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We have recently performed a relativisticOsq4d chiral expansion of the two-pion exchangeNN potential, and
here we explore its configuration space content. Interactions are determined by three families of diagrams, two
of which involve justgA and fp, whereas the third one depends on empirical coefficients fixed by subthreshold
pN data. In this sense, the calculation has no adjusted parameters and gives rise to predictions, which are tested
against phenomenological potentials. The dynamical structure of the eight leading nonrelativistic components
of the interaction is investigated and, in most cases, found to be clearly dominated by a well defined class of
diagrams. In particular, the central isovector and spin-orbit, spin-spin, and tensor isoscalar terms are almost
completely fixed by justgA and fp. The convergence of the chiral series in powers of the ratio(pion mass/
nucleon mass) is studied as a function of the internucleon distance and, forr .1 fm, found to be adequate for
most components of the potential. An important exception is the dominant central isoscalar term, where the
convergence is evident only forr .2.5 fm. Finally, we compare the spatial behavior of the functions that enter
the relativistic and heavy baryon formulations of the interaction and find that, in the region of physical interest,
they differ by about 5%.
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I. INTRODUCTION

The research program for the study of nuclear interactions
was outlined more than fifty years ago, in a seminal paper by
Taketani, Nakamura, and Sasaki[1]. Pions, then recently de-
tected, were identified as the relevant degrees of freedom for
the construction of a theoretical potential. One-pion ex-
changes would dominate at large distances, the exchanges of
two uncorrelated pions would come next, and a square well
could be used to simulate short range processes. It is quite
remarkable that these ideas could stand for such a long time,
survive the QCD revolution, and still remain as the qualita-
tive framework of contemporary research. On the other hand,
when theNN research program was first established, no pre-
cise information concerning the intrinsic structure of pions
and their interactions with nucleons was available. It took
about forty years of intense collective work, both experimen-
tal and theoretical, for this aspect of the problem to be tamed,
with the formulation of chiral perturbation theory(ChPT).

The present day rationale for describing nuclear interac-
tions by means of chiral symmetry is that low-energy pro-
cesses are strongly dominated by the quarksu andd and one
may work with a two-flavor QCD. As the masses of these
quarks are small in the GeV scale, one treats them as pertur-
bations in a massless Lagrangian. The theory is symmetric
under the Poincaré group and, in this limit, also invariant
under both isospin and chiral SUs2d3SUs2d transforma-
tions. This last symmetry is realized in the Nambu-Goldstone
mode and the QCD vacuum contains a condensate, which

allows collective excitations, identified as pions. The non-
Abelian character of QCD prevents low-energy perturbative
calculations and, in practice, one works with chiral effective
theories, in which pointlike baryons interact by exchanging
pions that have small masses.

The one-pion exchange potential(OPEP) became defini-
tively established in the early 1960s and is assumed to domi-
nate completelyNN partial waves with orbital angular mo-
mentumLù5. Its mathematical form was determined in the
1950s and remains stable ever since. One has also learned
that anypN interaction Lagrangian, based on either pseudo-
scalar or pseudovector couplings, chiral symmetric or not,
yields the very same OPEP. Chiral symmetry is thus irrel-
evant for this part of the force, as for all single pion pro-
cesses.

The very opposite happens with the next layer of the in-
teraction, the two-pion exchange potential(TPEP). This
component is closely related to thepN scattering amplitude
and chiral symmetry becomes extremely important. In the
1960s, no perturbative treatment for strong interactions was
available[2] and potentials were constructed which incorpo-
ratedpN information by means of dispersion relations[3]. In
the same decade, chiral symmetry was being developed in a
different framework and, with the help of current algebra
techniques, low-energy theorems for many pionic amplitudes
were derived. Applications of chiral symmetry toNN inter-
actions[4], three-body forces[5], and exchange currents[6]
began to be performed in the 1970s. At the end of this de-
cade, Weinberg[7] outlined a research program based on the
idea of ChPT. In the 1980s this theory was fully developed
for the meson sector[8] and began to be used in the study of
meson-baryon interactions[9].

The systematic use of ChPT in the study of nuclear forces
began in the early 1990s, through the works of Weinberg
[10] and Ordóñez and van Kolck[11], followed by other
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authors[12,13]. These early attempts to construct a chiral
TPEP considered only pion and nucleon degrees of freedom
and gave rise to poor descriptions ofNN data. Realistic po-
tentials require other degrees of freedom, which were intro-
duced in the form of deltas[14], hidden within pN sub-
threshold coefficients[15,16], or incorporated into low-
energy constants(LECs) of effective Lagrangians[17–21].
In spite of apparent differences, there must be a rather im-
portant overlap among these various approaches. This is ex-
pected because the numerical values of the LECs are nor-
mally obtained from empiricalpN subthreshold coefficients
which, in turn, are largely dominated by delta intermediate
states[22]. So, to a large extent, one is just using different
languages to express the same physics. Support to this view
comes from the fact that potentials based on deltas[14],
subthreshold coefficients[23], or LECs [17–19,24] could
produce satisfactory descriptions of asymptoticNN phase
shifts, without free parameters. This suggests that, if one
could control carefully the peculiarities of the various ap-
proaches, the hope of having a TPEP as unique as the OPEP
could be realized. This uniqueness is of major theoretical
importance, since it would indicate that the effective theory
can indeed represent QCD.

In ChPT one uses a typical scaleq, set by either pion
four-momenta or nucleon three-momenta, such thatq
!1 GeV. The leading term of the chiral TPEP isOsq2d and,
at present, there are two independent expansions of the po-
tential up toOsq4d in the literature. The first one is based on
heavy baryon chiral perturbation theory(HBChPT) [17,20],
where one uses nonrelativistic Lagrangians from the very
beginning and the inverse of the nucleon masssmd as an
expansion parameter. Relativistic corrections, needed at
Osq4d, are added separately[21]. The alternative calculation
was proposed by us recently[25], which is covariant, and
results were expressed directly in terms of loop integrals and
observable subthresholdpN coefficients. In the case ofpN
scattering, heavy baryon[26] and relativistic[27,28] results
do not coincide, due to the presence of some diagrams
[29,30] that cannot be represented by series in powers of
q/m. The same class of diagrams is present in the TPEP and
the relativistic potential also cannot be expanded in the
heavy baryon series around the pointt=4m2. If this restric-
tion is, nevertheless, ignored and theq/m expansion is per-
formed in the relativistic potential, one recovers most of the
structure produced by the heavy baryon formalism. The main
differences take the form of bothOsq3d andOsq4d terms. The
former may be related to the definition adopted for the po-
tential, which has to suit a dynamical equation and defines a
corresponding treatment for the OPEP iteration. In our work
we followed closely the procedures outlined in Ref.[31]. At
present we cannot check the assumption about the origin of
the Osq3d terms, for in HB calculations one finds only final
expressions, without references to dynamical equations or
details about intermediate steps. The differences atOsq4d are
due to the Goldberger-Treiman discrepancy and could be
easily incorporated into the HB formalism.

