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The 3N forces due top-r ,p-s, andp-v exchanges following from the nucleon Born diagrams and dia-
grams with an intermediateN*s1440d are reanalyzed. The cancellation betweenp-s andp-v forces is rather
sensitive to the values of the coupling constants and to the form of thepNN vertex. Experimental uncertainties
in the parameters of the Tucson-Melbournep-p potential are assessed. They lead to uncertainties in theoretical
predictions of the triton binding energy of about ±0.4 MeV. The low-energy limit ofp-s andp-v potentials
is performed. It defines the coupling constants of effective contactpNNNNvertices, which are compared with
the corresponding contact vertices of chiral perturbation theory.
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I. INTRODUCTION

Nucleon-nucleonsNNd and three-nucleons3Nd potentials
to be used in calculations of properties of few nucleon sys-
tems at low and intermediate energies are these days success-
fully modeled through meson exchanges. ModernNN poten-
tials based on this picture provide an impressive description
(with x2/datum,1) of theNN scattering data below the pion
production threshold and of the deuteron properties[1,2].
These potentials often employ the underlying meson-nucleon
dynamics only in one-boson-exchange approximation. One
reason for this is clearly the desire for a relatively simple
formalism, but it was also supported by extensive studies of
the Bonn group[3] which showed numerous cancellations
between classes of diagrams with two and more exchanged
mesons. The meson-exchange approach with heavy meson
(and nucleon) resonances has been supplemented recently by
a model-independent construction from a low-energy realiza-
tion of QCD: chiral perturbation theory(ChPT). While some
theoretical uncertainties in the formulation of this theory per-
sist [4], the construction of theNN potential in this frame-
work is already approaching maturity[5–7] with the next-to-
next-to-leading-order(NNLO) potential also describing the
NN data fairly well. Moreover, a recent paper[8] by the
Jülich-Bochum group provides a detailed comparison of
ChPT with phenomenological potentials based on heavy me-
son exchange, and shows that the low-energy constants of
ChPT appearing in the two-nucleon sector of the chiral La-
grangian agree reasonably well with those following from
reducing the heavy meson operators to their contact form.
Therefore a mutual positive influence between the two ap-
proaches should be expected for the future: the phenomeno-
logical potentials should provide a hint on the values of the
chiral low-energy constants(which are not always easily ob-
tained from the experiment) and the chiral constraints should
be imposed on the phenomenological models at low ener-
gies. In this spirit some studies of ChPT 3N force were per-
formed [9,10], although more extensive numerical calcula-

tions are still needed. To describe the data one might have to
consider the chiral 3N force from the next order of the chiral
expansion[10].

In the present paper we investigate the role of some short-
range heavy meson exchanges in the 3N potential with re-
spect to the binding energy of the 3N system. In addition to
the dominantp-p component of the 3N potential[11,12], we
include the force following fromp-r exchange[13] and the
terms involvingp-v or p-s exchanges from Ref.[14]. The
latter potentials were obtained both from diagrams with the
Roper resonanceN*s1440d [Fig. 1(b)] and from the nucleon
Born terms (often imprecisely called pair orZ diagrams)
where an off-mass-shell nucleon propagates in the interme-
diate state[Fig. 1(a)]. All contributions of the Born diagrams
are of relativistic order. The parts with negative energy
propagation, being genuine “Z diagram” contributions, are
included in the irreducible 3N potential. Also the part with
off-shell nucleons propagating with positive energy cannot
be omitted. These terms differ, in general, from the iteration
of the NN potential (which is not to be included in the 3N
force and has to be subtracted from the total amplitude ex-
plicitly ) and thus also contribute to the 3N potential.

The purpose of this paper is to study the effects of the 3N
forces based on pion-pion and pion-heavy-meson exchanges.
It is discussed how strongly they depend on experimental
uncertainties in the determination of the phenomenological
constants in terms of which these potentials are param-
etrized, and on the model dependence of the nucleon Born
contributions. These inherent uncertainties should provide—
for such semiphenomenological meson exchange models—
theoretical error bars of the calculated bound state energy of
the trinucleon system.

The latest version of the phenomenological Tucson-
Melbourne (TM) p-p potential [11,12] is parametrized in
terms of three constantsa,b,andd. These constants are de-
termined frompN scattering data and we look at the varia-
tions of the triton binding energy within the range of their
experimental uncertainty, complementing thereby the usually
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studied sensitivity to the variation of the form factor cutoff
parameter.

The pion–heavy-meson exchange contributions contain
also some not very well determined constants, in particular,
the coupling constants in vertices involving the Roper reso-
nanceN* . But besides that the Born terms also depend on the
employed form of thepNN couplings. It is often assumed
that the pseudovector(PV) coupling is preferable: this is
based on the experience with modeling relativistic one-pion-
exchangeNN potentials where the pseudoscalar(PS) pNN
coupling implies unrealistic enhancement of the intermediate
negative energy states. It is also claimed that a PV coupling
is preferred because it does not require the nonminimal con-

tact terms to conform with chiral symmetry in processes like
pion electroproduction on the nucleon.

However, in constructing thepN scattering amplitude, or
amplitudes of heavy meson production in pion absorption on
the nucleon, one has to be more careful. In these cases one
cannot state that the use of PV coupling minimizes the con-

tact Lagrangians: while it is true for the isospin-evenc̄cF2

vertex, the isospin-odd contact Weinberg-Tomozawa interac-
tion is actually close to zero in the representation with PS
coupling. If one tries to include the heavy mesons the situa-
tion becomes even less clear: to include them one has to
extend the symmetry in a model dependent way, e.g., to re-
quire the local SU(2) 3 SU(2) symmetry dynamically real-
ized (and broken) either in the Yang-Mills fashion or using
the concept of hidden symmetry realization. The construction
of these(approximately) chiral symmetric Lagrangians in-
cluding heavy mesons is thus model dependent. It does not
allow to formulate the consistent chiral counting scheme and
even at the tree level the dynamical content has not been
sufficiently constrained by detailed analysis of wide range of
hadronic processes, which they, in principle, should describe.

In this paper we therefore consider only the Born ampli-
tudes and the amplitudes with intermediate excitation of the
Roper N*s1440d resonance, which have been proposed in
Ref. [14], and have never been included in realistic calcula-
tions of trinucleon bound states. Since we conclude from the
reasoning above that there is no strong reason to prefer the
Born contributions obtained with PVpNN coupling, we cal-
culate also their PS version. In contrast with Ref.[14] we
include all these potentials in 3N Faddeev calculations ex-
actly, i.e., without using perturbation theory. Their contribu-
tions to the binding energy are given individually.

Finally, we relate some of these short-range 3N potentials
to the corresponding counterterms from the chiral Lagrang-
ian. We have deduced from the potentials with heavy meson
exchange the effective contact low-energy four-nucleon–pion
coupling constants and attempted to relate them with the
constants of NLO interactions of ChPT[10,15]. When the
heavy meson propagator is reduced to a point, it appears that
the pion–heavy-meson 3N potentials with PSpNN coupling
are closer to those obtained from the contact low-energy
four-nucleon–pion NLO interactions of ChPT[10,15] than
their PV pNN versions. Nevertheless, the comparison with
chiral low-energy constants is not straightforward, since
some of the effective interactions we obtained by taking the
point limit are not included in the NLO interactions of ChPT,
and can be transformed to that form only after certain ap-
proximation. This approximation, however, does not seem to
be numerically supported by results of our model calcula-
tions.

This paper is organized into the following sections. Sec-
tion II contains an overview on 3N forces. Section III pre-
sents the long-long and the long-short 3N forces and the
numerical results. Section IV determines the low-energy con-
stants and Sec. V gives a summary and conclusions.

II. BRIEF OVERVIEW OF 3 N FORCES

Chiral symmetry has been recognized as an important
guideline for the construction of nuclear forces, into which

FIG. 1. (Color online) Contributions to the 3N force. Diagrams
for (a) nucleon Born contributions,(b) intermediate Roper reso-
nance, and(c) p rescattering. Diagrams(a) and(b) involve one pion
and one heavy-meson exchange. They are called “long-short range
3N forces.” From diagrams(a), iterations of theNN potential are
removed, as described in Appendix A. Diagram(c) involves only
pion exchanges. It is called a “long-long range 3N force.” The me-
son momenta are defined asqi =pi8−pi , i =1,2,3.
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the pN amplitude enters as one of its building blocks, long
before the advent of ChPT. The process of incorporating con-
straints from chiral symmetry(breaking) into theoretical
studies of the two-nucleon interaction was pioneered by
Brown [16] in the early 1970’s. Later, the same ideas were
applied to the 3N force, for which two different approaches
were developed in parallel.

(i) One is based on the concept of partially conserved
axial-vector current(PCAC) and the current algebra(CA)
formalism, built from equal-time commutation relations for
vector and axial-vector currents. It underlies the well-known
TM two-pion-exchange 3N force [11,12] represented in Fig.
1(c). It goes beyond the staticP-waveD contribution to the
pN amplitude, the only building block considered in its pre-
decessor, the Fujita-Myazawa 3N force. Current algebra and
PCAC provide an elastic pion-nucleon scattering amplitude
which includes the pion-nucleons term, a direct measure of
chiral symmetry breaking, which can be extracted from ex-
periment.

(ii ) The other approach stems from the so-called “effec-
tive chiral Lagrangians” for thepN system. The first ex-
ample of this approach is the Gell-Mann and Levy linear
sigma model. Another example is the chiral Lagrangian with
pseudovectorpN coupling, which underlies the construction
of the so-called Brazilian 3N force in Ref. [17]. More re-
cently, ChPT, based on the Weinberg Lagrangian[18]
supplemented by multinucleon contact terms, became a sys-
tematic way to approachNN and 3N forces [19], and was
applied to the description of low-energy hadronic physics.

In particular, it was realized in Ref.[15] that although the
construction of the TM two-pion exchange 3N force employs
chiral constraints forpN scattering through CA, it missed
further constraints, which arise from embedding that ampli-
tude in the 3N system. The conclusion was that the TM form
of the two-pion-exchange force contained a spurious term
corresponding to contact terms between two nucleons and
pions sNNppd. This spurious term can be generated also in
ChPT with the help of a pion field redefinition. But at the
same time an additional two-nucleon contact term arises
sNNNNpd, which has not been taken into account by the TM
group and which exactly cancels the first spurious contact
sNNppd contribution. As a net result, the so-calledc term of
the TM force should be dropped and the so-calleda term is
modified. We present here the effects of the chirally imposed
changes to the TM force on the triton binding energy. A
previous calculation of these effects[20] used a less realistic
NN interaction and a variational numerical method.

