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High accuracy, absolute measurements of the neutron total cross section for3He are reported for incident
neutron energies 0.1–400 eV. The measurements were performed at the LANSCE short-pulse neutron spalla-
tion source. Using the previously determined cross section for neutron elastic scattering, 3.367±0.019 b, we
extract a new value for the energy dependence of the3Hesn,pd3He reaction cross section,snp

=s849.77±0.14±1.02dE−1/2−s1.253±0.00±−0.049
+0.008db, where the neutron energy is expressed in eV. The first

uncertainty is statistical, the second systematic.
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I. INTRODUCTION

The scattering and absorption of neutrons by3He play key
roles in many areas of nuclear physics. The4He compound
nucleus formed during these processes is the lightest nuclear
system known to possess a complex structure of excited
states, and has long served as an important testing ground for
few-nucleon calculations. For example, recent theoretical
studies indicate that thea particle and its resonances may be
particularly sensitive to the strength and character of three-
nucleon(3N) forces[1,2]. The 3Hesn,pd3H cross section ap-
pears as a sensitive parameter in most models of big-bang
nucleosynthesis and forms the basis for a variety of low-
energy neutron instruments, ranging from ionization cham-
bers and scintillators to neutron spin polarizers and analyz-
ers. This reaction has additionally served as a cross section
standard for many years, due to its well-characterized energy
dependence and the availability of isotopically pure3He.

It is not surprising then that a considerable amount of
scattering and reaction data exists for then-3He interaction
[3]. One area that is conspicuously lacking data is the epith-
ermal energy region of about 1–500 eV. To our knowledge
few experiments have been performed in this region.

Alfimenkov et al. published values for the total scattering
cross section at energies 0.02–2 eV[4]. The measurements
were calibrated against the4He scattering cross section and
have been recently verified by a precise, spin-dependent scat-
tering length measurement by Zimmeret al. [5]. The total
cross section(scattering plus absorption) has been measured
between 0.3 meV and 11 eV by Als-Nielsen and Dietrich
[6], and in the range 0.025–250 eV by Alfimenkovet al.
Unfortunately, the latter results were never made available
except as a brief report in a not widely distributed publica-
tion [7]. Finally, Borzakovet al. [8] have published data for
the 3Hesn,pd3H cross section at energies as low as 250 eV.
However, these measurements were made relative to the
6Li sn,ad3H reaction and ultimately normalized to then-3He
total cross section data of Ref.[6], nearly two orders of
magnitude lower in energy.

To address this situation, we have performed precise, ab-
solute measurements of the neutron total cross section for
3He at 4466 energies between 0.1 and 400 eV. Using the
known scattering cross section for3He, we are able to per-
form a simple, polynomial fit to our data and obtain a cross
section for the3Hesn,pd3H reaction with about 0.02% statis-
tical and 0.1% systematic uncertainty. This reaction is
strongly influenced by the presence of an unbound 0+ state
located between thep-3H and n-3He thresholds. Despite its
discovery nearly 50 years ago[9], this state remains a topic
of continued interest, and precise reaction data in the epith-
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ermal region are necessary to clarify its exact nature and the
role that 3N forces may play in its structure[10].

Precise data for this reaction will also benefit neutron po-
larizers and analyzers based on polarized3He [11]. These
instruments rely upon a strongly spin-dependent total cross
section, which is almost completely determined by the
3Hesn,pd3H reaction at low energies. In particular, the en-
ergy dependence of this reaction determines the energy de-
pendence of the neutron polarization produced by a polarized
3He spin filter, and it is useful to know the functional form of
this dependence accurately.

The remainder of this paper is organized as follows. In
Sec. II the experimental technique is detailed. The data
analysis is described in Sec. III, and the results are presented
and discussed in Sec. IV. A reduced, energy-averaged version
of our data has been incorporated into a comprehensive
R-matrix analysis of theA=4 system and the3He neutron
scattering lengths[1].

II. EXPERIMENTAL TECHNIQUE

The total cross section was determined from target-in,
target-out transmission measurements using the short-pulse
neutron spallation source at the Los Alamos Neutron Science
Center(LANSCE) [12]. A pulsed spallation source offers the
unique opportunity to perform detailed studies of important

systematic errors such as detector backgrounds. Such studies
are prerequisite for any high accuracy measurement involv-
ing epithermal neutrons. This experiment utilized LANSCE
Flight Path 2 which views the high-resolution water modera-
tor of the spallation source. The time-of-flight(TOF) method
was used to determine the neutron energy. A schematic dia-
gram of the experimental layout is shown in Fig. 1.