QCD is a well defined theory. This should hold true at the
level of effective field theory as well. In the case of the
TPEP, we consider the partial convergence between heavy
baryon and covariant results atOsq4d as a rather welcome
indication that uniqueness may not be too far ahead. The
considerable narrowing of the theoretical discussion in the
last decade represents a measure of the progress promoted by
the systematic use of chiral symmetry, which has allowed
one to understand the internal hierarchies of theNN potential
in terms of chiral layers. Nevertheless, the question still re-
mains open as to the extent this mathematical picture is
backed by nature.

The chiral picture may be assessed by comparing theoret-
ical and empirical phase shifts. There are some windows in
orbital angular momentum and energy for which this com-
parison can be performed in the framework of the Born ap-
proximation. The size of these windows was studied in Ref.
[32] and may also be inferred from the rather similar figures
of Refs. [17,23,24,33]. Typical energy domains vary from
20 MeV for D waves to 300 MeV forG waves or higher.
Unfortunately, these peripheral phase shifts that can be cal-
culated within the Born approximation are small, error bars
are important, and the test of the symmetry is not very strin-
gent. Outside the Born windows the problem is nonperturba-
tive and one is forced to resort to dynamical equations,
which iterate the potential and blend interactions with differ-
ent ranges. In the present case, this well known property is
illustrated by the figures of Ref.[32], where it is possible to
see that the once iterated OPEP has the same range as the
TPEP. Furthermore, solving dynamical equations leads to ad-
ditional divergences. This problem may be treated by regu-
larizing the potential at short distances, limiting the interme-
diate momenta in the dynamical equation by means of a
cutoff,1 and absorbing(most of) its dependence in the cou-
pling constants of the potential[35]. It allows the problem to
be treated perturbatively, but the implementation of a power
counting scheme is not unique and always consistent[36].

Instead of dealing with the nonperturbative problem and
as an interesting alternative of testing chiral predictions, we
may assumethat the chiral potential, calculated at a given
order, determines completely the interaction from a radiusR
onwards and then use it as an input in phase shift analyses.
This would just amount to extending to the TPEP a proce-
dure which has already been used for a long time in the case
of the OPEP. For the latter, this idea has proved to be reliable
in the elastic regime and for waves withLù5. From the
standpoint of the symmetry, this happens because chiral cor-
rections are short ranged and one sees just the leading con-
tribution through this window, irrespective of the order inq
one is working at. In the case of the TPEP, the corresponding
problem is much more complex and not fully understood.
Works along this line have already been performed by the
Nijmegen group[18], who claim that aOsq3d potential is

1The regularization of the nonperturbative problem using a cutoff
is not mandatory. Phillipset al. [34] argued that it is possible to
regularize numerically a Lippmann-Schwinger equation using di-
mensional regularization.
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effective for distances smaller than 2 fm. However, its con-
clusions are disputed by Entem and Machleidt[37] and the
situation remains unclear.

The present paper is motivated by the feeling that the
quantitative aspects of chiral hierarchies need to be clearly
understood if the TPEP is ever to become a reliable tool to be
used in phase shift analyses. Our study is based on the con-
figuration space version of theOsq4d potential produced in
Ref. [25] and organized as follows. In Sec. II we discuss the
dynamical content of the TPEP, which is given by a set of
Feynman diagrams, organized into three families. The ex-
plicit expressions and corresponding figures for the various
components of the potential are given in Sec. III. As the way
chiral symmetry is implemented varies with the family con-
sidered, in Sec. IV we discuss how dynamics is mapped into
the final form of the potential and show that the importance
of the LECs is rather channel dependent. Section. V deals
with the convergence of the chiral series and in Sec. VI we
discuss the main differences between the relativistic and
heavy baryon approaches to the potential. Finally, conclu-
sions are presented in Sec. VII.

II. DYNAMICS

The dynamical content of the relativisticOsq4d chiral
TPEP is determined by the effective Lagrangian

Lef f = Lp
s2d + LN

s1d + LN
s2d + LN

s3d, s2.1d

whereLp
snd andLN

snd describe pion-pion and pion-nucleon in-
teractions atOsqnd. Other degrees of freedom are implicitly
taken into account by means of the LECsci anddi, present in
LN

s2d andLN
s3d. The use of covariant Feynman rules with ver-

tices derived from this Lagrangian allows the construction of
the T matrix TTP

s4d, which describes the on-shell process
Nsp1dNsp2d→Nsp18dNsp28d and contains two intermediate
pions, as represented in Fig. 1. The potential is obtained by
going to the center of mass frame and subtracting the iterated
OPEP, in order to avoid double counting when it is used in
the Lippmann-Schwinger equation.

The dynamical content of the amplitudeTTP
s4d is given by

the diagrams of Fig. 2. Their full evaluation produces ampli-
tudes containing many different loop integrals, which are
interconnected. The chiral orders of the potential are ex-
tracted by exploring as much as possible the mathematical
relations among the various loop integrals. As the use of
these results represents an important step in the determina-
tion of the potential, in the Appendix we display their accu-
racy in configuration space.

The processes given in Fig. 2 are organized into three

different families. The first one corresponds to the minimal
realization of chiral symmetry[13], includes the subtraction
of the iterated OPEP and involves only the pion-nucleon in-
teractions given byLN

s1d, with the constantsm, g, andfp used
at their physical values. The second family contains two-pion
correlations in thet channel, determined byLN

s1d and Lp
s2d.

Finally, the last family includes chiral corrections represent-
ing either higher-order processes or other degrees of free-
dom, hidden into the LECs ofLN

s2d andLN
s3d.

