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We discuss effective field theory treatments of the problem of three particles interacting via short-range
forces. One case of such a system is neutron-deutedrscattering at low energies. We demonstrate that in
attractive channels the renormalization-group evolution of the 1+2 scattering amplitude may be complicated
by the presence of eigenvalues greater than unity in the kernel. We also show that these eigenvalues can be
removed from the kernel by one subtraction, resulting in an equation which is renormalization-group invariant.

A unique solution for 1+2 scattering phase shifts is then obtained. We give an explicit demonstration of our
procedure for both the case of three spinless bosons and the case of the doublet chahseaitering. After

the contribution of the two-body effective range is included in the effective field theory, it gives a good
description of thend doublet phase shifts below deuteron breakup threshold.

DOI: 10.1103/PhysRevC.69.034010 PACS nuner21.45+v, 11.10.Gh, 11.80.Jy, 13.75.Cs

. INTRODUCTION k~y<1R, (1)

For over forty years now the three-nucleon problem has® systematic EFT can be established and renormalized using

. ; . variety of regularization schemgs—12. A similar scale
mth con|s,|derable| succ'ests, betgn USSd asl,l a t&stmt?] gromén% ﬁrerarchy(and hence a similar EBTgoverns the low-energy
€ nucleon-nucleon Interaction. Usually the three-body . 4ctions of Helium-4 atonfd3-15. It is also relevant to

equations used are based on the Schrodinger equation or {ig, physics of Bose-Einstein condensates, if the external
implementation for scattering in the form of the Faddg&v magnetic field is adjusted such that the atciemsg.,®°Rb) are
equations with the two-body interaction being one of finite,e5r a3 Feshbach resonar{ds,17.
range. However, discussions of the case in which the range As a first step in extending this EFT to heavier nuclei, the
of the interaction is Slgnlflcantly less than the Wavelengths Othree-nudeon System was Considered, and the Faddeev equa-
interest, i.e.kR<1, also have a long history. There has beentions for the particular case of a zero-range interaction were
renewed interest in this case with the advent of effective fieldolved. It was soon discovered that the leading-o(t€y)
theory(EFT) descriptions of few-nucleon systems at low en-EFT equation for the quartétotal angular momentum 3)2
ergy [2—4]. In an EFT treatment of the problem of two- and channel yielded a unique soluti¢h8,19, while for the dou-
three-body scattering at energies such k&1 the two-  Dblet (total angular momentum 1jZhannel the correspond-
body scattering problem requires renormalization since théng equation did not yield a unique solution—at least in the
leading-order two-body potential is a three-dimensiofal absence of three-body forcgk3,14,2Q. This could be sim-
function. ply understood on the grounds that in the quartet channel the
But in low-energyNN scatteringk andR are not the only ~ €ffective interaction between the neutron and the deuteron is

scales in the problem. The presence of a low-energy boungfPulsive as a result of the Pauli principle, and this ultimately

state in theNN system—the deuteron—means that we musimeans that the neutron and deuteron do not experience a
also account for the deuteron binding momentumn Z€ro-range interaction. In contrast, in the doublet channel the

=\—me, s~ 1/a—with a> R the unnaturally largéIN scatter- effective neutron-deutero(d) interaction is attractive and

ing length—when we do an EFT analysis of this problem. inthe full difficulties of the zero-range interaction manifest

technical terms the presence of an enhanced two-body scdfemselves. These difficulties were first elucidated by Tho-
tering length—or equivalently a near-zero-energy bound"@S; Who pointed out that—if two-body forces alone are
state—means that there is a nontrivial fixed point in theeMPloyed—the nuclear force must have a finite range if the
renormalization-group evolution of this leading-order poten-Pinding energy of nuclei is to be finif1].

tial. As long as this is accounted for, and a power counting{_ The three-body scattering problem for zero-range interac-
built around the scale hierarchy: ions considered in the seminal work of Bedaque and col-

laboratorg13,14,18-2Dwas first considered in research that

antedates Faddeev’s landmark 1961 paper: by Skorniakov

and Ter-Martirosiari22] and by Danilov{23]. These authors
*Email address: Iraj.Afnan@flinders.edu.au found similar difficulties to Bedaquet al, and traced the
"Email address: phillips@phy.ohiou.edu nonuniqueness to the fact that in the asymptotic region this
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three-body equation for scattering reduces to a homogeneowdf-shell behavior of the 12 threshold amplitude, and
equation whose solution can be added to the solution of théhence for the 1+2 amplitude at any energy. The equations
inhomogeneous equation with an arbitrary weighting—aderived in this way are equivalent to those of Bedagual.,
point recently reiterated by Blankleider and Gegg#id—26.  but represent a reformulation of the problem in which only
In their 1999 paper$l3,14, Bedaqueet al. introduced a  physical, renormalized quantities appear. In consequence, the
three-body force into the leading-order three-body EFT equateading-order three-body force of Refd3,14 does not ap-
tion, so as to obtain a unique solution for 1+2 phase shiftSpear in our equations. Our single subtraction ultimately al-
They adjusted this force in order to reproduce the experimeng s us to generate predictions for the energy dependence of

tal 1+2 scattering length. The energy dependence of the . 14o ; ; ; ;
. - . phase shifts at leading order in the EFT without the
+2 phase shift was then predictgtB,14,2Q. The introduc- presence of an explicit three-body force. The subtraction

tion of this three-body force is unexpected if naive dimen'does, though, require data from the three-body system

sional analysis is used to estimate the size of various eﬁectg :
in the EFT, but it is apparently necessary if the equations ar hamely, the 1+2 scattering lengthefore other three-body
Observables can be predicted.

to yield sensible, unique predictions for physical observ- .

ables. This also accords with the 1995 paper of Adhikhari In Sec. IV we apply the_ formalism of Secg. Il and Il to
Frederico, and Goldman, who pointed out that the diveri"®—conceptually identical but technically ~more
gences in the kemel of the Faddeev equations for a zergomplicated—case of the doublet channelninh scattering.
range interaction may necessitate the introduction of a piecgére, we compare the numerical solution to our once-

of three-body data so that these divergences can be renormaibtracted equation with phase-shift data. In Sec. V we con-
ized away[27]. (But see Refs[24—-2§ for a conflicting Sider higher-order corrections to the LO EFT and illustrate

view.) that the results from the EFT are in good agreement with the

In an attempt to get some insight into alternative ways tg'd data below three-nucleon breakup threshold if the sub-
establish a unique solution to the three-body scattering progéading(two-body) terms in the EFT expansion are adjusted
lem at leading order in the effective field theory, we try to SO as to reproduce the asymptoSetate normalization of
bridge the gap between the Faddeev approach—in which th@e_uter!um. The resulting description of the doublet phase
interaction has a finite range—and the EFT formulation ofShifts is very good up to the deuteron breakup threshold.
this problem. In Sec. II, we examine the Amado mogg]  Finally in Sec. VI we present some concluding remarks re-
for the case of three spinless bosons. Here we look at scagarding the limitations of this method and discuss the con-
tering in which the interaction of an incident particle on aVvergence and usefulness of the EFT.
composite system of the other two is considered within the
framework of the Lagrangian for the Lee mod@p,3Q. If Il. THREE-BOSON SCATTERING AT LOW ENERGY

