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Solving potential scattering equations without partial wave decomposition
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Considering two-body integral equations we show how they can be dimensionally reduced by integrating
exactly over the azimuthal angle of the intermediate momentum. Numerical solution of the resulting equation
is feasible without employing a partial-wave expansion. We illustrate this procedure for the Bethe-Salpeter
equation for pion-nucleon scattering and give explicit details for the one-nucleon-exchange term in the poten-
tial. Finally, we show how this method can be applied to pion photoproduction from the nucleonrMith
rescattering being treated so as to maintain unitarity to first order in the electromagnetic coupling. The proce-
dure for removing the azimuthal-angle dependence becomes increasingly complex as the spin of the particles
involved increases.
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[. INTRODUCTION angle dependence can be integrated out in this case. Further-

In cases when solving the Lippmann-Schwinger or Bethe-more.’ n Sgc. v, we solye the resulting equatlon.usmg a

Salpeter type of equation is numerically involved, one OftenquaSIpot(_antlal appr0X|mat|o_n and compare t_he solution to the

resorts to a partial-wave decompositi®hWD) in the center- one o_btalned usmg_the partl_al-wave expansion. In Sec._ V we

of-mass(c.m) frame. In doing so one can exploit the spheri- examine an extenS|_on of this approach to_ the c_alculat|0n of

cal symmetry of the interaction and perform the integrationP!on €lectroproduction from the nucleon including th&l

over the two-dimensional solid angle of the intermediate mofinal-state interaction. Our conclusions are summarized in

mentum analytically. While this reduces the equation’s di->€C- VI-

mension by 2, one has to deal with summing the partial-wave

series, and hence this procedure is beneficial when only a

few partial waves dominate. In the case when many partial II. CONDITIONS FOR EXACT INTEGRATION

waves must be taken into account, when restriction to the OVER THE AZIMUTHAL ANGLE

c.m. frame is not desirable, or when the potential is not

spherically symmetric, the partial-wave expansion is not The starting point in calculating observables of a two-

helpful and one has to face the complexity of three- or fourtody scattering process is an equation for the scattering am-

dimensional integral equations. plitude (Fig. 1). We shall assume relativistic scattering, in
Fortunately, as had been noted by Glockle and collaborawhich case the equation is a four-dimensional integral equa-

tors [1,2] in the context of the nucleon-nucle¢NN) inter-  tion of the Bethe-Salpeter type:

action, the dependence on the intermediate momentum azi-

muthal angle factorizes and can still be performed

analyti(_:ally Wit_hout _employing any kind of expansion or  T(q’ q;P)=V(q',q;P)

truncation. While this procedure has been successfully ap- 4

plied a number of times to thEN situation[2—4], here we +i d'q V(q',q";P)G(q"; P)T(q",q: P)

would like to examine general conditions which potentials (2m* e ' T

must satisfy to factorize the azimuthal integration. We then (1)

apply it to solve a specific example of relativistic potential

scattering in the pion-nucleofiwN) system and compare

with the usual method of using the partial-wave expansion.
In Sec. Il we give the general requirements on the poten

tial that allow one to remove the azimuthal-angle depen

dence in the integral equation. In Sec. Ill we focus on th

Bethe-Salpeter equation faN scattering with one-nucleon-

exchange potential and show in detail how the azimuthal

whereT is the soughf matrix, G is two-particle propagator,
and V is the two-particle-irreducible potential. Moreover,
throughout the papex, q”, g’ stand for the relative four-
Snomenta of the incoming/intermediate/outgoing channel
while P=p+k=p’+k’=p"+k” is the total four-momentum
with k, kK”, k' and p, p’, p’ the incoming/intermediate/
outgoing momenta of particle 1 and particle 2, respectively.
In order to investigate the conditions under which the

*Electronic address: caia@phy.ohiou.edu above equation can be integrated over the intermediate azi-
"Electronic address: viad@jlab.org muthal angle we work in the helicity basis and only display
*Electronic address: wright@phy.ohiou.edu the dependence on the azimuthal angle and helicity:
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k kK

! _ FIG. 1. Diagrammatic form of a relativistic
T - 4 + 4 G T two-body scattering equation.
p v
Tunle’, @) =Vin (¢ ¢) 7 ="+ X0, G . (8)
2w d(PH N
o ' " "