This theoretical structure has been fully incorporated into
our recent evaluation of the amplitudeTTP

s4d, Ref. [25]. In that
work we have performed a two-step calculation, using the
fact that theNN interaction is closely associated with the
off-shell pN amplitude. This allows one to use many of the
results derived by Becher and Leutwyler[28] (BL) for the
pN amplitude as inputs into the evaluation of theNN poten-
tial. Moreover, it clarifies the relationship between the chiral
orders of theNN andpN amplitudes. Using Fig. 1, we write
the Osqnd expansion ofTTP as

TTP
snd = −

i

2!

1

s2pd4 E H d4Q

fk2 − m2gfk82 − m2gJ
3 o

l,m

l+m=4

fTpN
sld gs1dfTpN

smdgs2d, s2.2d

wherefTpN
smdgsid is thepN amplitude for nucleonsid expanded

at orderOsqmd. The factor within curly brackets in the inte-
grand isOsq0d whereas the leading term inTpN, as given by
the Weinberg-Tomozawa theoremf38,39g, is Osqd. Thus
TTP

snd requiresTpN up to Osqn−1d.
This result is important regarding the numerical values of

the LECs to be used in the determination of the TPEP, which
depend on the chiral order one is working at[40]. These
constants are not observables and must be obtained from
empirical quantities such as, for instance,pN subthreshold
coefficients. In the case of ourOsq4d TPEP, consistency de-
mands the use of LECs determined fromTpN at Osq3d.

Finally, a further motivation for deriving the TPEP from
the intermediatepN amplitude is that this stresses the conti-
nuity of present developments with the seminal works of the
Paris [3] and Stony Brook[4] groups, produced more than
three decades ago. For this very reason, one becomes better
prepared to understand the specific role played by ChPT in
this problem.

III. CONFIGURATION SPACE POTENTIAL

The configuration space Schrödinger equation is a rather
useful tool for calculating low-energy nuclear processes. In
principle, theOsq4d r-space potential could be obtained by
just performing the Fourier transform of our center of mass
p-space potential, which is written as2

2In this result, thes+d and s−d upper labels indicate, respectively,
terms arising from the isospin even and oddpN subamplitudes.

FIG. 1. Two-pion exchange amplitude.
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tc.m.= 3t+ + 2ts1d · ts2dt− s3.1d

with

tc.m.
± = tC

± +
VLS

m2 tLS
± +

VT

m2 tT
± +

VSS

m2 tSS
± +

VQ

m4 tQ
± , s3.2d

and VLS= isss1d+ss2dd ·q3z/4, VT=−q2s3ss1d ·q̂ss2d ·q̂
−ss1d ·ss2dd, VSS=q2ss1d ·ss2d, and VQ=ss1d ·q3z ss1d ·q
3z, whereq=p−p8, z=p8+p, p and p being the center-of-
masssc.m.d momenta of the initial and final nucleons. How-
ever, this leads to expressions that contain nonlocal terms,
due to presence of the variablez in the energy E
=Îm2+q2/4+z2/4, entering the profile functionsti. In or-
der to avoid this kind of complication, we follow the work
of Partovi and Lomonf31g and expand the potential in the
nonlocal operators, keeping only local and spin-orbit con-
tributions. In this approximation, the configuration space
potential becomes

Vsrd = sVC
+ + VLS

+ VLS+ VT
+VT + VSS

+ VSSd + ts1d · ts2d

3sVC
− + VLS

− VLS+ VT
−VT + VSS

− VSSd s3.3d

with VLS=L ·sss1d+ss2dd /2, VT=3ss1d ·r̂ss2d ·r̂ −ss1d ·ss2d,
VSS=ss1d ·ss2d.

The radial functions are given by

VC
±srd = t±UC

±sxd, s3.4d

VLS
± srd = t± m2

m2

1

x

d

dx
ULS

± sxd, s3.5d

VT
±srd = t± m2

m2F d2

dx2 −
1

x

d

dx
GUT

±sxd, s3.6d

VSS
± srd = − t± m2

m2F d2

dx2 +
2

x

d

dx
GUSS

± sxd, s3.7d

wheret+=3, t−=2, x=mr, and

UI
±sxd = −E d3k

s2pd3eik·xtI
±skd, I = hC,LS,T,SSj s3.8d

with k=q/m. This allows the potential to be expressed in
terms of dimensionless configuration space Feynman inte-
grals, denoted byS, and related to the functionsP of Ref.
f25g by

Ssxd =E d3k

s2pd3eik·xPskd. s3.9d

Using the results of Sec. IX of Ref.[25], we have the
expansions3

3In writing these expressions, we did not consider the relativistic
normalization factor, proportional tom/E.

FIG. 2. Dynamical structure of the TPEP. The first two diagrams of family I correspond to the products of BornpN amplitudes, the third
one represents the iteration of the OPEP, and the next three involve contact interactions associated with the Weinberg-Tomozawa vertex. The
diagrams of family II describe medium range effects due to pion-pion correlations. Interactions represented by family III aretrianglesand
bubbles, involving pN subthreshold coefficients, indicated by the large black dots.
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UC
+ = −

