cosFs0lnS q

L
D + dG . s34d

Note that Eq.s31d also governsKsq,0 ;edd, at least forL
@q@g, and so a similar analysis applied toK itself justifies
the scalingKsq,0 ;edd,1/q f13,14g.

For finite L we can examine the eigenvalue spectrum of
the common kernel of Eqs.(26) and (30). Doing this atE
=ed⇔k=0 andl=1 for a variety of cutoffs yields the results
shown in Fig. 1. As the cutoff increases there are more and
more eigenvalues larger than 1, with a new eigenvalue of 1
appearing each time the cutoff is increased by a factor of
ep/s0=22.7. This corresponds to an increasing number of
bound states of the boson-dimer system described by Eq.
(26), with the number of bound states growing as[37]

N =
1.0062

p
lnSL

g
D . s35d

This accumulation of zero-energy bound states in a system
with zero-range interactions was first pointed out by Efimov
f38,39g ssee also Ref.f37gd.

The presence of these eigenvalues which cross 1 as the
cutoff is increased manifests itself as nontrivial cutoff depen-
dence when Eq.(26) is solved. Some results found by solv-
ing this equation for the half-off-shell amplitude(again at
zero energy) are displayed in Fig. 2. HereKsq,0 ;edd,1/q,
and so we have chosen to present results for the quantity

asq,kd ; −
2pmSsE;qd

3
X0sq,k;Ed. s36d

This also aids comparison with the results of Ref.f14g, with
which we are in complete agreement. The renormalization-
group argument of this section ties the large changes in the
low-momentum amplitude seen in Fig. 2 to the spectrum of
the kernel of Eq.s26d, via the concomitant strong-RG evo-
lution of KL at low momentum.

Note that in contrast to the casel=1, if l=−1
2 then the

kernel of Eq.(26) has no eigenvalues larger than 1, and so

the renormalization-group evolution of theK matrix is
smooth in that case. This means that asL→` there is no
cutoff dependence in the predictions for phase shifts—as was
seen to be the case numerically[18,19] where calculations of
nd scattering in the quartet channel were performed in the
EFT. The coupling at which the large-L RG evolution be-
comes nontrivial is the value at which Eq.(33) first develops
complex roots. This is[23]

lc =
3Î3

4p
. s37d

III. THE METHOD OF SUBTRACTION

Thus, as it stands, ifl.lc, Eq. (14) needs additional
renormalization before it can yield RG-invariant predictions.
The solution proposed in Refs.[13,14] was to add a counter-
term to cancel the cutoff dependence observed in Fig. 2. The
three-body force introduced to renormalize the integral equa-
tion is not naively of the same order as the terms in the EFT
Lagrangian(2), but the analysis of Refs.[13,14], which has
been recast in the preceding section, shows that it is neces-
sary for renormalization. The naive dimensional analysis es-
timate of the size of three-body forces is trumped by the
presence of the shallow bound state in the two-body system,
which is ultimately what leads to the Efimov spectrum
shown in Fig. 1. Of course, as with any counterterm which
removes cutoff dependence in a quantum field theory, a piece
of data is required to fix the value of the counterterm at a
particular scale. In Refs.[13,14] the boson-dimer scattering
lengtha3, was chosen for this purpose.

More recently, Blankleider and Gegelia[25,26] have
avoided introducing a three-body force in the leading-order
three-body EFT equation by examining the solution of the
homogeneous equation and subtracting the oscillatory behav-
ior. However, in their work no predictions for phase shifts
were actually made. A subtraction technique for the three-
body problem with zero-range forces was also suggested by

FIG. 1. The largest ten eigenvalues of the kernel of Eq.(30), for
the casel=1, and a range of cutoffs.

FIG. 2. Results forasq,0d, as defined in Eq.(36), when various
different cutoffs are imposed on the integral equation(14).
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Adhikari, Frederico, and Goldman[27]. This technique was
implemented in another integral equation with a noncompact
kernel, that describing unregulated one-pion exchange be-
tween two nucleons[40]. However, the subtraction in Ref.
[40] is performed at large negative energy, and involves de-
manding equivalence of the full and Born amplitudes at these
energies.

In this work we suggest an approach which is equivalent
to that used in Refs.[13,14], but is formulated in an alterna-
tive fashion. Our procedure involves a subtraction of the on-
shell amplitude at some—arbitrarily chosen but low—
energy. The subtracted equation has a unique solution, which
is, up to corrections suppressed bysp/Ld2, RG invariant.

A. Subtraction at threshold

Let us first consider the subtraction method applied to the
integral equation for the half-off-shell 1+2 three-boson
threshold amplitude. We use information on the boson-dimer
scattering length to fix the on-shell amplitude at the thresh-
old.

Consider Eq.(14) for the half-off-shell amplitude atE
=ed, i.e.,

Ksq,0;edd = Zsq,0;edd

−
4m

3
E

0

L

dq9 Zsq,q9;eddSsed;q9dKsq9,0;edd.

s38d

On the other hand, the on-shell amplitude at threshold should
obey

Ks0,0;edd =
3ma3

8g
= Zs0,0;edd

−
4m

3
E

0

L

dq9 Zs0,q9;eddSsed;q9dKsq9,0;edd.

s39d

If we now subtract Eq.s39d from Eq.s38d, we get an integral
equation for the half-off-shell amplitude for which the input
is the boson-dimer scattering lengtha3, in addition to the
two-body data, which in lowest order is just the binding en-
ergy of the dimer. This equation is

Ksq,0;edd =
3ma3

8g
+ DZsq,0;edd

−
4m

3
E

0

L

dq9 DZsq,q9;eddSsq9;eddKsq9,0;edd,

s40d

where

DZsq,q8;Ed ; Zsq,q8;Ed − Zs0,q8;Ed. s41d

This equationsalbeit in different notationd was first derived
by Hammer and Mehenf31g.

