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Considering two-body integral equations we show how they can be dimensionally reduced by integrating
exactly over the azimuthal angle of the intermediate momentum. Numerical solution of the resulting equation
is feasible without employing a partial-wave expansion. We illustrate this procedure for the Bethe-Salpeter
equation for pion-nucleon scattering and give explicit details for the one-nucleon-exchange term in the poten-
tial. Finally, we show how this method can be applied to pion photoproduction from the nucleon withpN
rescattering being treated so as to maintain unitarity to first order in the electromagnetic coupling. The proce-
dure for removing the azimuthal-angle dependence becomes increasingly complex as the spin of the particles
involved increases.
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I. INTRODUCTION

In cases when solving the Lippmann-Schwinger or Bethe-
Salpeter type of equation is numerically involved, one often
resorts to a partial-wave decomposition(PWD) in the center-
of-mass(c.m.) frame. In doing so one can exploit the spheri-
cal symmetry of the interaction and perform the integration
over the two-dimensional solid angle of the intermediate mo-
mentum analytically. While this reduces the equation’s di-
mension by 2, one has to deal with summing the partial-wave
series, and hence this procedure is beneficial when only a
few partial waves dominate. In the case when many partial
waves must be taken into account, when restriction to the
c.m. frame is not desirable, or when the potential is not
spherically symmetric, the partial-wave expansion is not
helpful and one has to face the complexity of three- or four-
dimensional integral equations.

Fortunately, as had been noted by Glöckle and collabora-
tors [1,2] in the context of the nucleon-nucleonsNNd inter-
action, the dependence on the intermediate momentum azi-
muthal angle factorizes and can still be performed
analytically without employing any kind of expansion or
truncation. While this procedure has been successfully ap-
plied a number of times to theNN situation[2–4], here we
would like to examine general conditions which potentials
must satisfy to factorize the azimuthal integration. We then
apply it to solve a specific example of relativistic potential
scattering in the pion-nucleonspNd system and compare
with the usual method of using the partial-wave expansion.

In Sec. II we give the general requirements on the poten-
tial that allow one to remove the azimuthal-angle depen-
dence in the integral equation. In Sec. III we focus on the
Bethe-Salpeter equation forpN scattering with one-nucleon-
exchange potential and show in detail how the azimuthal-

angle dependence can be integrated out in this case. Further-
more, in Sec. IV, we solve the resulting equation using a
quasipotential approximation and compare the solution to the
one obtained using the partial-wave expansion. In Sec. V we
examine an extension of this approach to the calculation of
pion electroproduction from the nucleon including thepN
final-state interaction. Our conclusions are summarized in
Sec. VI.

II. CONDITIONS FOR EXACT INTEGRATION
OVER THE AZIMUTHAL ANGLE

The starting point in calculating observables of a two-
body scattering process is an equation for the scattering am-
plitude (Fig. 1). We shall assume relativistic scattering, in
which case the equation is a four-dimensional integral equa-
tion of the Bethe-Salpeter type:

Tsq8,q;Pd = Vsq8,q;Pd

+ i E d4q9

s2pd4Vsq8,q9;PdGsq9;PdTsq9,q;Pd,

s1d

whereT is the soughtT matrix,G is two-particle propagator,
and V is the two-particle-irreducible potential. Moreover,
throughout the paper,q, q9, q8 stand for the relative four-
momenta of the incoming/intermediate/outgoing channel
while P=p+k=p8+k8=p9+k9 is the total four-momentum
with k, k9, k8 and p, p9, p8 the incoming/intermediate/
outgoing momenta of particle 1 and particle 2, respectively.

In order to investigate the conditions under which the
above equation can be integrated over the intermediate azi-
muthal angle we work in the helicity basis and only display
the dependence on the azimuthal angle and helicity:
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Tl8lsw8,wd = Vl8lsw8,wd

+ o
l9

E
0

2p dw9

2p
Vl8l9sw8,w9dGsw9dTl9lsw9,wd.

s2d

An important point here is that the two-particle propaga-
tor G can always be made independent of the intermediate
anglew9 by choosing the total three-momentum along thez
axis, i.e., choosing thecolinear frame: P=sP0,0 ,0,P3d. Fur-
thermore, we shall observe that in the case when only spin-0
and spin-1/2 particles are involved, the azimuthal-angle de-
pendence of the fully off-shell potential1 in the colinear
frame is given as follows:

Vl8lsw8,wd = e−il8w8 vl8lsw8 − wdeilw, s3d

wherel andl8 stand for the combined helicities of the initial
and the final state, respectively. The half-off-shell potential
then takes a very simple form:

Vl8lsw8,wduhalf-off-shell= e−isl8−ldw8vl8ls0duhalf-off-shell, s4d

wherel is the helicity of the on-shell state.
It is in this case, when conditions(3) and(4) are met, the

exact integration over the azimuthal angle can readily be
done. First, by using Eq.(3) in Eq. (2), we see that the
azimuthal dependence of thet matrix is given by

Tl8lsw8,wd = e−il8w8 tl8lsw8 − wdeilw. s5d

Sincev and t only depend on differencew8−w, we expand
them in a simple Fourier series:

vl8lsfd = o
m

vl8l
smd eimf, tl8lsfd = o

m

tl8l
smd eimf. s6d

It is straightforward to show that their Fourier transforms

vl8l
smd =E

0

2p df

2p
vl8lsfde−imf, tl8l

smd =E
0

2p df

2p
tl8lsfde−imf

s7d

satisfy the following equation which does not involve thew
integration:

tl8l
smd = vl8l

smd + o
l9

vl8l9
smd G tl9l

smd . s8d

In principle,m runs to infinity and so we have an infinite
number of equations to solve even though they are not
coupled. Fortunately, since only the half-off-shell potential is
needed to solve the equations and it obeys condition(4), the
corresponding Fourier transform is nonvanishing only for
m=−l:

vl8l
smd uhalf-off-shell= d−lm vl8ls0duhalf-off-shell. s9d

The scalar system is the simplest one where this proce-
dure can be demonstrated. In that case the potential is a
scalar function of scalar products of relevant four-momenta:

Vsq8,q;Pd = Vsq ·q8,P ·q,P ·q8,q2,q82,P2d. s10d

Given q=sq0, uq usin u cosw , uq usin u sin w , uq ucosud and
similarly for q8, we easily convince ourselves that, in the
colinear frame, the azimuthal dependence enters only
through the product

q ·q8 = q0q08 − uquuq8ufcosu cosu8

+ sin u sin u8 cossw8 − wdg s11d

and hence it is of the necessary form given in Eq.s3d. Fur-
thermore, in the half-off-shell case the momentum of the
on-shell state, sayq, can always be chosen along thez axis,
i.e., such thatu=0. Hence the half-off-shell potential is in-
dependent of azimuthal angles which fulfills conditions4d
for the spinless case. The two-particle propagatorGsq;Pd
=GsP·q,q2,P2d is of course independent ofw in the colinear
frame.

Once we have found that conditions(3) and(4) are satis-
fied, whileG is independent ofw, the integration overw can
be done immediately. We will now show this more explicitly
for the more complicated case of a scalar-spinor system.

III. SPIN COMPLICATIONS: THE pN SYSTEM

Consider the Bethe-Salpeter equation for the case of elas-
tic scattering of a scalar with massmp — the “pion” — on a
spinor with massmN — the “nucleon.” We attribute the mo-
mentap, p8 to the nucleon andk, k8 to the pion. The relative
four-momentum of the incoming channel is conveniently de-
fined byq=bp−ak, where Lorentz scalarsa andb are given
by

a = p · P/s= ss+ mN
2 − mpd/2s,

b = k · P/s= ss− mN
2 + mpd/2s, s12d

with s=P2. Similarly one definesq8=bp8−ak8 and q9
=bp9−ak9 as the relative four-momenta of the outgoing and

1In general, we deal with the fully off-shell situation, that is, when
both initial and final states are off the mass(or energy, in the non-
relativistic case) shell. The situation when either the initial or the
final state is on shell is referred to as the half-off-shell case, and it
is well known that one only needs the half-off-shell result to solve
the integral equation.