three-body forces are neglected then the only difference be- consider a system of three bosons at energies so low that
tween this approach and those at LO in the EFT of RefSihe details of their interaction are not probed. Suppose, in
[5-12 is that in the Lee model Lagrangian one may intro-aqgition, that two of the bosons can form a bound state—
duce a form factor that plays the role of a cutoff in the «the dimer,” with binding energy e,. In this section we will
theory. In this way we can connect the LO EFT equationsompute the amplitude for boson-dimer scattering in a low-
(without a three-body forgeto those found in the Amado epergy effective theory. This problem has been studied for
model, by taking the limit as the range of the interaction goegymost 50 year§22], and has recently been revisited in the
to zero. The resulting equation has a noncompact kernel URsontext of EFT[13,14,24,32,3B In Sec. Il A we derive the
less a cutoff is imposed on the momentum integration. We-addeev equations for this system, in order to establish the
then reproduce and reiterate the results of Refspgation used elsewhere in the paper. We then show in Sec.
[13,14,22,28 demonstrating that the low-energy solution of || B that this equation is not renormalization-gro(RG) in-

the equation changes radically as the cutoff is varied. Usingariant, i.e., changing the regularization procedure used in
a renormalization-group analysis we trace this unreasonabige integral equation alters its physical predictions signifi-
cutoff dependence to the presence of eigenvalues equal tochntly. In particular, we will demonstrate that this lack of RG

in the kernel of the integral equation. invariance is due to the existence of eigenvalues equal to one
In Sec. lll we use a subtraction originally developed byin the kernel of the integral equation.

Hammer and Mehefi31] to remove these eigenvalues. Our

analysis of Sec. Il then allows us to demonstrate that the A. The Amado equations in the limit of zero-range
subtracted three-body equation is renormalization-group in- interactions

variant. The subtraction of Reff31] was employed at a spe-
cific energy, and used experimental data from the three-bodg
system to determine the half-off-shell behavior of the 1+2 0
amplitude. Here we go further, and show that using low-
energy two-body data plus just one piece of experimentaﬁ
data for the three-body system—the 1+2 scattering V2

length—we can predict the low-energy three-body phase £= NT(%“‘ m)N +D'AD - g[D'NN+DN'N]. (2)
shifts. We do this by first solving the subtracted integral

equation for the half-off-shell threshold 1+2 amplitude. WeHereA is the bare inverse free propagator for the dimer. This
then use this result to derive unique predictions for the fullis basically the Lee mod¢R9] for D« NN. Historically, in

Consider a field theory of bosor¢, in which the two-
son bound staté'dimer”) D is included as an explicit
degree of freedom. In this model the Lagrangian can be writ-
en as[34,35
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order to obtain a finite amplitude for boson-dimer scattering, At this stage the regularization functigfp) is present in
a regularization scheme has been invoked. This can bthe dressing of the dimer propagateiE), and also in the
achieved either through the introduction of a cutoff in all one-nucleon exchange amplitudgq,q’ ;E). In writing Egs.
momentum integrals or by including a form factor in the (7) and(8), we have imposed the renormalization condition
interaction Lagrangian, i.e., replacirg—g(p), with p the  that the binding energy of the dimer takes its physical value.
relative momentum of the two bosons D—NN. The  After this renormalization is performed, the subtracted inte-
Amado mode(28,3( entails the second choice for the regu- gral in Eq.(8) is finite and the cutoff functiomy(p) can be
larization. As a result the equation for boson-dimer scattertgken to be 1. In that limit
ing, after partial-wave expansion, takes the fofi28] R

SE) 2 y+\y-mE
E—Ed_’ITl"n2 E—Ed

(E) = 9

X((09,9";E) =2Z,(q,q";E) + J 0 dd’ q"?2Z,(q,q",E)
2 with y=\-mey. The form of the two-body amplitudés)
XT(E(+)—q—> X/(q",q":E) (3) is—in the limit g— 1—exactly that obtained at leading
2v order in an effective field theory with short-range interac-
tions along[5-12)].
This allows us to write the integral equation fof 2 scat-
ing in the limitg(p) —1 as

with E®)=E+i7, 5 a positive infinitesimal. The Born term
Z,(q,q9';E) is the amplitude for one-boson exchange, and ister

given by
A +1 K /. — /. - 1 M2 "
Ze(QQ';E):Ef dx 9K)g@Q Pi(x), X¢(a,9;E) = 2Z,(q.q ,E)+L dq’ 9" 2Z,(q,9";E)
-1 2 12 5 o
E-—(°+g“+qg-q) )
mq a°+qg-q 5<E(+)_3L2>
4
N 3 XA ), (10)
wherex=4-§’, P, is the Legendre function of ordet, and S e
A=1 for three identical bosons. In E() the relative mo- 4m

menta of the pair in the verticd3<— NN are given by where, for¢=0, the Bom term Zo(q,q':E) is given by

q'+3d and Q=|d+3q. ) , , m [+ q2sqq —mE
Note that the convention of Lovela¢86] for the recou- 220,4":8) = 2(0.4":8) = )\qq’ln{q% q'?-qq - mE}
pling coefficient\ differs from this by a factor of —1. In fact, (11)
as originally shown by Lovelacg36], Egs.(3) and (4) also
governnd scattering in thé=3; S=3 channel, i.e., the quar- and
tet, but withA=-1/2 (in the convention used in this work

K=

i i i 39° 2 /3
The details of th? recoupling alg_ebra_for the bpsormd, S(E— i) = SEiq) = ——5| y+ 1/ >¢? - mE].
quartet, anchd S=3 channel, are given in Appendix A. 4m e 4
The off-shell two-bodyNN amplitude for this Lagrangian (12)

is of the form
Here, we have included the factor of 2 resulting from the

t(p,p";E) =g(P)AE)g(p’), (6)  symmetrization for identical particles in E€B) in the defi-
where the dressed dimer propagator is given by nition of Z. These equations are identical to those employed
in the EFT of Refs[14,33, although with different normal-
HE) = S(E) ) ization for the amplitudeX,. The relationship between our
E-¢ conventions and those of Refd4,33 is elucidated further
: . in Appendix B.
with € the energy of the dimer bound state,<0). The In the above analysis we considered the integral equation
function S(E) is for the scattering amplitude oF matrix. At any finitek the
- dp Pgp) -1 kernel of the integral equation has a pole, coming from the
SE) = J > 5 , (8) dimer propagatorfsee Eq.(10)]. Furthermore, above the
0 <E—p—)<ed—p—) breakup threshold, the Born amplitude develops moving
m m logarithmic singularities that need to be dealt with when this

equation is solved numerically, for instance, by performing a

contour rotation that avoids these singularities. In this work

we restrict the analysis to energies below the dimer-breakup

threshold, and so the logarithmNN cut is not an issue. In
'This is Eq.(21) of Amado[28] written in the notation commonly ~ this energy domain a reformulation of ECL0) that elimi-

used, and is the Faddeev equation for a rank-one separable twbates theD pole is useful.

body potential. The reformulation involves writing thBN propagator:

and the residue of thBIN propagator at the dimer pole is
then clearlyS(ey).
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1 1 . 3 "2 3m
=7 = _m,s(E_ ed_f_m>' K(0,0:e) :8_38_ (21)
EW - = 1~ E-gg- 7
4m 4m
(13 B. Renormalization-group invariance

We can then calculate the amplitutdg of Eq. (10) by first
calculating the boson-dim&-wave K matrix using the inte-
gral equation:

Now consider the convergence properties of the integrals
in Eq. (14). If g andq" are both large therZ behaves as
1/qq’, while Sscales ag|’. Therefore the convergence of the

, , s ., integral in Eq.(14) depends on the behavior ¥fq”,k; E) at
K(g,q";E) = 2(q,9";E) +7’L do’ 9" Z(0,9";E) largeq’. Perturbation theory suggests that at lagte
SE:q) o K(q",k;E) ~ 2(q",k;E) ~ 1/q"?, (22
XK ). (14
E-eg— =a- and thus the integral equation will be well behaved without
4m the need to impose any sort of regulator on the integral.

