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Relativistic O(g*) two-pion exchange nucleon-nucleon potential: Configuration space
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We have recently performed a relativis@¢q®) chiral expansion of the two-pion exchang#l potential, and
here we explore its configuration space content. Interactions are determined by three families of diagrams, two
of which involve justg, andf,, whereas the third one depends on empirical coefficients fixed by subthreshold
7N data. In this sense, the calculation has no adjusted parameters and gives rise to predictions, which are tested
against phenomenological potentials. The dynamical structure of the eight leading nonrelativistic components
of the interaction is investigated and, in most cases, found to be clearly dominated by a well defined class of
diagrams. In particular, the central isovector and spin-orbit, spin-spin, and tensor isoscalar terms are almost
completely fixed by jusg, andf. The convergence of the chiral series in powers of the rgiion mass/
nucleon massis studied as a function of the internucleon distance and;¥ot fm, found to be adequate for
most components of the potential. An important exception is the dominant central isoscalar term, where the
convergence is evident only for>2.5 fm. Finally, we compare the spatial behavior of the functions that enter
the relativistic and heavy baryon formulations of the interaction and find that, in the region of physical interest,
they differ by about 5%.
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I. INTRODUCTION allows collective excitations, identified as pions. The non-

i _Abelian character of QCD prevents low-energy perturbative
The research program for the study of nuclear interactiong|cylations and, in practice, one works with chiral effective

was outlined more than fifty years ago, in a seminal paper byheories, in which pointlike baryons interact by exchanging
Taketani, Nakamura, and Sasgk]. Pions, then recently de- pjons that have small masses.
tected, were identified as the relevant degrees of freedom for The one-pion exchange potent@®PER became defini-

the construction of a theoretical potential. One-pion ex-ively established in the early 1960s and is assumed to domi-
changes would dominate at large distances, the exchangesgdte completelyNN partial waves with orbital angular mo-
two uncorrelated pions would come next, and a square welnentumL=5. Its mathematical form was determined in the
could be used to simulate short range processes. It is quitt950s and remains stable ever since. One has also learned
remarkable that these ideas could stand for such a long timé&yat any=N interaction Lagrangian, based on either pseudo-
survive the QCD revolution, and still remain as the qualita-scalar or pseudovector couplings, chiral symmetric or not,
tive framework of contemporary research. On the other handy/ields the very same OPEP. Chiral symmetry is thus irrel-
when theNN research program was first established, no preevant for this part of the force, as for all single pion pro-
cise information concerning the intrinsic structure of pionsC€SSes. . ) )
and their interactions with nucleons was available. It took The very opposite happens with the next layer of the in-
about forty years of intense collective work, both experimen-raction, the two-pion exchange potentidPEP. This

tal and theoretical, for this aspect of the problem to be tamecf@MPOnent is closely related to theN scattering amplitude

with the formulation of chiral perturbation theof€hPT). and chiral symmetry becomes extremely important. In the

The present day rationale for describing nuclear interac1960s, no perturbative treatment for strong interactions was

tions by means of chiral symmetry is that low-energy pro_avallable[2] and potentials were constructed which incorpo-

. rated=N information by means of dispersion relatidi3$. In
:f:siso?{(e;rtrﬁ ggltzvgirlg'\?;t%jgg tgi qtﬁgnr?;siggdo??ﬁesethe same decade, chiral symmetry was being developed in a
ugrks are small in the GeV scale. one treats them as pert crjjfferent framework and, with the help of current algebra
4 ' P Lftechniques, low-energy theorems for many pionic amplitudes

bations in a masslgss Lagrangian. The _the_ory IS Sf)/rnrn.etr'\(ﬁ/ere derived. Applications of chiral symmetry N inter-
under the Poincaré group and, in this limit, also invariant

under both isospin and chiral $2) X SU(2) transforma- actions[4], three-body forceg5], and exchange currenfs]

. . . . . began to be performed in the 1970s. At the end of this de-
tions. This last symmetry is realized in the Nambu-Goldston ade, Weinber7] outlined a research program based on the
mode and the QCD vacuum contains a condensate, whi(‘1 ’

ea of ChPT. In the 1980s this theory was fully developed
for the meson sectdB] and began to be used in the study of
meson-baryon interactiorj9)].

*Email address: higa@if.usp.br The systematic use of ChPT in the study of nuclear forces
"Email address: robilotta@if.usp.br began in the early 1990s, through the works of Weinberg
*Email address: crocha40@usit.br [10] and Ordéfiez and van Kolckl1], followed by other

0556-2813/2004/63)/03400916)/$22.50 69 034009-1 ©2004 The American Physical Society



R. HIGA, M. R. ROBILOTTA, AND C. A. DA ROCHA PHYSICAL REVIEW C69, 034009(2004)

authors[12,13. These early attempts to construct a chiral QCD is a well defined theory. This should hold true at the
TPEP considered only pion and nucleon degrees of freedotevel of effective field theory as well. In the case of the
and gave rise to poor descriptions N data. Realistic po- TPEP, we consider the partial convergence between heavy
tentials require other degrees of freedom, which were introbaryon and covariant results @(qg* as a rather welcome
duced in the form of delta§l4], hidden within 7N sub- indication that uniqueness may not be too far ahead. The
threshold coefficientg15,16, or incorporated into low- considerable narrowing of the theoretical discussion in the
energy constantéLECs) of effective Lagrangian$l7-21. last decade represents a measure of the progress promoted by
In spite of apparent differences, there must be a rather imthe systematic use of chiral symmetry, which has allowed
portant overlap among these various approaches. This is eRne t0 understand the internal hierarchies offti\epotential
pected because the numerical values of the LECs are nof terms of chiral layers. Nevertheless, the question still re-
mally obtained from empiricatN subthreshold coefficients Mains open as to the extent this mathematical picture is

which, in turn, are largely dominated by delta intermediate®@cked by nature.

states[22]. So, to a large extent, one is just using different. 'Il'he dchiral _p_ictlilrehmay bﬁ_f?ss$ﬁsed by comparin_gdtheorgt-
languages to express the same physics. Support to this vigig?! and empirical pnase sSnifts. There areé Some windows in
comes from the fact that potentials based on defias, orb!tal angular momentum_and energy for which this com-
subthreshold coefficients23], or LECs [17-19.24 could parison can be performed in the framework of the Born ap-

q tisfact d i f {8l ph proximation. The size of these windows was studied in Ref.
produce saliStactory descriptions of asymp phase 32] and may also be inferred from the rather similar figures
shifts, without free parameters. This suggests that, if on