FIG. 1. Diagrammatic form of a relativistic
two-body scattering equation.
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intermediate state, respectively. In terms of these variables,
the two-bodypN Green’s function of Eq.s1d is

Gsq;Pd =
1

sbP − qd2 − mp
2 + ie

saP + qd · g + mN

saP + qd2 − mN
2 + ie

.

s13d
Projecting the equation onto the basis of the nucleon he-

licity spinors (defined in Appendix A), we obtain

Tl8l
r8rsq8,q;Pd = Vl8l

r8rsq8,q;Pd

+ i o
l9r9

E d4q9

4p3 Vl8l9
r8r9sq8,q9;PdGsr9d

3sq9;PdTl9l
r9rsq9,q;Pd, s14d

where the helicity amplitudes are defined as

Tl8l
r8rsq8,q,Pd = s1/4pdūl8

sr8dsaP + q8dTsq8,q,Pdul
srdsaP + qd,

s15d

and analogously forV, while the defining equation forGsrd is

ūl8
sr8dsaP + qdg0 Gsq;Pdg0 ul

srdsaP + qd

= dl8l dr8r Gsrdsq;Pd, s16d

and hence

Gs±dsq;Pd =
1

q0 + aÎs± sEaP+q − ied
1

sbÎs− q0d2 − vbP−q
2 + ie

,

s17d

with Eq=Îq2+mN
2 and vq=Îq2+mp

2.
The most general Lorentz structure of the fully off-shell

potential in the helicity basis can be written in the form2

Vl8l9
r8r sq8,q;Pd = ūl8

r8saP + q8dfA1
r8r + A2

r8r g0

+ sA3
r8r + A4

r8r g0dg ·Pg ul
rsaP + qd,

s18d

whereAi are scalar functions of the dot products of the rel-
evant momenta, i.e.,

Ai = Aisq ·q8,P ·q,P ·q8,q2,q82,P2d. s19d

Considering the dependence of these functions on the azi-
muthal angles ofq and q8, we see that—in thecolinear
frame—it is given by the differencew8−w, for the reason
described below Eq.s10d.

The rest of thew dependence resides in the nucleon
spinors. According to Eq.(18), in the colinear frame we
need to consider only xl8

† sQ8 ,w8dxlsQ ,wd and
xl8

† sQ8 ,w8ds3 xlsQ ,wd wherex’s are the Pauli spinors(cf.
Appendix A), Q,w and Q8,w8 define the orientation ofaP
+q andaP+q8, respectively. Since

xl8
† sQ8,w8dxlsQ,wd

= e−il8w8Fo
l9

dl8l9
1/2 sQ8ddll9

1/2 sQdeil9sw8−wdGeilw, s20d

xl8
† sQ8,w8ds3 xlsQ,wd

= e−il8w8Fo
l9

s− 1d1/2−l9 dl8l9
1/2 sQ8ddll9

1/2 sQdeil9sw8−wdGeilw,

s21d

we observe that thew dependence of these elements is of the
desired form, Eq.s3d. And for the half-off-shell situation,
where we can chooseu=0 shence Q=0, in the colinear
framed and usedll9

1/2 s0d=dll9, we find the form

xl8
† sQ8,w8dxls0,wd = e−isl8−ldw8dl8l

1/2 sQ8d, s22d

xl8
† sQ8,w8ds3 xls0,wd = e−isl8−ldw8 s− 1d1/2−l dl8l

1/2 sQ8d,

s23d

which obeys the necessary half-shell condition, Eq.s4d.
Therefore, we have demonstrated that the azimuthal-angle

dependence of a pion-nucleon potential in the colinear frame
always satisfies conditions(3) and (4). It is also apparent
from Eq.(17) that the two-particle Green’s function does not
have any azimuthal dependence in that frame. Thus the inte-
gration overw can exactly be done in the Bethe-Salpeter
equation forpN system by means of the procedure of Sec. II.

Similar arguments apply in the case when both particles
have spin 1/2, e.g., theNN scattering. It should only be
noted that in this case the potential satisfies conditions(3)
and(4) with l=l1−l2, l8=l18−l28. In other words, helicities
of the two particles must be combined.

IV. NUMERICAL RESULTS

The standard route to solution of a potential scattering
equation such as Eq.(14) is to decompose it into an infinite
set of equations for partial-wave amplitudes, see, e.g., Refs.
[5,6]. The advantage of doing a partial-wave decomposition
is that the equation for each partial-wave is of 2 lesser di-
mensions than the original equation, while the partial-wave
series is usually rapidly converging, hence only the first few
partial-wave amplitudes need to be solved for.

On the other hand, solving for the full amplitude directly
has its own important benefits, and if the exact azimuthal-
angle integration can be donea priori, the numerical feasi-
bility of this approach becomes comparable to the PWD
method.