Below the three-body breakup threshilds a real symmet- However, this conclusion is erroneous.

ric matrix, and this equation is free of singularities. It is In fact, the kernel of Eq(14) has infinitely many eigen-

therefore numerically advantageous to solve this equatiomalues of order unity, as pointed out in R¢23], and dis-

rather than Eq(10), and this is the approach we have used incussed in detail by Amado and Nokjlé7]. The argument of

generating our numerical results. Amado and Noble may be heuristically paraphrased as fol-
The relationship of the phase shifts to the on-sKetha- ~ lows. Calculating the trace of the kernel of Ed4) at E

trix K(k,k;E), is provided by first employing the relation =€y we obtain

Xo(a,9";E) =K(a,q";E) tr(keme;:g_"r ﬂ|n(w>{l+ §+(lﬂﬂ,
Dimak 3mlo ¢ A a%eyt/lar V4 A
- K(a,k; E)S(E;K)Xo(k,q";E). (15 (23)

Then, to determine th&-wave on-shell scattering amplitude @n integral which diverges, and does so logarithmically.
and therefore th&wave phase shift, we need to multiply the Since the corrections proportional tg/q")= do not affect
result from Eq.(15) by the residue of the dimer propagator, the ultraviolet behavior of this integral, if a cutaff is im-

i.e., define posed we have
To(0,0';E) = SY(E;0)Xo(0,9";E)SY(E;q’). (16 4\ In3
0(a,9";E) (E;a)Xo(0,9";E)S™ME;q’).  (16) tr(kerne) — 22103 24
The boson-dimeB-wave scattering phase shifts are then re- N3

lated to the amplitud&, at the on-shell point by . _
as A—x., Simple power-counting arguments demonstrate

3 s that the trace of allpositive-integer powers of the kernel
e = s
Totk k:E) = Zkael sin &, 17 contains a logarithmic divergence too. Since it is also the

. ) . case that the largest eigenvalue of the kernel is finite, the
where the on-shell momentuknis defined by the relation only way we can have

% _
4m

- (18) tr(kernel) ~ In(é) (25)
Y

Using the relationship&l5) and (17) we find that
for all n=1 is if the number of eigenvalues larger than 1

K(k,k:E) = —S—mtan 5. (19)  9rows logarithmically withA—a result in accord with the
8k analysis of Danilo23] and Efimov[38,39.
As we will discuss in more detail below, the presence of
ese order-1 eigenvalues means that the perturbation theory
estimate ofK’s large-momentum behavior is incorrect. Con-
sequently, a cutoff must be imposed on the integral in Eq.
(14), as otherwise the integrals diverge. Once this is done the
1 1 integral equation yields a unique solution for a fixed value of
kcot§==—+ §r3k2+ (200 A. In this work we impose a sharp cutoff, but choosing
8 other, smoother cutoff functions does not alter the essence of
with a; andr; being, respectively, the boson-dimer scatteringthe following argument.
length and effective range, we find This regularization results in an equation:

Since we will be using the boson-dimer scattering Iengtrkh
to renormalize our integral equation, we are particularly in-
terested in the cade=¢,4 in Eq. (19). Using the boson-dimer
effective-range expansion
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3 "2
{e- %)
N 4m/

3q112
BT am

A
Ka(a,9";E) = 2(q,9";E) + P J da'q” 2(q,9";E) Ka(d".9";E), (26)
0

where the presence of the cutoff has médenplicitly dependent on\. If the predictions of the theory are to be sensible we
must have

dK,(9,9";E
AM ~0 for q,q <A. (27)
dA
In other words, the low-energy predictions of our boson-dimer scattering calculation should not be affected by the imposition
of a cutoff at a momentum scale far above the ones that are physically of interest. The d2maegdresents the RG for this
problem.

Applying A(d/dA) to both sides of Eq(26) we find that

dKy SE;A) f SE;q") Ka

A 0" E) =A3Z(q A E)——— 5 Ku(AqE) + dq’ g2 2(q,9";E)——<5;A "0 ;E). (28
A (@a5E) (9,A5E) anzf (A aB) +P q' 9" Z(q,9"E) 397 qp (0056, (28

E-e-—— E-e———

4m 4m

Forg,k<A
1

Z(q,A;E)~P, SE;A) ~ A, (29

and, using the fadiwhich can be justifiec posterior) thatK(A,q’;E)~1/A for A>q’ the first term on the right hand side
drops out of the integral equatid28) leaving

i 1 I . SE; ”) dK I
k) = PJ 4720 AT ). (30
E_Gd__
dm

At this point it is tempting to argue that since Eg0) has a trivial solution, it follows th&, is RG invarianfup to terms
of O(1/A)]. Such a conclusion is hasty, however. Nontrivial solutions to(BQ). exist if the kernel has an eigenvalue of 1. In
fact, the presence of eigenfunctions of this kernel corresponding to eigenvalue 1 has been proven rigorously in the asymptotic
regimeq> v,k by Danilov[23] and by Amado and Noblg7]. Here we repeat the analysis of Bedagtel. [13,14, which
demonstrates the presence of such an eigenvector. The impact of this “zero mode” on the spectrum of the kernel has also been
discussed by Gegelia and Blankleid@6,26 and by Bedaquet al. [33].

ConsiderE=¢,, i.e., scattering at the threshold for thd channel. Further, consider off-shell momeigtauch thaty
<(q<A. In this limit we may neglect terms proportional 4oin S(E;q) and Z(q,q";E), and so the integrand becomes scale
invariant,

Ky a o +q"+qq
A—(q,0;6)=,— f dg'ln [— A=, 056 (31
dA YT 5 q), +q?-qq «
[
Inspired by the absence of any physical scale under the inte- ] S
gral we seek a power-law solution an sin | —
dK '?—S =1. (33
A—A(q Ojep) ~ (32) \35005(%)

As shown in Refs[13,14,23, such a solution exists provided If A=1 this equation has complex rooss tis; with sy
thats obeys the transcendental equation =1.0062.Thus in this case the RG equation has nontrivial
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FIG. 1. The largest ten eigenvalues of the kernel ofB8), for 10,10 100 10 1F 107 107 1of

the case\=1, and a range of cutoffs. ay

FIG. 2. Results for(q,0), as defined in Eq.36), when various

solutions, which, provided\>q> v, are of the form ) ’ -
different cutoffs are imposed on the integral equaiib4).

f(q) = éC co{sdn(%) + 5].