T ; f Refs.[17,23,24,3B Typical energy domains vary from
could control carefully the_ peculiarities of t_he various ap-»g MeV for D waves to 300 MeV forG waves or higher.
proaches, the hope of having a TPEP as unique as the OPkRytqriunately, these peripheral phase shifts that can be cal-
could be realized. This uniqueness is of major theoreticatyjated within the Born approximation are small, error bars
importance, since it would indicate that the effective theoryare important, and the test of the symmetry is not very strin-
can indeed represent QCD. gent. Outside the Born windows the problem is nonperturba-
In ChPT one uses a typical scadg set by either pion tive and one is forced to resort to dynamical equations,
four-momenta or nucleon three-momenta, such that which iterate the potential and blend interactions with differ-
<1 GeV. The leading term of the chiral TPEPG$g?) and, ent ranges. In the present case, this well known property is
at present, there are two independent expansions of the pilustrated by the figures of Ref32], where it is possible to
tential up toO(g?) in the literature. The first one is based on see that the once iterated OPEP has the same range as the
heavy baryon chiral perturbation theoffyBChPT) [17,20, T_P_EP. Fu_rthermore, solv_ing dynamical equations leads to ad-
where one uses nonrelativistic Lagrangians from the verglitional divergences. This problem may be treated by regu-
beginning and the inverse of the nucleon méss as an  'arizing the potential at short distances, limiting the interme-
expansion parameter. Relativistic corrections, needed &liate momenta in the dynamical equation by means of a

1 . . .
O(g%), are added separatej21]. The alternative calculation CutOﬁ’ and absorbingmost c_n) its dependence in the cou-
was proposed by us recentigs], which is covariant, and pling constants of the potentigd5]. It allows the problem to

. . . e treated perturbatively, but the implementation of a power
results were expressed directly in terms of loop integrals an

. ounting scheme is not unique and always consi t
observable subthresholdN coefficients. In the case afN 9 9 Y 6]

. o Instead of dealing with the nonperturbative problem and
scattering, heavy baryoi6] and relativistic[27,28 results 55 4 interesting alternative of testing chiral predictions, we

do not coincide, due to the presence of some diagramgay assumethat the chiral potential, calculated at a given
[29,3Q that cannot be represented by series in powers Ofrder, determines completely the interaction from a ra@lus
g/m. The same class of diagrams is present in the TPEP anghwards and then use it as an input in phase shift analyses.
the relativistic potential also cannot be expanded in therhis would just amount to extending to the TPEP a proce-
heavy baryon series around the pairt4u?. If this restric-  dure which has already been used for a long time in the case
tion is, nevertheless, ignored and them expansion is per- of the OPEP. For the latter, this idea has proved to be reliable
formed in the relativistic potential, one recovers most of thein the elastic regime and for waves with=5. From the
structure produced by the heavy baryon formalism. The maistandpoint of the symmetry, this happens because chiral cor-
differences take the form of both(g®) andO(q*) terms. The  rections are short ranged and one sees just the leading con-
former may be related to the definition adopted for the podribution through this window, irrespective of the ordergn
tential, which has to suit a dynamical equation and defines &ne is working at. In the case of the TPEP, the corresponding
corresponding treatment for the OPEP iteration. In our workProblem is much more complex and not fully understood.
we followed closely the procedures outlined in Rigf]. At~ Works along this line have already been performed by the
present we cannot check the assumption about the origin ¢fiimegen group[18], who claim that aO(g®) potential is

the O(g® terms, for in HB calculations one finds only final

expressions, without references to dynamical equations OiTng reqyjarization of the nonperturbative problem using a cutoff
details about intermediate steps. The differenceB(gt) are s not mandatory. Phillipet al. [34] argued that it is possible to
due to the Goldberger-Treiman discrepancy and could beegularize numerically a Lippmann-Schwinger equation using di-
easily incorporated into the HB formalism. mensional regularization.
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p 11 b -7 different families. The first one corresponds to the minimal
. realization of chiral symmetry13], includes the subtraction
Tir = ka Kb of the iterated OPEP and involves only the pion-nucleon in-
teractions given b)ﬁf\ll), with the constantm, g, andf . used
at their physical values. The second family contains two-pion
correlations in the channel, determined bﬂﬁ) and Ef).
Finally, the last family includes chiral corrections represent-
ing either higher-order processes or other degrees of free-
dom, hidden into the LECs omﬁ) andﬁﬁ).
effective for distances smaller than 2 fm. However, its con-  This theoretical structure has been fully incorporated into
clusions are disputed by Entem and Machlg&i] and the  our recent evaluation of the amplitudéy, Ref.[25]. In that
situation remains unclear. _ work we have performed a two-step calculation, using the
The present paper is motivated by the feeling that thgact that theNN interaction is closely associated with the
quantitative aspects of chiral hierarchies need to be clearlytf_shell 7N amplitude. This allows one to use many of the
understood if the TPEP is ever to become a reliable tool to beagyits derived by Becher and Leutwylg8] (BL) for the
used in phase shift analyses. Our study is based on the coRn amplitude as inputs into the evaluation of ti#l poten-
figuration space version of th®(q®) potential produced in ta|. Moreover, it clarifies the relationship between the chiral

Ref. [25] and organized as follows. In Sec. Il we discuss theprders of theNN and 7N amplitudes. Using Fig. 1, we write
dynamical content of the TPEP, which is given by a set ofthe O(q") expansion off7p as

Feynman diagrams, organized into three families. The ex-
plicit expressions and corresponding figures for the various

N
=,/
-1
!
H
!
e

FIG. 1. Two-pion exchange amplitude.

components of the potential are given in Sec. lll. As the way ) — _ '_ 1 J d‘Q

chiral symmetry is implemented varies with the family con- ™ 20emt ) | [ - w2K2 - u?]