The target consisted of 99.9999% pure3He gas contained
within an aluminum cylinder 100.95 cm long, 8.0 cm in di-
ameter, and with 0.30 cm thick endcaps. A statistically sig-
nificant measurement of the total cross section could not be
obtained using a single target thickness(areal density) be-
cause the cross section varies by two orders of magnitude
over the energy range of our measurement. Instead, the ex-
periment was performed with the target cylinder filled to four
different gas pressures(see Table I). Deflection of the end-
caps under these pressures was negligible. The sample cyl-
inder was filled with3He while immersed in a stirred bath of
water, usually at room temperature, to ensure temperature
homogeneity. The temperature of the cell was measured at
several locations using platinum resistors with calibration ac-
curacies of 0.035 K. With this technique the average tem-
perature of the cylinder could be determined with about
0.01% accuracy. A 6 mm diameter tube was used between
the immersed cylinder and a room-temperature gas handling
system to minimize the net transfer of heat to the cylinder
from outside the bath. The cylinder was typically immersed
for an hour or more to establish thermal equilibrium between
the cylinder walls and3He gas, which could be observed by
monitoring the gas pressure. This is considerably longer than
the thermal time constant one expects for the system(a few
minutes) based on the specific heats and thermal conductivi-
ties of aluminum and3He. The gas pressure was measured
using a piezoresistive transducer with 0.01 kPa accuracy
[13]. Corrections to the ideal gas law were applied using the
second virial coefficient of3He [14], and were less than
0.5% in all cases.

The target cell was mounted on a computer-controlled
translation table alongside an identical, evacuated cell. The
two cells were alternately moved into and out of the neutron
beam with 0.01 cm reproducibility every 2400 beam bursts
(2 min). The ratio of dummy cell to target cell window thick-
ness was 0.9951(3), as measured by neutron transmission
with both cells evacuated.

A pair of ionization chambers was positioned just up-
stream of the target table to act as neutron flux monitors[15].
The first chamber was filled with3He gas, and the second

FIG. 1. Schematic layout of the total cross section experiment
(not to scale). Approximate distances(in meters) from the neutron
spallation target to the most important elements are indicated at the
top.

TABLE I. Summary of the neutron transmission experiments using four3He targets. A run consists of
data acquired during 2400 beam bursts for both target-in and target-out conditions. The3He filling pressures
and temperatures,P and T, are indicated foe each target, whilenl is the product of the resultant number
density and cell length.

Target P skPad T sKd nl s31020cm−2d tdwell smsd E seVd Number of runs

1 31.59 273.64 8.44±0.01 0.5 0.11–3.0 93

2 99.95 292.47 25.00±0.02 1.0 0.38–8.3 126

3 300.17 292.49 75.16±0.05 2.0 6.8–72.2 188

4 672.10 291.87 167.82±0.12 5.0 15.3–392.7 383
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with 4He. The4He chamber responded only tog rays pro-
duced at the spallation source, while the3He chamber re-
sponded to bothg rays and neutrons. The signals from both
chambers were digitized by voltage-to-frequency converters
and then subtracted to obtain a precise indication of the in-
cident neutron flux.

The neutron beam was collimated both upstream and
downstream of the target by a combination of lead and poly-
ethylene, the latter loaded with either boron or lithium. The
collimation, along with the small solid angle of the detector,
eliminated the need for corrections due to nonforward angle
scattering.

Neutrons transmitted through the target and collimators
were detected 59.75 m away by a3He scintillation detector.
This scintillator, which detected protons produced by the
3Hesn,pd3H reactionsQ=0.76 MeVd, was chosen due to its
high efficiency for detecting low-energy neutrons, its fast
time responses.100 nsd, and its insensitivity tog rays. It
consisted of an aluminum cylinder, 5 cm long and 5 cm in
diameter, sealed at the upstream end by a 0.5 cm thick alu-
minum entrance window and at the downstream end by a
0.3 cm thick sapphire viewport. A single 5 cm diameter pho-
tomultiplier tube was coupled to the viewport. The cylinder
was filled with 800 kPa of3He with 56 kPa xenon added for
increased light output and improved pulse height resolution.
The interior of the cylinder was coated with evaporated tet-
raphenylbutadiene which acted as a wavelength shifter for
the vacuum ultraviolet scintillation light. A voltage feedback
system was used to maintain a fixed pulse height spectrum,
thereby stabilizing the gain of the photomultiplier tube. The
noise induced in the photomultiplier tube by the voltage
feedback system was measured and found to be less than the
neutron counting statistics.