The CA program was extended to describe alsopN-rN
transitions, from which ap-r exchange 3N force can be
constructed. It seems natural to include such a mechanism,
given the important interplay betweenp andr exchange in
two-nucleon potentials. To model thep-r 3N force, one can
use vector-meson dominance to access ther analog of the
off-mass-shell pion electroproduction. Chiral symmetry is in
this case supplemented by gauge invariance to constrain the
Ward identity amplitude.

The interest in the short-range 3N forces increased in mid
1990’s, when it was found that the lack of binding energy of
the triton is not the only experimental signature of a 3N
force. According to Ref.[21] a spin-orbit structure of the 3N

force, not present in the standard two-pion exchange based
forces, may solve systematic deviations between the theoret-
ical and the experimental maximum of the nucleon vector
analyzing power Aysud in elastic nd scattering below
30 MeV. The TM or the Brazilian 3N force either produces
no sizable effect or even worsens the disagreement with the
data. But the study of Hüberet al. [9] indicated that the
short-long range forces with a structure similar to that given
by p-s andp-v exchanges with an intermediate Roper reso-
nanceN* [14] and suggested by the NLO ChPT[15] could
potentially improve the description ofAy. Similarly, a purely
phenomenological spin-orbit 3N force yields a noticeable
improvement of the description of this observable[22].

More recently, Epelbaumet al. [23] showed that theAy
discrepancy is indeed absent at NLO. However, theNN in-
teraction employed does not match the high quality of con-
temporary descriptions ofNN scattering data, in particular,
for the crucial tripletP waves[7,21]. The NLO chiral poten-
tial gives aqualitativedescription of the phase shifts only for
very small energiessø10 MeVd, but for a truly quantitative
fit one has to include NNLO corrections[6,7]. Entem and
Machleidt showed that no low-x2 NN potential, neither one
based on heavy-meson exchanges nor one constructed from
ChPT, can solve theAy puzzle, since a good fit to theNN
phase shifts(in particular, in the3Pj channel) does not allow
the variation needed to fix this spin observable. In a recent
paper of Epelbaumet al. [10] it was found that NNLONN
and leading-order 3N chiral potentials still do not solve the
Ay problem completely. Also the Urbana 3N force (a Fujita-
Myazawa force with a short-range regularization determined
phenomenologically through a fit to the triton binding en-
ergy) does not provide a solution. An interesting alternative
was suggested by Cantonet al. [24], who constructed an
additional 3N force by reducingp-3N equations below the
pion threshold. Their force is very similar in spin-isospin
structure to thep-s andp-v forces with intermediate Roper
resonance discussed above, but it is multiplied by a part of
an energy-dependentNN T matrix.

In addition to the mentionednd scattering problem, a
good description of neutron-rich light nuclei is only possible
[25] when a phenomenological 3N interaction with three
pion exchanges is added to the original Urbana force[26].
Finally, let us mention that while realisticNN potentials
alone predict an equilibrium density for symmetric nuclear
matter that is too high, phenomenological 3N forces can
change it in the right direction[27].

This overall picture indicates that the long-rangep-p 3N
force needs to be complemented by other physical
mechanisms.

III. LONG-LONG AND LONG-SHORT RANGE
3N FORCES

The phenomenology of theNN interaction shows that the
most important meson exchanges in every realistic one-
boson-exchange potential are exchanges of the pion, of the
vector r and v mesons, and of the(fictitious) scalars me-
son. Therefore, one should also investigate the role of such
exchanges in the modeling of a 3N force.
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A. p-p exchange force

Given the importance of the one-pion-exchange potential
(OPEP) in determining the long-range part of theNN inter-
action, it was natural that the first 3N force considered was
the two-pion exchange. The corresponding diagram is shown
in Fig. 1(c), where the blob represents all possible pion res-
cattering processes. The iteration of the OPEP has to be sub-
tracted from this Feynman diagram, since it is generated au-
tomatically by iterating theNN potential in the Faddeev
equation. ThepN amplitude tpN entering the 3N force in-
volves virtual pions. This off-mass-shell continuation is con-
strained by the soft pion low-energy theorems. In this paper,
we adopt the(modified) TM version ofp-p force, which has
been constructed to explicitly conform with these require-
ments.

The TM p-p 3N force [11,12] was generated by applying
the Ward identities of CA to the amplitude of axial-vector
current scattering on the nucleon. Using PCAC, the resulting
pN amplitude, in the even and odd isospin channels, was
written as an expansion in powers of the momentum transfer
t and the crossing variablen=ss−ud /4M. Then the “reality
test” was applied with the successful result that CA predicts
the first four coefficients of the expansion in good agreement
with the empirical subthreshold expansion coefficients ob-
tained from dispersion relations. Therefore, it was possible to
use accurate empiricalpN data to construct the nearly
model-independent TM force. The dispersion analysis has
been updated over time with the inclusion of new data, there-
fore the coefficients of the TM force have also evolved.

In terms of physical mechanisms, the non-Born part of the
TM pN amplitude contains terms that can be interpreted as
t-channels and r exchanges, as well as contributions from
the D resonance in the intermediate state. The contributions
of the subtracted nucleon Born diagrams were analyzed in
detail in Refs.[28,29] and it was later shown numerically
that they are relatively small[30], at least as far as their
contribution to the triton binding is concerned.

As argued in Ref.[15], the TM pN amplitude, although
constructed from CA and obeying the chiral constraints in
the pN sector, should not be simply attached to two addi-
tional nucleon lines, since that would be inconsistent with
the chiral counting for the 3N potential. More precisely, the
TM pN amplitude can be derived from the usual chiral La-
grangian after the pion field redefinition

p8 = ps1 − cdN†N, s1d

wherec<s / smp
2 fp

2d is the constant of the TMc term. The
original chiral Lagrangian in the “natural” representation ac-
quires after such redefinition two additional termssrelevant
up to the order consideredd

DLs1d = − c N†NHsp8 ]m]mp8 + mp
2p82d

+
gA

2fp

fs=N†d · st · p8N + N†t · p8s · s=NdgJ .

s2d

The TM amplitude includes the term corresponding to the
first part ofDLs1d (the c term proportional toq2

2+q3
2), but in

the construction of the TM 3N potential the second term
(which involves two nucleons) was not considered. There-
fore, according to Ref.[15], the TM c term should be
dropped and itsa term should be replaced bya8=a−2mp

2 c.
The TM p-p force modified in this way was recently
adopted in Ref.[20] and labeled TM8(99). However, we
would like to point out that it is not correct to transform
away the wholec term, because it includes the contribution
from the Born diagrams—that contribution arises naturally
also in ChPT in its usual representation. Nevertheless, since
this residualc term is rather small and thep-p force is not
the main subject of interest of this paper, we avoid introduc-
ing further redefinitions of the TM force and we adopt TM8
(99) for our numerical calculations.

Thus, thep-p potential used in this paper reads

Wpps1d = − s2pd3 g2

4m3ss2 ·q2dss3 ·q3dD̃psq2dD̃psq3d

3 hst2 · t3dfa8 − b q2 ·q3g

− sit1 · t2 3 t3ddsis1 ·q2 3 q3dj + 2↔ 3, s3d

where we use for the meson momentaqi =pi8−pi, so that they
are always pointing away from the “active” nucleon as
shown in Fig. 1scd sto avoid confusion, we note that the
different convention with the first pion incoming and the
second outgoing from the active line rescattering “blob” is
also often used in discussion of this potentiald. The overall
momentum conservation is then given byq1+q2+q3=0. The

functionsD̃Bsqd are defined to contain the propagator func-
tion of the mesonB and the square of the strongBNN form

factorD̃Bsqd=FBNN
2 sq2d / smB

2 +q2d. The full potential contains
additional four terms following from Eq.s3d by cyclic per-
mutations.

The parameters of the TM8 (99) force are given by

a8 =
s

fp
2 − 2mp

2S s

mp+
2 fp

2 −
g2

4m3 + FpNN8 s0d
s

fp
2 D , s4d

b = −
2

mp+
2 FF̄+s0,mp+

2 d −
s

fp
2 G , s5d

d = −F B̄−s0,0d
2m

+
g2

4m3G . s6d

Here, s is the pion-nucleon sigma term,g is the pNN

coupling constant,fp the pion decay constant,F̄+sn ,td and

B̄−sn ,td are isospin-even non-spin-flip and isospin-odd spin-
flip t-channelpN amplitudes, respectively, with the nucleon
pole term subtracted[11]. Note that we distinguish between
the mass of the charged pions,mp+=139.6 MeV, and the
isospin averaged pion massmp=138.0 MeV. Although their
difference is small, it affects the 3N force parameters in a
noticeable way. The vertex form factor

J. ADAM, JR., M. T. PEÑA, AND A. STADLER PHYSICAL REVIEW C69, 034008(2004)

034008-4



FpNNsq2d =
LpNN

2 − mp
2

LpNN
2 + q2 s7d

depends on the cutoff parameterLpNN, which in the original
TM force was taken to be 5.8mp in order to be consistent
with a Goldberger-Treiman discrepancy of 3 % deter-
mined at the time. Based on more recent data, the
Goldberger-Treiman discrepancy shrank to about 2 %,
which corresponds toLpNN close to 7.1mp. On the other
hand, LpNN is frequently tuned to reproduce the triton
binding energy in calculations that include only thep-p
exchange part of the 3N force. Such calculations require
much lower values, close to 4mp. Clearly, the functional
form of the form factor is not much constrained by the
knowledge of the coupling constantgFpNNsq2d at the two
points q2=0 andq2=mp

2 and thus does not allow a strict
determination of a cutoff mass. We keep therefore the by
now traditional reference valueLpNN=5.8mp as our stan-
dard one, but also vary it then between the limits indicated
above to study the sensitivity of the results. In particular,
we investigate the question whether the short-range forces
are able to reduce the strong cutoff dependence, as one
may expect from arguments of ChPT.