m3m2

256p2fp
4 Fm

m
G2HgA

4s1 + 4DGTds1 − =2/2d2sS3 − Sbd + Fm

m
GgA

2s1 − =2/2df− gA
2s2Sa + =2Std + 8sd̄00

+ + d̄01
+ =2dStg

+ Fm

m
G2F−

m2gA
4

16p2fp
2 s1 − 2=2df− 4ps1 − =2/2dSt + s1 − =2/2d2Sttg +

gA
4

4
=2sS3 + SbdG + Fm

m
G2FgA

4=4 − 4gA
2fsd̄00

+ + d̄01
+ =2d=2

+ d10
+ s1 − 2=2/3 + =4/6dg+ 8fd̄00

+ + d̄01
+ =2 + sd10

+ /3ds1 − =2/4dg2 +
32

45
sd10

+ d2s1 − =2d2GS,J , s3.10d

ULS
+ = −

m3m2gA
2

128p2fp
4 Fm

m
GHgA

2fs1 − =2/2dsS̃b − Std − s3/2 − 5=2/8dSag+ Fm

m
G

3FgA
2

4
s1 + 2=2 − =4/2dsS3 + Sbd + S2gA

2=2 −
16

3
d10

+ s1 − =2/4dDS,GJ , s3.11d

UT
+ =

USS
+

2
= −

m3m2gA
2

768p2fp
4H− gA

2s1 + 4DGTds1 − =2/4dfS3 + Sbg − Fm

m
GgA

2

2
fs1 − =2/2dsSt − S̃bd + s1 − =2/4dSag

+ Fm

m
G2FgA

2

4
s1 − =2/2d2S3 +

4

3
b00

+ s1 − =2/4dS,GJ , s3.12d

and

UC
− = −

m3m2

16p2fp
4 Fm

m
G2H gA

4

16
s1 + 4DGTds1 − =2/2d2sS3 + Sbd −

1

4
fgA

4s1 + 4DGTd − gA
2s1 + 2DGTdgs1 − =2/2dS, +

1

24
fgA

4s1 + 4DGTd

− 2gA
2s1 + 2DGTd + 1gs1 − =2/4dS, + Fm

m
GgA

2

8
s1 − =2/2dfgA

2sSa − =2St/2d + sgA
2 − 1ds1 − =2/2dStg + Fm

m
G2

3HgA
2

2
s1 − =2/2df− sgA

2 − 1d=2/8 + d̄00
− + d̄01

− =2 + d10
− s1 − =2/4d/3 + b̄00

− =2/4g−
sgA

2 − 1d
6

3s1 − =2/4dfd̄00
− + d̄01

− =2 + 3d10
− s1 − =2/4d/5 + b̄00

− =2/4gJS, − Fm

m
G2 m2

64p2fp
2 hf2gA

4s1 − 5=2/6 + =4/5d + 4sgA
2 − 1d2

3s1 − 3=2/8 + =4/32d/9− 4gA
2sgA

2 − 1ds1 − 29=2/72 + 7=4/144dgS,fgA
4s1 − =2/2d2 − 2gA

2sgA
2 − 1d

3s1 − =2/2ds1 − =2/4d/3 + sgA
2 − 1d2s1 − =2/4d2gS,,j+ Fm

m
G2gA

4

16
s1 − =2/2d2s=2/4dsS3 − SbdJ , s3.13d

ULS
− = −

m3m2

128p2fp
4 Fm

m
GHgA

4fs3/2 − 5=2/8dSa − s1 − =2/2d

3sSt + S̃bdg + 2gA
2sgA

2 − 1ds1 − =2/4dSt + Fm

m
GfsgA

2 − 1d2

3s1 − =2/4d/2 + 4gA
2b̄00

− s1 − =2/2d − 4sgA
2 − 1d

3b̄00
− s1 − =2/4d/3gS, + Fm

m
GgA

4

4
s1 − =2/2d2sS3 − Sbd

− Fm

m
G m2gA

4

8p2fp
2 f− 2ps1 − =2/4dSt + s1 − =2/4d2SttgJ ,

s3.14d

UT
− =

USS
−

2
= −

m3m2

1536p2fp
4 Fm

m
GHgA

4fs1 − =2/2dS̃b

+ s1 − =2/4dSag − 2gA
2sgA

2 − 1 − 2b̄00
− ds1 − =2/4dSt

+ Fm

m
Gf− gA

2sgA
2 − 1 − 2b̄00

− ds1 − =2/2d

− sgA
2 − 1 − 2b̄00

− d2s1 − =2/4d/3gS,+ Fm

m
G m2gA

4

8p2fp
2

3f− 2ps1 − =2/4dSt + s1 − =2/4d2SttgJ , s3.15d

where the Laplacians act on the variablex. The chiral orders
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of the various radial functions may be read directly from the
combination of Eqs.s3.4d–s3.7d and s3.10d–s3.15d. Their
relative importances will be discussed in detail in Sec. V. We
have expressed our results in terms of the axial couplinggA.
If one wants, they may be rewritten using thepN coupling
constantg, by means of the relationg=s1+DGTdgAm/ fp,
whereDGT is the so called Goldberger-Treiman discrepancy.

The parametersdi j
± andbi j

± entering these expressions are
determined by subthresholdpN coefficients or, alternatively,
by the LECs of the effective Lagrangian, according to the
results presented in Sec. V of Ref.[25]. Their empirical val-
ues are reproduced in Table I.

The eight functionsSi which carry the spatial dependence
of the potential are dimensionless and given by

S, =
K1s2xd

px2 , s3.16d

Sa = −
e−2x

2x2 , s3.17d

St = −E
0

1

daE
0

1

db
s1 − bd2m/m

Lt
2

e−utx

4px
, s3.18d

Lt
2 = as1 − ads1 − bd2,

ut
2 = fs1 − bd + b2m2/m2g/Lt

2,

S3 =E
0

1

dbE
0

1

da
a2b 4m2/m2

L3
4

e−u3x

8pu3

, s3.19d

L3
2 = as1 − ads1 − bd,

u3
2 = fs1 − abd + a2b2m2/m2g/L3

2 ,

Sb =E
1

`

dcE
0

1

dbE
0

1

da
a2b 4m2/m2

Lb
4

e−ubx

8pub
, s3.20d

Lb
2 = as1 − ads1 − bd − a2b2s1 − c2d/4,

ub
2 = fs1 − abd + a2b2c2sm/md2g/Lb

2,

S̃b =E
1

`

dcE
0

1

dbE
0

1

da
a3b2 4m3/m3

Lb
4

e−ubx

8pub
, s3.21d

S,, = −
1

4p
E

0

1

daE
0

1

db
Îs1 − ads1 − bd

sb + ad
1

x

1

S1

a
−

1

b
D

3FS 4

a2D2e−2x/a

x
− S 4

b2D2e−2x/b

x
G , s3.22d

Stt = −
s4mmd2

p
E

0

1

daE
0

1

db
Gs4m2/adGs4m2/bd

a2b2sa + bd

3
1

x

1

S1

a
−

1

b
D fe−2x/a − e−2x/bg, s3.23d

whereK1sxd is the modified Bessel function and

Gst8d =
2

mÎt8s4m2 − t8d
arctan

Îs4m2 − t8dst8 − 4m2d
t8 − 2m2 .

s3.24d

In Fig. 3 we display the numerical predictions of our
TPEP(full line), obtained by using the parametersdi j

± andbi j
±

given in Table I, fixed by thepN subthreshold coefficients of
Ref. [22]. As we will discuss in the sequence, our chiral
TPEP is theoretically reliable for large distances and defi-
nitely not valid for internucleon separations smaller than
1 fm (shaded area). For the sake of producing a feeling for
the phenomenological implications of these results, we also
plot the medium range components of the Av14[41] and
Av18 [42] versions of the Argonne potential(dotted and
dashed lines, respectively).