In this section we would like to compare the two methods

2To bring a general expression to this form we use properties of
the Dirac spinors, such as

sg ·q − mNdul
rsqd = sqo − rEqdg0ul

rsqd.
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for the example of solving a relativistic equation for thepN
system. For our toy-calculation potential we take the one-
nucleon exchange, Fig. 2, and use theinstantaneousapproxi-
mation, thus neglecting retardation effects in the potential.
The latter approximation allows us to perform the relative-
energysq0d integration such that we are left with a relativis-
tic three-dimensional Salpeter equation:

Tl8l
r8rsq8,q;Pd = Vl8l

r8rsq8,q;Pd

+ o
l9r9

E d3q9

4p2 Vl8l9
r8r9sq8,q9;PdGET

sr9d

3sq9;PdTl9l
r9rsq9,q;Pd, s24d

where the equal-time two-particle propagator in the c.m. sys-
tem is given by

GET
srdsuqu;Îsd = 2iE

−`

` dq0

2p
Gsrdsq;Pd

=
− r

vqs− rÎs+ Eq + vq − ied
. s25d

This three-dimensional equation forpN has been described
in detail and solved using a PWD in the c.m. system by
Pascalutsa and Tjonf7–9g. We, on the other hand, solve this
equation by using the framework of the two previous sec-
tions to reduce thew integration analytically and solve nu-
merically the resulting two-dimensional integral equation for
the mth Fourier component of the full amplitude:

tl8l
smdr8rsuq8u,u8,uqu,ud

= vl8l,
smdr8rsuq8u,u8,uqu,ud

+ o
l9r9

E
0

` duq9u
2p

uq9u2E
0

p

du9vl9l8
smdr9r8

3suq8u,u8,uq9u,u9dGET
sr9dsuq9udtl9l

smdr9rsuq9u,u9,uqu,ud,

s26d

where, without loss of generality, we have also assumed the
c.m. frame. The explicit form of the Fourier transform of the
one-nucleon-exchange potential is worked out in Appendix
B.

Let us emphasize that it is necessary to solve for only one
of the Fourier components(eitherm=−1/2 or m=1/2), the
other ones either vanish or can be obtained by relations due
to the parity and time-reversal invariance.

We solve Eq.(26) by the Padé approximants as in Refs.
[8,9] thus maintaining exact elastic unitarity. The numerical
integrations are performed by the Gauss-Legendre method.
The integral overuq9u in Eq. (26) contains the cut singularity
at uq9 u =Îfs−smN−mpd2gfs−smN+mpd2g /4s; q̂, which is
handled by the well-known identity

E
0

`

duqu
fsuqud

uqu− q̂ + ie
= PE

0

`

duqu
fsuqud
uqu− q̂

− ipfsq̂d, s27d

whereP denoted the principal-value integral. When comput-
ing the latter the integration region is divided into two inter-
vals: uq u P f0,2q̂g anduq u P s2q̂,`d. The Gaussian points are
then distributed separately for each interval to make use of
the property that an even number of Gaussian points falls
symmetrically with respect to the middle of the interval
hence the singularity in the middle of the first interval is
avoided. The polar-angle integration is straightforward for
both the principal-value term and the imaginary contribution.
We find it sufficient to use 16 Gaussian points for the mo-
mentum integration and 8 points for the polar-angle integra-
tion. Upon increasing the number of points to 32 and 16,
respectively, the results change by less than 0.5 % in the
considered energy range. In all cases we found that six
iterations combined with the use of Padè approximants
work extremely well.

After we solve Eq.(26) to find the full pN T matrix, we
can of course also find the partial-wave amplitudes:

Tl8l
Jr8rsuq8u,uqud =E

0

p

du Tl8l
r8rsuq8u,uqu,uddl8l

J sud, s28d

whereu is the angle betweenq andq8. We then investigate
the convergence of the partial-wave series:

Tl8l
r8rsuq8u,uqu,ud = o

J
SJ +

1

2
D Tl8l

Jr8rsuq8u,uquddl8l
J sud.

s29d

In particular, in Figs. 3 and 4 we plot the on-shell values of

uTl8l
r8r u2 compared with the truncation of the partial-wave se-

ries for three terms and five termssi.e., J= 1
2 , . . . ,5

2 and J
= 1

2 , . . . ,9
2, respectivelyd.