In Eq. (40) we have an integral equation in which the
kernel goes to zero faster asq9→` than does that of the
original integral equation. As a result we hope for a unique
solution to Eq.(40), even if Eq.(38) does not admit a unique
solution. To establish this we need to prove that the ampli-
tudeKsq,0 ;edd is independent of the cutoffL, i.e., the solu-
tion is renormalization-group invariant. Here we proceed as
above, and differentiate the subtracted equation(40) with
respect to the cutoffL, to obtain

L
] Ksq,0;edd

] L
= −

4m

3
L DZsq,L;eddSsL;eddKsL,0;edd −

4m

3
E

0

L

dq9 DZsq,q9;eddSsq9;eddL
] Ksq9,0;edd

] L
. s42d

Once again, we considerg!q!L, and in this regime

DZsq,L;edd ,
q2

L4, Ssed;Ld , L, s43d

so the inhomogeneous term in Eq.s42d goes to zero asq2/L3 for largeL. Therefore, once again, in the limitL→` Eq. s42d
is a homogeneous equation of the form

L
] Ksq,0;edd

] L
= −

4m

3
E

0

L

dq9 DZsq,q9;eddSsq9;eddL
] Ksq9,0;edd

] L
. s44d

It is now easy to show that the kernel of Eq.(44) is
negative definite. Thus, no matter how large we makeL no
eigenvalues of 1 can appear. This is demonstrated numeri-
cally in Fig. 3 where we plot the eigenvalues of the sub-

tracted integral equation’s kernel as a function ofL /g. (Here
we have chosena3g=−2.) For the subtracted case, the kernel
of the homogeneous equation, Eq.(44), has no eigenvalue
close to 1, thus there are no solutions to Eq.(44) and Eq.
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(27) is satisfied, i.e., the amplitudeKsq,0 ,edd is independent
of the cutoff L—up to corrections ofOsq2/L3d and
Osg2/L3d.

In Fig. 4, we present, for several values of the cutoffL,
the half-off-shellK matrix at thresholdKsq,0 ;edd that results
from the subtracted equation. It is clear from the results that
the solution of the subtracted equation is completely inde-
pendent ofL in the regimeq!L, as anticipated from the RG
argument above. In fact, the cutoff can be numerically taken
to infinity without any difficulty at all.

Note that in the asymptotic regimeg!q!L the sub-
tracted equation(40) still has solutionsKsq,0 ;edd of the
form (34). These solutions ensure equality of the first piece
of the integral in(40) with the left-hand side of that equation,
Ksq,0 ;edd. However, in contrast to the situation of the pre-
ceding subsection, the solution of the subtracted equation in
this asymptotic regime is not scale invariant. It must still
obey Eq.(39), since those pieces of Eq.(40) do not disap-
pear when a solution of the form(34) is inserted. Thus—
unlike the case of Eq.(14)—the asymptotic limit of Eq.(40)
is enough to determine the asymptotic phased: d is fixed
such that Eq.(39) is obeyed.

Thus our subtracted equation at threshold yields unique
results for the half-off-shell amplitude without the need for

an explicit three-body force. It also confirms that one piece
of three-body experimental data is needed to properly renor-
malize the integral equation for the three-boson problem in
the zero-range limit.

B. The subtracted equation at any energy

The above analysis was restricted to the amplitude at
threshold and established that the solution of the subtracted
equation is unique. The question now is: can we get the
amplitude at any energy without any further subtractions? In
other words: can we use the half-off-shell amplitude at one
energy and the original equation(26) to obtain a RG-well-
behavedKL at all energies?

To answer this, we need to write the on-shell amplitude at
energyE in terms of the solution of the half off-shell ampli-
tude at threshold. We do this in two stages. Rewriting Eq.
(40) as

Ksq,0;edd = Ks0,0;edd + DfZgsq,0;edd −
4m

3
E

0

L

dq9DfZgsq,q9;eddSsq9;eddKsq9,0;edd, s45d

and having determined the half-off-shell amplitude at threshold, we first need to determine the full-off-shell amplitude at
threshold, i.e.,Ksq,q8 ;edd. Before subtractionKsq,q8 ;edd satisfies the equation

Ksq,q8;edd = Zsq,q8;edd −
4m

3
E

0

L

dq9 Zsq,q9;eddSsq9;eddKsq9,q8;edd, s46d

which has the original badly behaved kernel of Eq.s26d. So, again we need to perform a subtractive renormalization.
SinceZsq,q8 ;Ed=Zsq8 ,q;Ed, we have thatKs0,q;edd=Ksq,0 ;edd. But we know thatKs0,q8 ;Ed also satisfies the equation

Ks0,q8;edd = Zs0,q8;edd −
4m

3
E

0

L

dq9Zs0,q9;eddSsq9;eddKsq9,q;edd. s47d

We can now subtract this equation from the equation for the full off-shell amplitude—Eq.s46d—to get

FIG. 3. Eigenvalues of the kernel of the subtracted integral
equation(40) for various different cutoffs, for the casea3g=−2.

