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The contribution from hyperons to the bulk viscosity of neutron star matter is calculated. Compared to
previous works we use for the weak interaction the one-pion exchange model rather than a current-current
interaction, and include the neutral currentnn↔nL process. Also the sensitivity to details of the equation of
state is examined. Compared to previous works we find that the contribution from hyperons to the bulk
viscosity is about two orders of magnitude smaller.
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I. INTRODUCTION

The bulk viscosity of matter in neutron stars has recently
received considerable attention in connection with damping
of neutron star pulsations and gravitational radiation driven
instabilities, especially in the damping ofr modes[1]. If the
r modes are unstable, i.e., if the damping time scales due to
viscous processes in neutron star matter are longer than the
gravitational radiation driving time scale, a rapidly rotating
neutron star could emit a significant fraction of its rotational
energy and angular momentum as gravitational waves, which
could be detectable.

It has been shown[2–6] that the bulk viscosity in a neu-
tron star is caused by energy dissipation associated with non-
equilibrium weak interaction reactions in a pulsating dense
matter. Strong interaction processes do not play a role, be-
cause the strong interaction equilibrium is reached so fast
that these processes can be considered to be in thermal equi-
librium compared to the typical pulsation time scales of
10−4–10−3 s. The relevant nonequilibrium weak interaction
reaction rates and the magnitude of the bulk viscosity depend
on the density and the composition of neutron star matter.

In a relatively low density neutron star composed mainly
of neutronsn with admixtures of protonsp, electronse, and
muons m, the bulk viscosity is mainly determined by the
reactions of the nonequilibrium modified Urca process,

N + n → N + p + l + n̄l, N + p + l → N + n + nl , s1d

with N=n,p and l =e,m. The bulk viscosity was studied by
Sawyerf7g for npematter and by Haenselet al. [3] for npem
matter. For the process in Eq.(1) the relaxation time, i.e., the
time it takes to restore equilibrium in case of a perturbation,
is strongly temperature dependent, namely,t−1~T6.

At densitiesnB of a few times saturation density,n0 sn0

<0.15 fm−3d, the direct Urca process,

n → p + l + n̄l, p + l → n + nl , s2d

may also be allowed depending on whether or not the proton
fraction exceeds the Urca limit ofxp<0.11 f8g. The contri-
bution of this process to the bulk viscosity was computed
by Haensel and Schaefferf9g for npe matter and by
Haenselet al. [2] for npem matter. Compared to the modi-
fied Urca process a smaller number of particles are involved
which lead to a weaker temperature dependence,t−1~T4. As
a consequence at typical neutron star temperatures,T
,109–1010 K, its contribution to the bulk viscosity is typi-
cally four to six orders of magnitude larger than that from the
modified Urca process. The largest difference compared with
that from the modified Urca process is reached at the low
temperatures.

At about the same densities hyperons may appear in the
neutron star core, first theo− and L hyperons, followed by
J0, J−, and o+ at higher densities. Here we will restrict
ourselves to theo− andL hyperons. In addition to the semi-
leptonic hyperon processes, weak nonleptonic hyperon pro-
cesses also occur, specifically the processes

n + n ↔ p + o−, s3d

p + n ↔ p + L, s4d

and

n + n ↔ n + L. s5d

At low temperatures these processes contribute more effi-
ciently to the bulk viscosity than the direct Urca process and
the semileptonic hyperon ones, because they contain no neu-
trino phase space factor; at typical neutron star temperatures,
T,1010 K, the phase space of neutrinos is almost negli-
gible compared to that of baryons. Hence, for the weak
nonleptonic hyperon processes of Eqs.s3d–s5d the tem-
perature dependence of the inverse relaxation time ist−1

~T2.
Historically the first semiquantitative calculation of bulk

viscosity in neutron matter was carried out by Jones[10]. In
this and all later works the weak nonleptonic process was
calculated using a baryon current-current interaction, i.e., a
contactW exchange.
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More recently the contribution to the bulk viscosity from
the various weak nonleptonic hyperon processes has been
reconsidered by several authors using a modern equation of
state(EoS). Haenselet al. [4] studied the bulk viscosity for
the nnpo− process within the nonrelativistic limit, and they
found the bulk viscosity to be several orders of magnitude
larger than that of the direct and the modified Urca pro-
cesses. Also, applying the contact interaction ofW exchange
Lindblom and Owen[6] calculated the contribution of the
pnpL process in addition to that of thennpo− process.

