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We investigate the inhomogeneous chiral dynamics of the Os4d linear sigma model in 1+1 dimensions using
the time dependent variational approach in the space spanned by the squeezed states. We compare two cases,
with and without the Gaussian approximation for the Green’s functions. We show that mode-mode correlation
plays a decisive role in the out-of-equilibrium quantum dynamics of domain formation and squeezing of states.
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The possibility of the formation of the disoriented chiral
condensate(DCC) in high energy heavy ion collisions has
been extensively studied with various methods. In classical
approximation[1,2], it has been shown that the amplification
of long wavelength modes of the pion fields takes place
when the system starts with the nonequilibrium initial con-
dition, quench initial condition[1,2]. In addition to the am-
plification, spatial correlation of the fields has been also
shown to grow.

Although the classical approximation is expected to work
well in incorporating nonequilibrium aspects of the system
when pion density is large, it is still desirable to include
quantum effects. In fact, investigations in this direction have
been also carried out extensively with the Hartree approxi-
mation, the largeN approximation, and so on[3,4]. In most
of the previous studies which include quantum effects, how-
ever, it has been assumed that the system is spatially homo-
geneous. Problems such as insufficient thermalization at late
times and impossibility to describe domain structures have
been recognized. It has not been conclusive whether there is
a chance for the correlations to grow through nonequilibrium
time evolution.

There are at least two ways for possible improvement.
One is to include higher order quantum corrections and the
other is to accommodate spatial inhomogeneity. We will pur-
sue the latter in this paper. Recently, the dynamics of spa-
tially inhomogeneous system has been studied by several
groups quantum mechanically[5–8] and it has been shown
that the thermalization of the quantum fields can occur. In
these works, the Gaussian approximation, in which the
Green’s functions are assumed to be diagonal in momentum
space, has been adopted because of computational reasons.
Physically, it corresponds to ignoring correlations between
modes with different momenta, and under the approximation
different modes can interact only through the mean fields.
However, it is possible that the direct coupling of modes
through the off-diagonal correlations is important for the
time evolution of the system when the system does not pos-
sess translational invariance. To see if such an effect is sub-
stantial, we study the dynamics of chiral phase transition in
spatially inhomogeneous systems with off-diagonal compo-
nents of the Green’s function in momentum space fully taken
into account.

In this paper, we take the Os4d linear sigma model as a
low energy effective theory of QCD and apply the method of
the time dependent variational approach(TDVA ) with
squeezed states. This method was originally developed by
Jackiw and Kerman as an approximation in the functional
Schrödinger approach[9] and later it was shown to be
equivalent to TDVA with squeezed states by Tsue and Fuji-
wara [10].

In this approach, the trial state is a squeezed state

uFstdl = p
a

uFastdl,

uFastdl = expfSastdg ·Nastd · expfTastdgu0l,

Sastd = i E dxWfCasxW,tdfasxWd − DasxW,tdpasxWdg,

Tastd =E dxWdyWfasxWdF−
1

4
fGa

−1sxW,yW,td − Ga
s0d−1sxW,yWdg

+ iPasxW,yW,tdGfasyWd, s1d

wherea runs from 0 to 3.a=0 is for the sigma field anda
=1–3 are for thepion fields.u0l is the reference vacuum and
Ga

s0dsxW ,yWd=k0ufasxWdfasyWdu0l. fasxWd and pasxWd are the field
operator and conjugate field operator for the fielda, respec-
tively. CasxW ,td, DasxW ,td, GasxW ,yW ,td, and PasxW ,yW ,td are the
mean field variables forfa field at xW and t, the canonical
conjugate variable for the mean field, the quantum correla-
tion for xW ÞyW sfluctuation around the mean field forxW =yWd,
and the canonical conjugate variable forGasxW ,yW ,td, respec-
tively, and all of them are real functions.Nastd is a normal-
ization constant.Tstd is an operator that describes the squeez-
ing, and if Tastd is set to 0,uFastdl is reduced to a coherent
state with the expectation values offsxW ,td andpsxW ,td given
by CasxW ,td andDasxW ,td, respectively.