sidered, in Sec. IV we discuss how dynamics is mapped into [,

the final form of the potential and show that the importance (1) 1M

of the LECs is rather channel dependent. Section. V deals X % [Tand VLT, (2.2

with the convergence of the chiral series and in Sec. VI we
discuss the main differences between the relativistic and (M) , :
heavy baryon approaches to the potential. Finally, concluVNere[TI" is themN amplitude for nucleorti) expanded
sions are presented in Sec. VII. at orderO(g™). The factor within curly brackets in the inte-
grand isO(q%) whereas the leading term .y, as given by

the Weinberg-Tomozawa theoref®8,39, is O(g). Thus

Il. DYNAMICS 7. requiresT . up to O(q").
The dynamical content of the relativistio(g®) chiral This result is important regarding the numerical values of
TPEP is determined by the effective Lagrangian the LECs to be used in the determination of the TPEP, which
depend on the chiral order one is working [40]. These
Let=LP 4L +L@+L, (2.1  constants are not observables and must be obtained from

empirical quantities such as, for instaneeN subthreshold

where£!" and £\’ describe pion-pion and pion-nucleon in- coefficients. In the case of 0@(q*) TPEP, consistency de-
teractions aO(q"). Other degrees of freedom are implicitly mands the use of LECs determined framy, at O(q®).
tal;en into gccount by means of the LEG&ndd;, present in Finally, a further motivation for deriving the TPEP from
£? and£?. The use of covariant Feynman rules with ver- the intermediaterN amplitude is that this stresses the conti-
tices derived from this Lagrangian allows the construction ofnuity of present developments with the seminal works of the
the T matrix TT(‘F?, which describes the on-shell processParis[3] and Stony BrooK4] groups, produced more than
N(py)N(p2) — N(pp))N(p;) and contains two intermediate three decades ago. For this very reason, one becomes better
pions, as represented in Fig. 1. The potential is obtained bgrepared to understand the specific role played by ChPT in
going to the center of mass frame and subtracting the iteratetthis problem.
OPEP, in order to avoid double counting when it is used in
the Lippmann-Schwinger equation.

The dynamical content of the amplitudéé) is given by

the d|agram$ (.Jf Fig. 2. Thg|r full evaluat_lon produces. ampli- The configuration space Schrodinger equation is a rather
tudes containing many different loop integrals, which are

) . . useful tool for calculating low-energy nuclear processes. In
interconnected. The chiral orders of the potential are ex 9 9y P

o N X X
tracted by exploring as much as possible the mathematicéﬂrmmple’ theO(q) r-space potential could be obtained by

) \ . st performing the Fourier transform of our center of mass
relations among the various loop integrals. As the use . S )
. : ._p-space potential, which is written‘as
these results represents an important step in the determina-

tion of the potential, in the Appendix we display their accu-
racy in configuration space. 2In this result, the(+) and (=) upper labels indicate, respectively,
The processes given in Fig. 2 are organized into threéerms arising from the isospin even and og subamplitudes.

IIl. CONFIGURATION SPACE POTENTIAL
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FIG. 2. Dynamical structure of the TPEP. The first two diagrams of family | correspond to the products affBamplitudes, the third
one represents the iteration of the OPEP, and the next three involve contact interactions associated with the Weinberg-Tomozawa vertex. The
diagrams of family Il describe medium range effects due to pion-pion correlations. Interactions represented by famityidigles and
bubbles involving 7N subthreshold coefficients, indicated by the large black dots.

=3t + 279 . A2t (3.1 LMP1d
. " Vigr) = T‘E;d—XU[s(X), (3.9
with
Or. Oss. Qg LM 1d
o Ste+ tLS ot St tQ, (3.2 =7 5l 52 x|V (3.6)
and Q s=i(cV+0?).qxz/4, Qr=—¢*30-§o?-q 2 2d
V.g@), Qs=g?a™ 0@, and Qo=0'Y.qxz 0¥ q Véér):‘%ﬁ o2 x sd¥) (3.7
X z, whereq=p-p’, z=p’ +p, p and p being the center-of-
mass(c.m) momenta of the initial and final nucleons. How- \where =3, 7 =2, x=pur, and
ever, this leads to expressions that contain nonlocal terms,
due to presence of the variable in the energy E . d3k Kot
=\Vm?+q?/4+7%/4, entering the profile functions. In or- Ur(x) =~ 2 )39' tik, 1={CLST,S§ (3.9

der to avoid this kind of complication, we follow the work

of Partovi and Lomori31] and expand the potential in the with k=q/u. This allows the potential to be expressed in
nonlocal operators, keeping only local and spin-orbit conterms of dimensionless configuration space Feynman inte-
tributions. In this approximation, the configuration spacegrals, denoted by, and related to the functiond of Ref.

potential becomes [25] by
V(1) = (Vg + Vg + Vildy + Veddsg + 7 - 72 ko
— X
Ve Visust Vi +Vadlsd (39 = [ e @9
with Q s=L-(6VY+0@)/2, Q;=30V.f6?@ .F-aV.o?), Using the results of Sec. IX of Ref25], we have the
Qs oD@, expansion’

The radial functions are given by

- 3In writing these expressions, we did not consider the relativistic
Ve(r) = 7UE(x), (34 normalization factor, proportional tov/E.
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2 - —
Ug=- dejzf4 [ * } {gA(l +40e7)(1 - VZ2)%(S - §) + { }gi(l - V212)[- ga(28, + V2S) + 8(50+ 5,V )S]

2 , -
+[EH 12;#(1 2V~ 4m(1-VH2S + (1~ v2/2)zsn]+gf*v2(sx+so>} [ Hgf\v“-ztgi[wsowalvzwz

m
+ 51— 2VH3 + VY6) |+ 855+ 5o V2 + (513)(1 - VH4) 2+ %(5{&2(1 —VZ)Z}se}, (3.10
. 3ngz _
U=~ 1287721%|:n%:| {gi[(l -V22)(S,-S) - (3/12 - 5V2/8)S, |+ {ﬂ
2
X [%A(l +2V2-V42) (S +S) + (2g,§V2 - 1365;0(1 —V2/4)>Sg} } , (3.11)
U+ 3m2 2
Up=="=- 56&753 {— OA(1 +4AGT)(L - VZ/4)S, + )] - m (1 -vo2)(8-F) + (1-VI4)S]
+ {Eﬂg—f‘(l -V2/2)%S, + i‘g* (1 —v2/4)s(} (3.12
m|| 4 3/ ’ '
and
3m2 2 4 1 1
Uc=- 1’; > [ﬂ {f—gu +A6)(1 = VZ2)%(S, +§) = 7[Ga(1 + 4Aa7) ~ Ga(1+ 2A6D](1 - VH2)S, +  [Ga(1 + 4Ag7)
2 2
- 2g3(1+ 206y + 1](1 - VH4)S, + H B(L-VA2[Gh(S,~ V25/2) + (6 - DL - VH2)S] + m
gA 2 2 2 2 2 (gi_ 1)
S @=-viI2)- (Gh~ V2B + &+ 53y V2 + yo(1 ~ VIA)/3 + BV 4] 6
_ _ . 2
X (1= V24)[ 550+ 65,V2 + 3571 — V2/4)/5 + 350V2/4]}S€ - [% } e {[2ga(1 - 5V?/6 + V*/5) + 4(g4 — 1)?
X (1 -3V?8 +V*32)/9- 4gi(ga — 1)(1 - 2?72 + V4144 ]S,[gA(1 - VZ/2)% - 2ga(ga — 1)
2 4
X(1-V?2)(1-V?4)/3 +(ga - 1)2(1 - V/4)?]S,}+ [ m} =21 -VZ2)4(V2/4)(S, - so)} (3.13
[
3m? Us wm? ~
Uis=- 15&744 { = HgARs/z 5V28)S, - (1 - V32) Ui=3%= - Taaertrt { HQAR ~V22)§,
X(8+8)]+ 26806 - DL~ Vo4)S + H[(gﬁ— 1) * (- VIS - 20064 - 1- 289 (1 - VIS
o 202 S 2
— == -1- 1-V?2
X(1 - V24)/2 + 42 Bog(1 - V22) - A2 — 1) * [ m][ O(Ga~ 1~ 2Bool( )
— g
X Boo1 = V2/4)13]S, + [m} E1“(1 V22)4S, - S) (g3~ 1~ 2By0)°(1 - V24)13]S,+ [ } 3 ﬂgf’Z
{ } g:;fz[ 2m(1-V2/4)S + (1 - V?/4)%S, ]} X[-2m(1-V44)5+(1 —V2/4)2$t]}, (3.19