Note that Eq.(31) also governK(q,0;ey), at least forA

(34) the renormalization-group evolution of th matrix is

smooth in that case. This means thatAas- there is no
cutoff dependence in the predictions for phase shifts—as was

>(q> v, and so a similar analysis appliedKoitself justifies
the scalingK(q,0;ey) ~1/q [13,14.

seen to be the case numericdly3,19 where calculations of
nd scattering in the quartet channel were performed in the

For finite A we can examine the eigenvalue spectrum ofEFT, The coupling at which the large-RG evolution be-

the common kernel of Eqg26) and (30). Doing this atE

comes nontrivial is the value at which E®&3) first develops

=€q = k=0 and\ =1 for a variety of cutoffs yields the results complex roots. This i$23]
shown in Fig. 1. As the cutoff increases there are more and
more eigenvalues larger than 1, with a new eigenvalue of 1
appearing each time the cutoff is increased by a factor of
e™0=22.7. This corresponds to an increasing number of
bound states of the boson-dimer system described by Eq.
(26), with the number of bound states growing[&3]

_1.0062 (A)

T A’

(37)

IIl. THE METHOD OF SUBTRACTION

Thus, as it stands, ik >\;, Eq. (14) needs additional
- renormalization before it can yield RG-invariant predictions.
Y The solution proposed in Refil3,14 was to add a counter-
This accumulation of zero-energy bound states in a systerigrm to cancel the cutoff dependence observed in Fig. 2. The
with zero-range interactions was first pointed out by Efimovthree-body force introduced to renormalize the integral equa-
[38,39 (see also Refl37]). tion is not naively of the same order as the terms in the EFT
The presence of these eigenvalues which cross 1 as thégrangian(2), but the analysis of Ref$13,14, which has
cutoff is increased manifests itself as nontrivial cutoff depen-been recast in the preceding section, shows that it is neces-
dence when Eq26) is solved. Some results found by solv- sary for renormalization. The naive dimensional analysis es-
ing this equation for the half-off-shell amplitudegain at ~timate of the size of three-body forces is trumped by the
zero energyare displayed in Fig. 2. Her€(q,0;¢4) ~1/q, presence of the shallow bound state in the two-body system,

and so we have chosen to present results for the quantity Which is ultimately what leads to the Efimov spectrum
shown in Fig. 1. Of course, as with any counterterm which

removes cutoff dependence in a quantum field theory, a piece
of data is required to fix the value of the counterterm at a
particular scale. In Ref413,14 the boson-dimer scattering
This also aids comparison with the results of R&#], with  lengtha;, was chosen for this purpose.
which we are in complete agreement. The renormalization- More recently, Blankleider and Gegelii25,2q have
group argument of this section ties the large changes in thevoided introducing a three-body force in the leading-order
low-momentum amplitude seen in Fig. 2 to the spectrum othree-body EFT equation by examining the solution of the
the kernel of Eq/(26), via the concomitant strong-RG evo- homogeneous equation and subtracting the oscillatory behav-
lution of K, at low momentum. ior. However, in their work no predictions for phase shifts
Note that in contrast to the cage=1, if \=-3 then the  were actually made. A subtraction technique for the three-
kernel of Eg.(26) has no eigenvalues larger than 1, and sobody problem with zero-range forces was also suggested by

N

In (35

T

2mmSE;q)

a(q,k) = - (36)
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Adhikari, Frederico, and Goldmgi27]. This technique was 3mag
implemented in another integral equation with a noncompact K(0,0;€q) = 8y Z(0,0;€9)
kernel, that describing unregulated one-pion exchange be- 4y N
tween two nucleon$40]. However, the subtraction in Ref. _4m , . - v A,

[40] is performed at large negative energy, and involves de- 3 JO d” 2(0,q"; e Slea: qIK(G", 05
manding equivalence of the full and Born amplitudes at these

energies. (39)

In this work we suggest an approach which is equivalentf we now subtract Eq(39) from Eq.(38), we get an integral
to that used in Refg13,14, but is formulated in an alterna- equation for the half-off-shell amplitude for which the input
tive fashion. Our procedure involves a subtraction of the onis the boson-dimer scattering lengds, in addition to the
shell amplitude at some—arbitrarily chosen but low—two-body data, which in lowest order is just the binding en-
energy. The subtracted equation has a unique solution, whickrgy of the dimer. This equation is
is, up to corrections suppressed (p/A)?, RG invariant.

3m
K(@0ie) = "5 2 +A2(0,0i€)
Y
A. Subtraction at threshold am (A
Let us first consider the subtraction method applied to the - ?fo dq’ AZ(0,9"; €9)S(q"; €9)K(T",0;€q)
integral equation for the half-off-shell 1+2 three-boson
threshold amplitude. We use information on the boson-dimer (40
scattering length to fix the on-shell amplitude at the threshyhere
Old ’. — /. /.
Consider Eq.(14) for the half-off-shell amplitude aE AZ(q,9';E) = 2(a,9';E) - 2(0,9";E). (41)
=€y 1€, This equation(albeit in different notationwas first derived
by Hammer and Mehef81].
K(0,0;e9) = 2(q,0;€y) In Eq. (40) we have an integral equation in which the
am (A kernel goes to zero faster &5 — <« than does that of the
_am : " oy " original integral equation. As a result we hope for a unique
3 fo ddf’ 2(q,q"; €9 Seg; )K", 05 solution to Eq(40), even if Eq.(38) does not admit a unique

solution. To establish this we need to prove that the ampli-
tudeK(q,0;¢y) is independent of the cutoft, i.e., the solu-
tion is renormalization-group invariant. Here we proceed as
On the other hand, the on-shell amplitude at threshold shoulghove, and differentiate the subtracted equatié® with

(38)

obey respect to the cutofl\, to obtain
|
9K(g,0;e9)  4m am (N . . IK(q",0;€y)
A=A AZ(qA;e)S\;e)K(A,0seq) = — | dq" AZ(0,0"; €SO ;e)A—————. (42
aA 3 3Jo aA
Once again, we consider<q<A, and in this regime
9
AZ(a.Nie) ~ 07, Slead) ~ A, (43

so the inhomogeneous term in H42) goes to zero ag?/A® for large A. Therefore, once again, in the limit— o Eq. (42)
is a homogeneous equation of the form

A IK(g",0;ey)
J dq’ AZ<q,q";ed)s<q";ed)A%. (44)
0

K(q,0;6) _ 4m

A
I 3

It is now easy to show that the kernel of E@4) is tracted integral equation’s kernel as a functiomdfy. (Here
negative definite. Thus, no matter how large we makeo  we have choseayy=-2.) For the subtracted case, the kernel
eigenvalues of 1 can appear. This is demonstrated numerdf the homogeneous equation, Eg4), has no eigenvalue
cally in Fig. 3 where we plot the eigenvalues of the sub-close to 1, thus there are no solutions to &) and Eq.
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FIG. 3. Eigenvalues of the kernel of the subtracted integral E ]
equation(40) for various different cutoffs, for the casgy=-2. -85t . ‘ , , , ‘ ‘
) o ] o 10, 10, 10° 10 10®° 10° 10° 10° 10°
(27) is satisfied, i.e., the amplitud€(q,0,¢y) is independent aly
of the cutoff A—up to corrections ofO(q?/A% and
O(¥21A3). FIG. 4. Results fora(q,0) [see Eq.(36) for definition] when

In Fig. 4, we present, for several values of the cutbff Vvarious different cutoffs are imposed on the subtracted integral
the half-off-shellK matrix at thresholdk(q, 0;¢,) that results ~ equation(40). Hereagy was chosen to be -2.
from the subtracted equation. It is clear from the results that
the solution of the subtracted equation is completely indean explicit three-body force. It also confirms that one piece
pendent ofA in the regimeg <A, as anticipated from the RG  of three-body experimental data is needed to properly renor-

argument above. In fact, the cutoff can be numerically takefnalize the integral equation for the three-boson problem in
to infinity without any difficulty at all. the zero-range limit.