One may question the validity of theW exchange process.
First there is noW exchange contribution to thennnL pro-
cess and therefore it has not been considered in the above
approaches[4,6,10]. On the other hand it is well known that
in nuclear physics experiments on weakL decay in large
hypernuclei thennnL process is found equally important as
the pnpL process. Second, Jones noticed already several or-
ders of magnitude difference betweentnnnL and the theoret-
ical W exchange based value oftnnpo− [5]. This is interesting,
because the rate for thennnL process must depend on a very
wide class of possible weak hadronic processes. Because
most of these processes also contribute tonnpo− process, the
tnnpo− in reality is probably of the same order of magnitude
astnnnL.

However, in nuclear physics it is customary to model the
weak nonleptonicNY→NN process in terms of meson ex-
change(pion and kaon) with one phenomenological weak
pNY or KNN vertex. In this approach one can describe both
the observed weak decay rate of theL and branching ratios
in hypernuclei quite well[11]. Therefore, in the following we
will calculate the bulk viscosity using the meson exchange
picture to describe the hyperon processes in Eqs.(3)–(5).

In practice the rates also depend on the details of the
equation of state, e.g., the hyperon fractions as a function of
the density. A variety of model equations of state has been
constructed with widely varying properties during the last
decades, some of these based upon a microscopic free space
NN and NY interactions while others are phenomenological
parametrizations of the energy density to higher densities. In
particular the relativistic mean field approaches, as used in
Refs.[4,6], although microscopic in nature, do not start from
a realistic nucleon-nucleon interaction. Here we employ the
effective EoS based on the work of Balberg and Gal[12]. To
get some idea about the sensitivity of the bulk viscosity to
the details of the EoS we consider two different parameter
sets for the density dependence of the multibody potential
energy.

Superfluidity can also influence the bulk viscosity. Below
the critical temperature, superfluidity[4,6] suppresses the re-
action rates by roughly a factor exps−D /Td with gap energy
D. It generally leads to a smaller bulk viscosity. Above the
critical temperature, it has no influence on the reaction rates.
Many properties of superfluid matter such as the gaps and
the critical temperatures are still known with large uncertain-
ties, e.g.,Tc,108–1010 K. Hence, the bulk viscosity is only
considered here for nonsuperfluid matter. For recent papers
about the effects of superfluidity we refer to Haenselet al.
[4] and Lindblom and Owen[6].

The main goal in this study is threefold:(i) to compute the
viscosity using the more realistic one-pion exchange(OPE)

instead of the contactW exchange description in the nonlep-
tonic weak hyperon processes,(ii ) to include the weak neu-
tral currentnnnL process, and(iii ) to examine the sensitivity
of the bulk viscosity to the EoS. The starting point of our
derivation of the bulk viscosity for thennpo−, pnpL, and
nnnL processes is the finite temperature Green’s function
formalism in the quasiparticle approximation(QPA). The
coupling constants for these processes using OPE can be
verified from pionic hyperon decay experiments. The appli-
cation of these coupling constants gives the correct order of
magnitude for the rate of nonmesonic hyperon decay in large
hypernuclei. Covariant expressions for the matrix elements
are derived.

The plan of this paper is as follows. The EoS is discussed
in Sec. II. The bulk viscosity for neutron star matter is dis-
cussed in Sec. III. Section IV is devoted to the collision rate
of the weak nonleptonic hyperon process as in Eqs.(3)–(5).
The results are presented and discussed in Sec. V. Finally the
conclusion is given in Sec. VI.