The central isoscalar component of the nuclear force is by
far the most important one and the fact that the chiral pre-
diction is consistent with both Argonne versions is rather
reassuring.4 The assessment of the other components is more
difficult, since there are important variations between the
Av14 and Av18 results. In the cases ofVSS

+ , VT
−, VSS

− , where
these variations do not involve signs, it is possible to note a
qualitative agreement with the behavior of the chiral TPEP.
The curves forVSS

+ , VC
−, and VT

− are not far from those of
Av18 whereasVSS

− coincides with the Av14 prediction.
In order to complete the long-distance description of the

NN potential, one has to include the OPEP, which contributes
only to VT

− andVSS
− , through the following expressions:

VT
−uOPEP= −

m

E

m3gA
2

48pm2s1 + 2DGTdsx2 + 3x + 3d
e−x

x3 , s3.25d

VSS
− uOPEP=

m

E

m3gA
2

48pm2s1 + 2DGTd
e−x

x
. s3.26d

These components, which dominate at large distances, are
shown in Fig. 4, together with the corresponding TPEP con-
tributions. The influence of the TPEP only becomes signifi-
cant inVT

− for r ,2 fm, and inVSS
− , for r ,3 fm.

4The leading structure ofVC
+ was discussed in Ref.[43].

TABLE I. Dimensionless subthreshold coefficients; definitions
are the same as in Ref.[25].

d̄00
+ d10

+ d̄01
+ b00

+

−4.72 3.34 4.15 −10.57

d̄00
− d10

−
d̄01

− b̄00
−

7.02 −3.35 −2.05 5.04
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IV. INTERNAL DYNAMICS

In this section we discuss the relative importance of the
contributions originating from the three families of diagrams
presented in Fig. 2. This is motivated by the fact that the
chiral description of the TPEP consists of a well defined field
theoretical structure which depends on external parameters

representing massessm ,md, coupling constantssfp ,gAd, and
LECs sci ,did. In order to be able to obtain predictions, one
has to feed the mathematical structure with the empirical
values of these parameters.

The constants present in theOsq4d potential may be di-
vided into two classes, according to their numerical accuracy.
The values ofm, m, fp, andgA enteringLp

s2d andLN
s1d may be

FIG. 3. (Color online) Chiral
TPEP: central(a), spin-orbit (b),
tensor (c), and spin-spin(d) iso-
scalar, as well as the central(e),
spin-orbit(f), tensor(g), and spin-
spin (h) isovector components,
compared with the corresponding
Av14 and Av18 versions of the Ar-
gonne potential.
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considered as being very precise for the purposes of deter-
mining the TPEP. On the other hand, the constantsci anddi

that appear inLN
s2d and LN

s3d need to be extracted frompN
subthreshold coefficients by means of dispersion relations
and hence may contain both experimental and theoretical
uncertainties. This means that, in the case of the interactions
given in Fig. 2, predictions from families I and II are very
reliable whereas those associated with family III may be less
so. For this reason it is important to establish how the results
discussed in the preceding section depend on the various
families of diagrams.

In order to assess the importance of each family we show,
in Fig. 5, their relative contributions to the components of
the TPEP. A general pattern one can observe is that two-loop
contributions(family II ) are negligible and, in particular, ex-
actly zero forVLS

+ , VSS
+ , andVT

+. The various profile functions
are neatly dominated by either family I or III. The former,
which is very precise, dominates the channelsVC

−, VLS
+ , VSS

+ ,
andVT

+ and a modification on the values of the LECs would
hardly influence the corresponding curves. This can be

viewed as a strong constraint on the construction of phenom-
enological potentials. For the remaining channels, this con-
dition is somehow relaxed, since they are dominated by the
diagrams of family III. If one wishes, the freedom in these
channels may be used to fix experimentally the LECs by
means ofNN data.

V. CHIRAL STRUCTURE

In this section, we discuss chiral scales. In the case of the
central components, these scales can be read directly from
the functionsUC

±, given by Eqs.(3.10) and (3.13). For the
other terms, there is a factorsm2/m2d in the relation between
V± andU±, arising from the nonrelativistic expansion of the
Dirac spinors,(3.5)–(3.7). Thus, in theOsq4d potential, one
expands the corresponding functionsU± up to Osq2d.

The leading term of the chiral TPEP isOsq2d and our
results are written as sums ofOsq2d, Osq3d, andOsq4d con-
tributions. In the cases ofVT

+, VSS
+ , andVC

−, this structure is
mapped directly into the corresponding profile functions. The
other components begin atOsq3d.

In p space, the chiral series involves nucleon three-
momenta, assumed to be small. This means that, inr space,
the chiral structure should become apparent at large dis-
tances. In order to check this, in Fig. 6 we show the ratios of
the chiral layers for the various components of the potential.
In all figures it is possible to note, at large distances, a rather
well defined chiral hierarchy. Corrections are always smaller
than the terms they correct. On the other hand, this hierarchy
tends to break down when distances decrease. We assume
that our results are not physical forr ,1 fm, since this re-
gion corresponds to a higher-energy domain, in which other
degrees of freedom become dynamical and cannot be effec-
tively represented by means of LECs. In two cases, namely,
VC

+ andVLS
− , corrections are large within the region of physi-

cal interest.5

VI. THE HEAVY BARYON APPROXIMATION

The relativistic potential is expressed by Eqs.(3.4)–(3.7),
(3.10)–(3.15), and involves eight basic functions, denoted
generically bySsxd. They are given by Eqs.(3.16)–(3.23),
and represent bubble, triangle, crossed box, planar box,
double bubble, and double triangle diagrams. These func-
tions have been derived by means of covariant techniques
and correspond to the signature of relativity in this problem.
Only the bubble integral can be evaluated analytically and
the other ones are not homogeneous functions of either the
pion mass or external three-momenta. In general, the expan-
sion of the functionsSsxd in powers ofq/m is not math-
ematically defined. However, as discussed by Ellis and Tang

5In Ref. [33], Epelbaumet al. use a different procedure to regu-
larize loop integrals, based on a cutoff scheme, which seems to
improve the convergence of the chiral series. Even though they
work on the HB formalism, the same technique can be applied to
the relativistic case as well. It does not change the long-distance
behavior(see, for instance, their Fig. 2) but significant difference
are expected already at distance of the order ofr =m−1<1.4 fm.