Note that in the asymptotic regimg<g<<A the sub-
tracted equation40) still has solutionsK(q,0;ey) of the
form (34). These solutions ensure equality of the first piece
of the integral in(40) with the left-hand side of that equation, = The above analysis was restricted to the amplitude at
K(qg,0;eq). However, in contrast to the situation of the pre- threshold and established that the solution of the subtracted
ceding subsection, the solution of the subtracted equation iaquation is unique. The question now is: can we get the
this asymptotic regime is not scale invariant. It must stillamplitude at any energy without any further subtractions? In
obey Eq.(39), since those pieces of E(40) do not disap- other words: can we use the half-off-shell amplitude at one
pear when a solution of the fori{84) is inserted. Thus— energy and the original equati@@6) to obtain a RG-well-
unlike the case of Eq14)—the asymptotic limit of Eq(40) behaved, at all energies?
is enough to determine the asymptotic phases is fixed To answer this, we need to write the on-shell amplitude at
such that Eq(39) is obeyed. energyE in terms of the solution of the half off-shell ampli-

Thus our subtracted equation at threshold yields uniquéude at threshold. We do this in two stages. Rewriting EQ.
results for the half-off-shell amplitude without the need for (40) as

B. The subtracted equation at any energy

4 A
K(d,0;€4) =K(0,0;eq) + A[Z](0,0;€q) — ?mfo dq'A[Z](0,9"; €9)S(q"; €9)K(q", 05 €q), (45

and having determined the half-off-shell amplitude at threshold, we first need to determine the full-off-shell amplitude at
threshold, i.e.K(q,q’; ¢4). Before subtractiofK(q,q’; ¢y) satisfies the equation

4m (A
K(q,q’;ed)=2(q,q’:ed)——3 f dq’ 2(0,9";€)S(q"; €9 K(9", 0" ; €g) (46)
0

which has the original badly behaved kernel of E2f). So, again we need to perform a subtractive renormalization.
SinceZ(q,q’;E)=Z2(q’,q;E), we have thaK(0,q; €5) =K(q, 0;€ey). But we know thaK(0,q’ ;E) also satisfies the equation

4 A
K(0,9";€9) = 2(0,9"; €9) — ?m fo dg'2(0,0"; ) S(q"; €9)K(Q",0; €g) - (47)

We can now subtract this equation from the equation for the full off-shell amplitude-4Bg—to get

034010-8
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4m (A
K(0,9';e5) =K(0,9";€9) + A[Z](0,9"; €9) — ?L dg'A[Z](0,0"; €9)S(0"; €)K(",q"; €q) -

This equation has the same kernel as @§), and given that

we have already determined(0,q’;ey)=K(q’,0;¢y), We

can now determine the full off-shell amplitude at the elastic
threshold. Numerical solution indeed confirms that the solu-

tion of Eq. (48) is cutoff independent, and that the limit
— oo can be taken. The resultig(q,q’; y) is also, by con-

struction, real and symmetric. In this way we have estab-
lished that the full, off-shell, amplitude at threshold can be

determined with one subtraction, and therefore, giagrwe
know the amplitudeK(ey) =X(ey).
To derive the renormalized equation at any endegfpr

the amplitudeX(E), we need to write the boson-dimer equa-

tion at the energ¥g, i.e.,

X(E) = Z(E) + Z(E) (E)X(E) (49)
and the threshold equation
X(€&g) = Z(€g) + Z(€g) T €g) X(€g) - (50)

(Note that we will manipulate the equations §r but the
same manipulations can equally well be done WwithThese
two equations can be written as

ZYE)=XYE) + (B), (51)

ZHeg) =X ey + 1(eq).
We now subtract Eq52) from Eq. (51) with the result that
7] = 1(E) - r(ey)
=[27MB) - 27 (&) ] - [XHE) - X Xe&)]
= Z N eg)[ Z(eg) - Z(E)]1Z7HE) - X ey
X[X(eg) = X(E)]XHE).

(52

(53)

Multiplying this equation from the left b¥X(ey) and from the
right by X(E), we get

X(E) = X(€g) +[1 + X(eg) (€g) ] oL Z] + X(€g) AL 7IX(E)
+[1 +X(eg) (€9) AL Z]HE)X(E), (54)
where

A Z]=Z(E) - Z(eg). (55)

All integrals in the above equation have sufficient ultraviolet
decay to be finite, with the possible exception of

X(eq) m(€q) 8 Z]7(E)X(E) which is a double integral.

PHYSICAL REVIEW C 69, 034010(2004)

(48)

X(q1k1 E) = x(q1k1 ed) + B(qlka E)
A
+ JO dg'a’?Y(q.q";E)X(q' . k;E),  (56)

where the second inhomogeneous term is
A

B(a,k;E) = d Z](q,k;E) + J dg’ q"2X(a,q"; &)
0

X eg;q") A Z)(q",k;E) (57

with

and «(E;q) = 7(E-30?/4m). Meanwhile the kernel of the in-
tegral equation is given by

Y(q,9";E) =X(,9"; e L 7I(E;q’) +  Z](a.9";E)HE;q")
A
+ f dq’ q"*X(0,9"; €g) (€q; ")
0

xd zZ](q",q";E)(E;q")
=X(0,9";e)d 7I(E;q’) +B(q,9";E)7(E;q) (59)
with

A 7I(E;q) = 7(E;q) — 7(&4:0). (60)

In this way we can determine the half-off-shell, and from
it, the on-shell amplitude, at any energy given the on-shell
amplitude at one energy where the subtractive renormaliza-
tion is done. Note that iBZ=0, i.e., the “potential” for the
scattering equation is energy independent, tBsr0 and
Y(E)=X(eg) AL 7I(E).

To test our procedure, we have calculated the boson-dimer
phase shifts, for the casgy=1.56. This value was chosen
since models of the helium-4 dimer suggest a ratio of three-
body and two-body scattering lengths of this gi28,14]. In
Fig. 5 we plotk cot(5) againstk (in units of y) for five
different cutoffs. Our results agree exactly with those re-
ported in Refs[13,14. In contrast to the figure presented in
Ref. [14], we see absolutely no cutoff dependence whatso-
ever in our results. No explicit three-body force is required to
perform this renormalization.