FIG. 4. Results forasq,0d [see Eq.(36) for definition] when
various different cutoffs are imposed on the subtracted integral
equation(40). Herea3g was chosen to be −2.
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Ksq,q8;edd = Ks0,q8;edd + DfZgsq,q8;edd −
4m

3
E

0

L

dq9DfZgsq,q9;eddSsq9;eddKsq9,q8;edd. s48d

This equation has the same kernel as Eq.s45d, and given that
we have already determinedKs0,q8 ;edd=Ksq8 ,0 ;edd, we
can now determine the full off-shell amplitude at the elastic
threshold. Numerical solution indeed confirms that the solu-
tion of Eq. s48d is cutoff independent, and that the limitL
→` can be taken. The resultingKsq,q8 ;edd is also, by con-
struction, real and symmetric. In this way we have estab-
lished that the full, off-shell, amplitude at threshold can be
determined with one subtraction, and therefore, givena3, we
know the amplitudeKsedd=Xsedd.

To derive the renormalized equation at any energyE for
the amplitudeXsEd, we need to write the boson-dimer equa-
tion at the energyE, i.e.,

XsEd = ZsEd + ZsEdtsEdXsEd s49d

and the threshold equation

Xsedd = Zsedd + ZseddtseddXsedd. s50d

sNote that we will manipulate the equations forX, but the
same manipulations can equally well be done withK.d These
two equations can be written as

Z−1sEd = X−1sEd + tsEd, s51d

Z−1sedd = X−1sedd + tsedd. s52d

We now subtract Eq.s52d from Eq. s51d with the result that

dftg ; tsEd − tsedd

= fZ−1sEd − Z−1seddg − fX−1sEd − X−1seddg

= Z−1seddfZsedd − ZsEdgZ−1sEd − X−1sedd

3fXsedd − XsEdgX−1sEd. s53d

Multiplying this equation from the left byXsedd and from the
right by XsEd, we get

XsEd = Xsedd + f1 + XseddtseddgdfZg + XsedddftgXsEd

+ f1 + XseddtseddgdfZgtsEdXsEd, s54d

where

dfZg = ZsEd − Zsedd. s55d

All integrals in the above equation have sufficient ultraviolet
decay to be finite, with the possible exception of
XseddtsedddfZgtsEdXsEd which is a double integral.

We now can write the above operator equation as an in-
tegral equation for the amplitude at a given energyE in terms
of the fully off-shell amplitude at threshold,Xsq8 ,q;edd, as
input,

Xsq,k;Ed = Xsq,k;edd + Bsq,k;Ed

+E
0

L

dq8q82Ysq,q8;EdXsq8,k;Ed, s56d

where the second inhomogeneous term is

Bsq,k;Ed = dfZgsq,k;Ed +E
0

L

dq9 q92Xsq,q9;edd

3tsed;q9ddfZgsq9,k;Ed s57d

with

dfZgsq,k;Ed = Zsq,k;Ed − Zsq,k;edd, s58d

andtsE;qd;tsE−3q2/4md. Meanwhile the kernel of the in-
tegral equation is given by

Ysq,q8;Ed = Xsq,q8;edddftgsE;q8d + dfZgsq,q8;EdtsE;q8d

+E
0

L

dq9 q92Xsq,q9;eddtsed;q9d

3dfZgsq9,q8;EdtsE;q8d

= Xsq,q8;edddftgsE;q8d + Bsq,q8;EdtsE;qd s59d

with

dftgsE;qd = tsE;qd − tsed;qd. s60d

In this way we can determine the half-off-shell, and from
it, the on-shell amplitude, at any energy given the on-shell
amplitude at one energy where the subtractive renormaliza-
tion is done. Note that ifdZ=0, i.e., the “potential” for the
scattering equation is energy independent, thenB=0 and
YsEd=XsedddftgsEd.

To test our procedure, we have calculated the boson-dimer
phase shifts, for the casea3g=1.56. This value was chosen
since models of the helium-4 dimer suggest a ratio of three-
body and two-body scattering lengths of this size[13,14]. In
Fig. 5 we plot k cotsdd againstk (in units of g) for five
different cutoffs. Our results agree exactly with those re-
ported in Refs.[13,14]. In contrast to the figure presented in
Ref. [14], we see absolutely no cutoff dependence whatso-
ever in our results. No explicit three-body force is required to
perform this renormalization.

IV. NEUTRON-DEUTERON SCATTERING IN THE
DOUBLET CHANNEL

In the preceding section we formally developed the pro-
cedure for calculating the amplitude for 1+2 scattering in the
three-boson system at any energy, having renormalized the
equation at threshold using the boson-dimer scattering length
as input experimental data. The final results were identical
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for different cutoffsL. So far in our analysis we considered
the three-boson problem in order to avoid the additional
complication of coupled-channel integral equations. How-
ever, in order to establish the ability of the once-subtracted
equations in EFT to reproduce experimentalnd scattering
data, we need to introduce the spin and isospin dependence
of the nd scattering problem. The tensor interaction in the

NN system is only manifest at higher order in the EFT with-
out explicit pions, and in this section we will restrict our
analysis to lowest order in this EFT, known as EFTsp” d, thus
here we need only include the1S0 and 3S1 nucleon-nucleon
channels. Since the nucleon-nucleon interaction in the1S0
has antibound state, we can still write a dimerlike propagator
in this channel, but now the subtraction point must be the
energy of the antibound state. As a result we write the quasi-
deuteron propagator as

tasEd =
SasEd
E − ea

with a = s,t, s61d

where s and t stand for the spin singlet and spin triplet
nucleon-nucleon channels, respectively, and

es = −
1

mas
2, as

−1 = − 7.88 MeV, s62d

ed = −
g2

m
, g = 45.71 MeV. s63d

The nd equations in the doublet channel are now a set of
two coupled integral equations in which the initial channel
has the deuteron in the triplet(t), while intermediate states
can have either a singlet(s) or triplet (t) NN pair with a
spectator nucleon, all coupled to spin and isospin one half.
These equations take the form