Adopting the values [20] g2=172.1, F̄+s0,mp+
2 d

=−0.05mp+
−1, B̄−s0,0d=8.6 mp+

−1, s/ fp
2 =1.40mp+

−1, and
LpNN=5.8 mp, we obtain the coefficients given in Table I.
Note thata8 depends weakly onLpNN, a dependence often
ignored in practical calculations that vary the cutoff mass.

While the rather strong dependence of the 3N binding
energy onLpNN has been recognized as a source of signifi-
cant uncertainty, little attention has been paid to uncertainties
originating from the experimental errors in the other param-
eters of the TMp-p exchange force. Since the first publica-
tion of the TM force, the experimentally determined values

of g2, F̄+s0,mp+
2 d, B̄−s0,0d, and s / fp

2 have changed several
times, leading each time to updated force parametersa8, b,
andd, according to Eqs.(4)–(6). We estimate here how these
experimental uncertainties propagate into uncertainties of the
triton binding energyEt.

For simplicity, we introduce the dimensionless variables

x =
s

fp
2 mp+, y = g2, z= F̄+s0,mp+

2 dmp+,

u = B̄−s0,0dmp+
2 , s8d

L̄ =
L

m
, r =

m

mp+
, q =

m

m
, s9d

as well as the dimensionless force parameters

ā = a8m, b̄ = bm3, d̄ = dm3. s10d

Using this notation, Eqs.s4d–s6d become

ā = xrS1 − 2r2 − 2
L̄2 − 1

L̄4
D +

1

2
q3y, s11d

b̄ = − 2r3sx − zd, s12d

d̄ = −
1

4
q3y −

1

2
r2qu. s13d

Adding (independent) errors in quadrature, and taking
into account the relations(11)–(13), we arrive at the follow-
ing expression for the square of the uncertainty inEt due to
the uncertaintiesDx, Dy, Dz, andDu in x, y, z, andu:

sDEtd2 =FrS1 − 2r2 − 2
L̄2 − 1

L̄4
D ] Et

] ā
− 2r3] Et

] b̄
G2

sDxd2

+ F1

2
q3S ] Et

] ā
−

1

2

] Et

] d̄
DG2

sDyd2 + F2r3] Et

] b̄
G2

sDzd2

+ F1

2
r2q

] Et

] d̄
G2

sDud2. s14d

Note that it is simpler to vary the three constantsā, b̄, andd̄
instead of the four experimental valuesx, y, z, andu, but one
has to keep in mind that the former are not independent from
each other.

The partial derivatives]Et /]ā, ]Et /]b̄, and ]Et /]d̄, are
calculated numerically for the standard set of parameters of

Table I at L̄=5.8. As estimates of the experimental uncer-
tainties inx andz we use the values given in Ref.[20], Dx
=0.25 andDz=0.05. As a reasonable estimate forDy we
choose the difference between the current valuey=172.1 and
the one used in the original TM force,y=179.7, yielding
Dy=7.6. The valueu=8.1 is given in Ref.[20] without indi-
cation of the error. Assuming that the specified digits are
indeed significant, we setDu=0.1.

The numerical results for the partial derivatives ofEt with

respect toā, b̄, and d̄, and the corresponding values ofDEt
are shown in Table II for the TMp-p force in combination
with various NN potentials. In each case,DEt is roughly

TABLE I. Expansion coefficienta8 of thepN amplitude used in
the TM p-p force as a function of thepNN vertex cutoff parameter
LpNN, in units of the isospin averaged pion mass. The other coef-
ficientsb andd do not depend onLpNN and have the valuesmp

3b
=−2.801 andmp

3d=−0.754.

LpNN/mp mpa8

4.1 −1.203

5.0 −1.154

5.8 −1.127

6.5 −1.112

7.1 −1.101
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0.4 MeV. This is a significant value which clearly shows that
the dependence onLpNN is not the only source of uncertainty
in predictions ofEt.

A closer inspection of Eq.(14) reveals thatDEt is almost
completely dominated byDx, the uncertainty in the pion-
nucleons term. One can easily derive the approximate form

DEt
app< 2

] Et

] b̄
Dx, s15d

the results of which are also shown in Table II and come
very close to the full result, confirming that the uncertainties
in the other parameters are secondary as long as the pion-
nucleons term is not determined with significantly better
accuracy.

Since Eq.(15) is a lower limit of Eq.(14) one also has to
conclude that currentlypredictionsof the triton binding en-
ergy employing the TM force cannot be made with a better
accuracy than ±0.4 MeV. Clearly, adding other contributions
to the 3N force will further increase this uncertainty.

B. p-r exchange force

In the NN potential,r-meson exchange provides impor-
tant contributions to the tensor and spin-orbit components.
Its role is enhanced by the large anomalousrNN coupling
kr, connected(via vector-meson dominance) to the anoma-
lous isovector magnetic moment of the nucleon. Thep-r
exchange was therefore always considered the next most im-
portant part of the 3N force [13,29,30] after p-p exchange.
In this paper we will take another look at its contributions
stemming from the nucleon Born diagrams. The TMp-r
exchange force also includes processes with intermediateD
resonance excitations, which numerically turn out to be
equally important. In our calculations thep-r potentials with
intermediateD resonance are included in the form(and with
the corresponding parameters) specified in Ref.[30].

The nucleon Born contributions to thep-r 3N force are
derived in Appendix A. They depend significantly on the
form of the pNN coupling. For the PVpNN coupling one
gets

WprT
PV+s1d = − s2pd3g2gr

2

4m3 fst2 · t3ds1 ·q3

− sit1 · t2 3 t3ds1 ·Q1gs2 ·q2 D̃psq2dD̃rsq3d

+ 2↔ 3, s16d

WprS
PV+s1d = 0, s17d

whereas for the PSpNN coupling

WprT
PS−s1d = − s2pd3g2gr

2s1 + krd
4m3 st2 · t3ds1 ·q3 s2 ·q2

3D̃psq2dD̃rsq3d + 2↔ 3, s18d

WprS
PS−s1d = + s2pd3g2gr

2

4m3 sit1 · t2 3 t3dfs1 ·Q3 + s1 + krdis1

3 s3 ·q3gs2 ·q2 D̃psq2dD̃rsq3d + 2↔ 3, s19d

where againqi =pi8−pi, Qi =pi8+pi. The subscriptsS and T
refer to the exchange of the space and time components of
the r field, respectively. For brevity, we will call the corre-
sponding terms “spacelike” and “timelike.” The superscripts
PS and PV correspond to the type ofpNN coupling, the
superscripts “+” stand for the contribution of the positive
energy nucleon Born diagrams as derived in Appendix A,
superscripts “−” denote the “true” pairsor Z diagramd terms.

In the numerical calculations we keep thep-r force pa-
rameters of Refs.[13,30], with the exception ofg2 which is
updated to the value of TM8(99) (see Table III).

The terms proportional toQi are nonlocal and have been
omitted so far from 3N potentials, mainly because of the
difficulties associated with performing calculations with non-
local interactions in coordinate space. Working in momen-
tum space, we are, in principle, not hampered by nonlocali-
ties. However, in this paper we focus on the relation between
traditional meson-theoretical 3N forces and the 3N forces
derived from ChPT where nonlocal terms are discarded.
Hence it would not be useful to keep those terms in our
calculations, and we neglect them as well.

The above results illustrate one important point. One can-
not rely on the nucleon Born terms alone to yield the most
important contribution to the 3N force. In particular, it would
be incorrect to claim that since the PVpNN coupling is
“more consistent” with the important chiral symmetry re-
quirement, one should use the above potentialsWprT

PV+ and
WprS

PV+. Indeed, the construction of thep-r 3N force by the

TABLE II. Numerical results for the partial derivatives of the
triton binding energy with respect to the TMp-p force parameters
and resulting uncertainties according to Eqs.(14) and (15).

Reid Paris Nijmegen 93 Bonn B

]Et /]ā 0.080 0.090 0.095 0.095

]Et /]b̄ 0.725 0.745 0.845 0.750

]Et /]d̄ 0.545 0.470 0.540 0.505

DEt 0.377 0.389 0.440 0.393

DEt
app 0.362 0.372 0.423 0.375

TABLE III. Masses, couplings, and cutoff parameters that ap-
pear in the 3N forces. For ther and thev mesons there are also the
tensor/vector coupling ratioskr=6.6 andkv=0.0, respectively. The
parameters of thep andr mesons are taken from the TM8(99) force
and from Ref.[30]; the parameters of thev meson are taken from
the Bonn B potential. Thes meson parameters are determined in
Appendix B.

Meson
Mass

(MeV) g2/4p g*2 /4p Cutoff

p 138 13.6953 2.1664 LpNN=LpNN* =5.8mp

r 768.3 0.81 LrNNsDiracd=12mp

LrNNsPaulid=7.4mp

s 584 10.3251 0.6 LsNN=LsNN* =1995 MeV

v 782.6 24.5 1.4237 LvNN=LvNN* =1850 MeV
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TM group [13] via the extension of CA to include vector
meson dominance, has shown that its most important part—
the so-called Kroll-Ruderman(KR) term—follows (in the
theory with PV coupling) not from the nucleon Born term,
but from an additional contact term required by gauge invari-
ance of the pion photoproduction amplitude. This is, of
course, very similar to the situation for the leading-order
isovector meson exchange currents: there the nucleon Born
term with PS coupling gives the most important contribution
(which is supplemented by the pion-in-flight diagram),
whereas the Born term for PV coupling does not contribute
and gauge invariance requires the presence of the contact
interaction. The KR contact term happens to be opposite in
sign to the chiral contact term, arising from the chiral rota-
tion from the PV to PS coupling and introduced in Appendix
A. Thus, it appears reasonable to adopt for thep-rS ex-
change potential just that KR term, i.e., to take

WprS
KR = − WprS

cont= WprS
PS−. s20d

But then it would seem natural to take for the timelike ex-
change the correspondingWprT=WprT

PS−, which is enhanced
by the large factor 1+kr compared toWprT

PV+. Note, that in
Ref. f14g sin which the Born contributions to thep-rS
where first derivedd an expression identical toWprT

PV+ is
listed for the timelike part, whileWprS

PS− sthe KR termd is
given for the spacelike part.1

We do not intend to imply by the discussion above that
the PSpNN coupling is to be preferred in this context. In
fact, trying to make any preference for the Lagrangian in-
volving heavy mesons is meaningless(unless one attempts to
extend the global chiral symmetry to a local one and builds a
model which provides all relevant contact terms[31]). We
only want to point out that more simplistic approaches(like
the one of this paper and that of Ref.[14]: taking only the
Born terms with a hope that they contain the most important
effects) do not give an unambiguous prediction. Besides, the
r-T contribution can be comparable to others when it is en-
hanced by the large factor 1+kr, as it happens for PS cou-
pling.