IV. NEUTRON-DEUTERON SCATTERING IN THE
DOUBLET CHANNEL

In the preceding section we formally developed the pro-

We now can write the above operator equation as an ineedure for calculating the amplitude for 1+2 scattering in the

tegral equation for the amplitude at a given endfgy terms
of the fully off-shell amplitude at thresholX(q’,q; €y), as
input,

three-boson system at any energy, having renormalized the
equation at threshold using the boson-dimer scattering length
as input experimental data. The final results were identical
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B L I B B L L B NN system is only manifest at higher order in the EFT with-
T Aazy ' out explicit pions, and i.n th_is section we will restrict our
L ] analysis to lowest order in this EFT, known as EMFf, thus
030 . 22227 7 here we need only include tH&, and3S; nucleon-nucleon
i o A=9591 ' channe!s. Since the nucleon—r_1uc|epn interaction in Be
L ] has antibound state, we can still write a dimerlike propagator
= 040 — A=10000y ] in this channel, but now the subtraction point must be the
z - - energy of the antibound state. As a result we write the quasi-
_;; C ] deuteron propagator as
-0.50 - 4
i ] T (E)=—— Su(B) with a=st, (61)
L ] E-e,
-0.60 - 4
i ] where s and t stand for the spin singlet and spin triplet
i 1 nucleon-nucleon channels, respectively, and
e by e by by b e by

0.0 0.2 0.4 0.6 0.8 1.0
kry =-7.88 MeV, (62)

ma€

FIG. 5. Phase shifts for boson-dimer scattering in the egse
=1.56, for a number of different cutoffs. The curves are completely

indistinguishable. €4=— % v=45.71 MeV. (63)

for different cutoffsA. So far in our analysis we considered

the three-boson problem in order to avoid the additional Thend equations in the doublet channel are now a set of
complication of coupled-channel integral equations. How-two coupled integral equations in which the initial channel
ever, in order to establish the ability of the once-subtractedhas the deuteron in the triplét), while intermediate states
equations in EFT to reproduce experimental scattering can have either a singlégs) or triplet (t) NN pair with a
data, we need to introduce the spin and isospin dependensgectator nucleon, all coupled to spin and isospin one half.
of the nd scattering problem. The tensor interaction in theThese equations take the form

"2
Ki(9,9";E) = Z4(q,9";E) + Pf dq’ 0"*24(q,9" E)Tt(E %)Ktt(qﬁyq,;E) (64)
A qrrZ
+P f dof’ o2, E)r(E 2—) Ksld":E),
0 14
112
Ks(9,0";B) = Z5(a,9";E) + P f dd’ 9"°Zs(a,9"; E)T(E V)Kn(Q” q’;E) (65)
1/2
+P f dd’ q"?Z{a,9"; E)TS(E V) Ksd",a";E),
[
wherev=2m s the reduced mass for tmel system, and the /1 -3
Born amplitudeZ,, is given by MEalls g (67)
, It is not immediately apparent that the kernel of the
(0,9";E) == Ngg——1In o’ +q°+qq —mE coupled integral equation®4) and(65) has the same prob-
Zap “qu ?+q'?-qq —-mE lems as that of Eq(26). By taking linear combinations of

(66) Egs.(64) and(65) and looking in the asymptotic region we
can perform an analysis akin to that used for E2§) [20].
This shows that one subtraction is required to render the
with the spin isospin factor matrix given by system(64) and(65) well behaved. Otherwise this kernel too
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has eigenvalues which cross 1/&ss increased, and the RG a;=0.65+0.04 fm. (69)
evolution ofK; at low momenta will not be smooth.

In this case th&(0,0;ey), as given by Eq(21), witha;  We adopt the central value fas.
the doublet scattering length, is chosen for the subtraction. After the subtraction is performed, the equations for the
Experimentally[41], half-off-shell threshold amplitude become

A "2
Kit(0,0;€eq) = Ky(0,0;€9) + AZ(q,0;€q) + f dq’ q"*AZ4(q,9";E) 7't<5d 5
0

14

) Kw(9”,0;€9)

"2

A
+ fo dq’ qHZAZts(qaq”;Ed)Ts<6d_(;_V)Kst(q”rO;ed)r (69)

A "2

Ksi(0,0;€9) = K(0,0;€) +[Z2:(q,0;€4) — 21(0,0;€9) ] + J dq’ 4" Z(0,9"; €g) = Z4(0,9"; fd)]Tt( €4~ Z_V) Ki(9",0;€q)

0
"2

A
+ f do’ q"1Z{0,9"; €d) = Zts(qu”;ed)]Ts(fd_ C;—V>Kst(Q”,0;ed)-
0
(70)
Once these equations have been solveKidn, 0;e4) andK(q,0;ey) we can demand
Ku(d,0;€9) = Ky(0,0;€9),  Kis(0,0; €q) = K9, 05 €q), (71

and so arrive at two sets of two coupled equations apiece. These four equations determine the fully off-shell thdeshold
scattering amplitude. The first pair is

A "2
Ki(0,9'; €9) = K(0,0; €9) + AZy(0,q" s €) + f dq’ q"?AZy(9,q"; ed)Tt(fd - %)Kn(Q”yQ’ ; €)
0
A an
+ fo dq’ qﬁzAZts(qqu;ed)Ts<6d_Z)Kst(q”:q,;ed)- (72)

"2

A
Ks(a,9"; €0) = Ky(0,0"; €g) +[Z6(0,0"; €g) — 21(0,0"; €9) ] + f do' 9" Zs(0,9"; €9) = Z4(0,q"; Ed)]7t<5d - 2—) Kw(9",q'; €9)
0

"2

A
!~ /. /. q 4 ’.
+ fo dq'q"[Z:40,0"; €9 — 2150, 1€d)]7's<6d_ Z—V)Kst(q 9’ €q),

(73

which have exactly the same kernel as H§®) and(70), but different driving terms.
The second set of subtracted equations describegutighysical amplitudesK;s and Kgg at threshold. The unsubtracted
versions of these equations are given by a simple extension of(&)sand (65). After subtraction the equations are

"2

A
! . ! . ! . '’ /! /N q i ! .
Kis(0,0"; €9) = Kis(0,0"; €9) + AZ1((0,0" s €g) + JO dq’ q"?AZy(a,q ,ed)rt<ed—2—V)Kts(q 9" €q)

"2

A
+ f dq’ qHZAZts(Quq”;Ed)Ts<€d_%)Kss(q"-q/;fd): (74
0

A "2

d' 4" Z(9.9"; €0) = Z4(0.9"; 5d)]7t< €~ q—> Kis(d",0"; €9)

Ksd0,9"; €9) =Kis(0,9"; €9) +[2s40,0" s €9) — Z5(0,0";€9) ] + f o

0
"2

A
'’ 1!, /. /. q 4 I.
+ f dq’ 9" Z:40,9"€9) — 20,0 :fd)]Ts<Ed_2_>Kss(q q'5€q).
0

(75

Note that imposing Eq.71) to perform the subtraction on the set of four original integral equafianisten in matrix form in
Appendix B) leads to a symmetric result for thex2 matrix form of the threshold amplitude.
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Now we write the original, unsubtracted, equations in op- 1 1

erator form, as Po= =02 TTar  Pa= =050, 7, (83
V8 V8
K(E)=Z(E) + Z(E)7(E)K (E 76 . . . L
B=26)+ 2E)7EKE (76 and *Cfffil is the leading-order contact interaction in these
with K the 2X 2 matrix channels. The subscript 0,-1 on this coefficient indicates
that it appears in front of an interaction which has no deriva-
K = (Kn Kts) (77) tives, but that it scales &%, with the enhancement over its
Kst Kss/' naive dimensional analysis scaling being due to the presence
of the unnaturally large scattering lengths in the two-body
q2 system[7-10,13.
q(E— 2—) 0 The higher-order calculation we report on in this section
E;q") = v 5 (79) requires the insertion of higher-derivative four-nucleon op-
0 E—i erators. The analysis of Reff8-10,12 indicates that the
Ts 2y first additional piece of the EFT Lagrangian which must be
) ] considered ig3]
and Z the 2x 2 matrix defined by Eq(66).
We can then perform the formal manlp_u_latlons that lead to Lo=-3 #ngz())(NTP;N)T(NTP;N)
Egs. (56)—«60), except that now all quantities arex2 ma- a=st
trices in channel space, and thus the final integral equation to
be solved is, in matrix form, but with the momentum- _ *C(Z“)}[(NTP;“N)*(NTO?N) +Hc] (89
dependence made explicit, 2
X(q9,k;E) = X(q,k; €g) + B(q,k;E) and the Hermitian, two-derivative three-component, operator
A 0?%“ is defined by
+ f dq'g"? Y (a,9";E)X(q".k;E)  (79) .
0 0= - [PV +V?PL - 2VPLV], (85)
with
B(E) = 8 Z] + X (e e A 2], (80) Here the effect of the two-derivative operators on N