+2 Jo 2 Vi@, @")G(¢") T (¢, @) In principle, m runs to infinity and so we have an infinite

N number of equations to solve even though they are not

(2) coupled. Fortunately, since only the half-off-shell potential is
needed to solve the equations and it obeys condipnthe

An important point here is that the two-particle propaga- X . . e
P P P propag gorrespondlng Fourier transform is nonvanishing only for

tor G can always be made independent of the intermediat
angle ¢” by choosing the total three-momentum along the m=-=
axis, i.e., choosing theolinear frame P=(P,,0,0,P3). Fur-
thermore, we shall observe that in the case when only spin-0
and spin-1/2 particles are involved, the azimuthal-angle de- The scalar system is the simplest one where this proce-
pendence of the fully off-shell potentfain the colinear dure can be demonstrated. In that case the potential is a
frame is given as follows: scalar function of scalar products of relevant four-momenta:

(m) —
Uy Inatt-oft-shel = O-xm Ux/x(0)|nait-oft-shell- 9

N . I - = A’ ) A A2 A2 p2
Vinle' @) =€ n(e' - @de @) V@.a:P)=via-q'P-aP-q'.q.q%F). (10

’ _ o ~_ Given g=(qg,|q]sin 6 cos¢,|q]sin 6 sin ¢,|q|cos) and
whereh and\’ stand for the combined helicities of the initial gimilarly for ¢’, we easily convince ourselves that, in the

and the final state, respectively. The half-off-shell potential,gjinear frame. the azimuthal dependence enters only

then takes a very simple form: through the product
Vo (@' @)lhatoft-shei= €™ ™03, (0)lnatroft-shei (4) q-9" =0qodo — |alla’[[cos 6 cos &'
+sin @ sin 6 cod¢’ - ¢)] (11

where\ is the helicity of the on-shell state.
It is in this case, when conditior{8) and(4) are met, the and hence it is of the necessary form given in Bj. Fur-

exact integration over the azimuthal angle can readily behermore, in the half-off-shell case the momentum of the

done. First, by using Eq3) in Eqg. (2), we see that the on-shell state, sag, can always be chosen along thexis,

azimuthal dependence of thematrix is given by i.e., such thatt=0. Hence the half-off-shell potential is in-
_ _ dependent of azimuthal angles which fulfills conditicf)
Tan(e @) =N 1, (¢ — @)t (5)  for the spinless case. The two-particle propag@doq; P)

=G(P-q,q?,P?) is of course independent gfin the colinear
Sincev andt only depend on difference’ —¢, we expand frame.
them in a simple Fourier series: Once we have found that conditiot®) and(4) are satis-
fied, while G is independent o, the integration ovep can
van(@) = 2o @Mt (d) =2t €M™ (6)  be done immediately. We will now show this more explicitly
m m for the more complicated case of a scalar-spinor system.

It is straightforward to show that their Fourier transforms
I1l. SPIN COMPLICATIONS: THE @N SYSTEM

vi"?i = fzw d_d)v)\,)\(¢)e—im¢, t({?; = JZW d—d’tm(@e—im Consider the Bethe-Salpeter equation for the case of elas-
2m 2 tic scattering of a scalar with mass, — the “pion” — on a
@) spinor with massny — the “nucleon.” We attribute the mo-
mentap, p’ to the nucleon and, k’ to the pion. The relative

satisfy the following equation which does not involve the four-momentum of the incoming channel is conveniently de-

integration: fined byqg=Bp- ak, where Lorentz scalarg and3 are given
by
T . P : - - 2
In general, we deal with the fully off-shell situation, that is, when a=p-Pls=(s+my—-m,)/2s,
both initial and final states are off the mass energy, in the non-
relativistic casg shell. The situation when either the initial or the B=k-Pls=(s- mﬁ +m,)/2s, (12)

final state is on shell is referred to as the half-off-shell case, and it _ o _
is well known that one only needs the half-off-shell result to solvewith s=P2. Similarly one definesq’=gp’-ak’ and q"
the integral equation. =pBp"-ak” as the relative four-momenta of the outgoing and
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intermediate state, respectively. In terms of these variables, The rest of thee dependence resides in the nucleon