C. p-s and p-v exchange force

Sinces andv meson exchanges play an important role in
one-boson-exchange(OBE) models of theNN interaction,
they contribute naturally also to the 3N force. Short-range
p-s and p-v 3N potentials were introduced in Ref.[14].
They are derived from diagrams with intermediate positive-
energy nucleons with PVpNN coupling.

Unlike in the p-p force, the Born terms inp-s and
p-v potentials[Fig. 1(a)] are rather large. As thep-r poten-
tials from the preceding section, they depend on the type of
pNN coupling. We also include additionals andv exchange
contributions generated by excitations of the intermediate
nucleon to the Roper resonance[14] [Fig. 1(b)].

Thep-s andp-v potentials corresponding to the nucleon
Born diagrams follow immediately from the expressions de-
veloped in Appendix A. Forp-s exchange we get

Wps
PV+s1d = + s2pd3g2gs

2

4m3 st1 · t2ds1 ·q3 s2 ·q2

3D̃psq2dD̃ssq3d + 2↔ 3, s21d

Wps
PS−s1d = − s2pd3g2gs

2

4m3 st1 · t2ds1 ·q2 s2 ·q2 D̃psq2dD̃ssq3d

+ 2↔ 3, s22d

and forp-v exchange

Wpv
PV+s1d = − s2pd3g2gv

2

4m3 st1 · t2ds1 ·q3 s2 ·q2 D̃psq2dD̃vsq3d

+ 2↔ 3, s23d

Wpv
PS−s1d = − s2pd3g2gv

2s1 + kvd
4m3 st1 · t2ds1 ·q3 s2 ·q2

3D̃psq2dD̃vsq3d + 2↔ 3. s24d

In Ref. f14g, only the potentials for PV coupling are given.
Since kv is very small, the results forp-v do not depend
much on the type of thepNN coupling. However, thep-s
potentials do differ. For PV coupling, thep-s andp-v po-
tentialsWps

PV+s1d and Wpv
PV+s1d have identical structure but

opposite sign. Therefore, as in the case of theNN interac-
tion, a strong cancellation between thep-s and p-v 3N
interactions occurs. For small momenta, the sum of these
potentials is proportional to

gs
2

ms
2 −

gv
2

mv
2 , s25d

just as for the correspondingNN potentials. For the poten-
tials with PS coupling, Eqs.s22d and s24d, such a cancella-
tion does not take place. However, they would cancel if the
potentials24d did not change much when the momentumq3
is replaced by the −q2. As discussed later, this is exactly the
momentum replacement needed to extract the low-energy
constantssLECsd of ChPT. Therefore we calculate thep-s
potential in both forms. The extent of the cancellations be-
tween s and v exchanges depends also on the numerical
values of the masses and coupling constants of thes andv
mesons.

While we are trying to parametrize the 3N forces as con-
sistent as possible with theNN potentials they are combined
with, we face a problem with thes meson. The onlyNN
potential with explicits exchange we are using is Bonn B.
Its s meson, however, is not a pure scalar-isoscalar particle,
but has also a scalar-isovector component. This is reflected in
the fact that thes mass, thesNN coupling constant, and
cutoff mass are different inNN isospin 0 and 1 channels.

In order to get a true OBE representation ofs exchange,
we keep for the 3N potential only the part of the Bonns
meson which corresponds to pure isoscalar exchange. The

1There are, unfortunately, two misprints in Eq.(2.8) of Ref. [14]:
a factor ofs1+krd is missing in the second term and the first term
has an extra factor 2.
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parameters of ours are then related to the Bonns such that
a simple OBE form, consistent with the way it is imple-
mented in the 3N forces, is obtained. Details of this proce-
dure can be found in Appendix B.

The forces originated from excitations of the Roper reso-
nance read

Wps
* s1d = − s2pd3 gg*gsgs

*

2sm* − mdm2st1 · t2ds1 ·q2 s2 ·q2

3D̃psq2dD̃ssq3d + 2↔ 3, s26d

Wpv
* s1d = + s2pd3 gg*gvgv

*

2sm* − mdm2st1 · t2ds1 ·q2 s2 ·q2

3D̃psq2dD̃vsq3d + 2↔ 3. s27d

Herem* is the mass of theN*s1440d resonance. We would
like to stress that the form of these potentials depends on
the structure of theNN*s andNN*v vertices. We adopted
the very simple choice used in Ref.f14g. The form of
these effective vertices follows from the quantum numbers
of the baryon stateN* and of thes andv mesons, neglect-
ing any possible dependence on the substructure of these
particles. Even for the simple choice of theN* vertices of
Ref. f14g, theoretical predictions of the corresponding
coupling constantssand their ratiosd from quark models
are hampered by the uncertain quark content ofN* ,
whereas their extraction from experimental data can be
done only in an indirect and model-dependent way.

The strength of thepNN* coupling is calculated from the
partial decay width ofN* →N+p. The recent determination
[32] based on the valueGsN* →Npd=228 MeV gives2

fpNN*
2

4p
= 0.0117, g* =

2m

mp

fpNN* = 5.22. s28d

The couplings for thesNN* andvNN* vertices are more
difficult to pin down. The coupling constant ofsNN* , ex-
tracted from the partial decay width ofN* →N+sppdS−wave

I=0 ,
depends critically on the assumed mass and width of thes
resonance[32]. The “s meson”(with zero width) employed
in the parametrization of the OBE potentials simulates not
only sppdS−wave

I=0 , but also other scalar-isoscalar exchanges.
Such a phenomenologicals exchange was used in a recent
analysis[33] of the inelastic scatteringa+p→a+X, from
where the effective coupling constant ofsNN* was extracted
as

gs
*2

4p
= 1.33 s29d

with ms=550 MeV.This is much larger than typical values
obtained from the Roper resonance decayf32g.

On the other hand, Ref.[14] extractsgs
*2 /4p=0.1, which

is even smaller than all values of Ref.[32]. Given this wide

spread of coupling constants in the literature, we adopt the
intermediategs

*2 /4p=0.6 as our standard value, but calculate
also the two extreme cases in order to observe the sensitivity
of the results with respect to the choice of this parameter.

For vNN* we follow Ref.[14] and determinegv
* from the

ratio

gv
* = gv

gs
*

gs

, s30d

which follows from a naive constituent quark model. The
sum of the 3N potential with intermediate Roper resonance
andp-s andp-v exchanges is then roughly proportional to

−
gs

*

gs
S gs

2

ms
2 −

gv
2

mv
2 D . s31d

Therefore we can expect the same amount of cancellation
betweens andv terms in 3N forces with Roper excitations
as in NN potential and 3N Born contributions. However,
since the simple scaling rule of coupling constants is theo-
retically not very well founded, we also use sets of param-
eters that do not satisfy Eq.s30d.

D. Numerical results

We calculated the triton binding energies and 3N wave
functions for Hamiltonians containing bothNN and 3N po-
tentials by solving the nonrelativistic 3N Faddeev equations
in momentum space exactly.

The 3N potentials are expressed in terms of Jacobi mo-
menta in the center-of-mass frame of the 3N system, and
decomposed into partial waves in a basis ofj j coupling
states. Because of the complexity of the resulting numerical
problem, we restrict ourselves to those partial waves in
which theNN pair total angular momentum does not exceed
2, which corresponds to 18 different three-body channels.
Details of the formalism and the numerical methods are de-
scribed in Ref.[34].

The main purpose of these calculations is to compare the
effects of the various contributions to the 3N force which
were described in the previous sections on the triton binding
energy. In order to study also the dependence of our results
on theNN interaction included in the Hamiltonian, we used a
number of differentNN potentials, namely, Reid[38], Paris
[39], Nijmegen 93[2], and Bonn B[40].

In Tables IV and V we show the triton binding energies
for various Hamiltonians where the 3N forces of the previous
sections are added successively.

Most of the new short-range potentials considered in this
paper contributeindividually as much as(or more than) the
TM p-r short-range forces considered before. The only ex-
ception is ther-T term, also not considered before. It is the
only attractive part of thep-r 3N force, but it is about five
times smaller than the KR term. Only in PS coupling the
r-T term is enhanced by the factor 1+kr and becomes com-
parable to the KR.

The s andv exchange contributions are rather large. The
Born terms are repulsive in case of thes and attractive for
the v, but when PVpNN coupling is used they cancel in a

2Equation (3.3) of Ref. [14] is incorrect and the corresponding
value of fpNN*

2 /4p is overestimated by a factor of 3.
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similar way as the correspondingNN potentials. For the PS
coupling, thep-s Born contribution turns attractive and to-
gether thep-s andp-v exchanges lead to strong overbind-
ing, as Table V demonstrates. Nevertheless, it would be pre-
mature to rule out the PS coupling solely based on these
results: we would like to remind that other non-Born contact
terms have not been investigated so far and are likely to be as
important as the Born term considered here.

One example of such contributions are forces with an in-
termediate Roper resonance. We observe that individually
they are also rather large. However, as we have already
pointed out above, there are significant uncertainties in the
coupling constants involvingN* , and the effect of those po-
tentials can vary accordingly. Nevertheless, it is remarkable
that even for our smallest value ofgs

* the p-sN* term is
comparable to thep-r D forces, as can be seen by comparing
Tables IV and VI. Although the effect of thep-sN* force
scales with gs

* , the overall contribution ofp-sN* and
p-vN* forces does not change much, since we assume the

constituent quark model ratiogs
* /gv

* , which leads to a strong
cancellation between them. Removing this constraint, as, for
instance, in the last line of Table VI, can have an effect on
the overall contribution ofp-s and p-v forces comparable
to the transition from PV to PS coupling inZ diagrams: the
cancellation betweenp-sN* and p-vN* forces could be-
come much weaker or disappear and very pronounced
changes ofEt can be expected. Having more reliable infor-
mation ongv

* /gs
* is thus absolutely crucial for more definite

conclusion on the importance of the short-range 3N forces
considered in this paper.