The data for each beam pulse were stored in a 9625 chan-
nel Ortec T914 multiscaler as a histogram of neutron count
versus time of flight. The energy dependence of the time of
flight was calibrated by inserting thin foils of238U, 191Ir, and
193Ir into the beam line. These nuclides possess a number of
neutron resonances that appear as absorption peaks in the
TOF spectra. The energies of seven of these resonances be-
tween 0.6 and 190 eV are known to 0.1% or better, and were
used in a linear least-squares fit to determineL and to in the
following TOF to energy relationship:

Ei =
1

2
mS L

istdwell − todD
2

. s1d

HereEi is the neutron kinetic energy corresponding to theith
channel of the multiscaler,m is the neutron mass,L is the
mean distance from the neutron spallation source to the scin-
tillation detector, tdwell is the width in microsecond as-
signed to each multiscaler channel, andto is a timing off-
set associated with the electronic start signal provided at
the beginning of each beam pulse. An energy-dependent
correction smaximum value 2 cmd was made to the ex-
tracted value ofL to compensate for the fact that the
lowest-energy neutrons were preferentially detected in the
upstream end of the scintillator.

The precision of the TOF measurement depends both on

the length of the flight path and the width of the initial proton
pulse from the storage rings250 nsd. Further time broaden-
ing of the neutron pulse results from the moderation process
and from the 15° angle between the flight path and the nor-
mal of the moderator surface. The resulting spread of the
neutron pulse can be described as the sum of two convolu-
tions between a Gaussian, characterized by a single full
width at half maximum, and a pair of exponential tails, char-
acterized by two decay constants[16]. Each of these re-
sponse parameters depends upon the neutron energy, but at
energies less than 500 eV they are 400–1500 times smaller
than the actual neutron TOF. Though small, the effects of this
time broadening are included in the software used to fit the
seven calibration resonances. The precision to which an av-
erage neutron energy can be assigned for a given TOF bin is
about 0.01%. The overall accuracy of our TOF calibration is
therefore limited by the accuracy of the seven calibration
resonances, about 0.1%.

The measurements are summarized in Table I.

III. DATA ACQUISITION AND ANALYSIS

The neutron total cross section was measured at<4500
energies between 0.1 eV and 400 eV. The data were ac-
quired in the following manner. With the3He target cell in
position, neutron counts from the scintillation detector were
accumulated in theith channel of the multiscaler for a period
of time specified bytdwell, after which the multiscaler ad-
vanced to the next channel. When the final multiscaler chan-
nel (or TOF bin) was reached, the multiscaler returned to the
first channel and waited for the next beam burst, which was
preceded by a start signal from the LANSCE spallation
source. The same start signal was used to trigger a count-
down scaler preset to a value of 2400. New counts in each
TOF bin were accumulated on top of one another until the
countdown scaler reads zero. At that time data acquisition
was halted, the data from the multiscaler were written to
disk, and the empty target cylinder was moved into place. A
total of 790 of these “runs” were obtained for both the empty
and 3He targets. A typical TOF spectra is shown in Fig. 2.

The total cross section corresponding to a single TOF bin
is then given by

stot =
1

nl
lnSNout

Nin
D , s2d

where n and l are, respectively, the number density and
length of the 3He target, andNin sNoutd is the observed
number of neutron counts in the TOF bin after transmis-
sion through the3He semptyd target. In the off-line analy-
sis the dataNin andNout were normalized to the ionization
chamber flux monitors and corrected for the difference in
aluminum window thickness. Additional corrections were
made for detector background, deadtime, and pulse pileup.

The detector background, which was primarily due to the
multiple scattering of fast neutrons, was measured by insert-
ing foils of Co, In, Ta, and Mn a few centimeters upstream of
the target cells. These nuclides possess a number of reso-
nances that were completely opaque to the neutron beam for
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the chosen foil thickness(the resonances are clearly visible
in Fig. 2). A polynomial fit was applied to the bottoms of
these opaque resonances on a run-by-run basis and sub-
tracted from the TOF spectra.(These and other large reso-
nances were excluded from the cross section analysis.) Ad-
ditional measurements were performed with different foil
thicknesses, which allowed us to extrapolate to a true back-
ground level. The background corrections to the total cross
section were less than 0.1% except at the highest energies,
where they reached 0.5%.