amplitude is suppressed by one power of the small parameter
YR (R/ag in the 'S, case relative to the leading-order EFT
Y(E) =X(eg)dl 7] + B(E)(E), (81)  amplitude. Also appearing i is a small correction t&,,

where the meaning of the energy-difference operatas  denoted by'Co,¢: “small” because’Co o is down byyR rela-

exactly as in the boson case of the preceding section. tive to ﬁcov—l [8-10,12. (1) :
Applying these equations to scattering in the: doublet Thus the effects of the terms i~ on thSeNN amplitude
channel below thenp breakup threshold yields the phase can be calculated in perturbation theofg, *' can then be
shifts shown in Fig. 6. At almost all energies shown, thesechosen so as to reproduce the asymptStgtate normaliza-
agree with the leading-order results published in R&] at
the 1% level. Once again, there is no cutoff dependence, f——— T
once the doublet scattering length is used to subtractively i .
renormalize the equations. Also shown are the results of a
phase-shift analysigt2], and the results of a calculation us-
ing the AV1I8NN and UIX NNN potential[43].

o
th
7

k cot & (fm'l)
T

I — A/y=2000
V. THE nd DOUBLET CHANNEL BEYOND LEADING [ /o 27:;888
i - Al= ]
ORDER 18] — AR=500 .
In this section we discuss calculationsraf doublet scat- i
tering which go beyond the leading-order calculation of the I S S
preceding section. That computation employed the Lagrang- 0 0.02 0.04 0.06 0.08

ian (2), extended to theNN system. This Lagrangian is K’ (fm”)

equivalent to[3
q o[35) FIG. 6. Phase shifts for neutron-deuteron scattering at low en-

V2 ergies, at leading order in the nucleon-nucleon EFT without explicit
LO=r= NT(“%"‘ ﬂ)N - ”Céf'll(NTP;“N)T(NTP;“N) pions, for a variety of different cutoffs. The curves for different
a=st cutoffs are indistinguishable. The triangle is the central value of the
(82 scattering length measurement of Rfl]. The circles are the re-
sults of the van Oers—Seagrave phase-shift anaygds and the
with P3 the spin-isopsin projector which restricts the inter- squares represent a recent calculation of these phase shifts by
actions to the’S; or 'S, channel, as appropriate Kievsky et al. [43].
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3
tion of deuterium[44], and *ngl) adjusted in such a way
that double-pole term which would otherwise appear in the
NN EFT amplitude is removed. This produces a next-to-

©
ta

leading ordef(NLO) 3S; NN amplitude[3], -~
&
2 Zt Zt - 1 \06/ 1 I
T(p) = —| ——-=—= 86 2
. wm{wip 2y ] (89 3
with p=VME, and wherez, is the residue of thé'S; T 15§ .

matrix at the deuteron pole=iy. This amplitude is easily
seen to be a reexpanded version of the effective-range-

theory 3S, amplitude, 0 0.02 004 0.06 0.08
k™ (fm )
2 1
T(p) = (87) FIG. 7. Phase shifts for neutron-deuteron scattering at low en-

- 1 2 .
my-—3 + ) +
iy Zpt(p 72) P ergies, at leading ordefdash-dotteyl and next-to-leading order
wherep, is theNN 3S; effective range, which is of the order (solid) in the nucleon-nucleon EFT without explicit pions. The
of the range of thé\N interaction:p,~ R. The reexpansion is curves for different cutoffs are indistinguishable. Data are as de-
thus in the small parametegy and p,p, but with y treated ~ Scribed in Fig. 6.
as being of the same size psBy making such an identifi-

cation we determine that 7 = 1 (91)
. * 1-rdag’
i (88) rs=2.73 fm[46] being the effective range in this channel.

T 1oy . . . |
TPt This results in much smaller NLO corrections from this

Z, is also related to the asymptot&state normalization of channel, sinceg/ag is only of order 10%.
deuterium,Ag [44,45, Thus, to perform ou¢partial) next-to-leading-order calcu-
5 lation for nd scattering the only changes to the amplitude
As= 2YZ,. (89 which are necessary are the multiplication gfand 7, by
factorsz, andZ,. The subtractive procedure developed above
is not affected by the inclusion of these factors: the only
changes necessary in the above equations are the replace-

Z,=1.686, (90)  ments

which agrees with the result obtained from E8g) to three S—S4 S— S (92)

significant figures. o Making these replacements we obtain the results shown in
~ To summarize, the coefficients in the NLO EFT Lagrang-rig. 7. Once again the result is cutoff independent. It agrees
ian may be chosen such that the amplitude in*®echannel  remarkably well with the sophisticated potential-model cal-
has a deuteron pole with the experimental binding energyjation of Kievsky et al. [43]. The agreement with the
and the “experimental” asymptoti&-state normalization. sjngle-energy phase-shift analysis of van Oers and Seagrave
Also present in the NLONN °S, amplitude is a constant [42] s not as pleasing, but it is clear that modern potential-
piece, which is proportional tg,. Here we wish only to  model calculations do not agree with these older doublet
assess the impact of higher-order terms on nidephase  phase shifts either.

shifts, and thus, we will perform a partial NLO calculation of = These results are gartial) NLO calculation of thend

the nd phase shifts below breakup threshold, dropping thghase shifts below breakup. They differ from those of Refs.
nonpole term in Eq(86). Work on complete higher-order [32 33 since in those works the authors chose to adjust the
calculations within our subtractive framework is in progress,N|O coefficients in the EFT Lagrangian to reprodyg@x-

and these numerical studies, as well as prior results by oth%{Cuy, and so only obtained, (or equivalentlyAs) approxi-
authors[32,33 indicate that including the constant term of mately. The difference between this parametrization” and
Eq.(86) has little effect omd phase shifts belowd breakup  our “z-parametrization” is a higher-order effect, and the

Using the Nijmegen phase shift analysis value fgy Ag
=0.8845 fm/2[46,47|, we obtain

threshold , _ magnitude of the discrepancy between the results of Fig. 7
Similar results follow for the NLO®S, amplitude, and  and those of Refs[32,33 is consistent with an effect of
there order(p,y)?, i.e., two orders beyond leading. Comparison of

our numerical results with those of R¢83] indicates that if
%In Ref. [32] it was argued that the constant term actually givesWe adopt thep parametrization the agreement is better than
zero contribution tond phase shifts, and so it was dropped three 1% [48].
too. Although the contribution is not, in fact, strictly zero, it is
small, as withessed by the good agreement between the NLO results
of Refs.[32,33. In the latter paper the nonpof§, term was in- The integral equation which describes 1+2 scattering in
cluded in the analysis. the effective field theory with short-range interactions alone