The binding energy differences depend somewhat on the
order in which the potentials are added, therefore we calcu-
late also their expectation values with a number of different
wave functions.

First, we use the 3N bound-state wave functions for
Hamiltonians that include all 3N potentials in PV coupling,
but differ in theNN interaction, to calculate the expectation
values of the individual 3N force components of Table VII.

TABLE IV. Triton binding energies and their differences(in MeV) calculated for various model Hamiltonians with differentNN
potentials and contributions to the 3N force added consecutively. AllpNN vertices in the 3N forces of this table are calculated in PV
coupling. The columns labeledEt show the triton binding energies, while the ones labeledDEt indicate the differences between the binding
energies of consecutive rows, indicating the effect of the corresponding 3N force component.

Reid Paris Nijmegen 93 Bonn B

3NF Et DEt Et DEt Et DEt Et DEt

No 3NF −7.230 −7.383 −7.756 −8.100

+ppsa8d −7.279 −0.049 −7.439 −0.056 −7.811 −0.055 −8.159 −0.059

+ppsbd −8.739 −1.460 −8.939 −1.500 −9.471 −1.660 −9.624 −1.465

+ppsdd −9.100 −0.361 −9.220 −0.281 −9.782 −0.311 −9.847 −0.223

+prsKRd −9.017 0.083 −9.118 0.102 −9.635 0.147 −9.672 0.175

+prsD+d −8.849 0.168 −8.961 0.157 −9.464 0.171 −9.506 0.166

+prsD−d −8.747 0.102 −8.821 0.140 −9.285 0.179 −9.325 0.181

+prsTd −8.772 −0.025 −8.850 −0.029 −9.316 −0.031 −9.352 −0.027

+pssZd −8.273 0.499 −8.213 0.637 −8.663 0.653 −8.658 0.694

+pssN*d −8.711 −0.438 −8.610 −0.397 −9.145 −0.482 −9.055 −0.397

+pvsZd −9.213 −0.502 −9.380 −0.770 −9.977 −0.832 −9.956 −0.901

+pvsN*d −8.735 0.478 −8.898 0.482 −9.370 0.607 −9.524 0.432

TABLE V. Triton binding energies and their differences(in MeV), as in Table IV, but withpNN PS coupling in the 3N forces. The
binding energy differences in the first row are calculated with respect to the corresponding entries in the row labeled +prsD−d of Table IV.
Note that only forprsTd and pssZd the 3N potentials using PS and PV coupling actually differ. The effects of the other, unchanged 3N
potentials on the binding energy are amplified compared to the case of PV coupling, since the 3N wave functions are significantly altered by
the prsTd andpssZd PS potentials.

Reid Paris Nijmegen 93 Bonn B

3NF Et DEt Et DEt Et DEt Et DEt

+prsTd −8.859 −0.112 −8.953 −0.132 −9.425 −0.140 −9.452 −0.127

+pssZd −10.492 −1.633 −10.544 −1.591 −11.431 −2.006 −10.879a −1.427

+pssN*d −11.219 −0.727 −11.264 −0.720 −12.215a −0.784 −11.600a −0.721

+pvsZd −13.680 −2.461 −15.367 −4.103 −20.952 −8.737 −15.811a −4.211

+pvsN*d −12.674 1.006 −14.134 1.233 −16.869 4.083 −18.345 −2.534

aIn addition to the specified result, another unphysical, deeply bond solution was obtained in this case.
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The results of thep-p potential and of the full 3N potential
do not vary much, but the individual forces show a rather
strong dependence on theNN potential used.

It is well known that thep-p 3N force is too strong to be
accurately treated in first-order perturbation theory. It distorts
the nuclear wave function significantly, which can be seen,
for instance, by comparing the matrix elements of the 3N
potential calculated with the unperturbed and the perturbed
wave functions. It is interesting to see if this is true also for
the short-range 3N forces. In Table VIII we display the ma-

trix elements of the fullp-p, p-r, p-s, andp-v exchange
potentials, calculated with four different wave functions: first
an unperturbed wave functionC0, i.e., obtained from a
Hamiltonian without 3N potentials, then wave functionsCp,
Cp+r, and Cp+r+s+v, from Hamiltonians where thep-p,
p-r, and the sum ofp-s andp-v potentials are added con-
secutively. The ParisNN interaction is used in all cases.

Table VIII shows that also the matrix elements of the
short-range 3N forces change considerably when calculated
with different wave functions. The fact that these matrix el-
ements differ when the respective 3N potential was or was
not included in the Hamiltonian from which the wave func-
tion was obtained, demonstrates their nonperturbative char-
acter. Consequently, the binding energy shift predicted by
first-order perturbation theory does not agree or come close
to the exact value. This is observed even for the small sum of
all p-s and p-v contributions: from Table VIII we get the
first-order perturbative energy shiftDEt

s1d=kCp+ruWps

+WpvuCp+rl=0.011 MeV, while the exact binding energy
difference can be obtained from Table IV(in the column for
the ParisNN potential) asDEt=−0.048 MeV.

Our results for the totalp-s andp-v contributions differ
from those of Ref.[14], where kWpsl=1.003 MeV and
kWpvl=−0.770 MeV were obtained with a wave function
calculated with the ParisNN potential only. This difference is
a consequence of the different coupling constants and cutoff
parameters used in Ref.[14].

In Fig. 2 we represent the dependence of the binding en-
ergy, for two differentNN models, as a function of thepNN
cutoff parameter. The short-range forces do makeEt less cut-
off dependent, compared to the case when only thep-p po-
tential is included. But the overall effect of thep-s and
p-v potentials is rather small. We emphasize again that this
sum depends crucially on the values of the coupling con-
stants used in our calculations, in particular on the poorly
determined ratiogs

* /gv
* .

Finally, we make a few comments on the results with the
p-p 3N potential only. In our calculations[30] with the old
version of the TM force TM(93), which contains thec term
and uses somewhat different values of the constantsa,b, and
d, we obtained EtsReidd=−8.904 MeV and EtsParisd

TABLE VI. Triton binding energies and their differences(in MeV), as in Table IV, for the ParisNN potential and 3N potentials with
different coupling constantsgs

* andgv
* . The first two lines are taken from Table IV to define reference values. The contribution ofpssN*d

increases with increasinggs
* , and so does the contribution ofpvsN*d in the fifth line for a fixed ratiogv

* /gs
* , keeping the binding energy

almost constant. Whengv
* is kept fixed(last line), these cancellations no longer take place and the binding energy increases.

gs
* /4p =0.1 gs

* /4p =0.6 gs
* /4p =1.33

3NF Et DEt Et DEt Et DEt

pp+pr −8.850 −8.850 −8.850

+pssZd −8.213 0.637 −8.213 0.637 −8.213 0.637

+pssN*d −8.369 −0.156 −8.610 −0.397 −8.822 −0.609

+pvsZd −9.073 −0.704 −9.380 −0.770 −9.652 −0.830

With gv
* =gvgs

* /gs

+pvsN*d −8.883 0.190 −8.898 0.482 −8.910 0.742

With gv
* /4p =0.24

+pvsN*d −8.882 0.191 −9.174 0.206 −9.431 0.221

TABLE VII. Expectation values(in MeV) of the components of
the 3N force in Hamiltonians with differentNN potentials, calcu-
lated with eigenfunctions of the full Hamiltonian containing all
listed 3N potentials.

3N potential Reid Paris Nijmegen 93 Bonn B

ppsa8d −0.096 −0.113 −0.124 −0.130

ppsbd −1.822 −1.882 −2.086 −1.837

ppsdd −0.364 −0.279 −0.319 −0.256

Total pp −2.282 −2.274 −2.528 −2.223

prsKRd 0.055 0.063 0.097 0.113

prsD+d 0.156 0.148 0.164 0.173

prsD−d 0.101 0.142 0.179 0.174

prsTd −0.026 −0.036 −0.036 −0.037

Total pr 0.287 0.317 0.403 0.424

pssZd 0.959 1.359 1.632 2.108

pssN*d −0.497 −0.478 −0.581 −0.381

Total ps 0.463 0.881 1.051 1.727

pvsZd −0.902 −1.422 −1.722 −2.377

pvsN*d 0.456 0.453 0.561 0.371

Total pv −0.446 −0.968 −1.162 −2.005

Total ps+pv 0.016 −0.087 −0.110 −0.278

Total 3N potentials −1.979 −2.045 −2.236 −2.077
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=−9.060 MeV. This means that transforming thec term
away and using the new version TM8(99), as in Table IV,
brings an extra binding of about 200 keV. The singularc
term was thought to be mainly responsible for the strong
cutoff dependence and nonperturbative character of the TM
p-p force. However, the first line of Table VIII shows that,
even after removing the singularc term, the TMp-p force

remains highly nonperturbative. Also the cutoff dependence
of Et (see Fig. 2) remains about the same(see Refs.[20,30])
as with the old version TM(93).

IV. DETERMINATION OF THE LOW-ENERGY
CONSTANTS

A. Effective couplings

To connect to the 3N force following from ChPT, let us
now consider “the pointlike limit,” i.e., shrinking the propa-

gators of heavy mesons to a point by takingmB
2D̃Bsq3d

→1 sB=r ,v ,sd, and deduce the effective contact vertices.
It should be emphasized that we cannot yet expect more

than a qualitative agreement between the two sets of low-
energy constants, because at this stage of the analysis some
significant differences remain in the way they are determined
in the two approaches. For instance, the quantitative analysis
in the framework of ChPT[10] included so far only the
short-long and short-short 3N forces of leading order. The
corresponding low-energy constants are fitted also to the tri-
nucleon binding energy. In the case of the meson-theoretic
3N forces, it is well known that the trinucleon binding energy
depends rather strongly on the cutoff parameters entering the
strong meson-nucleon vertices. However, if the point limit is
considered only at leading order, the derived effective verti-
ces do not depend at all on these cutoff parameters. Thus, as
in the case of theNN interaction[8], a quantitative compari-
son will be possible only when interactions beyond leading
order are included.