Kttsq,q8;Ed = Zttsq,q8;Ed + PE
0

L

dq9 q92Zttsq,q9;EdttSE −
q92

2n
DKttsq9,q8;Ed s64d

+ PE
0

L

dq9 q92Ztssq,q9;EdtsSE −
q92

2n
DKstsq9,q8;Ed,

Kstsq,q8;Ed = Zstsq,q8;Ed + PE
0

L

dq9 q92Zstsq,q9;EdttSE −
q92

2n
DKttsq9,q8;Ed s65d

+ PE
0

L

dq9 q92Zsssq,q9;EdtsSE −
q92

2n
DKstsq9,q8;Ed,

wheren= 2
3m is the reduced mass for thend system, and the

Born amplitudeZab is given by

Zabsq,q8;Ed = − lab

m

qq8
lnHq2 + q82 + qq8 − mE

q2 + q82 − qq8 − mE
J

s66d

with the spin isospin factor matrixl given by

l =
1

4
S 1 − 3

− 3 1
D . s67d

It is not immediately apparent that the kernel of the
coupled integral equations(64) and (65) has the same prob-
lems as that of Eq.(26). By taking linear combinations of
Eqs.(64) and (65) and looking in the asymptotic region we
can perform an analysis akin to that used for Eq.(26) [20].
This shows that one subtraction is required to render the
system(64) and(65) well behaved. Otherwise this kernel too

FIG. 5. Phase shifts for boson-dimer scattering in the casea3g
=1.56, for a number of different cutoffs. The curves are completely
indistinguishable.
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has eigenvalues which cross 1 asL is increased, and the RG
evolution ofKtt at low momenta will not be smooth.

In this case theKtts0,0;edd, as given by Eq.(21), with a3

the doublet scattering length, is chosen for the subtraction.
Experimentally[41],

a3 = 0.65 ± 0.04 fm. s68d

We adopt the central value fora3.
After the subtraction is performed, the equations for the

half-off-shell threshold amplitude become

Kttsq,0;edd = Ktts0,0;edd + DZttsq,0;edd +E
0

L

dq9 q92DZttsq,q9;EdttSed −
q92

2n
DKttsq9,0;edd

+E
0

L

dq9 q92DZtssq,q9;eddtsSed −
q92

2n
DKstsq9,0;edd, s69d

Kstsq,0;edd = Ktts0,0;edd + fZstsq,0;edd − Ztts0,0;eddg +E
0

L

dq9 q92fZstsq,q9;edd − Ztts0,q9;eddgttSed −
q92

2n
DKttsq9,0;edd

+E
0

L

dq9 q92fZsssq,q9;edd − Ztss0,q9;eddgtsSed −
q92

2n
DKstsq9,0;edd.

s70d
Once these equations have been solved forKttsq,0 ;edd andKstsq,0 ;edd we can demand

Kttsq,0;edd = Ktts0,q;edd, Ktss0,q;edd = Kstsq,0;edd, s71d

and so arrive at two sets of two coupled equations apiece. These four equations determine the fully off-shell thresholdnd
scattering amplitude. The first pair is

Kttsq,q8;edd = Ktts0,q8;edd + DZttsq,q8;edd +E
0

L

dq9 q92DZttsq,q9;eddttSed −
q92

2n
DKttsq9,q8;edd

+E
0

L

dq9 q92DZtssq,q9;eddtsSed −
q92

2n
DKstsq9,q8;edd, s72d

Kstsq,q8;edd = Ktts0,q8;edd + fZstsq,q8;edd − Ztts0,q8;eddg +E
0

L

dq9q92fZstsq,q9;edd − Ztts0,q9;eddgttSed −
q92

2n
DKttsq9,q8;edd

+E
0

L

dq9q92fZsssq,q9;edd −Ztss0,q9;eddgtsSed −
q92

2n
DKstsq9,q8;edd,

s73d

which have exactly the same kernel as Eqs.(69) and (70), but different driving terms.
The second set of subtracted equations describes the(unphysical) amplitudesKts and Kss at threshold. The unsubtracted

versions of these equations are given by a simple extension of Eqs.(64) and (65). After subtraction the equations are

Ktssq,q8;edd = Ktss0,q8;edd + DZtssq,q8;edd +E
0

L

dq9 q92DZttsq,q9;eddttSed −
q92

2n
DKtssq9,q8;edd

+E
0

L

dq9 q92DZtssq,q9;eddtsSed −
q92

2n
DKsssq9,q8;edd, s74d

Ksssq,q8;edd = Ktss0,q8;edd + fZsssq,q8;edd − Ztss0,q8;eddg +E
0

L

dq9 q92fZstsq,q9;edd − Ztts0,q9;eddgttSed −
q92

2n
DKtssq9,q8;edd

+E
0

L

dq9 q92fZsssq,q9;edd −Ztssq,q9;eddgtsSed −
q92

2n
DKsssq9,q8;edd.

s75d

Note that imposing Eq.(71) to perform the subtraction on the set of four original integral equations(written in matrix form in
Appendix B) leads to a symmetric result for the 232 matrix form of the threshold amplitude.
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Now we write the original, unsubtracted, equations in op-
erator form, as