FIG. 4. (Color online) OPEP and TPEP contributions to the
tensor(a) and spin-spin(b) isovector components.
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[29], if one forces such an expansion, one recoversformally
the results of HBChPT. In Ref.[25] we have expanded our
Osq4d p-space relativistic potential in this way and obtained
(inequivalent) expressions that reproduce most of the stan-
dard Osq4d HBChPT results[17,20,21,24]. Differences are

due to the Goldberger-Treiman discrepancy and to the pro-
cedure adopted for subtracting the iterated OPEP. In this sec-
tion, we discuss the numerical implications of the heavy
baryon approximation in configuration space.

We begin by considering the triangle integralSt, given by

FIG. 5. (Color online) Relative
weight of each family in the
TPEP, obtained by dividing the
partial contributions by the full re-
sult.
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Eq. (3.18), that can also be expressed as[27]

St = −
8m

m
E

4m2

`

dt8Imgst8d
e−Ît8/m2x

x
s6.1d

with

Im gst8d =
1

8pÎt8s4m2 − t8d
arctanFÎs4m2 − t8dst8 − 4m2d

t8 − 2m2 G .

s6.2d

The heavy baryon approximation consists in writing

FIG. 6. (Color online) Relative
contribution of each chiral order
to the TPEP. The point in the
curve where the ratio is 0.5 is in-
dicated by a black dot, for the
sake of guiding the eye.
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Im gst8d .
1

16pmÎt8
arctanF2mÎt8 − 4m2

t8 − 2m2 G s6.3d

and treating formally the argument

a =
2mÎt8 − 4m2

t8 − 2m2 s6.4d

as beingOsq−1d. This would suggest that one could use the
result arctana=p /2−1/a+1/3a3+¯ in order to derive
the heavy baryon expansion of the triangle integral. Re-
cently BL f27g have discussed the properties of the spec-
tral representation based on Eq.s6.4d and remarked that
the series for arctan which underlies the heavy baryon
approximation is valid only in the domainuauù1. For
uau,1 one should use arctana=a−a3/3+¯, but this cor-
responds to an expansion ininverse powers of q. They
showed6 that a suitable representation forSt is

St
BL = −

8m

m
E

4m2

`

dt8
e−Ît8/m2x

x

1

16pmÎt8
arctanF2mÎt8 − 4m2

t8 − 2m2 G
s6.5d

<−
1

2pmm
E

4m2

`

dt8
1

Ît8
HFp

2
−

st8 − 2m2d
2mÎt8 − 4m2G

HB

+ F mÎt8

2mÎt8 − 4m2
−

Ît8

2m
arctan

m2

mÎt8 − 4m2G
th
J

3
e−Ît8/m2x

x
. s6.6d

The heavy baryon approximation consists in keeping only
the first bracket in the integrand. However, this does not
cover the regiont8,4m2, where the second term dominates.
As a consequence, the heavy baryon approximation ofSt,
which reads

St → St
HB = F−

e−2x

2x2 GLO

+ F m

2m

2

px2fxK0s2xd + K1s2xdg+GNLO

¯ , s6.7d

is not suitable for all values ofx, as observed numerically in
our previous workf43g. The exponential in the integrand of
Eq. s6.1d shows clearly that, for large values ofx, results are
dominated by the lower end of the integration. Thus, a good
description ofSt at large distances requires a decent repre-
sentation for Imgst8d neart8=4m2.

In Fig. 7 we display the ratios of the various terms of Eq.
(6.6) by Eq. (6.5). Inspecting this figure one learns that the
first two terms of the heavy baryon series do not represent
well the full result. In order to have a good description ofSt

BL

at large distances one has to addSt
th which, as pointed out by

BL, cannot be obtained through the heavy baryon series.

An advantage of the heavy baryon formalism is that it
gives rise to power counting, which is absent in relativistic
baryon ChPT based on dimensional regularization[9]. In or-
der to overcome this difficulty, BL proposed a new regular-
ization scheme, based on a previous work by Ellis and Tang
[29]. The so called infrared regularization(IR) respects the
correct analytic structure around the pointt8=4m2, is mani-
festly Lorentz invariant, and gives rise to power counting.

In the case of the triangle integral, the infrared regularized
expression reads

St
IR = −E

0

1

daE
0

`

db
s1 − bd2m/m

Lt
2

e−utx

4px
s6.8d

with Lt
2 andut given by Eq.s3.18d.

In Fig. 8 we compare the infrared regularized triangle
integralsSt

IRd with that given by Eq.(3.18), obtained through
dimensional regularization. For comparison, we also plot the
results of the heavy baryon formulation at leading(LO) and
next-to-leading(NLO) orders. The relativistic versions of the
triangle integral are numerically identical forr .1.5 fm, in-
dicating that the form of the regularization procedure is ir-
relevant in the region of physical interest.

The discussion about the triangle integral may be ex-

tended to the functionsS3, Sb, and S̃b, associated with
crossed boxand planar box diagrams, and given by Eqs.
(3.19)–(3.21). In appendix G of our previous work[25], we
have shown that these integrals can be written in terms of a
generalized triangle integral, and hence the previous discus-
sion aboutSt also applies to them. The ill-defined heavy
baryon approximations for these results read

S3
HB >

2

px
K0s2xd − Fm

m
Ge−2x

2x
− Fm

m
G2

3H 1

px2f2xK0s2xd + s1 − x2dK1s2xdgJ + ¯ ,

s6.9d6They worked in momentum space.

FIG. 7. (Color online) The heavy baryon expansion of the tri-
angle integral, given by Eq.(6.7), and the relativistic BL correction
sSt

thd, divided bySt
BL.
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Sb
HB >

2

px
K0s2xd − Fm

m
Ge−2x

4x
− Fm

m
G2

3H 1

3px2f2xK0s2xd + s1 − x2dK1s2xdgJ + ¯ ,

s6.10d

S̃b
HB >

e−2x

4x2 − Fm

m
G 2

3px2fxK0s2xd + K1s2xdg Fm

m
G23 e−2x

32x

+ ¯ . s6.11d

The quality of these heavy baryon approximations may be
assessed in Figs. 9–11, where the partial sums are divided by
the relativistic result, Eqs.(3.19)–(3.21).