(3.19 where the Laplacians act on the variaklel'he chiral orders
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TABLE 1. Dimgnsionless subthreshold coefficients; definitions \,(1 a)(1-b) 1 1
are the same as in RgR5]. (= — db
(b+a) ( 11 )
50 5o 5 Bio a b
2 ~2x/a 2 ~2x/b

-4.72 3.34 4.15 ~10.57 % [(iz) e _ (é) e_} , (3.22
— — — a X X

%00 910 Om Boo

7.02 -3.35 -2.05 5.04

(4m,u)2 G(4u?la)G(4u?lb)

Stt= f f db 212
a‘b“(a+b)

of the various radial functions may be read directly from the
combination of EQs.(3.4—3.7) and (3.10—(3.195. Their = [e
relative importances will be discussed in detail in Sec. V. We x(1 1
have expressed our results in terms of the axial coumjng ( )
If one wants, they may be rewritten using th&l coupling
constantg, by means of the relatiog=(1+Agpgam/f_, whereK;(x) is the modified Bessel function and
whereAg is the so called Goldberger-Treiman discrepancy.

2x/a _ —2X/b:|' (323)

The parameters;; and 8 entering these expressions are () = 2 arctan (4m 2—t )(t' = 4u?)
determined by subthresho’:d\l coefficients or, alternatively, m\/t’(4mz—t’) - 2u?
by the LECs of the effective Lagrangian, according to the (3.24)
results presented in Sec. V of RE5]. Their empirical val- '
ues are reproduced in Table I. In Fig. 3 we display the numerical predictions of our
The eight functions§ which carry the spatial dependence TPEP(full line), obtained by using the parametefsand 3;
of the potential are dimensionless and given by given in Table I, fixed by therN subthreshold coefficients of
Ref. [22]. As we will discuss in the sequence, our chiral
S = K1(2x) (3.16  TPEP is theoretically reliable for large distances and defi-
nitely not valid for internucleon separations smaller than
1 fm (shaded areaFor the sake of producing a feeling for
g X the phenomenological implications of these results, we also
S:= T2 (3.17 plot the medium range components of the Avid] and
Av18 [42] versions of the Argonne potentigtiotted and
_ dashed lines, respectively
S= f j db(l b)2m/,ue G‘X’ (3.18 The central isoscalar component of the nuclear force is by
4mx far the most important one and the fact that the chiral pre-
diction is consistent with both Argonne versions is rather
A2=a(1-a)(1-b)?, reassuring. The assessment of the other components is more

difficult, since there are important variations between the

=[(1-b) + PPl 2YIA?, Av14 and Av18 results. In the cases B V7, Vggq Where

these variations do not involve signs, it is possible to note a

qualitative agreement with the behavior of the chiral TPEP.

S —fldbfld a%b 4m?/ pu? e 0 (3.19 The curves forVgg V¢, and V7 are not far from those of
- “ A% 8l ' Av18 whereas/ggcoincides with the Av14 prediction.

In order to complete the long-distance description of the

2 _ - -
Ax=a(l-a)(1-b), only to V7 andVgq through the following expressions:

6% = [(1 -ab) +a?b>m?/u?J A%, m u’ga X
X o N Viloper= -~ T (1 + A) 0+ X +3 5, (329
a’b 4Pl u? e 0
S= J dcf dbf ST S (320
A 8’7T0b ,lL gA —x

Vedopep= E48m rr12(1 ZAGT)%. (3.26)

A2=a(1-a)(1-b)-a%bX1-cd/4,

NN potential, one has to include the OPEP, which contributes

These components, which dominate at large distances, are

shown in Fig. 4, together with the corresponding TPEP con-

0= [(1 - ab) +a?0*c?(m/w)J/Af, tributions. The influence of the TPEP only becomes signifi-

cant inV7 for r<2 fm, and inVgg for r <3 fm.
_ 0 1 1 3b2 4m3/ 3 be
so=f dcf dbf da—— 5 (3.21)
1 Jo o A, 8

7’ “The leading structure o was discussed in Ref43].
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Vg (MeV)

V&' (MeV)

V" (MeV)

Vg (MeV)

(a)

50 0.5
0 0.0
-50 | -0.5
-100 | -1.0
-150 - ~— Argonne vi4| 4 -1.5
-~~~ Argonne v18
—— Chiral
-200 : - > -2.0
1 2 3 4 5
r (fm)
(b)
20 4 0.20
-5 4 -0.05
! Argonne v14
! ---- Argonne v18
' —— Chiral
-30 - - - -0.30
| 2 3 4 5
r (fm)
(©
40 | ! 104
‘\
‘\
20 - 1 102
\\ \
0 - 0.0
Argonne vi4
o ---- Argonne vi8| |
20 —— Chiral 0.2
0 1 2 3 4 5
r (fm)
(d)
20 - 4020
10 - 4 0.10
0 0.00
Argonne vi4
_10 L ---- Argonne vi8| |
10 —__ Chiral -0.10
0 1 2 3 4 5

T (fm)

IV. INTERNAL DYNAMICS

Vg~ (MeV)

V5" (MeV)

V; (MeV)

- (MeV)

Vs

(e)
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FIG. 3. (Color onling Chiral
TPEP: central(@), spin-orbit (b),
tensor(c), and spin-spin(d) iso-
scalar, as well as the centrad),
spin-orbit(f), tensor(g), and spin-
spin (h) isovector components,
compared with the corresponding
Av14 and Av18 versions of the Ar-
gonne potential.

representing masség,m), coupling constantsf .,g,), and
LECs (c;,d;). In order to be able to obtain predictions, one
In this section we discuss the relative importance of thehas to feed the mathematical structure with the empirical
contributions originating from the three families of diagramsvalues of these parameters.

presented in Fig. 2. This is motivated by the fact that the The constants present in ti@(q®) potential may be di-
chiral description of the TPEP consists of a well defined fieldvided into two classes, according to their numerical accuracy.
theoretical structure which depends on external parametef&he values ofu, m, f., andga entering[,f) andl:(Nl) may be
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viewed as a strong constraint on the construction of phenom-
enological potentials. For the remaining channels, this con-
dition is somehow relaxed, since they are dominated by the
diagrams of family Ill. If one wishes, the freedom in these
channels may be used to fix experimentally the LECs by
means ofNN data.