The HamiltonianH of the Os4d linear sigma model is
given by
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H =E dxWo
a=0

3 H1

2
pasxWd2 +

1

2
¹W fasxWd ·¹W fasxWd

+ lffasxWd2 − v2g2 − hf0sxWdJ . s2d

As shown in Eq.s1d, the trial state is specified byCasxW ,td,
DasxW ,td, GasxW ,yW ,td, and PasxW ,yW ,td. Their time evolution is
determined through the time dependent variational principle:

dE dtkFstdui
]

] t
− HuFstdl = 0. s3d

In this approach, correlation between different modes in mo-
mentum space arises through the scattering of quanta caused
by the nonlinear coupling term in the model Hamiltonian
even if there is initially no such correlation. This can be seen
best from the following equations of motion in momentum
space,

C̈askW,td = − kW2 − Ma
s1dskW,td,

ĠaskW,kW8,td = 2kkWufGastdPastd + PastdGastdgukW8l,

ṖaskW,kW8,td = 1
8kkWuGa

−1stdGa
−1stdukW8l − 2kkWuPastdPastdukW8l

− kW2d3skW − kW8d − 1
2Ma

s2dskW − kW8,td,

Ma
s1dskW,td = F− m2 + 4lCa

2skW,td + 12lGaskW,kW,td

+ 4l o
bsÞad

fCb
2skW,td + GbskW,kW,tdgGCaskW,td − hda0,

Ma
s2dskW,td = − m2 + 12lCa

2skW,td + 12lGaskW,kW,td

+ 4l o
bsÞad

fCb
2skW,td + GbskW,kW,tdg, s4d

wherem2=4ly2, andCaskW ,td, GaskW ,kW8 ,td, andPaskW ,kW8 ,td are

the mean fields for thefa field with momentumkW, the cor-

relation between modes with momentakW and kW8 for kW ÞkW8
sthe quantum fluctuation around the mean field forkW =kW8d,
the canonical conjugate variable forGaskW ,kW8 ,td, respectively.
In Eq. s4d, we have used the notation,

kkWuHstdIstdukW8l =E dkW9

s2pd3HskW,kW9,tdIskW9,kW8,td. s5d

In the Gaussian approximation,GaskW ,kW8 ,td and PaskW ,kW8 ,td
are set to zero forkW ÞkW8 and correlations between different

modes in momentum space are ignored. However,Ms2dskW

−kW8 ,td in Eq. s4d, which originates from the four-point inter-
action terms in the Os4d linear sigma model, couples modes
with different momenta and correlations between them de-
velop even if initially there exists no correlation among
them.

In numerical calculation, we have assumed the one-
dimensional spatial dependence for the mean fields and the
Green’s functions for computational simplicity. In addition,
we have imposed the periodic boundary condition for the
mean fields and the Green’s functions. We have carried out
calculation on a lattice with the lattice spacingd=1.0 fm and
the total lengthL=64 fm, which leads to the momentum cut-
off L=1071 MeV. The parametersl ,y, and h0 are deter-
mined so that they give the pion massMp=138 MeV, the
sigma meson massMs=500 MeV, and the pion decay con-
stant fp=93 MeV in the vacuum following the prescription
given in Ref. [11], and we have obtainedl=3.44, y
=110 MeV, andh0=s103 MeVd3.

There are several scenarios for the DCC formation in high
energy heavy ion collisions. Here we adopt the quench sce-
nario. In this scenario, the chiral order parameters remain
around the top of the Mexican hat potential after the rapid
change of the effective potential from the chirally symmetric
phase to the chirally broken phase. In order to take this situ-
ation into account, we have used the following initial condi-
tion; at each lattice point, the mean field variable for the
chiral fields and their conjugate variablesCasxW ,0d and
DasxW ,0d are randomly distributed according to the Gaussian
form with the following parameters[12],

kCasxW,0dl = 0,

kCasxW,0d2l − kCasxW,0dl2 = d2,

kDasxW,0dl = 0,

kDasxW,0d2l − kDasxW,0dl2 =
D

d2d2, s6d

whereD=1 is the spatial dimension andd is the Gaussian
width. We shall used=0.19y in the following calculations.
In relating the Gaussian widths ofCasxW ,0d and DasxW ,0d,
we have taken advantage of the virial theoremf12g.

As for the initial conditions for the quantum fluctuation
and correlation, we have assumed that their values are those
realized in the case where each state in momentum space
were in a coherent state with a degenerate massm0 for the
sigma meson and pions, namely,

GasxW,yW,0d =E
0

L dkW

s2pd3

1

2vk
eikW·sxW−yWd,

PasxW,yW,0d = 0, s7d

where vk=Îm0
2+kW2. We adoptm0=200 MeV. As shown

above, the Green’s functionsGasxW ,yW ,0d andPasxW ,yW ,0d are
initially diagonal in momentum space. The off-diagonal
components appear in the course of the time evolution of
the system due to the direct mode-mode coupling induced
by Ms2d in Eq. s4d.

We have carried out two sets of numerical calculations. In
one case, we have taken into account all components of the
two-point Green’s functions(case I), while in the other case
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only the diagonal components of the two-point Green’s func-
tions (case II) were included in the calculation as in most of
the preceding works.