K sEd = ZsEd + ZsEdtsEdK sEd s76d

with K the 232 matrix

K ; SKtt Kts

Kst Kss
D , s77d

tsE;q9d ; 1ttSE −
q92

2n
D 0

0 tsSE −
q92

2n
D 2 s78d

andZ the 232 matrix defined by Eq.s66d.
We can then perform the formal manipulations that lead to

Eqs. (56)–(60), except that now all quantities are 232 ma-
trices in channel space, and thus the final integral equation to
be solved is, in matrix form, but with the momentum-
dependence made explicit,

Xsq,k;Ed = Xsq,k;edd + Bsq,k;Ed

+E
0

L

dq9q92 Ysq,q9;EdXsq9,k;Ed s79d

with

BsEd = dfZg + XseddtsedddfZg, s80d

YsEd = Xsedddftg + BsEdtsEd, s81d

where the meaning of the energy-difference operatord is
exactly as in the boson case of the preceding section.

Applying these equations to scattering in thend doublet
channel below thennp breakup threshold yields the phase
shifts shown in Fig. 6. At almost all energies shown, these
agree with the leading-order results published in Ref.[32] at
the 1% level. Once again, there is no cutoff dependence,
once the doublet scattering length is used to subtractively
renormalize the equations. Also shown are the results of a
phase-shift analysis[42], and the results of a calculation us-
ing the AV18NN and UIX NNN potential[43].

V. THE nd DOUBLET CHANNEL BEYOND LEADING
ORDER

In this section we discuss calculations ofnd doublet scat-
tering which go beyond the leading-order calculation of the
preceding section. That computation employed the Lagrang-
ian (2), extended to theNN system. This Lagrangian is
equivalent to[35]

Ls0d = L = N†Si]0 +
¹2

2M
DN − o

a=s,t

p”C0,−1
sad sNTPa

aNd†sNTPa
aNd

s82d

with Pa
a the spin-isopsin projector which restricts the inter-

actions to the3S1 or 1S0 channel, as appropriate

Pa
s =

1
Î8

s2 t2ta, Pa
t =

1
Î8

s2sa t2, s83d

and p”C0,−1
sad is the leading-order contact interaction in these

channels. The subscript 0,−1 on this coefficient indicates
that it appears in front of an interaction which has no deriva-
tives, but that it scales asQ−1, with the enhancement over its
naive dimensional analysis scaling being due to the presence
of the unnaturally large scattering lengths in the two-body
systemf7–10,12g.

The higher-order calculation we report on in this section
requires the insertion of higher-derivative four-nucleon op-
erators. The analysis of Refs.[8–10,12] indicates that the
first additional piece of the EFT Lagrangian which must be
considered is[3]

Ls1d = − o
a=s,t

p”C0,0
sadsNTPa

aNd†sNTPa
aNd

− p”C2
sad1

2
fsNTPa

aNd†sNTOa
2,aNd + H.c.g s84d

and the Hermitian, two-derivative three-component, operator
O2,a is defined by

Oa
2,a = −

1

4
fPa

a¹W 2 + ¹Q 2Pa
a − 2¹Q Pa

a¹W g. s85d

Here the effect of the two-derivative operators on theNN
amplitude is suppressed by one power of the small parameter
gR sR/as in the 1S0 cased relative to the leading-order EFT
amplitude. Also appearing inLs1d is a small correction toC0,
denoted byp”C0,0: “small” becausep”C0,0 is down bygR rela-
tive to p”C0,−1 f8–10,12g.

Thus the effects of the terms inLs1d on theNN amplitude

can be calculated in perturbation theory.p”C2
s3S1d can then be

chosen so as to reproduce the asymptoticS-state normaliza-

FIG. 6. Phase shifts for neutron-deuteron scattering at low en-
ergies, at leading order in the nucleon-nucleon EFT without explicit
pions, for a variety of different cutoffs. The curves for different
cutoffs are indistinguishable. The triangle is the central value of the
scattering length measurement of Ref.[41]. The circles are the re-
sults of the van Oers–Seagrave phase-shift analysis[42], and the
squares represent a recent calculation of these phase shifts by
Kievsky et al. [43].
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tion of deuterium[44], and p”C0,0
s3S1d adjusted in such a way

that double-pole term which would otherwise appear in the
NN EFT amplitude is removed. This produces a next-to-
leading order(NLO) 3S1 NN amplitude[3],

Tspd =
2

pm
F Zt

g + ip
−

Zt − 1

2g
G s86d

with p=ÎME, and whereZt is the residue of the3S1 T
matrix at the deuteron polep= ig. This amplitude is easily
seen to be a reexpanded version of the effective-range-
theory 3S1 amplitude,

Tspd =
2

pm

1

g − 1
2rtsp2 + g2d + ip

, s87d

wherert is theNN 3S1 effective range, which is of the order
of the range of theNN interaction:rt,R. The reexpansion is
thus in the small parametersrtg andrtp, but with g treated
as being of the same size asp. By making such an identifi-
cation we determine that

Zt =
1

1 − grt
. s88d

Zt is also related to the asymptoticS-state normalization of
deuterium,AS f44,45g,

AS
2 = 2gZt. s89d

Using the Nijmegen phase shift analysis value forAS, AS
=0.8845 fm−1/2 f46,47g, we obtain

Zt = 1.686, s90d

which agrees with the result obtained from Eq.s88d to three
significant figures.