VII. CONCLUSIONS

In this work we have studied the main features, in con-
figuration space, of a relativisticOsq4d expansion of the two-
pion exchange nucleon-nucleon potential derived recently by
ourselves[25]. Chiral symmetry provides a mathematical
structure for the potential, which has to be fed with numeri-
cal values form, m, fp, gA, and the LECsci anddi. The main
source of uncertainty are the values of those LECs, which
need to be extracted frompN scattering data.

The profile functions for the various nonrelativistic com-
ponents of the potential were compared with two phenom-
enological versions produced by the Argonne group. One
finds good agreement with their central scalar term, which
dominates theNN interaction. In all cases in which the signs
of the Argonne potentials coincide, there is a qualitative
agreement with our results.

FIG. 8. (Color online) The heavy baryon approximation of the
triangle integral.

FIG. 9. (Color online) The heavy baryon approximation ofS3.
The partial sums are divided by the relativistic result, Eq.(3.19).

FIG. 10. (Color online) The heavy baryon approximation ofSb.
The partial sums are divided by the relativistic result, Eq.(3.20).

FIG. 11. (Color online) The heavy baryon approximation ofS̃b.
The partial sums are divided by the relativistic result, Eq.(3.21).
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In order to check how empirical uncertainties can affect
numerical results, we have studied the dynamical content of
the potential in terms of families of diagrams associated with
either thefLp

s2d+LN
s1dg or fLN

s2d+LN
s3dg pieces of the effective

Lagrangian. In all but one case, dynamics is clearly domi-
nated by one of these interactions. In particular,VLS

+ , VT
+, VSS

+ ,
andVC

− are dominated byfLp
s2d+LN

s1dg and hence fixed by the
values ofgA and fp only. The componentsVC

+, VT
−, andVSS

− ,
on the other hand, are dominated byfLN

s2d+LN
s3dg and their

numerical values may be affected by the less certain LECsci
anddi.

Most components of the potential are given as sums of
Osq2d, Osq3d, andOsq4d terms. The relative weights of these
terms of the chiral series have been investigated and one
finds good convergence at large distances. However, there
are two cases, namely,VC

+ andVLS
− , where convergence is not

evident in the region of physical interest. We intend to deal
with this problem elsewhere.

Finally, the relationship between relativistic and heavy
baryon results has been discussed. On the purely conceptual
side, the view seems to be well accepted nowadays that they
cannot be fully equivalent. This is indeed the case and the
numerical implications of this statement in configuration
space were found to be of the order of 5%.
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APPENDIX
Several chiral calculations of the TPEP were carried out

in the last decade. As we pointed out in the Introduction, we
expect, in the spirit of effective theories of QCD, that all
these calculations should eventually converge to a single re-
sult.

It is in this conceptual framework that we discuss here the
relationship between the present work and its earlier ver-
sions, published between 1994 and 1997[13,16]. In Ref.
[25], the Osq4d expansion of the TPEP was performed in
three steps. In step 1, we derived full amplitudes, by using
standard covariant techniques, to evaluate the diagrams of
Fig. 2. At this stage, results were quite similar to those of
Ref. [16], although not identical, as we discuss in the se-
quence. A handicap of the full amplitudes is that they involve
several cancellations and do not exhibit chiral scales explic-
itly. Therefore, in step 2 we derived intermediate results,
which show these scales, by just rewriting the full ampli-
tudes with the help of exact relations among Feynman inte-
grals. We subsequently neglected short distance terms and, in
that region, full and intermediate results became no longer
identical. The transmogrification of the potential was based
on the following relations:7

Relation 01: S̄cc
s000d =

1

3
s1 − =2/4dScc

s000d + ¯ , sA1d

Relation 02: S̄
¯

cc
s000d =

1

15
s1 − =2/4d2Scc

s000d + ¯ , sA2d

Relation 03: f1 − sm/md2=2/4gSsc
s001d

= Scc
s000d −

m

2m
s1 − =2/2dSsc

s000d + ¯ , sA3d

Relation 04: f1 − sm/md2=2/4gSsc
s002d + S̄sc

s000d

= −
m

2m
s1 − =2/2dSsc

s001d + ¯ , sA4d

Relation 05: S̄sc
s000d =

1

2
s1 − =2/4dSsc

s000d

+
m

4m
s1 − =2/2dSsc

s001d + ¯ , sA5d

Relation 06: f1 − sm/md2=2/4gSss
s001d

= Ssc
s000d −

m

2m
s1 − =2/2dSss

s000d + ¯ , sA6d

Relation 07: S̄ss
s000d = − Ssc

s001d + ¯ , sA7d

Relation 08: f1 − sm/md2=2/4gSss
s002d + S̄ss

s000d

= Ssc
s001d −

m

2m
s1 − =2/2dSss

s001d + ¯ , sA8d

Relation 09:

f1 − sm/md2=2/4g2Sss
s002d + f1 − sm/md2=2/4gS̄ss

s000d

=
m2

4m2s1 − =2/2d2Sss
s000d + f1 − sm/md2=2/4gSsc

s001d

−
m

2m
s1 − =2/2dSsc

s000d + ¯ , sA9d

Relation 10: S̄ss
s000d = s1 − =2/4dSss

s000d +
m

2m
s1 − =2/2dSss

s001d

+ ¯ , sA10d

Relation 11: −Ssc
s000d = +

m

2m
s1 − =2/2dSreg

s000d

−
1

Î1 − sm/md2=2/4
Sa + ¯ , sA11d7For the complete details of the notation, please see Ref.[25].
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Relation 12: f1 − sm/md2=2/4gSreg
s002d + S̄reg

s000d = Ssc
s001d + ¯ ,

sA12d

Relation 13: S̄reg
s000d = − Ssc

s001d +
m

2m
s1 − =2/2dSreg

s010d + ¯ ,

sA13d

Relation 14: −
m2

4m2s1 − =2/2d2Sreg
s000d

=
m

2m
s1 − =2/2dSsc

s000d −
m

2m
s1 − =2/2d

3
1

Î1 − sm/md2=2/4
Sb

s000d + ¯ , sA14d

Relation 15: S̄reg
s000d = s1 − =2/4dSreg

s000d −
m

2m
s1 − =2/2dSreg

s010d

+ ¯ . sA15d

In these expressions, the ellipses indicate short range
terms, which have been neglected. In order to produce a
feeling for the accuracy of these approximations, in Table II
we display the quantityDisrd= u1−Risrd /Lisrdu, whereLisrd
Risrd are, respectively, the values of the left and right hand
sides of relationi at point r. Inspection of this table shows
that, although discrepancies may be large at short distances,
in all cases they remain below 1% forr ù1.5 fm.