V. CHIRAL STRUCTURE

In this section, we discuss chiral scales. In the case of the
central components, these scales can be read directly from
the functionsUg, given by Eqgs.(3.10 and(3.13. For the
other terms, there is a factou?/n?) in the relation between
V* and U#, arising from the nonrelativistic expansion of the
Dirac spinors,(3.5—3.7). Thus, in theO(q*) potential, one
expands the corresponding functidd’ up to O(c?).

The leading term of the chiral TPEP ®(g? and our
results are written as sums 6Xqg?), O(g®), andO(g* con-
tributions. In the cases ofy, Vg and Vg, this structure is
mapped directly into the corresponding profile functions. The

other components begin &X(q°).
In p space, the chiral series involves nucleon three-
momenta, assumed to be small. This means that,sipace,
the chiral structure should become apparent at large dis-
tances. In order to check this, in Fig. 6 we show the ratios of
the chiral layers for the various components of the potential.
0.00 In all figures it is possible to note, at large distances, a rather
well defined chiral hierarchy. Corrections are always smaller
than the terms they correct. On the other hand, this hierarchy
~0.20 tends to break down when distances decrease. We assume
that our results are not physical forx1 fm, since this re-
gion corresponds to a higher-energy domain, in which other
" degrees of freedom become dynamical and cannot be effec-
20y : : ‘ 5 940 tively represented by means of LECs. In two cases, namely,
r (fm) V¢ and Vg, corrections are large within the region of physi-
cal interest,
FIG. 4. (Color online OPEP and TPEP contributions to the
tensor(a) and spin-spinb) isovector components.

10 + - 0.20

Vg (MeV)
o

“10r /

VI. THE HEAVY BARYON APPROXIMATION

considered as being very precise for the purposes of deter- The relativistic potential is expressed by E@@4—3.7),
mining the TPEP. On the other hand, the constangndd, (3.10<3.15, and involves elght basic functions, denoted
that appear inc? and £ need to be extracted fromN ~ 9enerically bySx). They are given by Eqs3.16+3.23,

subthreshold coefficients by means of dispersion relation@nd represent bubble, triangle, crossed box, planar box,
and hence may contain both experimental and theoreticlouble bubble, and double triangle diagrams. These func-
uncertainties. This means that, in the case of the interactiorions have been de”Ved by means of covariant techniques
given in Fig. 2, predictions from families | and Il are very and correspond to the signature of relativity in th|s_problem.
reliable whereas those associated with family Il may be les©Only the bubble integral can be evaluated analytically and
so. For this reason it is important to establish how the result1€ other ones are not homogeneous functions of either the
discussed in the preceding section depend on the variodon mass or external three-momenta. In general, the expan-
families of diagrams. sion pf the fu.nctlon§(x) in powers ofg/mis not math-

In order to assess the importance of each family we Sho\,\gmatmally defined. However, as discussed by Ellis and Tang
in Fig. 5, their relative contributions to the components of
the TPEP. A general pattern one can observe is that two-l00ps|, Ret. [33], Epelbaumet al. use a different procedure to regu-
contributions(family 11) are negligible and, in particular, €x- |arize loop integrals, based on a cutoff scheme, which seems to
actly zero forVjs, Vgg andVz. The various profile functions improve the convergence of the chiral series. Even though they
are neatly dominated by either family | or Ill. The former, work on the HB formalism, the same technique can be applied to
which is very precise, dominates the channéls V['s, Vég  the relativistic case as well. It does not change the long-distance
andV7 and a modification on the values of the LECs would behavior(see, for instance, their Fig) dut significant difference
hardly influence the corresponding curves. This can bere expected already at distance of the order=gi 1~1.4 fm.
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[29], if one forces such an expansion, one recovemally  due to the Goldberger-Treiman discrepancy and to the pro-
the results of HBChPT. In Ref25] we have expanded our cedure adopted for subtracting the iterated OPEP. In this sec-
O(g*) p-space relativistic potential in this way and obtainedtion, we discuss the numerical implications of the heavy
(inequivalen} expressions that reproduce most of the stanbaryon approximation in configuration space.

dard O(g* HBChPT results[17,20,21,2% Differences are We begin by considering the triangle integ&l given by
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Eqg. (3.18), that can also be expressed[ad3]

with

Im (t

8m ([~ e‘\““‘mX
st:——f dt'Imy(t’) ——— (6.2)
M 4,u,2 X

!):

PHYSICAL REVIEW C69, 034009(2004)

FIG. 6. (Color onling Relative
contribution of each chiral order
to the TPEP. The point in the
curve where the ratio is 0.5 is in-
dicated by a black dot, for the
sake of guiding the eye.

V(4P —t')(t' - 4u?)

8wt/ (4P —t') '[ t'—2p?

(6.2

The heavy baryon approximation consists in writing
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1 2m\,’t, _ 4,&2 1.3 L T T T T T T 1 T
Im y(t') = —arcta{,— (6.3 | -

7 167va’,t_’ t' - 2u?

and treating formally the argument 15 | |
2mt’ - 4u?
=T R (6.4)
t - 2,LL 8 S’HB(LO)/SIBL

. . =11 HB BL g

as beingO(q™). This would suggest that one could use the & ——= S, (LO+NLO)/S,

result arctany=m/2-1/a+1/3a%+--- in order to derive e (S RS, R
the heavy baryon expansion of the triangle integral. Re-
cently BL[27] have discussed the properties of the spec- 4

tral representation based on E®.4) and remarked that e,

the series for arctan which underlies the heavy baryon ree T
approximation is valid only in the domaifn|=1. For I

|a|] <1 one should use arctare a—a>/3+: -+, but this cor- 0 ——————

responds to an expansion inverse powers ofq. They
showed that a suitable representation fgris
FIG. 7. (Color online The heavy baryon expansion of the tri-