To summarize, the coefficients in the NLO EFT Lagrang-
ian may be chosen such that the amplitude in the3S1 channel
has a deuteron pole with the experimental binding energy
and the “experimental” asymptoticS-state normalization.
Also present in the NLONN 3S1 amplitude is a constant
piece, which is proportional tort. Here we wish only to
assess the impact of higher-order terms on thend phase
shifts, and thus, we will perform a partial NLO calculation of
the nd phase shifts below breakup threshold, dropping the
nonpole term in Eq.(86). Work on complete higher-order
calculations within our subtractive framework is in progress,
and these numerical studies, as well as prior results by other
authors[32,33] indicate that including the constant term of
Eq. (86) has little effect onnd phase shifts belownd breakup
threshold.2

Similar results follow for the NLO3S0 amplitude, and
there

Zs =
1

1 − rs/as
, s91d

rs=2.73 fm f46g being the effective range in this channel.
This results in much smaller NLO corrections from this
channel, sincers/as is only of order 10%.

Thus, to perform our(partial) next-to-leading-order calcu-
lation for nd scattering the only changes to the amplitude
which are necessary are the multiplication oftt and ts by
factorsZt andZs. The subtractive procedure developed above
is not affected by the inclusion of these factors: the only
changes necessary in the above equations are the replace-
ments

St → StZt, Ss → SsZs. s92d

Making these replacements we obtain the results shown in
Fig. 7. Once again the result is cutoff independent. It agrees
remarkably well with the sophisticated potential-model cal-
culation of Kievsky et al. [43]. The agreement with the
single-energy phase-shift analysis of van Oers and Seagrave
[42] is not as pleasing, but it is clear that modern potential-
model calculations do not agree with these older doublet
phase shifts either.

These results are a(partial) NLO calculation of thend
phase shifts below breakup. They differ from those of Refs.
[32,33] since in those works the authors chose to adjust the
NLO coefficients in the EFT Lagrangian to reproducert ex-
actly, and so only obtainedZt (or equivalentlyAS) approxi-
mately. The difference between this “r parametrization” and
our “Z-parametrization” is a higher-order effect, and the
magnitude of the discrepancy between the results of Fig. 7
and those of Refs.[32,33] is consistent with an effect of
ordersrtgd2, i.e., two orders beyond leading. Comparison of
our numerical results with those of Ref.[33] indicates that if
we adopt ther parametrization the agreement is better than
1% [48].

VI. CONCLUSIONS

The integral equation which describes 1+2 scattering in
the effective field theory with short-range interactions alone

2In Ref. [32] it was argued that the constant term actually gives
zero contribution tond phase shifts, and so it was dropped three
too. Although the contribution is not, in fact, strictly zero, it is
small, as witnessed by the good agreement between the NLO results
of Refs. [32,33]. In the latter paper the nonpole3S1 term was in-
cluded in the analysis.

FIG. 7. Phase shifts for neutron-deuteron scattering at low en-
ergies, at leading order(dash-dotted) and next-to-leading order
(solid) in the nucleon-nucleon EFT without explicit pions. The
curves for different cutoffs are indistinguishable. Data are as de-
scribed in Fig. 6.
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does not yield an RG invariant low-energy amplitude. By
performing an RG analysis of the integral equation for this
process we traced this poor RG behavior to the presence of
eigenvalues of order 1 in the kernel of the integral equation.
One subtraction removes these eigenvalues from the spec-
trum of the kernel and renders it negative definite(at thresh-
old). Imposing Hermiticity and employing a series of resol-
vent identities we can use this single subtraction at the 1
+2 threshold to generate predictions for phase shifts at finite
energies. Note that although here we have only computed
phase shifts below 1+2 breakup threshold our subtractive
technique is easily extended to include energies above the
three-body threshold. The only complication is the technical
one of dealing with the logarithmic branch cuts that appear
in the kernel of the integral equation at this energy.

The equations we have developed are equivalent to the
equations of Bedaqueet al. [13,14], and may be obtained
from those equations by algebraic manipulations. The distin-
guishing feature of our formulation is that the equations are
subtractively renormalized, i.e., only physical quantities ap-
pear in them, and any regulator can be employed. This would
appear to make this formulation especially useful for higher-
order computations in thend system. It also provides particu-
lar emphasis to the point that—as in the case with all bare
parameters in field-theoretic Lagrangian—the three-body
force which appears in the equations of Bedaqueet al. is not
an observable.

Thus one piece of three-body experimental data is needed
in order to renormalize the three-body equations for zero-
range forces. For this piece of data we choose the 1+2 scat-
tering length. Its value can be incorporated into the EFT
description of the three-body system either via a counter-
term, as in Refs.[13,14,20] or, as done here, by a subtraction
of the badly behaved integral equation. The renormalization
of the equation after the inclusion of this single piece of
three-body data provides a simple, model-independent, ex-
planation for well-known features of the three-nucleon sys-
tem such as the Phillips line[49]. It also facilitates the sys-
tematization of predictions made by Efimov for such systems
[50–53].

Finally, we performed a partial treatment of next-to-
leading order corrections to the doubletnd phase shifts in the
EFT. We found that adopting coefficients in the NLO EFT
sp” d Lagrangian that give the correct deuteron binding energy
and asymptoticS-state normalization results in excellent re-
production of potential-modelS= 1

2 nd phase shifts below
deuteron breakup threshold. Our results suggest that—to a
very good level of approximation—thesend phase shifts are
determined by four numbers from the two-body system,ed,
AS, and the1S0 scattering length and effective range, together
with the crucial one piece of data from the three-body sys-
tem: thend doublet scattering length.
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APPENDIX A: SPIN-ISOSPIN FACTORS FOR THE
AMADO EQUATION

In this appendix we derive the spin-isospin factors for the
Amado model for(i) three bosons,(ii ) nd quartet, and(iii ) nd
doublet. In the latter two cases we restrict our analysis toS
waves only.