After taking the point limit we separate from the potential
two diagrams in which the pion couples to the second
nucleon and rewrite the corresponding potentials as the prod-
uct

V2
aspdsV13

a + V31
a d with V2

aspd = −
g

2m
t2

a s2 ·q2 D̃psq2d,

s32d

where the factorV2
aspd includes an overall factori, thepNN

vertex, and the pion propagator. HenceV13
a +V31

a is the ver-
tex function of the effective point Lagrangian

TABLE VIII. Expectation values(in MeV) of the 3N potentialsWi of the first column calculated with
different wave functions. As explained in the text, the subscript on theC expresses which 3N forces were
included in the Hamiltonian from which the wave function was calculated exactly. TheNN potential was the
Paris potential in all cases. For comparison, the column labeledDEt shows the binding energy differences
according to Table IV.

Wi DEt kC0uWi uC0l kCp uWi uCpl kCp+r uWi uCp+rl kCp+r+s+v uWi uCp+r+s+vl

pp −1.837 −1.281 −2.572 −2.190 −2.274

pr 0.370 0.139 0.450 0.293 0.317

ps 0.240 0.275 0.748 0.605 0.881

pv −0.288 −0.228 −0.758 −0.594 −0.968

FIG. 2. Dependence of the triton binding energy on thepNN
cutoff parameter, calculated for Hamiltonians with the Paris and the
Nijmegen 93NN potentials and various contributions to the 3N
force, which are successively added in the following way:p-p
exchange(dashed line), plus p-r (dotted line), plus p-s (dashed-
dotted line), plusp-v (solid line). The actual calculations are indi-
cated by the full circles; the lines are drawn to guide the eye.
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Lpoint = sN†G1NdsN†G3Ndpa. s33d

Following this procedure, the meson-exchange 3N forces we
considered in this paper generate the effective contact
pNNNNvertices of the following Lagrangian:

L = Lsad + Lsbd, s34d

Lsad = − a1sN†NdsN†staNd · = pa

− a2sN†sNdsN†taNd · = pa

− a3 eabcsN†stbNd 3 sN†stcNd · = pa, s35d

Lsbd = + b1 pasN†staNd · = sN†Nd

+ b2 pasN†sNd · = sN†taNd

+ b3 eabc pa ekijsN†sit
bNd¹ksN†s jt

cNd. s36d

Here,Lsad is the Lagrangian considered in Ref.f10g,3 while
the second termLsbd contains additional contact vertices
with derivatives of nucleon fields. From Ref.f10g it is not
clear to us in which ordersand together with which addi-
tional termsd such interactions will appear in the ChPT La-
grangian.

For the local part of thep-r potential with a timeliker
exchange(16) we thus obtain

Lpointsp − rT,PV + d =
ggr

2

2m2mr
2pasN†sNd = sN†taNd,

s37d

and comparing to Eq.s36d we extract

b2sp − rT,PV + d =
ggr

2

2m2mr
2 , s38d

where for PS coupling there would be an additional factor
1+kr. For the local part of thep-r KR term s19d one gets

Lpointsp − rS,KRd = −
ggr

2s1 + krd
2m2mr

2 eabc ekij pasN†sit
bNd

3¹ksN†s jt
cNd, s39d

b3sp − rS,KRd = −
ggr

2s1 + krd
2m2mr

2 . s40d

For the Born p-s exchange the point low-energy
Lagrangians corresponding to the limit of Eqs.s21d ands22d
are

Lpointsp − s,PV + d = −
ggs

2

2m2ms
2 pasN†tas Nd · = sN†Nd,

s41d

b1sp − s,PV + d = −
ggs

2

2m2ms
2 , s42d

Lpointsp − s,PS −d = +
ggs

2

2m2ms
2 sN†NdsN†sta Nd · s=pad,

s43d

a1sp − s,PS −d = −
ggs

2

2m2ms
2 . s44d

For p-v exchange we obtain

Lpointsp − v,PS −d = +
ggv

2

2m2mv
2 pasN† staNd · = sN†Nd,

s45d

b1sp − v,PS −d = +
ggv

2

2m2mv
2 . s46d

The corresponding effective interaction for the PV+term
includes an additional factor 1+kv<1, which we will ne-
glect in the following. For the contributions with an inter-
mediateN* snote that theN* propagator is already used in
static point approximationd one derives

Lpoint
„sp − ss + vdd,N*

… =
g*

msm* − mdSgsgs
*

ms
2 −

gvgv
*

mv
2 DsN†Nd

3sN†staNd · = pa, s47d

a1ss + v,N*d = −
g*

msm* − mdSgsgs
*

ms
2 −

gvgv
*

mv
2 D . s48d

It is interesting that forp-s exchange the result with PS
pNN coupling is closer to the form suggested in Refs.
[10,15]. Note also that the difference between the
Lagrangians(41) and (43) (we label it “cont” since it corre-
sponds to the chiral contact term connecting PV and PS cou-
plings) is equivalent to

Lpointsp − s,contd =
ggs

2

2m2ms
2 sN†Nd†s=N†d · stapaN

+ N†tapas · s=Nd‡. s49d

This interaction is exactly the same as the second term in Eq.
s2d fwith c→−gs

2 / smms
2dg. Note that the Lagrangians2d fol-

lows from the redefinition of the pion fields1d, while the
so-called chiral rotationswhich transforms in lowest order
from pNN PV to PS couplingd is a redefinition of the
nucleon field. It is argued in Ref.f15g that the interactions in
Eq. s2d are unnatural from the point of view of ChPT and
should be discarded. The appearance of such a term among

3In this paper we use the leading-orderpNN coupling with the
plus sign fLpNN= +sg/2mdsN†staNd ·=pag, in agreement with
Hüberet al. [9,15], but opposite to Epelbaumet al. [10]. Therefore,
the Lagrangian(35) has the opposite sign compared to Eq.(2.3) of
Ref. [10].
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the effective contact interactions raises the suspicion that the
dynamical modelsconforming with chiral symmetryd with a
s meson and PVpNN coupling contains also the mechanism
corresponding to the first term in Eq.s2d and that, in analogy
to the discussion in Ref.f15g, both should be discarded. Let
us also point out that the most natural way of introducing the
s meson into a chirally symmetric Lagrangian is the linears
model with PSpNN coupling swhich, however, fixes the
coupling constantgsd.

B. Numerical results and comparison to ChPT

In Table IX, we list the numerical values of the individual
contributions to the dimensionless low-energy constants

ãi = 4 fp
3 Lx ai , s50d

b̃i = 4 fp
3 Lx bi , s51d

whereLx=700 MeV as in Ref.f10g. The respective total
constants, calculated as the sums of all considered heavy
meson exchanges are of the order of unity, which means
they are of “natural size” in the sense of effective field
theories. Notice that—with the exception of the potentials
with N* and thep-s Born term sthe latter only with PS
pNN couplingd—all effective vertices are of the form
s36d, i.e., they involve derivatives of nucleon fields. In
particular, we do not get any contributions to the effective
couplingsã2 and ã3.

There is a pronounced cancellation betweenv ands ex-
changes in the low-energy limit, both for the Born(with PV
coupling) and Roper contributions. Although thev and s
terms would always have opposite signs, their sum is rather
sensitive to the poorly determined values of the coupling
constants. In particular, the almost perfect cancellation of the
respective Roper terms appears to be accidental. The time-
like part of ther exchange is rather small for PVpNN cou-
pling, but for PS coupling the large factor 1+kr increases the

correspondingb̃2 to the order of all the other contributions.

These results are completely in line with our results for the
corresponding potentials included in their full form into the
Faddeev equations, i.e., the low-energy limit changes, of
course, the size of the individual contributions, but not their
signs and relative magnitude.

The chiral 3N forces and their effect on the 3N observ-
ables were studied in Ref.[9] and more recently in Ref.[10].
Both papers include only leading-order contact chiral
pNNNN couplings, without terms with derivatives of
nucleon fields. From our forces only those involving an in-
termediate Roper resonance reduce in the point limit to this
form. Since it was suggested in Ref.[9] that also other con-
tributions are related to the effective forces considered
therein, we introduce and test approximations that would al-
low such a connection.

Hüberet al. [9] introduce two LECsc1 andc2, related to
our ã1 and ã3 as follows

c1 =
L

4Lx

ã1 =
5

14
ã1, s52d

c2 =
L

2Lx

ã3 =
10

14
ã3 s53d

with L=1 GeV. They fit these constants toAy from nd
scattering, arguing thatc1 is fixed to aboutc1,−3 sfrom
Ay at 3 MeVd and c2,0.5, . . . ,1.0sfrom Ay at 10 MeVd.
From our Table IX we get a small positivec1 from the
Roper terms andc1=−2.25from thes-Born force with PS
pNN coupling. None of the forces considered here con-
tributes toc2.

In Ref. [9] it is stated that thec2 term is included in the
p-r Kroll-Ruderman force. Thep-r Kroll-Ruderman force
can be transformed into a form consistent with the effective
Lagrangian of Ref.[9] through the followingmomentum re-
placement: q3→−q2. It corresponds to integrating the effec-
tive Lagrangians with nucleon derivatives by parts(this is
equivalent to the use of momentum conservation at corre-
sponding vertices,q3=−q2−q1) and keeping only the result-
ant terms with a pion field derivative(momentumq2), while
omitting at the same time still another term in the Lagrangian
with nucleon field derivatives(leading to the momentumq1).
The same replacement can be applied also to the Born terms,

where it corresponds tob̃i → ãi. The low-energy constants
deduced in this way are denoted asc1(repl) and c2(repl) in
Table IX. If these additional constants are included, we get
from our forces in the low-energy limitc2=−1.55 (solely
from the p-r Kroll-Ruderman force) andc1,1, which still
differ both in their signs and magnitudes from the estimate of
Ref. [9] quoted above. Here it may be worth mentioning that
in Ref. [9] the second term in the Lagrangian(35) propor-
tional toa2 is not considered. Finally we note that the efforts
of determining the LECs in Ref.[9] may have resulted in a
better description ofAy with different constants, had the ad-
ditional freedom in the parameters of the TMp-p force due
to the experimental uncertainties discussed in Sec. III A been
taken into account.