2 I
o 8m [~ qt’ eVt —arctar{ 2myt’ - 4,u2} anhgle integral, giveLn by Eq6.7), and the relativistic BL correction
pJ g2 X 16mmt’ t' — 22 (S, divided by ",
(6.5 An advantage of the heavy baryon formalism is that it
gives rise to power counting, which is absent in relativistic
1 o 1 T (' -2u?) baryon ChPT baseq on djmensional regularizaf@nin or-

~— f = {— - =] der to overcome this difficulty, BL proposed a new regular-

2mmpd 2 NU L2 2mVt - 4u? | ization scheme, based on a previous work by Ellis and Tang

I I 2 [29]. The so called infrared regularizatigiR) respects the

pNt vt o’ X . -

+ - —arctan———= correct analytic structure around the poiht4u®, is mani
th

2mvt’ — 4u? 2w myt’ — 4u? festly Lorentz invariant, and gives rise to power counting.
s In the case of the triangle integral, the infrared regularized
X : (6.6) expression reads
X

Lo (1-b)2miue
R_ _ V-
Sk= fo olaj0 db (6.8

The heavy baryon approximation consists in keeping only A2 Amx
the first bracket in the integrand. However, this does not '

cover the regior’ ~4u?, where the second term dominates. with A? and 6, given by Eq.(3.18.

As a consequence, the heavy baryon approximatiofy,of In Fig. 8 we compare the infrared regularized triangle
which reads integral(§7) with that given by Eq(3.18), obtained through
L0 dimensional regularization. For comparison, we also plot the
S — S—IB - [_ e_] results of the heavy baryon formulation at lead{h®) and
2x2 next-to-leadingNLO) orders. The relativistic versions of the

> NLO triangle integral are numerically identical for>1.5 fm, in-
+ {ﬂ—z[xKo(zx) + K1(2x)]+} <, (8.7) dicating that the form of the regularization procedure is ir-
2max relevant in the region of physical interest.

is not suitable for all values of, as observed numerically in The discussion about the trlanglg integral may be ex-
our previous work43]. The exponential in the integrand of tended to the functionsS,, S, and S, associated with
Eq. (6.1) shows clearly that, for large values xifresults are ~ crossed boxand planar box diagrams, and given by Egs.
dominated by the lower end of the integration. Thus, a good3-19+3.2D. In appendix G of our previous worfe5], we
description ofS at large distances requires a decent reprehave shown that these integrals can be written in terms of a
sentation for Imy(t’) neart’ =4u?. generalized triangle integral, and hence the previous discus-
In Fig. 7 we display the ratios of the various terms of Eq.Sion about$ also applies to them. The ill-defined heavy
(6.6) by Eq.(6.5). Inspecting this figure one learns that the baryon approximations for these results read
first two terms of the heavy baryon series do not represent g 2 wle | ul?
well the full result. In order to have a good descriptiorSpf SP= —XKo(ZX) Tl |Im
at large distances one has to atﬁﬂ:iwhich, as pointed out by m

BL, cannot be obtained through the heavy baryon series. 1
X §[2xK0(2x) +(1=XKy (2] [ + -+,

They worked in momentum space. (6.9
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FIG. 10. (Color onling The heavy baryon approximation §.
The partial sums are divided by the relativistic result, E320).

VII. CONCLUSIONS

In this work we have studied the main features, in con-
figuration space, of a relativist®(q*) expansion of the two-
pion exchange nucleon-nucleon potential derived recently by
ourselves[25]. Chiral symmetry provides a mathematical
structure for the potential, which has to be fed with numeri-
cal values foru, m, f, ga, and the LECg; andd;. The main
source of uncertainty are the values of those LECs, which
need to be extracted fromN scattering data.

The profile functions for the various nonrelativistic com-
ponents of the potential were compared with two phenom-
enological versions produced by the Argonne group. One
finds good agreement with their central scalar term, which

The quality of these heavy baryon approximations may belominates thé&IN interaction. In all cases in which the signs
assessed in Figs. 9—-11, where the partial sums are divided lof the Argonne potentials coincide, there is a qualitative
the relativistic result, Eqg3.19—3.21).

Ratios

FIG. 9. (Color onling The heavy baryon approximation &f.
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FIG. 11. (Color onling The heavy baryon approximation ’é,g
The partial sums are divided by the relativistic result, E321).
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In order to check how empirical uncertainties can affect ) —<o0p _ 1 ) 000
numerical results, we have studied the dynamical content dRelation 01: S0 = 31-v 1S+ - (A1)
the potential in terms of families of diagrams associated with
either the[/:f>+£§j)] or [Lﬁ)ﬂjﬁ)] pieces of the effective L
Lagrangian. In all but one case, dynamics is clearly domi ; . Q000 — T 1 _w2/4)2000 , ...
nated by one of these interactions. In particig, V7, Vg Relation 02: $2= 15(1 VIR (A2)
andV; are dominated b{/ﬁf)+£f\ll)] and hence fixed by the
values ofg, and f,. only. The component¥¢, V7, andVgg
on the other hand, are dominated b&(NZ>+£§f)] and their
gﬁ(rjnéai.ncal values may be affected by the less certain L&Cs  _ S0 _ %(1 ~V22)S00 4 ... (A3)
Most components of the potential are given as sums of
O(g?), O(g®), andO(q*) terms. The relative weights of these _
terms of the chiral series have been investigated and orf@elation 04: [1 —(u/m)2vZ/4]3%%? + §2%0
finds good convergence at large distances. However, there
are two cases, namely¢; andV{ s, Where convergence is not =- i(1 —V2/2)§5%°1) + e (A4)
evident in the region of physical interest. We intend to deal 2m
with this problem elsewhere.
Finally, the relationship between relativistic and heavy — 1
baryon results has been discussed. On the purely conceptUélation 05: S2°0 = 5(1 - Vv%4)s2
side, the view seems to be well accepted nowadays that they
cannot be fully equivalent. This is indeed the case and the
numerical implications of this statement in configuration
space were found to be of the order of 5%.

Relation 03: [1 —(M/m)2V2/4]5(s(éOD

lad 2 001)
+ 1-V<2 o A5
L VAI2SE (A5)

Relation 06: [1 - (u/m)?v?%/4]9%0?
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APPENDIX Relation 08: [1 - (u/m)2v?%/4]520? + g000

Several chiral calculations of the TPEP were carried out
in the last decade. As we pointed out in the Introduction, we = S0 — ﬂ(l -v%2)so 4 ... | (A8)
expect, in the spirit of effective theories of QCD, that all 2m
these calculations should eventually converge to a single re-
sult. ; .