the two-bodyzN Green’s function of Eq(1) is spinors. According to Eq(18), in the colinear frame we
need to consider only XI,(',QD’)X)\((@,(,D) and
G(Q P) = 1 (aP+q) - y+my XI,(@’,go')% x.(0,¢) where x's are the Pauli spinorécf.
(q;P) = (BP-q)2- mi+ ie(aP+q)2- mﬁﬁ e Appendix A), 0,90 and ®',¢’ define the orientation o&P
(13) +q andaP+q’, respectively. Since
Projecting the equation onto the basis of the nucleon hex (©',¢)x,(0,¢)
licity spinors(defined in Appendix A we obtain L, e .
Y Spnors( Ppendb =ei'e {E 412,(0")d2(@)e" '@}e'w, (20)
! ’ )\//
A, a;P) =38 (a',a;P)
T ror
d4 " ron ” X ’(® v(P )0-3)( (1‘)0)
+iY f "L PG S ' _ _
g ) AT =g e {E (- 1)y di’,i,,(’)di’i,(@)é”"w"‘/’)]e'“”,
U )\//
X(g";P)TC.L(g",q;P), 14
(@";P) Ty (d",a; P) (14 (21)

where the helicity amplitudes are defined as we observe that the dependence of these elements is of the

o, , , , desired form, Eq(3). And for the half-off-shell situation,
oA ,0,P) = (L/4m)u!, (aP +q")T(a', 0, P)uf (aP + ), where we can choosé=0 (hence ®=0, in the colinear

(15)  frame and used;+(0)=8,,, we find the form
and analogously fov, while the defining equation fa&" is X (0,0")x,(0,¢) =N Ve d2(@7), (22)

—te") 0 -pP)A0 (P
u’ (aP+q)y’ G(q;P)y” u”’(aP +Qq) ., PN _ ,
v TR A e X (0,6)05 3, (0,0) = €7 N (- 212 1207,

=&y 8y, GP(;P), (16) 23

and hence which obeys the necessary half-shell condition, &g.
1 1 Therefore, we have demonstrated that the azimuthal-angle
- - , dependence of a pion-nucleon potential in the colinear frame
Qo+ aVS* (Eypeq=i€) (BVS—00)* ~ wip_q +ie€ always satisfies condition) and (4). It is also apparent
(17) from Eq.(17) that the two-particle Green’s function does not
have any azimuthal dependence in that frame. Thus the inte-

G¥(q;P) =

with Eq=\"q2+m§ and wq=\ﬂq2+mf,. gration overe can exactly be done in the Bethe-Salpeter
The most general Lorentz structure of the fully off-shell equation formN system by means of the procedure of Sec. II.
potential in the helicity basis can be written in the f6rm Similar arguments apply in the case when both particles

have spin 1/2, e.g., th&IN scattering. It should only be
noted that in this case the potential satisfies conditi@s
and(4) with A=X;—=X\,, A" =\;—\;. In other words, helicities
of the two particles must be combined.

VELAA',0;P) = T (P + Q)AL 7+ AGY 5

)\I)\N
+ (A5 + ALP 4Py - Pl u(aP +q),

(18)
IV. NUMERICAL RESULTS
whereA; are scalar functions of the dot products of the rel-
evant momenta, i.e., The standard route to solution of a potential scattering

equation such as E@l4) is to decompose it into an infinite
set of equations for partial-wave amplitudes, see, e.g., Refs.
[5,6]. The advantage of doing a partial-wave decomposition
S ) is that the equation for each partial-wave is of 2 lesser di-
Considering the dependence of these functions on the azjyensions than the original equation, while the partial-wave
muthal angles ofg and q’, we see that—in theolinear  geries is usually rapidly converging, hence only the first few
frame'—lt is given by the differencep’ — ¢, for the reason partial-wave amplitudes need to be solved for.
described below E|10). On the other hand, solving for the full amplitude directly
has its own important benefits, and if the exact azimuthal-

2To bring a general expression to this form we use properties ofNdl€ integration can be dowepriori, the numerical feasi-

