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The mean last passage time is introduced instead of the mean first passage time for determining the decay
rate of a nucleus after induced fission. The stationary fission rate calculated by the inverse of the mean last
passage time at the saddle point is in agreement with the result of Langevin simulations and better than that of
the mean first passing time at the scission point. In particular, we take into account the backstreaming effect
where test particles pass over the potential barrier multiple times. It is shown that the oscillating time of a hot
fissioning system around the saddle point is the longest one in time scales of the fission, thus more neutrons
might be emitted during this period.
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The induced fission of compound nuclei has emerged as a
topic of considerable experimental and theoretical interests
in the past years[1–3]. A large number of numerical studies
[4–7] have shown, by means of Langevin simulations, that
the stationary fission rate at the saddle point of the potential
was higher than that at the scission point[8]. Thus some
authors [4,6,9] have already pointed out the fact that the
saddle point is not a reasonable criterion in stochastic calcu-
lation of the fission rate. Nevertheless, an exit point(or an
“absorbing bound”) needs to be chosen to be away from the
saddle point. As a critical point, the concept of saddle point
plays an important role in nuclear fission as well as in many
other problems, for instance, the angular distribution of fis-
sion fragments is determined at the saddle point.

A more general expression, viz., a mean first passage time
(MFPT), taking the scission point explicitly into account,
was derived by Gontchar and Fröbrich[4] and Hofmannet
al. [10] in the overdamped case. Very recently, Hofmannet
al. [10] used the MFPT to study the fission lifetime and the
emission of light particles, where an absorbing boundary
condition was chosen at the scission point and the stationary
fission rate was approximately interpreted as the inverse of
the mean first passage time. However, dynamical effect of
the saddle point was neglected. We would like to emphasize
that in the Kramers’ theory the so called escape time actually
is a mean last passage time(MLPT) at the saddle point.

In this Brief Report, we want to evaluate time-dependent
fission rate at the saddle point by using the proposed method
of test particles passing over the potential barrier multiple
times, and use the inverse of MLPT across the saddle point
to determine the stationary fission rate.

The Langevin equation for overdamped motion of elon-
gation variablex of a fissioning nucleus reads

gẋstd = −
] Vsxd

] x
+ Î2gTjstd s1d

with kjstdl=0 andkjstdjst8dl=dst− t8d, whereg is the friction
coefficient,Vsxd is the potential energy, andT the tempera-
ture of the compound nucleus.

In Fig. 1, we plot three kinds of schematic potentials:
Vsxd=V0 for xø0.81 andVsxd=Vi si =1,2,3d for xù0.81,
whereVi si =0,1,2,3d are taken as the following forms:

V0 = − 80.11s0.2x5 − 1.17x4 + 2.41x3 − 2.05x2 + 0.63xd + 5,

V1 = − 20sx − 0.81d2 + 4,

V2 = − 10sx − 0.81d2 + 12sx − 0.81d3 − 6sx − 0.81d2 + 4,

V3 = V0. s2d

We apply the stochastic Runge-Kutta algorithm to solve
numerically Eq.(1) for 1.53106 test particles. If a Langevin
trajectory crosses finally the saddle point starting from the
ground state, an escape event occurs, subsequently, time-
dependent fission rate is determined as

rstd = −
1

Nstd
DNstd

Dt
, s3d

whereNstd denotes the number of test particles that have not
undergone fission at timet, DNstd is the number of test par-
ticles that have escaped within the time intervalt→ t+Dt.
We emphasize here the fact thatDNstd is the recorded num-
ber of test particles across the saddle point for the last time,
which differs from the previous method of test particles pass-
ing over the saddle point first time. It is evident that the
probability current over the saddle point takes into account
the contribution of the positive velocity only in the method
of test particles passing over the saddle point first time, be-
cause the trajectories cannot recross the boundary, if the
saddle point is an absorbing boundaryf11g. However, a qua-
sistationary flow passing over the saddle point must contain
both positive and negative currents in the Kramers’ rate for-
mula, which in fact coincides with the mechanism of test
particles passing over the saddle point multiple times.

Time-dependent fission rates calculated by different ap-
proaches are shown in Figs. 2(a), 2(b), and 2(c), where the
presaddle potentials are the same, however, the postsaddle
potentials are considered to beV1 in (a), V2 in (b), andV3 in*Electronic address: jdbao@bnu.edu.cn
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(c), respectively. For comparison, the inverses of the MFPT
calculated numerically at the saddle pointftMFPTsx0→xbdg
and at the scission pointftMFPTsx0→xscdg, as well as the
MLPT calculated numerically at the saddle pointftMLPTsx0
→xbdg are also plotted in this figure, wherex0, xb, andxsc are
the coordinates of the ground state, the saddle point, and the
scission point, respectively. In each part, the upper line is the
result simulated at the saddle point with test particles first
passing over the saddle point; while the lower line is the
result calculated with test particles reaching at the scission
point; and the middle line is calculated also at the saddle
point but with test particles passing over the saddle point
multiple times. It is seen that the stationary fission rates cal-
culated by using test particles passing over the saddle point
first time are definitely higher than those determined by test
particles passing over the saddle point multiple times. In-
deed, the latter approaches the fission rate defined at the
scission point. It is found that thebackstreamingas the dif-
ference between the rates calculated by test particles passing
over the saddle point first time and multiple times, is quite
large if the postsaddle potential is gentle or the potential have
structure. This is due to the fact that in the description of the
MFPT at the saddle point, the particles cannot recross back
over the boundary if the saddle point is chosen to be an
absorbing boundary.