Itis in this conceptual framework that we discuss here theReIatlon 09 o
relationship between the present work and its earlier ver- [1—(,u/m)2V2/4]ZS<5202’+[1—(,u/m)2V2/4]S<5200)
sions, published between 1994 and 1993,1§. In Ref. )
[25], the O(g*) expansion of the TPEP was performed in  _ Iu_(l—VZ/Z)ZS(SOOO)+[1—(/.L/m)2V2/4]S§OOD
three steps. In step 1, we derived full amplitudes, by using an? s ¢
standard covariant techniques, to evaluate the diagrams of
Fig. 2. At this stage, results were quite similar to those of - £—(1-v2/2)S% + ... (A9)
Ref. [16], although not identical, as we discuss in the se- 2m
guence. A handicap of the full amplitudes is that they involve
several cancellations and do not exhibit chiral scales explic- — u
itly. Therefore, in step 2 we derived intermediate resultsRelation 10: gsgoo):(l—VZM)i%O@*'En(l—V2/2)gs%OD
which show these scales, by just rewriting the full ampli-
tudes with the help of exact relations among Feynman inte- FR (A10)
grals. We subsequently neglected short distance terms and, in
that region, full and intermediate results became no longer
identical. The transmogrification of the potential was baseqRelation 11: -§%° = +i(1 -Vv2/2)5%0
on the following relations: 2m 9

1

_ - G 4+ ... All
"For the complete details of the notation, please see [RBF. Nl —(,U,/m)2V2/4Sa )
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TABLE Il. Approximations made in relations among integrals.

Relation r=0.1fm r=0.5 fm r=1.0 fm r=1.5fm

1 0.000019 0.000000 0.000000 0.000000
2 0.000004 0.000000 0.000000 0.000000
3 0.004272 0.000001 0.000000 0.000000
4 0.000433 0.000000 0.000000 0.000000
5 0.002478 0.000001 0.000000 0.000000
6 0.056091 0.000002 0.000000 0.000000
7 0.000000 0.000000 0.000000 0.000000
8 0.005502 0.000010 0.000000 0.000000
9 0.271267 0.000347 0.000000 0.000000
10 0.034881 0.000009 0.000000 0.000000
11 0.958301 0.096190 0.000076 0.000312
12 0.000096 0.000030 0.000001 0.000000
13 0.855452 0.134455 0.006010 0.000168
14 1.007437 1.105614 0.066393 0.006432
15 1.554767 0.417655 0.018483 0.000513

PHYSICAL REVIEW C69, 034009(2004)

responds to the minimal realization of chiral symmetry in the
TPEP. The main differences with our present results concern
second order corrections, due to the way variaberepre-
senting the total c.m. energy, was approximated in the planar
box diagram. In our 1994 paper we uséf-2m, following
Partovi and Lomor31]. We no longer perform this crude
approximation.

In our 1997 papefl6] we have calculated the diagrams
shown in family Il of Fig. 2 and results can be directly
related with those of the present work, provided one estab-
lishes the connection between the two notations. For in-
stance, the central isoscalar potential was formerly written as

3] ou o
Vel = T s 2{ 2= r[ZSB(zmn)"'zsr(zmn)]

2 M v
+ Qg S 2k om¢+m) + O aﬁar[zss(zmﬂ,n)
W + ot Qv
+ ZSl’(2m+1,n)] + ak€:8mnSB(2k+2m+1,€+n)

W M
+ B;fﬂ%nse(2k+2n‘r+2,€+n) +J aﬂ:nnzggf(Zmﬂ,n)

Relation 12: [1 - (u/m)2V%/4]1S30% + Sﬁooo LV L
(A12) + BeBrmrSBakeome2,64m) { » (A16)
whereS are Feynman integrals from RéfL6] and «;,, and
Relation 13: S0 = - %%+ = 21 ~V2)S%0+ -, Bhnare linear combinations afN subthreshold coefficients.
2m In order to recast the old results in the form adopted in this
(A13)  work, one may use the relations
% Soom = )n(l v2/4)n Lo, (A17)
Relation 14:  ——(1-V%2)’5%° on =
4m g
~ 2/9y(000 _ M 2 n
=—(1-V?2 - —(1-V?%2 1)
m( e m( ) Sazn = Son = S\B/(l,n) (1 - V24", (A18)
\ 1- ('“/ m)“ve/4 Saam =382 = Sz = (312 S52n)
" - )n(l V2/4)“s§ (A19)
Relation 15: S09° = (1 - vZ/4)S29° - (1 V212)S937
+ e (A15)
— 17 - V2/4)"(- ), A20
In these expressions, the ellipses indicate short range ST(On A - 4 )"(=) (A20)
terms, which have been neglected. In order to produce a
feeling for the accuracy of these approximations, in Table Il v W
we display the quantity\;(r)=|1-R(r)/L;(r)|, whereL;(r) Stem = Stium * S (A21)
Ri(r) are, respectively, the values of the left and right hand
sides of relationi at pointr. Inspection of this table shows (_ )"
that, although discrepancies may be large at short distances, Sm = (1 V24)" (= )[04 2004 (A22)

in all cases they remain below 1% fore 1.5 fm.

Finally, in step 3, we obtain th®(g*) expansion of the
TPEP, given in Sec. I, by truncating the results of step 2 at
that order.

We now compare the results of this work with those from
earlier versions. Our 1994 papgr3] dealt with the evalua-

S'ﬁm,nﬁ—(_ )(1 vZ4)n(- )L (A23)

The parameters,,, and g, are related to subthreshold

tion of the diagrams given in family | of Fig. 2, which cor- coefficients by

034009-14



RELATIVISTIC O(g* TWO-PION EXCHANGE.. PHYSICAL REVIEW C 69, 034009(2004

ago= g+ 4u?dy, + 16udy,) (A24) Vi = - iggMZ[aSnS\r’(o - aJ{nS\r/(g )
w27 m : :
_ _ W
agy = 4u3(dgy + 8u’dgy), (A25) + Bon(Sriem + Stan)] (A32)
I S 01
— — N | Mt + + .2
ag, = 16u>(dyy), (A26) =+ 3["‘]( 47T> m[(doo+ dyt + doat?) 02
— — + (dfp+ dj ) (S0 + 300 1. (A33)
+ - 3rdt — ht 2(4F _ 1t
@10 #7100~ Boo * 4x7(dhy = boy) ], (A27) We have recently checked explicitly all the results of our

1997 paper and found out that they are equivalent with those
5 s of the present work if we make the approximatidfF 2m.
ayy = 4p(dy; — byy), (A28) There are still two important sources of differences be-
tween these two sets of results. The first one is due to the fact
that those of the earlier work were not truncated at a given
order. The second one is that it did not include explicitly the
two-loop diagrams, as we do now. In 1997 these effects were
+ _ 4 5t 24+ hidden within the#N subthreshold coefficients and were
Boa = 4u"(boy + 8oy, (A30) therefore double counted. Even if these effects are numeri-
cally small, as we discussed in Sec. IV of this work, this
Boz= 161" (155,). (A31) represents a rather important conceptual difference between
both calculations. As two-loop contributions only arise at
Just as an example, using these rules in the case of th®(q?), the potential produced in 1997 would be numerically
triangle contribution to Eq(A16) and truncating aO(q*,  identical with the present one for distances larger than 1.5 fm
we find if both of them were truncated &(q°).