Ai:Ai(q-q’,P-q,P-q’,qz,q’z,Pz)- (19)

the Dirac spinors, such as bility of this approach becomes comparable to the PWD
method.
(- a=mYu(a) = (do — pE) YuR(a). In this section we would like to compare the two methods
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We solve Eq.26) by the Padé approximants as in Refs.
[8,9] thus maintaining exact elastic unitarity. The numerical
integrations are performed by the Gauss-Legendre method.
The integral ovetq”| in Eg. (26) contains the cut singularity
at |g"]=\[s—(my—-m,)?][s—(my+m,)?]/4s=§, which is
handled by the well-known identity

FIG. 2. One-nucleon-exchangeN potential. * f(lq]) * f(lql) .
[ dal = [ aal L -imt@, 20

—(g+tle
for the example of solving a relativistic equation for thbl | lai-a
system. For our toy-calculation potential we take the onewhere? denoted the principal-value integral. When comput-
nucleon exchange, Fig. 2, and use ifetantaneouspproxi-  ing the latter the integration region is divided into two inter-
mation, thus neglecting retardation effects in the potentialvals:|q| €[0,23] and|q| € (24,%). The Gaussian points are
The latter approximation allows us to perform the relative-then distributed separately for each interval to make use of
energy(do) integration such that we are left with a relativis- the property that an even number of Gaussian points falls

tic three-dimensional Salpeter equation: symmetrically with respect to the middle of the interval
, , hence the singularity in the middle of the first interval is
T5a’.q;P) =V} 2(a’,q;P) avoided. The polar-angle integration is straightforward for
both the principal-value term and the imaginary contribution.
+ > f V’x)'?w(q .q"; p)G<P> We find it sufficient to use 16 Gaussian points for the mo-
N\ 4 mentum integration and 8 points for the polar-angle integra-
tion. Upon increasing the number of points to 32 and 16,
X(q"; P)Tm(Q" q;P), (24)  respectively, the results change by less than 0.5% in the

considered energy range. In all cases we found that six
where the equal-time two-particle propagator in the ¢.m. Sysjterations combined with the use of Padé approximants

tem is given by work extremely well.
= g After we solve Eq(26) to find the full #N T matrix, we
G(|ql;Vs) = 2i f 2—q°G<P)(q;p) can of course also find the partial-wave amplitudes:
—o £TT
_ - s T = [ de T ial oo, @8

wy(— pVS+ Eq+wg—ie)

This three-dimensional equation faiN has been described whered is the angle betweeq andq’. We then investigate
in detail and solved using a PWD in the c.m. system bythe convergence of the partial-wave series:
Pascalutsa and Tjdir—9]. We, on the other hand, solve this

equation by using the framework of the two previous sec- oo o'p
tions to reduce the integration analytically and solve nu- Tm\(|q lal.6) = E J+ Ti,)\ (la’L.laDdy.,(6).
merically the resulting two-dimensional integral equation for
the mth Fourier component of the full amplitude: (29
t;\”ﬂf\” ?(g'],6',|al,6) In partlcular in Figs. 3 and 4 we plot the on-shell values of
e’ |TM|2 compared with the truncation of the partial-wave se-
= Uy, "?(q’l,¢",|al, ) ries for three terms and five ternge., J—E,... % andJ
da’| . =2,...., respectively.
+ > J ”|2f do'v ;mip p In order to compare the computational efficiency of the
N two methods, we compare the number of partial waves
A T S needed to achieve convergence in the PWD method with the
x(la’l,¢".]q"], eV GE (a"Dtyn’ * (o], 6" |al, 6), number of Gaussian points for the polar-angle integration

(26) which appear in the “w/o PWD” method.

The figures show that the effect of truncations of the
where, without loss of generality, we have also assumed thpartial-wave series increases with the angley. 3) and the
c.m. frame. The explicit form of the Fourier transform of the energy of the incomingr (Fig. 4). In our particular case of
one-nucleon-exchange potential is worked out in Appendibone-nucleon exchange computing five or more partial-wave
B. amplitudes is sufficient to reproduce the full result to a 1%

Let us emphasize that it is necessary to solve for only on@ccuracy in a broad energy domain. Thus, in this case, the
of the Fourier component®itherm=-1/2 orm=1/2), the efficiency of the two methods is comparable since we need
other ones either vanish or can be obtained by relations du@ése multipoles versus 8 Gaussian points of the polar-angle
to the parity and time-reversal invariance. integration.