In Figs. 3(a) and 3(b), we show the case of the potential
having a second minimum and maximum. The numerical
result of the stationary fission rate is shown as a function of
the temperature and friction strength, respectively. This is
because we know that the fission rate increases with increas-
ing temperature and decreasing friction strength. It is seen
that the inverse of the MLPT across the saddle point pro-
duces the best data which are in agreement with the present
Langevin simulation.

In the approach of the MFPT, trajectories recrossing the
boundary of the specified domain have not taken into ac-
count the mean escape time of the particle from a metastable
well. Here we propose a relation between the MLPT at the
saddle point and the MFPT at the exit position(scission
point). Restricting to the overdamped case, such an analysis
can be performed in an analytic fashion. We have

tMLPTsx0 → xbd = tMFPTsx0 → xexd − tb→ex s4d

with

tMFPTsx0 → xexd =
g

T
E

x0

xex

eVsyd/TdyE
−`

y

e−Vszd/Tdz, s5d

tb→ex=
g

T
E

xb

xex

e−Vsyd/TdyE
y

`

eVszd/Tdz, s6d

where tb→ex is the mean descent time from the saddle to
scission pointsf12–15g, and for the double-saddle case we
have

tb→ex= tb→xmin
s2d + tMFPTsxmin

s2d → exd, s7d

wherexmin
s2d is the position of the right minimum of the po-

tential. Thus the stationary fission rate is approximately
equal to

FIG. 1. The three kinds of schematic potentials.

FIG. 2. Time-dependent fission rate calculated by Langevin
simulation using different methods and various potentials. The pa-
rameters used areT=4 MeV, g=3.4 MeV/", and the scission po-
sition xsc=2.7.
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rk = tMLPT
−1 sx0 → xbd. s8d

Finally, we show in Fig. 4 the ratio of the fission rate
calculated theoretically by the inverses oftMLPTsx0→xbd and
tMFPTsx0→xexd to the resulting rate of Langevin simulation
as a function of the exit position; here the potentialV2 is
used. It is seen that the fission rate determined by the inverse
of the MLPT at the saddle point is better than that of the
MFPT at the scission point, because there is still room for
dynamical saddle-to-scission time in the MFPT defined at the
scission point.

The fission lifetime can be written ast f =tMFPTsx0→xbd
+Dtb+tb→sc in the present dynamical model. This would be
of considerable interest since still more neutrons are emitted
during the period the system oscillates around the saddle
point. The time for which the compound nucleus after in-
duced fission oscillates around the saddle point is evaluated
theoretically asDtb=tMLPTsx0→xbd−tMFPTsx0→xbd. It can
be found from Figs. 2(a), 2(b), and 2(c) that the oscillating
time around the saddle point might be the longest one in the
above three time scales. Therefore, the number of neutrons
emitted might be more during a large elongation oscillation
for a hot heavy compound nucleus. Moreover, the value of

Dtb increases when the nucleus becomes heavier, because
the distance between the saddle point and scission point in-
creases, which increases with increasing the friction.

In summary, we propose a mean last passage time for the
fission rate defined at the saddle point rather than the one of
the mean first passage time at the scission point as suggested
recently by some authors. It is concluded that the saddle
point is still a reasonable criterion for the exit point in sto-
chastic calculations of time-dependent fission rate as soon as
the backstreaming across the saddle point is taken into ac-
count, i.e., test particles pass over the saddle point multiple
times. This method can also be applied to calculate the fu-
sion probability of massive nuclei[16]. In particular, the po-
sition of scission point only plays a weak role in the proper
determination of fission rate in the calculation of the mean
last passage time across the saddle point, and a dynamical
effect of descent from the saddle point to scission point has
been induced in the mean last passage time. Therefore we
think that it is a concept better than the mean first passage
time.

A hot heavy nucleus has a long oscillating time around the
saddle point, thus more neutrons might be emitted in this
period of time. The number of prescission neutrons with dif-
ferent energies emitted at three deformation regions of the
fissioning nuclei is expected to be tested by experiments. As
one knows that the fission is most of the time accompanied
by light particle andg-ray emission. Particle emission may
modify the collective potential which is no longer static but
changes with time. This might require one to study the effect
of particle emission on the characteristic times of fission pro-
cess.

This work was supported by the National Natural Science
Foundation of China under Grant Nos. 10235020 and
10075007.

FIG. 3. Dependence of the stationary fission rate on the tem-
peratureT at fixedg=3.4 MeV/" in (a) and on the friction strength
g at fixed T=4 MeV in (b). Here the potentialV3 with double
saddle potential is used. The solid lines are the results of Langevin
simulation, the dashed lines are inverse of the mean last passage
time across the saddle point, and the dotted lines are the mean first
passage time at the scission point.

FIG. 4. The ratio between the resulting rates calculated by the-
oretical expression and numerical simulation as a function of the
exit position. The solid and dashed lines are the results of MLPT
across the saddle point and MFPT arriving at the exit point, respec-
tively. The temperatures are equal to 2, 3, and 4 MeV from top to
bottom andg=3.4 MeV/".
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