The Amado equation can be written in operator form as

X = 2Z + 2ZtX,

where

Zab = s1 − dabdkgauG0sEdugbl

with G0sEd=sE−H0d−1. This differs from Lovelacef36g by
s−1d due to a different definition ofG0.

This Zab can be written after partial wave expansion as

Zab = lab

1

2
E

−1

+1

dx
gaspadgbspbd

E −
1

m
sqa

2 + qb
2 + qaqbxd

P,sxd,

wherelab is the product of a spin factorLab
S and an isospin

factor Lab
I , i.e.,

lab = Lab
S Lab

I

with

Lab
S = s− 1dsb+sg−Sa+2Sfs2Sa + 1ds2Sb + 1dg1/2Hsa sg Sb

sb S Sa
J ,

wheresa, sb, andsg are the spin of the three particles, andSa

is the total spin of the pairsbgd. This expression can also be
used to calculate the isospin factorLab

I .
For three bosons the spins and the isospin of all three

particles is zero. In this case we have only one channel, i.e.,
lab=l, and therefore the spin-isospin factor is 1, i.e.,

lab = 1, three bosons.

For nd scattering all spins and isospins are1
2. For the

quartet state we have only one channel withS= 3
2 and I = 1

2.
The spin and isospin of the pair are 1 and 0(the quantum
numbers of the deuteron), respectively. In this case

Lab
S = 1, Lab

I = −
1

2
,

and therefore

lab = −
1

2
, nd quartet.

Finally for the case ofnd doublet we have two channels.
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They correspond to the pair of nucleons being in eithert
=sSa=1,ta=0d the deuteron, or ins=sSa=0,ta=1d the sin-
glet. In this caseS= I = 1

2. The spin isospin factors are

Ltt
S = −

1

2
, Ltt

I = −
1

2
⇒ ltt =

1

4
,

Lss
S = −

1

2
, Lss

I = −
1

2
⇒ lss=

1

4
,

and

Lts
S = −

Î3

2
, Lts

I =
Î3

2
⇒ lts = −

3

4
.

or

lab =
1

4
S 1 − 3

− 3 1
D, nd doublet.

APPENDIX B: CONNECTION TO EQUATIONS OF
BEDAQUE et al.

The equation of Refs.[14,18,19] is, in the case of no
three-body force,

ask,pd = lMsk,p;kd

+
2l

p
E

0

L

dq Msq,p;kd
q2

q2 − k2 − ih
ask,qd

sB1d

with

Msq,p;kd =
4

3
Sg +Î3p2

4
− mED 1

pq
lnSq2 + qp+ p2 − mE

q2 − qp+ p2 − mE
D

sB2d

and

l = H1 for three bosons

− 1
2 for the nd quartet channel.

sB3d

Here the relation to the phase shifts is given simply by

ReS 1

ask,kdD = k cot d. sB4d

To make the connection to Eq.(10) first observe that

SsE;qd =
2

p

1

m2Sg +Î3

4
q2 − mED , sB5d

and then defineXsp,k:Ed such that

4

3
Sg +Î3p2

4
− mEDXsp,k;Ed ; − mask,pd, sB6d

we then find

Xsp,k;Ed = Zsp,k;Ed +E
0

L

dq q2 Zsp,q;Ed

3
SsE;qd

E −
3q2

4m
− ed

Xsq,k;Ed sB7d

with Zsp,q;Ed given exactly by Eq.s11d above. Note, in
particular, that the homogeneous equation corresponding to
Eq. s10d requires no manipulation to be equivalent to that
corresponding to Eq.sB1d. The relationship ofX to the phase
shifts can be deduced from Eqs.sB4d and sB6d. It is

ReS 1

Xsk,k;EdD = −
8g

3m
k cot d, sB8d

in agreement with Eq.s19d.
In the case ofnd scattering in the doublet channel we

begin with the coupled equations of Ref.[33], which, again
in the absence of a three-body force term, may be written in
matrix form as

tsp,kd = Vsp,kd +
2

p
E

0

L

dq q2 Vsp,q;kdDsq;kdtsq;kd

sB9d

with

t ; S ttt tts
tst tss

D, D ; SDt 0

0 Ds
D sB10d

and

V ;
1

4pq
lnFp2 + q2 + pq− mE

p2 + q2 − pq− mE
G 3 S1 3

3 1
D . sB11d

Here, to leading order ingR,

Dtsq;kd =
1

− g + Îg2 + 3
4sq2 − k2d

, sB12d

Dssq;kd =
1

− gs + Îg2 + 3
4sq2 − k2d

. sB13d

To obtain Eqs.(64)–(66) is now very simple. We just
define

X = − mS ttt − tts
− tst tss

D . sB14d

Using Eq.sB8d to determine the relationship to the doublet
phase shifts andK as in Eq.s19d we find that thet matrix of
Bedaqueet al. should obey

tttsk,kd =
3

8g

1

k cot d − ik
, sB15d

in agreement with Eqs.s12d and s13d of Ref. f33g.