A comparison of the instantaneous detector rates
(100 kHz for the empty target) and the 100 ns timing of the
scintillation detector indicated a 1% order of magnitude for
the detector deadtime. We expected the pileup to be of simi-
lar magnitude. To correct for these effects, we noted that, to
first order, the observed detector rateY in a given TOF bin
differs from the true rateR in the following manner:

Y = Rs1 − Rtd, s3d

wheret is a parameter that includes the effects of both dead-
time and pulse pileup. This relation holds true so long as
Rt!1. From this we obtain the following relationship be-
tween the true cross section and the measured onefgiven by
Eq. s2dg:

strue= smeas+ t
DR

nl
, s4d

whereDR is the observed difference between sample-in and
sample-out detector rates.

We measuredt and its TOF dependence by repeating the
sample-in, sample-out measurements using a carbon target.
The neutron total cross section of carbon is known with a
great accuracy and is energy independent over the entire
range of our measurements[17]. The corrections to the3He

cross section due to deadtime and pulse pileup amounted to
less than 0.8% at the highest energies, and less than 0.1% at
the lowest.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

At the energies of interest here, the neutron total cross
section for3He can be expressed as the sum of two parts: the
scattering cross sectionsnn andsnp, the cross section for the
3Hesn,pd3H reaction. The cross section for radiative capture
sng is only a few microbarn[18], and can be neglected.

General expressions for the scattering and reaction cross
sections can then be found in terms of the elastic scattering
matrix,

S= e−2iksa+ibd. s5d

By expandingS in terms of the neutron’s center-of-mass
wave numberk, one finds that the cross sections can be
written in the low-energysi.e, long wavelengthd limit as

snn =
p

k2s1 − uSu2d<4psa2 + b2d s6d

and

snp =
p

k2u1 − Su2<4pSb

k
− 2b2D . s7d

Here we see the familiar results that the scattering cross sec-
tion for s-wave neutrons is independent of the neutron en-
ergy, and that the reaction cross section follows the well-
known 1/v law. We also see in Eq.s7d that the first-order
correction to the 1/v law is itself energy independent and
negative.

Since the total cross section is the sum ofsnn andsnp, the
transmission experiment reported here is unable to unam-
biguously separate the scattering cross section from the
energy-independent contribution fromsnp. However, as first
shown by Shapiro[19] an expression for the inelastic param-
eterb can be found in the limitk→0,

b =
1

4p
ssnpkd0, s8d

where the subscript denotes evaluation atk=0. Inserting Eq.
s8d into Eq. s7d and replacingk by the neutron’s kinetic en-
ergy in the laboratory frame,E="2k2m/m, we arrive at the
following expression for the total reaction cross section:

snp = AS 1
ÎE

− Ax
m2

pm"2D . s9d

Here A=ssnp
ÎEd0, m is the neutron mass, andm is the

reduced mass of then+ 3He system. The parameter

x = s2I + 1dFx−
2

I
+

s1 − x−d2

I + 1
G s10d

is introduced to generalize the above relations to target spins
I Þ0. x is a weighting factor for theJ= I −1/2 reaction chan-
nel, whose relative contribution to the cross section isx−.

FIG. 2. A typical time-of-flight spectra corresponding to target
number 4. The upper spectra correspond to the empty cylinder, the
lower to the3He-filled cylinder. The large absorption peaks visible
in both spectra result from foils of Co, In, Ta, and Mn which were
inserted just upstream of the two target cylinders and used to deter-
mine the detector background.
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Limits on x− have been set by two experiments. The trans-
mission measurements of Passell and Schermerf20g, per-
formed with a polarized3He target and a polarized neutron
beam, foundx−=1.010±0.032. Aneven more stringent,
though less direct constraint,x−=0.998±0.01, hasbeen set
by Borzakovet al. based on the departure ofsnp from the
1/v law [8]. Imposing the limit thatx−ø1, and taking the
weighted average of the two values, we findx=3.986−0.076

+0.014.
We thus performed a linear least-squares fit of the form

stot = AS 1
ÎE

− A
xm2

pm"2D + snn s11d

to the 4466 data points usingA as the only free parameter.
The value forsnn was fixed at 3.367s19db, the weighted
average of the Alfimenkovf4g and Zimmerf5g cross sec-
tions, 3.37s2db and 3.342s57db, respectivelyf24g. A third
preliminary valuesnn=3.85s7d has been reportedf21g but
is not included in the average.