VI. CONCLUSIONS
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does not yield an RG invariant low-energy amplitude. Byphase-shift data fond scattering in the doublet channel. D.
performing an RG analysis of the integral equation for thisR. P. is grateful for the hospitality of Flinders University,
process we traced this poor RG behavior to the presence @fhere much of this work was done, and that of the Institute
eigenvalues of order 1 in the kernel of the integral equationfor Nuclear Theory, where it was completed. The work of
One subtraction removes these eigenvalues from the speb-. R. P. is supported by the United States Department of
trum of the kernel and renders it negative defingethresh- Energy under Grants Nos. DE-FG02-93ER40756 and DE-
old). Imposing Hermiticity and employing a series of resol- FG02-02ER41218. The work of I. R. A. was supported by
vent identities we can use this single subtraction at the he Australian Research Council.
+2 threshold to generate predictions for phase shifts at finite
energies. Note that although here we have only computed APPENDIXA: SPIN-ISOSPIN FACTORS FOR THE
phase shifts below 1+2 breakup threshold our subtractive AMADO EQUATION
technique is easily extended to include energies above the In this appendix we derive the spin-isospin factors for the
three-body threshold. The only complication is the technicaRmado model foKi) three bosongji) nd quartet, andiii ) nd
one of dealing with the logarithmic branch cuts that appeadoublet. In the latter two cases we restrict our analysiS to
in the kernel of the integral equation at this energy. waves only.

The equations we have developed are equivalent to the The Amado equation can be written in operator form as
equations of Bedaquet al. [13,14, and may be obtained X =97 4+ 977X
from those equations by algebraic manipulations. The distin- B 7
guishing feature of our formulation is that the equations areyhere
subtractively renormalized, i.e., only physical quantities ap-
pear in them, and any regulator can be employed. This would Z.p= (1= 8,0){0alGo(E)lgp

appear to make this formulation especially useful for highery;i, Go(E)=(E-Ho)™. This differs from Lovelacd36] by
order computations in thed system. It also provides particu- (-1) due to a different definition 06,.

lar emphasis to the point that—as in the case with all bare . : : :
- ) . This Z,; can be written after partial wave expansion as
parameters in field-theoretic Lagrangian—the three-body ap P P

force which appears in the equations of Bedagual. is not 1 (1 9.(Pa)94(Pp)
an observable. Zyg= )\aﬁaf dx Pu(x),
Thus one piece of three-body experimental data is needed +OE- a(qu + q,28 +0,0p%)

in order to renormalize the three-body equations for zero-

range forces. For this piece of data we choose the 1+2 SC&Where)\aﬁ is the product of a spin factquﬁ and an isospin
tering length. Its value can be incorporated into the EFTfactorA'aB, ie.,

description of the three-body system either via a counter-

term, as in Refs[13,14,2Q or, as done here, by a subtraction Nag= ASpig

of the badly behaved integral equation. The renormalizatio%th

of the equation after the inclusion of this single piece of

three-body data provides a simple, model-independent, ex- s, S, S
planation for well-known features of the three-nucleon sys- Aiﬁz (= D%* "2 (28, + 1)(2Sz+ 1)]1/2{5 Sy Si}
tem such as the Phillips lingl9]. It also facilitates the sys- A
tematization of predictions made by Efimov for such systemsvheres,, sz, ands, are the spin of the three particles, &d

[50-53. is the total spin of the paitBy). This expression can also be
Finally, we performed a partial treatment of next-to- used to calculate the isospin factdf, ,.
leading order corrections to the doubtet phase shifts in the For three bosons the spins ancfthe isospin of all three

EFT. We found that adopting coefficients in the NLO EFT particles is zero. In this case we have only one channel, i.e.,
(#) Lagrangian that give the correct deuteron binding energy ,z=\, and therefore the spin-isospin factor is 1, i.e.,

and asymptotiS-state normalization results in excellent re-
production of potential-modeS:% nd phase shifts below
deuteron breakup threshold. Our results suggest that—to a For nd scattering all spins and isospins afe For the
very good level of approximation—thesel phase shifts are  quartet state we have only one channel vBth; and| :%_
determined by four numbers from the two-body system, The spin and isospin of the pair are 1 andte quantum

As and the's, scattering length and effective range, togethemumbers of the deutergrrespectively. In this case
with the crucial one piece of data from the three-body sys-

tem: thend doublet scattering length. AS

Ngp=1, three bosons.
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They correspond to the pair of nucleons being in either

=(S,=1,t,=0) the deuteron, or is=(S,=0,t,=1) the sin-
glet. In this cases=1 :%. The spin isospin factors are

< 1,1 1
Att:_Ev Att:_é U )\tt:Zv
N 1 | 1 1
Ass:_é’ Ass:_E U Ass= 7,
and
[o [o
V3 V3 3
Atssz—?, A{s:? O kts_—z.
or
A 1<1 _3> d doublet
= , N ouplet.
FT4\-3 1

APPENDIX B: CONNECTION TO EQUATIONS OF
BEDAQUE et al.

The equation of Refs[14,18,19 is, in the case of no

three-body force,
a(k,p) =AM(k,p;k)
2

-1 k,
qZ_kz_wa( a)

2\ (A
+—f dg M(q,p;k)
mJo

(B1)

with

4 3p? 1 24+ gp+p?-mE
M(q,p;k)zg(ﬁ _p_mE)_m(w)

4 pq \o’-gp+p’-mE
(B2)
and
\ = {1 ) for three bosons B3
-5 for thend quartet channel.

Here the relation to the phase shifts is given simply by

rd L) =kcots
akl) cot §.

To make the connection to E(LO) first observe that

R S U )

and then defineX(p,k:E) such that

2
g(w V- mE)X(p,k;a — —makp), (B6)

we then find

(B4)

(B5)

PHYSICAL REVIEW C 69, 034010(2004)

A
X(|o,k;E)=Z(|o,k;E)+f0 dq o Z(p.q;E)

(B7)

with Z(p,q;E) given exactly by Eq(11) above. Note, in
particular, that the homogeneous equation corresponding to
Eqg. (10) requires no manipulation to be equivalent to that
corresponding to EqB1). The relationship oK to the phase
shifts can be deduced from Eq&4) and(B6). It is

1 8y
Reg —— | =——kcot §,
e(X(k,k;E)) 3m" 0

in agreement with Eq(19).

In the case ofnd scattering in the doublet channel we
begin with the coupled equations of REB3], which, again
in the absence of a three-body force term, may be written in
matrix form as

(B8)

2 A
t(p,k) =V(p,k) + 7—J dg & V(p,q;K)D(q; K)t(qg; k)

0

(B9)
with
ty tts) (Dt 0)
tE( , D= (B10)
tSt tSS 0 DS
and
1 2+ +pg-mE 13
VE_m[w]x( J. @
4pg | p°+q°—pg- mE 31
Here, to leading order inR,
DK = ! (B12)
e
1
Dy(a;k) = (B13)

R ARCATCEIE)
To obtain EQs.(64)—66) is now very simple. We just

define
t -t
el )
g tss

Using Eq.(B8) to determine the relationship to the doublet
phase shifts an as in Eq.(19) we find that thet matrix of
Bedaqueet al. should obey

s3_1
8yk cot 5—ik’
in agreement with Eq€12) and (13) of Ref.[33].

(B14)

ty(k,k) = (B1Y5)
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