034003-4



SOLVING POTENTIAL SCATTERING EQUATIONS.. PHYSICAL REVIEW C 69, 034003(2004)

1.0 full T with the following coupled channel equation:
[\ no. of terms=3 ] (TW TM> (vm v,,y) N (vm vm><e,, 0 )
R no. of terms=5 = =
08F 3 . Tyr Ty Viz Vi Vyr Vyy /N0 G,
1 T7T7T T7T‘y
_ X : (30
(\"Ez 06| E T77T Tw
o whereT andV are the amplitudes and driving potentials of
2 the 77N scattering(7r7r), pion photoproductioiys), absorp-
~ 04p . :
- tion (7ry), and the nucleon Compton effe¢yy), respec-
= tively. The above equations are solved up to first order in the
02k i electromagnetic coupling, hence preserving two-body uni-
tarity to this order only.
In solving the photoproduction scattering equation we cal-
0.0 - . PR TP T culate firstV .. as described forrN scattering and we then
0.0 02 04 06 08 1.0 iterate in the following manner:
e cm. [TI:] _
® T7T’}/ - V7T’)/ + V7T’7TG’7TV7T’}/ + V’JT’JTG’?TV’JT’JTG’?TV’JT’)/ T ’
FIG. 3. Angular dependence 6T, 1/, |? at E;*®=300 MeV. (31

Solid curve is the full calculation, dashed and dotted are the resumzhere we used =T,

-~ from time-reversal invariance.
ing of partial terms.

This solution procedure is obviously suitable for our case
since the half sheV ., has a simple azimuthal-angle depen-
It is important to emphasize that the ability to do the dence similar to the case ¥t [see Eq(B7)]. The reduced
azimuthal-angle integration analytically is necessary tdkernel[see Eq(B11)] has two terms rather than the one term
achieve comparable efficiency. We have checked that it usun the 7N case due to the “complication” of having to couple
ally takes at least 16 Gaussian points for the azimuthal intea spin-1 photon to spin-1/2 as opposed to coupling a spin-0
gration which slows down the calculation by more than anmeson to spin-1/2. For example, if one considers the

order of magnitude. nucleonu-channel exchanggompare to therN case in Eq.
(B2)] the half-shell photoproduction potential can be written
V. EXTENSION TO PION PHOTOPRODUCTION as
O_ur proqedure for performing the analyticntegration i_s \/;’ P,a)= Vﬁ’f\o a5.19",90.9l, 6’ )i A=0)g’!
applicable in the photomeson or electromeson production to
first order in the electromagnetic coupling. Here we describe MU(qo,|q ,%o:/q], 0)€ i+
the extension to the case of photoproduction within a
simple final-state-interaction mod@,10. The model begins (32)
whereo=+1 represents the helicity of the incoming photon.
5 — 77— 71— One sees that when E¢B32) is iterated in Eq(31) two
full / decoupled scattering equations are obtairiedch corre-
_________________ no. of terms=3 sponding to,V or ,V). For each of these equations, one can
- no. of terms=5 - show that the corresponding dependence reappears after

doing the ¢” integration and therefore once again we can
/ perform the azimuthal-angle integration analytically. As in
3+ - the 7N case, the resulting “reduced” kernels obey two-
‘ dimensional2D) integral equations.
y ; As a check of our procedures we calculatedubshannel
2t i contribution to pion photoproduction using the analytic
G azimuthal-angle integration along with 2D numerical inte-
gration and compared to the results of R¢&10 obtained
1L i using the multipole expansion. At, of 300 MeV with five
multipoles we found agreement to better than 1% over a
wide angular range.