As a consistency check, we repeated the fit for each of the
four 3He target densities on an individual basis. The results
are summarized in Table II. A complete tabulation of the
4466 cross section data points can be found in Ref.[22].

The combined result of all four targets yields a total reac-
tion cross section(in barns) of

snp = s849.77 ± 0.14 ± 1.02dE−1/2 − s1.253 ± 0.00±−0.049
+0.008d,

s12d

where the neutron energy is expressed in eV. The first un-
certainty is statistical, the second systematic. This value of
snp is in agreement with the value previously extracted from
the total cross section data of Als-Nielsen and Dietrich below
11 eV f6g:

snp = s847.5 ± 1.5dE−1/2 s13d

and extrapolates to a value of 5341.21±0.88±6.41 b at the
thermal energy of0.0253 eV.

A reduced(energy-averaged) set of the total cross section
data and our fit to the data are plotted in Fig. 3. For clarity,
the data are plotted asstotE

1/2 versus neutron energy. Our
extracted polynomial forsnp is also shown as are the results
from previous measurements.

If we repeat the least-squares fit of our data includingsnn
as a free parameter, we obtainsnn=3.1±0.05±1.1 b. Thus
we cannot improve upon the accuracy of this cross section.

V. CONCLUSIONS

We have reported an absolute measurement of the neutron
total cross section for3He in the energy range 0.1–400 eV.
Exploiting the known value for the scattering cross section,
we have extracted the cross section for the3Hesn,pd3H re-
action snp with about 0.1% accuracy, and we find good
agreement with previous measurements of this quantity.

Our extraction ofsnp also relied upon prior knowledge of
the spin dependence of this cross section, characterized here
by x−, which is presently known with a precision of about
2%. While a significantly improved measurement ofx−
would have minimal impact onsnp, it would improve the
present uncertainties in then-3He scattering lengths. For ex-
ample, the most precise measurement yet reported for the
incoherent scattering lengthbi8 [5] is largely limited by un-
certainty inx−. A threefold improvement in the latter would

TABLE II. Results of a least-squares fit to the total cross section using Eq.(11). The first uncertainty is
statistical the second systematic. The number of time-of-flight bins used in each fit is indicated as is the
reduced chi-squaredsx̄2d for each fit.

Target En seVd TOF bins A sb eV1/2d x̄2

1 0.11–3.0 1652 849.56±0.23±1.27 0.95

2 0.38–8.3 1672 850.35±0.22±0.98 0.95

3 6.8–72.2 432 850.31±0.35±0.97 0.94

4 15.3–392.7 710 848.59±0.31±0.92 0.74

Combined 0.11–392.7 4466 849.77±0.14±1.02 0.94

FIG. 3. Measured neutron total cross section data(energy aver-
aged) plotted asstot

ÎE vs neutron energy: target 1s+d, target 2
s3d, target 3s* d, target 4shd. The error bars represent statistical
uncertainties only. The upper curve is a least-squares fit tostot using
Eq. (11). The lower curve is the3Hesn,pd3H reaction cross section
extracted from our data[Eq. (12)]. Also shown are fringe points
from thestot measurement of Ref.[6] (solid squares), andsnp data
from Ref. [8] (circles). The downward curve ofsnp is due to a
negative contribution to the reaction cross section[Eq. (7)]; a strict
1 /v dependence would be seen as a flat line in this graph. The
upward curve ofstot reveals the presence of the scattering cross
section.
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lower the uncertainty inbi8 by more than a factor of 2. How-
ever, a direct, absolute determination ofx− requires both po-
larized target and beam, and is therefore subject to additional
systematic errors.

Finally, four-body calculations of the4He system using
realisticNN and 3N potentials have now reached a high level
of sophistication, and their interpretation is primarily limited
by the quality of experimental data. High precision data at all
energies are now necessary as a basis for new theoretical
understanding.

Note added in proof.The authors have recently been in-
formed of a new value forsnn, 3.279±0.008, obtained from
a measurement of the3He coherent scattering length using
neutron interferometry[25]. Combined with the two previ-
ous measurements ofsnn cited in this article, a new average

value of 3.292±0.0074 is obtained. The resulting change in
the reaction cross section extracted from our total cross sec-
tion data is neglible,snp=849.92E−1/2−1.253b.
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