In order to compare the computational efficiency of the
two methods, we compare the number of partial waves
needed to achieve convergence in the PWD method with the
number of Gaussian points for the polar-angle integration
which appear in the “w/o PWD” method.

The figures show that the effect of truncations of the
partial-wave series increases with the angle(Fig. 3) and the
energy of the incomingp (Fig. 4). In our particular case of
one-nucleon exchange computing five or more partial-wave
amplitudes is sufficient to reproduce the full result to a 1%
accuracy in a broad energy domain. Thus, in this case, the
efficiency of the two methods is comparable since we need
five multipoles versus 8 Gaussian points of the polar-angle
integration.

FIG. 2. One-nucleon-exchangepN potential.
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It is important to emphasize that the ability to do the
azimuthal-angle integration analytically is necessary to
achieve comparable efficiency. We have checked that it usu-
ally takes at least 16 Gaussian points for the azimuthal inte-
gration which slows down the calculation by more than an
order of magnitude.

V. EXTENSION TO PION PHOTOPRODUCTION

Our procedure for performing the analyticw integration is
applicable in the photomeson or electromeson production to
first order in the electromagnetic coupling. Here we describe
the extension to the case ofp photoproduction within a
simple final-state-interaction model[8,10]. The model begins

with the following coupled channel equation:

STpp Tpg

Tgp Tgg
D = SVpp Vpg

Vgp Vgg
D + SVpp Vpg

Vgp Vgg
DSGp 0

0 Gg
D

3STpp Tpg

Tgp Tgg
D , s30d

whereT andV are the amplitudes and driving potentials of
the pN scatteringsppd, pion photoproductionsgpd, absorp-
tion spgd, and the nucleon Compton effectsggd, respec-
tively. The above equations are solved up to first order in the
electromagnetic couplinge, hence preserving two-body uni-
tarity to this order only.

In solving the photoproduction scattering equation we cal-
culate firstVpp as described forpN scattering and we then
iterate in the following manner:

Tpg = Vpg + VppGpVpg + VppGpVppGpVpg + ¯ ,

s31d

where we usedTpg=Tgp from time-reversal invariance.
This solution procedure is obviously suitable for our case

since the half shellVpg has a simple azimuthal-angle depen-
dence similar to the case ofVpp [see Eq.(B7)]. The reduced
kernel[see Eq.(B11)] has two terms rather than the one term
in thepN case due to the “complication” of having to couple
a spin-1 photon to spin-1/2 as opposed to coupling a spin-0
meson to spin-1/2. For example, if one considers the
nucleonu-channel exchange[compare to thepN case in Eq.
(B2)] the half-shell photoproduction potential can be written
as

Vl8ls
r8r sq8,qd = 1Vl8ls

r8r sq08,uq8,q0,uqu,u8de−isl8−l−sdf8

+ 2Vl8ls
r8r sq08,uq8,q0,uqu,u8de−isl8+ldf8,

s32d

wheres= ±1 represents the helicity of the incoming photon.
One sees that when Eq.(32) is iterated in Eq.(31) two

decoupled scattering equations are obtained(each corre-
sponding to1V or 2V). For each of these equations, one can
show that the correspondingw8 dependence reappears after
doing thew9 integration and therefore once again we can
perform the azimuthal-angle integration analytically. As in
the pN case, the resulting “reduced” kernels obey two-
dimensional(2D) integral equations.

As a check of our procedures we calculated theu-channel
contribution to pion photoproduction using the analytic
azimuthal-angle integration along with 2D numerical inte-
gration and compared to the results of Refs.[8,10] obtained
using the multipole expansion. AtEg of 300 MeV with five
multipoles we found agreement to better than 1% over a
wide angular range.

VI. CONCLUSION

In recent years Glöckle and collaborators[1,2] introduced
a method which greatly simplifies the numerical integration
of two-body scattering equations without performing the

FIG. 3. Angular dependence foruTs1/2ds1/2d
++ u2 at Ep

LAB=300 MeV.
Solid curve is the full calculation, dashed and dotted are the resum-
ing of partial terms.

FIG. 4. Energy dependence foruT−s1/2ds1/2d
++ u2 at up

c.m.=p. The
curves are defined the same as in Fig. 3.
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partial-wave expansion. The method exploits a certain azi-
muthal symmetry of the potential thus allowing exact inte-
gration of the azimuthal dependence. In this paper we have
established general form of the azimuthal dependence of the
kernel which allows for this procedure to go through. We
have argued that these conditions are in general applicable to
any system of spin-0 and/or spin-1/2 particles.