0 L L
0 200 400 600 800 1000 VI. CONCLUSION

In recent years Glockle and collaboratdis?] introduced
FIG. 4. Energy dependence f¢F (5> at 6™=m. The  a method which greatly simplifies the numerical integration
curves are defined the same as in Fig. 3. of two-body scattering equations without performing the
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partial-wave expansion. The method exploits a certain azi- 1 0
muthal symmetry of the potential thus allowing exact inte- X1/2(0) = <0> X-1/200) = (1>
gration of the azimuthal dependence. In this paper we have
established general form of the azimuthal dependence of thghile along an arbitrary directiof, ¢ they can be obtained
kernel which allows for this procedure to go through. Weysing the Wigner rotation functions:
have argued that these conditior;ys[ are in general applicable to
any system of spin-0 and/or spirf2 patrticles. - 172 i0-Ne o
We have applied this method to the case of pion-nucleon nlb.9)=2, d(0¢ X (0),
system. With some extra effort it can be applied to higher

spin systems, however the procedure becomes increasing?);’ explicitly,

complex with the increase of the spin of the involved par- ( cog6/2) ) (_e—i(psin(alz))

ticles. We have successfully applied the method to pion pho 0,0)=\ . , o X-12(0,0) = )
y app pion phox/»(6, ¢) 69 sin(012) X-1/26,¢) cog6/2)

toproduction and electroproduction from the nucleon, how-
ever only to the leading order in electromagnetic coupling.

Even though we have used the Salpeter equation for nu-
merical exercises, the method can of course be applied to the
full 4D Bethe-Salpeter equation, which for theN system
has so far been solved in partial waves ofilyt,12. Per-
forming the azimuthal-angle integration analytically greatly ="*. .
facilitates finding the full solution and makes the numericall®ing expression,
feasibility of this approach comparable to solving the equa-

APPENDIX B: AZIMUTHAL DEPENDENCE OF
ONE-NUCLEON EXCHANGE
As an example, we consider the-channel nucleon-
exchange potential given by the graph in Fig. 2 and the fol-

2
tion using the partial-wave expansion. V(q',q;P) = gw_Nz{\ly.(ﬁp_ q’)y’
T A
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pices of the U.S. Department of Energy, under Contract Nos. ] ] o
DE-FG02-93ER40756, and DE-FG05-88ER40435, and thé/here a and j are defined in Eq(12). For simplicity we
National Science Foundation under Grant No. NSF-SGER¢h0ose the c.m. frame, where the potential in the helicity

0094668. basis takes the form
2
VPIP”( ’ n)_ g‘ITNN 1
APPENDIX A: HELICITY SPINORS wldhan) = —167rm§ U-mi -~
We define the four-component nucleon helicity spinors as , . . ,
follows: XU, (q")[M "1+ M5 5] (")
, (B2)
U (E )—i< il ) & x69), (A
NP e\ E, —my with
—11/2i icity E.= e i ME" (0" - p") = M 20S(Pg + Pp) = 5= 2p" -+ pr2 + 2
whereN==%1/2 is thehelicity, Ep—\r|p| +mﬁ is the energy, 1 N 0" Fo
¢ and¢ are the spherical angles of the three-momenfym +m2 + (py - p'Ep)(ph— p"Epy)
and y, is the two-component Pauli spinor. The positive- -
and negative-energy nucleon spinors in the convention of —\s(pg— p'Ep + Py~ p"Ep)], (B3)

Kubis [6] are defined as follows:

a2y ME(p) = S2s(pg + pg) - s - 20 pr-p? - p?

- 3ml%] - (p(,) - p,Ep’)(pg - p”Ep")]
+(p'2 + My (P = p"Ep)+ (p"2 +my)

u®(p) = u\(2E,,p).

They satisfy the following orthogonality and completeness

conditions:
I X (P4~ p'Eg). (B4)
p ¢ = ’ ’ . . . .
URIUY (P) = 05 S (A3) The azimuthal dependenc# arises from Dirac spinors
and from various scalar products involving the four-vector
) o)y — g". Choosing the vector part of the total momenténto be
Ex w (P " (p) = 1. (A4)  4long thez axis (or to be zero in the c.m. framallows the
P ¢" dependence, for the fullpff-shell potential, to be dis-
The Pauli spinors along theaxis are given by played in the form
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2
rn gTrNN
Vp/p//(q,!q") = N ’ ”Q)\,}\,,(ﬁ/'ﬂl,,(]s,,(ﬁ”)
N 16mmg, ¢