In Fig. 1, we show the time evolution of the mean fields
for the sigma and the third component of the pion fields(f0

andf3, respectively) obtained with the calculation including
all components of the Green’s functions(case I). As a whole,
the expectation value of the sigma field approaches a con-
stant. On the other hand, that of the pion field oscillates
around zero and shows a domain structure with long corre-
lation length. This is the formation of DCC domains. It is
observed that the domain structure continues to grow till as
late ast,40 fm.

In Fig. 2, we show the time evolution of the same mean
fields obtained with the Gaussian approximation, i.e., with-
out the off-diagonal components of the Green’s functions
(case II). At the beginning, the behavior of the mean fields is
similar to that in case I. However, after a few femtometers,
there appears a clear difference between the two cases. In
case II, short range fluctuation is dominant and no long
length correlation is observed. No qualitative change in the
behavior of the mean fields takes place in case II after a few
femtometers. This tells us that the mode-mode correlation
plays a decisive role in the formation of DCC domains.

To examine the growth of spatial correlation of the pion
fields more quantitatively, we define the following spatial
correlation functionCsr ,td,

Csr,td =
E fW sxWd · fW syWddsuxW − yWu − rddxWdyW

E ufW sxWduufW syWdudsuxW − yWu − rddxWdyW

, s8d

wherefW sxWd ·fW syWd=oi=1
3 fisxWdfisyWd and ufW sxWdu=Îoi=1

3 fi
2sxWd.

In Figs. 3(a) and 3(b), we show this spatial correlation
function in cases I and II, respectively. The correlation func-
tions are calculated by taking average over 10 events. Sub-
stantial generation of the correlation takes place after the
typical time scale of the initial rolling down of the chiral
fields, say, a few femtometers in case I, while the growth of
the spatial correlation ends in case II byt,5 fm. The do-
main formation of DCC shown in Fig. 1(b) and this growth
of spatial correlation shown in Fig. 3(a) beyond the rolling
down time scale may be related to the parametric resonance
[13,14]. We are currently investigating this possibility.

Next we show the time evolution of the quantum fluctua-
tion, which is represented by the same-point Green’s func-
tion GasxW ,xW ,td. We define the spatially averaged fluctuation
function kFastdlspaceat time t as

kFastdlspace=
1

V
E GasxW,xW,tddxW , s9d

whereV is the volume of the system.
In Fig. 4, we compare the time evolution of the spatially

averaged quantum fluctuation of the third component of the

FIG. 1. (Color online) Time evolution of the mean fields in case
I. (a) and(b) are for the sigma field and the third component of the
pion field, respectively.

FIG. 2. (Color online) Time evolution of mean fields in case II.
(a) and (b) are for the sigma field and the third component of the
pion field, respectively.
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pion field, kF3stdlspacein the two cases. We observe remark-
able increase of quantum fluctuation in case I, while only
small amplification is seen in case II. This increase also lasts
until about t=40 fm. The comparison between case I and
case II tells us that the off-diagonal correlations take an im-
portant role also for the enhancement of the quantum fluc-
tuation. We have in fact found the growth of off-diagonal
components of the Green’s functions in momentum space.
Note that this phenomenon cannot be described unless the
off-diagonal correlation is introduced. This has an important
meaning also for the identical particle correlation in high
energy heavy ion collisions. Usually it is assumed that iden-
tical particles with different momenta are emitted indepen-
dently. However, if there is quantum correlation between two
different modes, this assumption becomes invalid, and it will
be necessary to reformulate the theory for the identical par-
ticle correlation.

In summary, we have studied the inhomogeneous chiral
dynamics of the Os4d linear sigma model in 1+1 dimensions
using TDVA with squeezed states. We have compared two
cases. One is a general case in which both the mean fields
and the Green’s functions are inhomogeneous, and the other

is a case with the Gaussian approximation, where transla-
tional invariance is imposed on the Green’s functions. We
have shown for the first time that the large correlated do-
mains can be realized in the quench scenario with quantum
mechanical treatment. More specifically, we have shown that
the large amplification of quantum fluctuation and large do-
main structure emerge when all components of the Green’s
functions are retained, while only small quantum fluctuation
and small and noisy domain structure are seen in the case
with the Gaussian approximation. The dynamics in 1+2 and
1+3 dimensional cases is of great interest and indispensable
for the understanding of the DCC formation in ultrarelativ-
istic heavy ion collisions. We expect more enhanced domain
growth in 1+2 and 1+3 dimensional cases because of the
existence of more mode-mode correlations in such cases. We
plan to confirm it by actual numerical calculation.
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