Finally, in step 3, we obtain theOsq4d expansion of the
TPEP, given in Sec. III, by truncating the results of step 2 at
that order.

We now compare the results of this work with those from
earlier versions. Our 1994 paper[13] dealt with the evalua-
tion of the diagrams given in family I of Fig. 2, which cor-

responds to the minimal realization of chiral symmetry in the
TPEP. The main differences with our present results concern
second order corrections, due to the way variableW, repre-
senting the total c.m. energy, was approximated in the planar
box diagram. In our 1994 paper we usedW=2m, following
Partovi and Lomon[31]. We no longer perform this crude
approximation.

In our 1997 paper[16] we have calculated the diagrams
shown in family III of Fig. 2 and results can be directly
related with those of the present work, provided one estab-
lishes the connection between the two notations. For in-
stance, the central isoscalar potential was formerly written as

VC
+ uIII = −

m

4p

3

2
Hg2m

m
amn

+ f2SBs2m,nd + 2STs2m,nd
V g

+ ak,
+ amn

+ SBs2k+2m,,+nd + g2m

m
bmn

+ f2SBs2m+1,nd
V

+ 2STs2m+1,nd
W g + ak,

+ bmn
+ SBs2k+2m+1,,+nd

V

+ bk,
+ bmn

+ SBs2k+2m+2,,+nd
W + g2m

m
bmn

+ 2STs2m+1,nd
g

+ bk,
+ bmn

+ SBs2k+2m+2,,+nd
q J , sA16d

whereS are Feynman integrals from Ref.f16g andamn
+ and

bmn
+ are linear combinations ofpN subthreshold coefficients.

In order to recast the old results in the form adopted in this
work, one may use the relations

SBs0,nd =
s− 1dn

4p
s1 − =2/4dnScc

000, sA17d

SBs2,nd = SBs0,nd
g = SBs1,nd

V =
s− 1dn

4p
s1 − =2/4dnS̄cc

000, sA18d

SBs4,nd = 3SBs2,nd
g = SBs3,nd

V = s3/2dSBs2,nd
W

=
s− 1dn

4p
s1 − =2/4dnS̄

¯
cc
000, sA19d

STs0,nd
V =

s− 1dn

4p
s1 − =2/4dns− dSsc

001, sA20d

STs2,nd
V = STs1,nd

W + STs1,nd
g , sA21d

STs1,nd
W =

s− 1dn

4p
s1 − =2/4dns− dfSsc

003+ 2S̄sc
001g, sA22d

STs1,nd
g = −

s− 1dn

4p
s1 − =2/4dns− dS̄sc

001. sA23d

The parametersamn
+ and bmn

+ are related to subthreshold
coefficients by

TABLE II. Approximations made in relations among integrals.

Relation r =0.1 fm r =0.5 fm r =1.0 fm r =1.5 fm

1 0.000019 0.000000 0.000000 0.000000

2 0.000004 0.000000 0.000000 0.000000

3 0.004272 0.000001 0.000000 0.000000

4 0.000433 0.000000 0.000000 0.000000

5 0.002478 0.000001 0.000000 0.000000

6 0.056091 0.000002 0.000000 0.000000

7 0.000000 0.000000 0.000000 0.000000

8 0.005502 0.000010 0.000000 0.000000

9 0.271267 0.000347 0.000000 0.000000

10 0.034881 0.000009 0.000000 0.000000

11 0.958301 0.096190 0.000076 0.000312

12 0.000096 0.000030 0.000001 0.000000

13 0.855452 0.134455 0.006010 0.000168

14 1.007437 1.105614 0.066393 0.006432

15 1.554767 0.417655 0.018483 0.000513
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a00
+ = msd̄00

+ + 4m2d̄01
+ + 16m4d̄02

+ d, sA24d

a01
+ = 4m3sd̄01

+ + 8m2d̄02
+ d, sA25d

a02
+ = 16m5sd̄02

+ d, sA26d

a10
+ = m3fd̄10

+ − b00
+ + 4m2sd̄11

+ − b01
+ dg, sA27d

a11
+ = 4m5sd̄11

+ − b01
+ d, sA28d

b00
+ = m3sb00

+ + 4m2b01
+ + 16m4b02

+ d, sA29d

b01
+ = 4m5sb01

+ + 8m2b02
+ d, sA30d

b02
+ = 16m7sb02

+ d. sA31d

Just as an example, using these rules in the case of the
triangle contribution to Eq.(A16) and truncating atOsq4d,
we find

VC
+ uIII

t = −
m

4p

3

2
g2m

m
2fa0n

+ STs0,nd
V + a1n

+ STs2,nd
V

+ b0n
+ sSTs1,nd

W + STs1,nd
g dg sA32d

= + 3fmgS g

4p
D2m

m
fsd̄00

+ + d̄01
+ t + d̄02

+ t2dSsc
001

+ sd̄10
+ + d̄11

+ tdsSsc
003+ 3S̄sc

001dg. sA33d

We have recently checked explicitly all the results of our
1997 paper and found out that they are equivalent with those
of the present work if we make the approximationW=2m.

There are still two important sources of differences be-
tween these two sets of results. The first one is due to the fact
that those of the earlier work were not truncated at a given
order. The second one is that it did not include explicitly the
two-loop diagrams, as we do now. In 1997 these effects were
hidden within thepN subthreshold coefficients and were
therefore double counted. Even if these effects are numeri-
cally small, as we discussed in Sec. IV of this work, this
represents a rather important conceptual difference between
both calculations. As two-loop contributions only arise at
Osq4d, the potential produced in 1997 would be numerically
identical with the present one for distances larger than 1.5 fm
if both of them were truncated atOsq3d.
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