However, our numerical calculations do not justify ne-
glecting the effective Lagrangians with nucleon field deriva-

TABLE IX. Contributions to the dimensionless low-energy con-
stants defined by Eqs.(50) and (51), derived fromp-r, p-v, and
p-s exchanges using the masses and coupling constants of Table
III. The constantsci(repl) were obtained with the help of the mo-
mentum replacement; fors-Born term this replacement is needed
only if PV pNN coupling is used.

Diagram LECs ci

r-TsPVd b̃2=0.29

r-TsPSd b̃2=2.17

r-SsKRd b̃3=−2.17 c2srepld=−1.55

v-Born b̃1=8.32 c1srepld=2.97

s-Born (PV) b̃1=−6.29 c1srepld=−2.25

s-Born (PS) ã1=−6.29 c1=−2.25

v-N* ã1=2.99 c1=1.07

s-N* ã1=−2.26 c1=−0.81
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tives, employed through the momentum replacement pre-
scription. This is seen clearly from Table X where we
compare the effect of momentum replacement in matrix ele-
ments(with the fully correlated wave function) of the origi-
nal potentials and their point limits. Since these numbers are
quite different, we checked in addition whether the disagree-
ment is due to high momentum components of the wave
function by multiplying the operators by the overall expo-
nential form factor of Ref.[10]. However, we do not see any
improvement with respect to the agreement betweenkWl and
kWrepll.

From this comparison of LECs it is at the moment hard to
see whether the potentials used in this paper could provide a
reasonable description ofAy (and if there is therefore a rea-
son to believe that we have not missed some other important
short-range effects).

In Ref. [10] it is further argued that the Lagrangian(35)
reduces effectively to just one independent term when used
with 3N wave functions which are antisymmetric in the spin
and isospin subspace of the two nucleons coupled to the
contact vertex. Hence only one effective coupling constant
(calledD) for the pNNNN vertex is considered in their nu-
merical analysis. Assuming this, the matrix element of the
vertex function corresponding to the Lagrangian(35) is re-
duced to the matrix element of only one particular combina-
tion of spin-isospin operators. Indeed,4 for

v13
a = fa1st1

as1 + t3
as3d + a2st1

as3 + t3
as1d

+ 2a3 st1 3 t3dass1 3 s3dg, s54d

it holds that

A13 v13
a =

a1 − a2 + 4a3

4
fst1 − t3dass1 − s3d

− st1 3 t3dass1 3 s3dg, s55d

whereA13= 1
2s1−P13

t P13
s d is the spin-isospin antisymmetri-

zation operator for particles 1 and 3. Therefore, if only
such components of 3N wave functions are important, the
effect of Eq. s35d can be represented by a single term.
However, we would like to point out that the 3N wave
function contains also components which aresymmetricin
spin-isospin spacesand antisymmetric in their spatial partd.
For such components one gets instead of Eq.s55d

S13 v13
a =

a1 + a2

2
st1 + t3dass1 + s3d +

a1 − a2 − 4a3

4

3fst1 − t3dass1 − s3d + st1 3 t3dass1 3 s3dg,

s56d

whereS13= 1
2s1+P13

t P13
s d is the spin-isospin symmetrization

operator for particles 1 and 3. If these components are not
omitted, the matrix elements of the potentials derived
from the pNNNN interactions35d still contain three dif-
ferent combinations of the constantsa1,a2, and a3. The
components of the triton wave function with odd orbital
angular momentum between nucleons 1 and 3 contribute
about 5 % to the total norm. Even though the weight of
these states in the norm is not large, their effect can be-
come significant in matrix elements of operators with the
proper tensor structure.NN P waves are also known to be
very important for the description ofAy in Nd scattering.
Moreover, one could expect that spatially antisymmetric
components become quite important inp-shell nuclei.
sThe authors of Ref.f10g arguef42g that due to the par-
ticular way the momentum cutoff is introduced in their
calculations, no space antisymmetric components are gen-
erated in the order considered. Without further details at
hand we were unable to verify this statement.d

If we neglect for the moment the symmetric spin-isospin
wave function components and interactions with nucleon
field derivatives, then the effect of theai terms is reduced to

4The following argument is very similar to that developed in ap-
pendix E of Ref.[41] for NN interactions.

TABLE X. Validity of the momentum replacement prescription. Matrix elements(in MeV) of 3N forces
related by the momentum replacement prescription described in the text are compared. For each of the three
considered cases also the point limit, as well as the point limit multiplied with an additional exponential form
factor (exp. ff.) are shown. The matrix elements are calculated with a wave function corresponding the Paris
NN potential together with the 3N forces of Table VII.

Paris Nijmegen 93

3N potentialW kWl kWrepll kWl kWrepll

p-r (KR) 0.063 −0.220 0.097 −0.231

p-r (KR) point limit 0.045 −0.223 0.085 −0.250

p-r (KR) point limit 3 exp. ff. 0.053 0.064 0.094 0.154

p-s sZd 1.359 −1.329 1.632 −1.617

p-s sZd point limit 0.873 −0.531 0.921 −0.693

p-s sZd point limit 3 exp. ff. 2.034 −0.015 2.409 0.186

p-r sTd −0.036 −0.012 −0.036 −0.016

p-r sTd point limit −0.050 −0.016 −0.049 −0.020

p-r sTd point limit 3 exp. ff. −0.027 0.004 −0.024 0.011
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the calculation of the matrix element of Eq.(55). In this
approximation, the dimensionless constantcD of Ref. [10] is
given in terms ofãi as

cD = − ã1 + ã2 − 4ã3. s57d

From Table IX we getcD=−0.73 for PVpNN coupling and
cD=5.56 for PSpNN coupling, compared tocD,1.8–3.6
obtained in Ref.f10g. Our value for PSpNN coupling has
at least the same sign and order of magnitude as the ChPT
fit.

If we adopt the momentum replacement prescription, we
getcD,6–8,depending on the type of thepNN coupling. In
this case, our value ofcD is dominated by the Kroll-
Ruderman contribution, due to the factor 4 in the last term of
Eq. (57).

As in the comparisons above to Ref.[9], we had to com-
pare quite different effective Lagrangians and the approxima-
tions made in establishing the correspondence between the
effective constants appear to be too crude to allow drawing
clear conclusions.

V. CONCLUSIONS

The conclusions of this paper can be summarized in three
points.

(1) When considering the effect of the TMp-p exchange
3N force on the triton binding energy, usually only the varia-
tion of the cutoff parameter, which is often adjusted to repro-
duce the experimental value, is studied in the literature.

However, thep-p force contains thepN scattering am-
plitude as a building block, which at low pion momenta has
a model independent form parametrized by three constants
which have to be extracted from experiment. In contrast to
the cutoff parameter, each of these three constants multiplies
different spin-isospin operators, and therefore acts differently
on the various channels of the wave function. We calculate
the propagation of the experimental errors of thepN data,
which are used to extract the off-shell TMpN scattering
amplitude, into the 3N force parameters. As a consequence,
the triton binding energy calculated with the TMp-p poten-
tial has an uncertainty of about ±0.4 MeV, which is almost
entirely due to the experimental errors in the nucleon sigma
term.

(2) The long-short rangep-s and p-v exchange 3N
forces individually have large effects on the triton binding,
but two kinds of cancellations determine their net effect. We
find contributions of opposite sign and comparable or very
close in magnitude fromZ graph andN* excitation, respec-
tively, in the p-s andp-v 3N forces. AlsoZ graph andN*

potentials cancel in part for each of these long-short range
forces separately.

The extent of the cancellation is controlled decisively by
the ratio between thesN*s1440dN andvN*s1440dN coupling
constants. If this ratio is taken to be the same as for thesNN
andvNN coupling constants, as suggested by the naive con-
stituent quark model, the attraction of thev exchange, origi-
nated by the Born terms of relativistic order, dominates.

The change in binding energy caused by these 3N poten-
tials cannot be calculated perturbatively, since their inclusion

in the Hamiltonian changes the wave function significantly.
For instance, we find that, although the net effect ofp-s and
p-v exchange 3N forces on the binding energy is small, the
resulting wave function yields rather different matrix ele-
ments of individual interactions from the ones calculated
without those terms in the Hamiltonian. Therefore, it would
be very interesting to study these variations in the wave
function, for instance, in electron scattering on the 3N bound
state. Furthermore, these potentials may strongly influence
low-energyNd scattering observables.

In the case of PSpNN coupling, bothZ diagrams are
attractive, resulting in a strong overbinding of the triton. In
the future, theseZ diagrams should be complemented by
additional potentials derived from chiral contactpNNs and
pNNv vertices.

(3) We extracted the LECs from the low-energy limit of
the long-short range meson exchange potentials and com-
pared with the ChPT results of Refs.[9,10]. The constants
we obtain are of natural size. As long as only leading-order
interactions are considered, only a qualitative comparison is
possible between the heavy meson exchange and ChPT de-
scriptions. The forces considered in this paper contribute not
only to the leading-order chiral LECs of Refs.[9,10], but
generate in the low-energy limit also a number of contact
pNNNN interactions with nucleon field derivatives. Our
LECs do not agree with those deduced in Ref.[9], even
when the forces are transformed using a momentum replace-
ment prescription, the validity of which we, however, found
to be unconvincing. Our value of the constantcD agrees
roughly with the one obtained in Ref.[10], although only in
PS pNN coupling. Efforts should be joined from the two
sides (meson-exchange description and ChPT methods) to
further investigate the spin and momentum structure of 3N
forces.
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APPENDIX A: CONTRIBUTIONS OF NUCLEON
BORN

DIAGRAMS
We will give here some details of the derivation of

nucleon Born diagram contributions to the 3N force from the
exchange of one pion and one heavy mesonsBd, since we
experienced some misunderstandings and many questions
when discussing their origin. Our treatment is a condensed
version of the technique developed in a number of papers on
e.m. meson exchange currents[35–37]. We pay special atten-
tion to the dependence of our results on the type of thepNN
vertex.