Boo= 13(050+ 4y, + 16107y, (A29)

[1] M. Taketani, S. Nakamura, and M. Sasaki, Prog. Theor. Phys[14] C. Ordéfiez, L. Ray, and U. van Kolck, Phys. Rev. Lé&t2,
VI, 581(1951). 1982 (1994); Phys. Rev. C53, 2086 (1996); N. Kaiser, S.

[2] M. Taketani, S. Machida, and S. Ohnuma, Prog. Theor. Phys.  Gerstenddrfer, and W. Weise, Nucl. Phys637, 395(1998.
7, 45 (1952; A. Klein, Phys. Rev.91, 740 (1953; K. A. [15] R. Tarrach and M. Ericson, Nucl. Phy8294, 417(1978; M.

Brueckner and K. M. Wilsonibid. 92, 1023(1953. R. Robilotta,ibid. A595, 171(1995.
[3] W. N. Cottingham and R. Vinh Mau, Phys. Re%30, 735 [16] M. R. Robilotta and C. A. da Rocha, Nucl. Phy&615, 391
(1963; W. N. Cottingham, M. Lacombe, B. Loiseau, J. M. (1997).

Richard, and R. Vinh Mau, Phys. Rev. B, 800 (1973; M. [17] N. Kaiser, R. Brockman, and W. Weise, Nucl. Phy%625,
Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Coté, P. 758 (1997).

Pires, and R. de Tourreil, Phys. Rev.21, 861 (1980. [18] M. C. M. Rentmeester, R. G. E. Timmermans, J. L. Friar, and
[4] G. E. Brown and J. W. Durso, Phys. Le85B, 120(1971); M. J. J. de Swart, Phys. Rev. Let82 4992(1999; M. C. M.
Chemtob, J. W. Durso, and D. O. Riska, Nucl. PhB88, 141 Rentmeester, R. G. E. Timmermans, and J. J. de Swart, Phys.
(1972. Rev. C 67, 044001(2003.
[5] S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D.[19] E. Epelbaum, W. Glockle, and UIf-G. MeiBner, Nucl. Phys.
W. E. Blatt, and B. H. J. McKellar, Nucl. PhysA317, 242 A637, 107(1998; A671, 295(2000.
(1979. [20] N. Kaiser, Phys. Rev. B4, 057001(200D.
[6] M. R. Robilotta and C. Wilkin, J. Phys. @&, L115(1978). [21] N. Kaiser, Phys. Rev. &5, 017001(200D.
[7] S. Weinberg, Physica A6, 327 (1979. [22] G. Hohler, inNumerical Data and Functional Relationships in
[8] J. Gasser and H. Leutwyler, Ann. Phy@\.Y.) 158 142 Science and Technologyedited by H. Schopper, Landolt-
(1984. Bdrnstein New Series, Group |, Vol. 9, Subvol. b, Pt. 2
[9] J. Gasser, M. E. Sainio, and A. Svarc, Nucl. PhB807, 779 (Springer-Verlag, Berlin, 1983G. Hohler, H. P. Jacob, and R.
(1988. Strauss, Nucl. PhysB39, 273(1972.
[10] S. Weinberg, Phys. Lett. B251, 288 (1990; Nucl. Phys. [23] J.-L. Ballot, C. A. da Rocha, and M. R. Robilotta, Phys. Rev. C
B363 3(1991). 57, 1574(1999.

[11] C. Ordoiiez and U. van Kolck, Phys. Lett. 21, 459(1992). [24] D. R. Entem and R. Machleidt, Phys. Rev. @5, 014002
[12] L. S. Celenza, A. Pantziris, and C. M. Shakin, Phys. Rev. C (2002.
46, 2213(1992; J. L. Friar and S. A. Coonipid. 49, 1272 [25] R. Higa and M. R. Robilotta, Phys. Rev. &, 024004(2003.

(1994); M. C. Birse,ibid. 49, 2212(1994). [26] N. Fettes and U.-G. Meil3ner, Nucl. Phy&679, 629 (200J);
[13] C. A. da Rocha and M. R. Robilotta, Phys. Rev.40, 1818 A640, 199(1998.
(1994). [27] T. Becher and H. Leutwyler, Eur. Phys. J. € 643(1999.

034009-15



R. HIGA, M. R. ROBILOTTA, AND C. A. DA ROCHA PHYSICAL REVIEW C69, 034009(2004)

[28] T. Becher and H. Leutwyler, J. High Energy PhyR)6 17 Rev. C 61, 044002(2000.
(2001). [35] P. Lepage, e-print nucl-th/9706029.

[29] H.-B. Tang, hep-ph/9607436; P. J. Ellis and H.-B. Tang, Phys[36] S. R. Beane, P. F. Bedaque, M. J. Savage, and U. van Kolck,
Rev. C 57, 3356(1998; K. Torikoshi and P. Ellisjbid. 67, Nucl. Phys.A700, 377 (2002.
015208(2003. [37] D. R. Entem and R. Machleidt, e-print nucl-th/0303017.

[30] U.-G. MeiR3ner, inAt the Frontier of Particle Physics: Hand- [38] S. Weinberg, Phys. Rev. Letl7, 616 (1966.
book of QCD edited by M. ShifmanWorld Scientific, Sin-  [39] Y. Tomozawa, Nuovo Cimento A6, 707 (1966.

gapore, 200} Vol. 1, p. 417. [40] M. Mojzi§ and J. Kambor, Phys. Lett. B76, 344 (2000.
[31] M. H. Partovi and E. Lomon, Phys. Rev. B, 1999(1970. [41] R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C
[32] J.-L. Ballot and M. R. Robilotta, Z. Phys. 855 81 (1996. 29, 1207(1984.
[33] E. Epelbaum, W. Gltckle, and U.-G. Meil3ner, Eur. Phys. J. A[42] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
19, 125(2004. 51, 38(1995.

[34] D. R. Phillips, I. R. Afnan, and A. G. Henry-Edwards, Phys. [43] M. R. Robilotta, Phys. Rev. B3, 044004(2001).

034009-16