We have applied this method to the case of pion-nucleon
system. With some extra effort it can be applied to higher
spin systems, however the procedure becomes increasingly
complex with the increase of the spin of the involved par-
ticles. We have successfully applied the method to pion pho-
toproduction and electroproduction from the nucleon, how-
ever only to the leading order in electromagnetic coupling.

Even though we have used the Salpeter equation for nu-
merical exercises, the method can of course be applied to the
full 4D Bethe-Salpeter equation, which for thepN system
has so far been solved in partial waves only[11,12]. Per-
forming the azimuthal-angle integration analytically greatly
facilitates finding the full solution and makes the numerical
feasibility of this approach comparable to solving the equa-
tion using the partial-wave expansion.
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APPENDIX A: HELICITY SPINORS
We define the four-component nucleon helicity spinors as

follows:

ulsEp,pd =
1

Î2Ep
S ÎEp + mN

2lÎEp − mN
D ^ xlsu,wd, sA1d

wherel= ±1/2 is thehelicity, Ep=Îupu2+mN
2 is the energy,

u andw are the spherical angles of the three-momentump,
and xl is the two-component Pauli spinor. The positive-
and negative-energy nucleon spinors in the convention of
Kubis f6g are defined as follows:

ul
s±dspd = uls±Ep,pd. sA2d

They satisfy the following orthogonality and completeness
conditions:

ul
†srdspdul8

sr8dspd = drr8dll8, sA3d

o
r,l

ul
srdspdul

†srdspd = 1. sA4d

The Pauli spinors along thez axis are given by

x1/2s0d = S1

0
D, x−1/2s0d = S0

1
D ,

while along an arbitrary directionu, w they can be obtained
using the Wigner rotation functions:

xlsu,wd = ol8
dll8

1/2 sudeisl−l8dw xl8s0d,

or, explicitly,

x1/2su,wd = S cossu/2d
eiw sinsu/2d

D, x−1/2su,wd = S− e−iw sinsu/2d
cossu/2d

D .

APPENDIX B: AZIMUTHAL DEPENDENCE OF
ONE-NUCLEON EXCHANGE

As an example, we consider theu-channel nucleon-
exchange potential given by the graph in Fig. 2 and the fol-
lowing expression,

Vsq8,q;Pd =
gpNN

2

4mN
2 g · sbP − q8dg5

3
sa − bdg · P + g · sq + q8d + mN

fsa − bdP + q + q8g2 − mN
2 + i«

3g5g · sbP − qd, sB1d

where a and b are defined in Eq.s12d. For simplicity we
choose the c.m. frame, where the potential in the helicity
basis takes the form

Vl8l9
r8r9sq8,q9d =

gpNN
2

16pmN
2

1

u − mN
2

3ūr8
l8sq9dfM1

r8r91 + M2
r8r9g0gur9

l9sq9d

sB2d

with

M1
r8r9sp8 · p9d = mNf2Îssp08 + p09d − s− 2p8 · p9 + p82 + p92

+ mN
2 + sp08 − r8Ep8dsp09 − r9Ep9d

− Îssp08 − r8Ep8 + p09 − r9Ep9dg, sB3d

M2
r8r9sp8,p9d = Îsf2Îssp08 + p09d − s− 2p8 · p9− p82 − p92

− 3mN
2 − sp08 − r8Ep8dsp09 − r9Ep9dg

+ sp82 + mN
2dsp09 − r9Ep9d+ sp92 + mN

2d

3sp08 − r8Ep8d. sB4d

The azimuthal dependencef9 arises from Dirac spinors
and from various scalar products involving the four-vector
q9. Choosing the vector part of the total momentumP to be
along thez axis (or to be zero in the c.m. frame) allows the
f9 dependence, for the fullyoff-shell potential, to be dis-
played in the form
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Vl8l9
r8r9sq8,q9d =

gpNN
2

16pmN
2 Nq8q9Vl8l9su8,u9,f8,f9d

3o
n=0

N Rl8l9,n
r8r9 sq08,uq8u,q09,uq9u,u8,u9dcosnsf9 − f8d

d1sq08,uq8u,q09,uq9u,u8,u9d + d2sq08,uq8u,q09,uq9u,u8,u9dcossf9 − f8d
, sB5d

whereRl8l9,n
r8r9 , Np8p9, anddi are factors which depend on the

type of the diagram and of the exchanged particle, but are
independent of the azimuthal angle. The quantities