The generic Feynman amplitudeWs1d corresponding to
Fig. 1(a) reads:
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Ws1d = Fa Da + 2↔ 3, sA1d

where we gather all factors connected with the “active” first
nucleon into the amplitudeF and the rest into the amplitude
D:

Da = − ūsp28dG
asp,q2dusp2dūsp38dGsB,q3dusp3dDpsq2dDBsq3d,

sA2d

Fa = ūsp18dfG
asp,− q2dSsP8dGsB,− q3d

+ GsB,− q3dSsPdGasp,− q2dgusp1d, sA3d

whereSspd=sigmpm+md−1 and DBsqd=smB
2 +q2d−1 sthe Pauli

metric is usedd, P=p18+q3=p1−q2,P8=p1−q3=p18+q2 with
qi =pi8−pi, and we suppresssunless we specifyBd additional
isospin and Lorentz indices that would appear for nonscalar
and charged mesonB. The pion spNNd vertex functions
scorresponding toiLd are

Gasp − PSd = − gg5ta, sA4d

Gasp − PV,qd = i
g

2m
qmgmg5ta, sA5d

where q=p8−p is the momentum of the pion entering the
vertexsthe signs of our vertex functions differ from those of
Ref. f37g, we adopted the current convention to agree with
that usually used in ChPT calculationsd. The vertex functions
GsB,qd for the heavy mesonsB will be specified later. Note
that from the identities

ūsp18dG
asp-PV,−q2dSsP8d

= ūsp18dFGasp-PSdSsP8d +
g

2m
g5t1

aG , sA6d

SsPdGasp-PV,−q2dusp1d

= FSsPdGasp-PSd +
g

2m
g5t1

aGusp1d, sA7d

it follows that

FPV
a = FPS

a + Fcont
a , sA8d

Fcont
a =

g

2m
ūsp18dhg5t1

a,GsB,− q3dj+usp1d. sA9d

The “contact” amplitude arises from the usual chiral contact
interaction, which appears in the chiral rotation from the PV
to PSpNN coupling.

To get the quantum-mechanical 3N potential from the
Feynman amplitude(A1), it is necessary to subtract the part
which is in the quantum mechanical description already in-
cluded in theT matrix in the iterations of theNN potential.
We split the nucleon propagator into its positive and negative
energy partsSspd=S+spd+S−spd:

Sspd =
m− igmpm

p2 + m2 =
m+ Eg4 − ig ·p

2EsE − p0d
+

m− Eg4 − ig ·p

2EsE + p0d

=
uspdūspd
E − p0

−
vs− pdv̄s− pd

E + p0
sA10d

swhereE2=p2+m2d and define the corresponding amplitudes
W±s1d andF±. The spinorsu andv are given by

uspd =ÎE + m

2E 1 1

s ·p

E + m
2 ,

vs− pd =ÎE + m

2E 1−
s ·p

E + m

1
2 . sA11d

For the calculations of this paper it is sufficient to keep only
the leading order inp/m and replaceE→m.

The true “pair” (or “Z diagram”) contributions to the 3N
potential are defined by the straightforward nonrelativistic
reduction(i.e., the decomposition of the spinor matrix ele-
ments in powers ofp/m keeping only leading-order terms)
of the W−s1d. In the order considered, this contribution is
nonzero only for the PSpNN coupling for any meson ex-
change. For this coupling(and again, at the given order in
p/m) W+s1d with positive energy nucleon in the intermediate
state corresponds to the iteration of the lowest-order-
nonrelativistic OPEP(which is independent of the type of
pNN coupling). On the other hand, for the PVpNN cou-
pling, the pair diagramsW−s1d do not contribute. But the
positive energy partW+s1d does not exactly equal to the
iteration of the nonrelativistic OPEP, since in the Feynman
amplitude the vertex function is off-mass-shellsP2Þm2

ÞP82d while in the iteration of the OPEP this potential is
off-energy-shell. One can rearrange the energies inq20 enter-
ing the PV vertex function in Eqs.(A1) and(A3) identically:

q20 = P08 − Esp18d = fEsP8d − Esp18dg − fEsP8d − P08g,

sA12d

q20 = Esp1d − P0 = fEsp1d − EsPdg + fEsPd − P0g.

sA13d

The first energy differences on the right-hand side put the
PV vertex on its mass shell. The corresponding part of
W+s1d is then again identified with the iteration of the non-
relativistic OPEP and it is identical to the fullW+s1d for the
PS coupling. But the second terms onq20 cancel the de-
nominator ofS+sP8d or S+sPd and give rise to a contribu-
tion to the quantum mechanical potentialW+s1d.

To sum it up, the relevant contributions to the 3N poten-
tial are

Ws1d = Fa Da + 2↔ 3, sA14d
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Da <
g

2m
t2

ass2 ·q2dūsp38dGsB,q3dusp3dDpsq2dDBsq3d,

sA15d

FPS
a,− <

g

2m
fūsp18dg5t1

avs− P8dv̄s− P8dGsB,− q3dusp1d

+ ūsp18dGsB,− q3dvs− Pdv̄s− Pdg5t1
ausp1dg, sA16d

FPV
a,+ < −

g

2m
fūsp18dg4g5t1

ausP8dūsP8dGsB,− q3dusp1d

− ūsp18dGsB,− q3dusPdūsPdg4g5t1
ausp1dg, sA17d

Fcont
a <

g

2m
ūsp18dhg5t1

a,GsB,− q3dj+ usp1d, sA18d

where< stands for the nonrelativistic reduction. Since only
Fa,− survives for PS coupling and onlyFa,+ contributes for
the PV onesand since the iterations of nonrelativistic OPEP
are identical in both casesd, one gets from Eq.sA9d

FPV
a,+ = FPS

a,− + Fcont
a , sA19d

and therefore

WPV
+ = WPS

− + Wcont, sA20d

for all heavy meson exchanges considered.
It remains to list the vertex functions for thes ,v, andr

mesons and the results of the nonrelativistic reduction. For
the scalar isoscalars meson one gets

Gssd = igs, sA21d

Dassd = + i
ggs

2m
t2

ass2 ·q2dDpsq2dDssq3d, sA22d

FPV
a,+ssd = − i

ggs

2m2t1
ass1 ·q3d, sA23d

FPS
a,−ssd = + i

ggs

2m2t1
ass1 ·q2d, sA24d

Fcont
a ssd = + i

ggs

2m2t1
ass1 ·q1d, sA25d

where Eq.sA19d can be verified with the help ofq1+q2
+q3=0. The corresponding potentials are just the products of
D and F factors, they are listed in the main body of the
paper.

For the isoscalar vector mesonv only the timelike part
m=4 of the vertices contributes up to the order considered:

Gmsv,qd = gvFgm −
kv

2m
smnqnG , sA26d

D4
asvd =

ggv

2m
t2

ass2 ·q2dDpsq2dDvsq3d, sA27d

FPV,4
a,+ svd = −

ggv

2m2t1
ass1 ·q3d, sA28d

FPS,4
a,− svd = −

ggvs1 + kvd
2m2 t1

ass1 ·q3d, sA29d

Fcont
a svd = +

ggvkv

2m2 t1
ass1 ·q3d. sA30d

Finally, for the isovector vector mesonr the vertex func-
tion reads

Gm
bsr,qd = grFgm −

kr

2m
smnqnGtb. sA31d

For the timelike component of ther field sm=4d one gets

D4
absrd =

ggr

2m
t2

at3
bss2 ·q2dDpsq2dDrsq3d, sA32d

FPV,4
ab,+ srd = −

ggr

2m2fdabss1 ·q3d − ieabct1
css1 ·Q1dg,

sA33d

FPS,4
ab,−srd = −

ggrs1 + krd
2m2 dabss1 ·q3d, sA34d

Fcont,4
ab srd = +

ggr

2m2fdabkrss1 ·q3d + ieabct1
css1 ·Q1dg,

sA35d

whereQi =pi8+pi. For the spacelike component

Dabsrd = − i
ggr

4m2t2
at3

bss2 ·q2dfQ3

+ s1 + krdis3 3 q3gDpsq2dDrsq3d, sA36d

FPV
ab,+srd = 0, sA37d

FPS
ab,−srd = − Fcont

ab srd = −
ggr

m
eabct1

c s1. sA38d

In the main body of the paper we denote the contributions
due to the fourth component of vector fields by subscriptT
and those from the exchanges withm=1,2,3 by thesub-
script S.

APPENDIX B: s-MESON EXCHANGE IN 3 N
POTENTIALS

The Bonn potentials use different parameters(masses,
coupling constants, and cutoff parameters) of their “s” me-
son inNN channels with isospinsI =0 andI =1. Let us define
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v„ssId,q2
… =

gssId
2

4p

FssIdNN
2 sLssIdNN,q2d

mssId
2 + q2 , sB1d

wheregssId ,LssIdNN,mssId
2 are the BonnssId-exchange param-

eters in the respectiveNN isospin channel. The dominant
central part of the Bonns-exchange potential is then given
by

vCsq2d = v„ss0d,q2
…P0 + v„ss1d,q2

…P1, sB2d

P0 = 1
4s1 + t1 · t2d, P1 = 1

4s3 − t1 · t2d, sB3d

which can be re-written in a formsimilar to the central po-
tentials originated from exchanges of two scalar-isoscalar
and two scalar-isovector particles:

vCsq2d = 1
4fv„ss0d,q2d + 3 vsss1d,q2

…g

+ t1 · t2
1
4fv„ss0d,q2d − vsss1d,q2

…g. sB4d

This does not mean that the Bonns exchange isequivalent
to the true exchange of four scalar particles, sinces1d the last
term has the sign opposite to the sign of a real scalar ex-
change;s2d all four of these exchanges have to act at once,
i.e., they cannot be separated by an exchange of another
mesonsin iterations of the Lippmann-Schwinger equationd.

To have a simple prescription for thes exchange in our
3N potentials, we fitted the first term in Eq.(B4) by the
functionvss ,q2d dependent on parameters of single true iso-
scalars exchangegs ,LsNN,ms

2. The result of the fit to the

Bonn B potential gives the values listed in Table III, and the
quality of the fit is shown in Fig. 3. The fitted parameters are
between the Bonn values forNN I=0,1 channels. The sec-
ond (“isovector-exchange”) component of Eq.(B4) is much
smaller in absolute value and even negative forqø10 fm−1

(see Fig. 3), which precludes an approximation by the ex-
change of scalar particle(s). If we, nevertheless, include it
into the 3N potential, it gives a considerably smaller contri-
bution to the triton binding energy. Therefore, we neglected
it in the calculations of this paper.
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