THREE-BODY PROBLEM WITH SHORT-RANGE… PHYSICAL REVIEW C 69, 034010(2004)

034010-15



[1] L. Faddeev, Sov. Phys. JETP12, 1014(1961).
[2] U. van Kolck, Prog. Part. Nucl. Phys.43, 409 (1999).
[3] S. R. Beaneet al., in Encyclopedia of Analytic QCD, edited by

M. Shifman(World Scientific, Singapore, 2000).
[4] D. R. Phillips, Czech. J. Phys.52, B49 (2002).
[5] S. Weinberg, Phys. Lett. B251, 288 (1990).
[6] S. Weinberg, Nucl. Phys.B363, 3 (1991).
[7] U. van Kolck, in Mainz 1997, Chiral Dynamics: Theory and

Experiment, edited by A. M. Bernstein, D. Drechsel, and T.
Walcher(Springer-Verlag, Berlin, 1998).

[8] U. van Kolck, Nucl. Phys.A645, 273 (1999).
[9] D. B. Kaplan, M. Savage, and M. B. Wise, Phys. Lett. B424,

390 (1998).
[10] D. B. Kaplan, M. Savage, and M. B. Wise, Nucl. Phys.B534,

329 (1998).
[11] J. Gegelia, Phys. Lett. B429, 227 (1998).
[12] M. C. Birse, J. A. McGovern, and K. G. Richardson,pN

Newsletter15, 280 (1999).
[13] P. F. Bedaque, H. W. Hammer, and U. van Kolck, Phys. Rev.

Lett. 82, 463 (1999).
[14] P. F. Bedaque, H. W. Hammer, and U. van Kolck, Nucl. Phys.

A646, 444 (1999).
[15] E. Braaten and H. W. Hammer, Phys. Rev. A67, 042706

(2003).
[16] E. Braaten and H. W. Hammer, Phys. Rev. Lett.87, 160407

(2001).
[17] E. Braaten, H. W. Hammer, and M. Kusunoki, Phys. Rev. Lett.

90, 170402(2003).
[18] P. Bedaque and U. van Kolck, Phys. Lett. B428, 221 (1998).
[19] P. F. Bedaque, H. W. Hammer, and U. van Kolck, Phys. Rev. C

58, R641(1998).
[20] P. F. Bedaque, H. W. Hammer, and U. van Kolck, Nucl. Phys.

A676, 357 (2000).
[21] L. W. Thomas, Phys. Rev.47, 903 (1935).
[22] G. Skornyakov and K. A. Ter-Martirosian, Sov. Phys. JETP4,

648 (1957).
[23] G. S. Danilov, Sov. Phys. JETP13, 349 (1961).
[24] J. Gegelia, Nucl. Phys.A680, 303 (2000).
[25] B. Blankleider and J. Gegelia, nucl-th/0009007(unpublished).
[26] B. Blankleider and J. Gegelia, inMesons and Light Nuclei,

edited by Jirí Adam, Petr Bydzovský, and Jirí Mares, AIP

Conf. Proc. No 603(AIP, Meville, NY, 2001), p. 233.
[27] S. K. Adhikari, T. Frederico, and I. D. Goldman, Phys. Rev.

Lett. 74, 487 (1995).
[28] R. D. Amado, Phys. Rev.132, 485 (1963).
[29] T. D. Lee, Phys. Rev.95, 1329(1954).
[30] M. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev.124, 1258

(1961).
[31] H. W. Hammer and T. Mehen, Nucl. Phys.A690, 535 (2001).
[32] H. W. Hammer and T. Mehen, Phys. Lett. B516, 353 (2001).
[33] P. F. Bedaque, G. Rupak, H. W. Griesshammer, and H.-W.

Hammer, Nucl. Phys.A714, 589 (2003).
[34] D. B. Kaplan, Nucl. Phys.B494, 471 (1997).
[35] P. F. Bedaque and H. W. Griesshammer, Nucl. Phys.A671,

357 (2000).
[36] C. Lovelace, Phys. Rev.135, B1225(1964).
[37] R. D. Amado and J. V. Noble, Phys. Rev. D5, 1992(1972).
[38] V. Efimov, Phys. Lett.33B, 563 (1970).
[39] V. Efimov, Sov. J. Nucl. Phys.12, 589 (1971).
[40] T. Frederico, V. S. Timoteo, and L. Tomio, Nucl. Phys.A653,

209 (1999).
[41] W. Dilg, L. Koester, and W. Nistler, Phys. Lett.36B, 208

(1971).
[42] W. T. H. van Oers and J. D. Seagrave, Phys. Lett.24B, 562

(1967).
[43] A. Kievsky, S. Rosati, W. Tornow, and M. Viviani, Nucl. Phys.

A607, 402 (1996).
[44] D. R. Phillips, G. Rupak, and M. J. Savage, Phys. Lett. B

B473, 209 (2000).
[45] D. R. Phillips and T. D. Cohen, Nucl. Phys.A668, 45 (2000).
[46] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J.

J. de Swart, Phys. Rev. C48, 792 (1993).
[47] J. J. de Swart, C. P. F. Terheggen, and V. G. J. Stoks, nucl-th/

9509032(unpublished).
[48] H. Grießhammer(private communication).
[49] A. C. Phillips, Nucl. Phys.A107, 209 (1968).
[50] V. Efimov, Nucl. Phys.A362, 45 (1981).
[51] V. N. Efimov and E. G. Tkachenko, Phys. Lett.157, 108

(1985).
[52] V. N. Efimov, Phys. Rev. C44, 2303(1991).
[53] V. N. Efimov, Phys. Rev. C47, 1876(1993).

I. R. AFNAN AND DANIEL R. PHILLIPS PHYSICAL REVIEW C69, 034010(2004)

034010-16