Vl8l9 = e−il8f8 o
m=−1/2

1/2

dl8m
1/2 su8ddl9m

1/2 su9deimsf8−f9deil9f9,

Nq8q9 = ÎsEq8 + mNdsEq9 + mNd/4Eq8Eq9

are factors which result from the helicity spinors. In Eq.sB5d
we have employed the usual trigonometric relation between
two arbitrary directions defined byq9 andq8:

cosQq9q8 = cosu9cosu8 + sin u9sin u8cossf9 − f8d.

sB6d

It is easy to see that the fully off-shell potential in Eq.sB5d
has the azimuthal dependence of Eq.s3d. Furthermore, in
iterating Eq.s14d the quantization axis is defined by theon-
shell relative momentumq si.e., u=0d, hence Eq.sB6d re-
duces to cosQq8q=cosu8, therefore thehalf-off-shellpoten-
tial reduces to

Vl8l
r8rsq8qd = vl8l

r8rsq08,uq8u,q0,uqu,u8de−isl8−ldf8 sB7d

which is of the form of the result in Eq.s4d. Therefore, the
azimuthal-angle dependence can be removed from the Bethe-
Salpeter equation for this case. We achieved this result by
explicitly displaying the azimuthal-angle dependence and

align P with thez axis so that onlyg3 andg0 appear inVl8l
r8r .

The presence ofg1 or g2 would introduce additional
azimuthal-angle dependence in the spinor matrix elements
and make the algebra much more complicated.

For theu-channel nucleon exchange the coefficientsdi are

d1sp8,p9d = p82 + p92 + s− 2Îssp08 + p09d + 2p08p09

− 2up8uup9ucosu8cosu9 − mN
2 , sB8d

d2sp8,p9d = − 2up8uup9usin u8sin u9. sB9d

From these relations one can exactly identify the angular
dependence of potential given in Eq.sB1d in the four-
product,

p8 · p9 = p08p09 − p8 ·p9 = p08p09 − up8uup9ucosu8cosu9

− up8uup9usin u8sin u9cossf8 − f9d. sB10d

The relative momentaq8 andq9, defined in Sec. II, are to be
introduced in Eqs.sB3d–sB10d by p8=aP+q8 and p9=aP
+q9, where

v̄l9l8,l
r9r8 suq8u,uq9u,u9,u8d

= o
m=−1/2

1/2

o
n=0

N

Rl8l9,n
r8r9 dl8m

1/2 su8ddl9m
1/2 su9d

3E
0

2p dx cosn x

d1 + d2 cosx
eisl−mdx. sB11d

After applying standard trigonometric manipulations

cos2n−1u =
1

22n−2Fcoss2n − 1du + S2n − 1

1
Dcoss2n − 3du

+ ¯ + S2n − 1

n − 1
DcosuG

and

cos2n u =
1

22nS2n

n
D +

1

22n−1Fcos 2nu + S2n

1
Dcoss2n − 2du

+ ¯ + S 2n

n − 1
Dcos 2uG ,

the integral over the azimuthal angle of the intermediate mo-
mentum in Eq.sB11d can be reduced to integrals of the fol-
lowing type:

Im,n =E
0

2p df cossmfdeinf

1 + a cosf
=E

0

2p df cossmfdcossnfd
1 + a cosf

.

sB12d

For valuesuau ,1, this definite integral can be evaluated
analytically to obtain

Im,n =
p

b
FSb − 1

a
Dm+n

+ Sb − 1

a
Dum−nuG , sB13d

whereb=Î1−a2.
The results given above in Eq.(B11) work for all standard

particle exchanges in thes, t, or u channels. Furthermore, it
should be noted that additional azimuthal-angle dependen-
cies introduced by various form factors can easily be handled
by simple algebraic methods. The maximum power of cosx
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needed for a particular diagram may increase(for example,
N=2 for u-channelD exchange). In addition,v̄ will, in gen-
eral, contain a sum of various terms corresponding to each
diagram included. However, all of these terms can be evalu-

ated using Eq.(B13). In addition as noted earlier, this proce-
dure is not at all affected by theequal-timeapproximation
and can be applied in the same manner to the full 4D Bethe-
Salpeter equation.
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