X% REL, (onla’|. G la’], 6, ") cod(¢" - ¢')
no du(ap,]a’l,ag,1a”], €', 8") + dx(ag.|a’|,ag,a”|, &', ") cod ¢ = ¢')

(B5)

whereR?,%, Ny, andd; are factors which depend on the The relative momentg’ andq’, defined in Sec. I, are to be
type of the diagram and of the exchanged particle, but arlftr,f)duﬁed in Eqs(B3)~(B10) by p'=aP+q’ and p’=aP
independent of the azimuthal angle. The quantities q’, where
1/2 —7"p’ ’ ” r ot
. A A vina’lla’f,e",6)
_ —I)\'(ﬁ’ 1/2 N al/2 . m(¢r_¢rr) }\N¢H ANNTN
Q=e m;m dyo () dr (0" L .
= 2 DR (669
m=-1/2 n=0

Ngrqr = V(Eq + M) (Eqr + My)/4Eq Eqy JZ’T dx cod' x

————d (M, B11
o di+d,cosx (B11)

are factors which result from the helicity spinors. In E85)
we have employed the usual trigonometric relation between

two arbitrary directions defined by” andq’: After applying standard trigonometric manipulations
COP g = COSH'COS O’ + sin ¢'sin 'cog " - ¢'). 1 on-1
(B6) cog"th= 22n_z{cos(Zn -1)6+ ( L )cos(Zn -3)6
It is easy to see that the fully off-shell potential in E§5) - (Zn— 1)003 6]
has the azimuthal dependence of E8). Furthermore, in n-1

iterating Eq.(14) the quantization axis is defined by tbe-
shell relative momentunyg (i.e., 6=0), hence Eq(B6) re- and
duces to co®),q=cos ¢, therefore thenalf-off-shellpoten-

tial reduces to 2n g= 1(2n 1 2n
co mﬁ N +22—n_1 cos o+ 1 cog2n-2)6
VER(@'a) = v A (ag.la’] doal, 1) N (BT) o
C . +~~~+< )cosm},
which is of the form of the result in Ed4). Therefore, the n-1

azimuthal-angle dependence can be removed from the Bethe- ) ) )
Salpeter equation for this case. We achieved this result bihe integral over the azimuthal angle of the intermediate mo-
explicitly displaying the azimuthal-angle dependence andnentum in Eq(B11) can be reduced to integrals of the fol-

. : . ! lowing type:
align P with the z axis so that onlyy® and y° appear inv¢ 5. 9yp

The presence ofy' or 7? would introduce additional 27 db codmd)E™® (27 deb codmd)cogn
azimuthal-angle dependence in the spinor matrix elements I, ,= w: ¢ codmg)cos ¢).
and make the algebra much more complicated. o l+acos¢ 0 l1+acos¢
For theu-channel nucleon exchange the coefficiaitare (B12)
di(p’,p") =p'2+p2+s- 2V"g(p6 +pg) + 2poPo For values|a| <1, this definite integral can be evaluated
—2lp’||p"[cos §'cos ¢ - mﬁ (B9) analytically to obtain

m b-1\mn b-1 [m-n| 3
dy(p’,p") = - 2p’||p"|sin #’'sin ¢". (B9) Imn = b a + a ' (B13)

From these relations one can exactly identify the angwa{'/vhereb:\s’raz

dependence of potential given in E(B1) in the four- The results given above in E€B11) work for all standard

product, particle exchanges in thg t, or u channels. Furthermore, it
L =phph—p’ - p" = pipt -l P P should be noted that additional azimuthal-angle dependen-
PP = PoPo =P P =PoPo = [P {[PTICOS £C0S cies introduced by various form factors can easily be handled
—|p’||p"|sin #'sin @’cog ¢’ — ¢"). (B10) by simple algebraic methods. The maximum power of xos
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needed for a particular diagram may increéfee example, ated using Eq(B13). In addition as noted earlier, this proce-
N=2 for u-channelA exchangg In addition,v will, in gen-  dure is not at all affected by thequal-timeapproximation
eral, contain a sum of various terms corresponding to eachnd can be applied in the same manner to the full 4D Bethe-
diagram included. However, all of these terms can be evaluSalpeter equation.
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