II. EQUATION OF STATE

In this paper we use the equation of state constructed by
Balberg and Gal[12]. It is a generalization of thesnped EoS
of Lattimer and Swesty[13]. The energy density is param-
etrized in terms of the densities of the constituents. The pa-
rameters for the nucleon-nucleon interactions are fitted to the
binding energy, symmetry energy, and incompressibility of
saturated symmetric nuclear matter. The values of the param-
eters for hyperon-nucleon and hyperon-hyperon interactions
mainly rely on experimental data from hypernuclei. The
equilibrium fractions are obtained in the standard manner, by
assuming a given nucleon densityn and solving the imposed
conditions of baryon conservation, charge neutrality, and
weak equilibrium:

nB = nn + np + no− + nL, s6d

np = ne + no−, s7d

mp = mn − me, s8d

me = mm, s9d

mo− = mn + me, s10d

mL = mn. s11d

To obtain some idea about the sensitivity of the resulting
bulk viscosity to details of the EoS we use two parametriza-
tions which differ in the density dependence of the contribu-
tions of the nucleonssdd and hyperonssgd to the energy
density, specifically given by the parameter setsg=d=2 and
g=d=5/3, respectively(Figs. 1 and 2). The difference be-
tween the two parametrizations of the equation of state has
no influence on the particle fractions in the nuclear sector.
For densities below the appearance density of the hyperons
the neutrons are abundantly presentsxn.0.9d. The leptons
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are present because of charge neutrality to compensate the
positively charged protons, although they are expensive in
terms of energy density. The appearance of the hyperons cre-
ates the possibility to lower the neutron excess without lep-
ton formation, whereas the negatively charged hyperons al-
low charge neutrality to be maintained within the baryon
sector. Therefore, the appearance of the hyperons is accom-
panied by a strong deleptonization.

The first hyperon to appear is theo−, followed by the
lower massL. This can be explained by the higher chemical
potential of theo− due to its negative charge, which com-
pensates the mass difference of about 80 MeV. However, the
growth of theo− number density fraction is soon hindered by
charge-dependent forces, which disfavor an excess ofo−’s
over o+’s and a joint excess ofo−’s and neutrons. TheL is
not affected by charge-dependent forces and its fraction con-
tinues to increase. For the EoS with the smaller values for
d=g=5/3 theonset of the various hyperons occur at higher
densities and the corresponding hyperon fractions are
smaller.

III. THE BULK VISCOSITY

In general bulk viscosity is a dissipative process in which
the compression is converted into heat. It is due to the in-
stantaneous difference between the local physical pressurep
and the thermodynamic pressurep̃

p − p̃ = − z¹W ·vW ,

wherevW is the local velocity. In neutron star matter one is
interested in describing small deviationssoscillationsd dxi
=xi − x̃i around the thermodynamic equilibrium, characterized
by the variablessdensitiesd x̃i.

We will now turn to the calculation ofz for the specific
case of a neutron star with hyperons. Since the three reac-
tions (3)–(5) involve neutrons the fluctuation of the neutron
fraction xn can be used as the primary parameter. For this
situation a general expression for the bulk viscosity has been
derived in Ref.[6],

z =
− nBt

1 − ivt
S ] p

] xn
D

nB

dx̃n

dnB
, s12d

with t the relaxation time,v the pulsation frequency of the
neutron star,p the pressure, andnB the baryon density.

We restrict ourselves to the densities, at which nucleons,
o−’s, andL’s are present. We define the chemical imbalance
as

x = 2 mn − mp − mo− = mn − mL, s13d

and assume that in first order the differenceDGa between the
rates for the various direct reactionsGa and inverse reactions

Ḡa in Eqs.s3d–s5d is proportional tox,

DG = oa
DGa = lx, s14d

with l determining the viscosity. Hence, the relaxation time
t can be expressed in terms of the variation of the imbalance
with the neutron density fluctuation,

t =
nBx

DGsdx/dxnd
<

nB

lsdx/dxnd
. s15d

Thus the main task is to evaluate thedx /dxn. We wish to
include several weak nonleptonic hyperon reactions. To do
this in a proper way one has to take into account that the four
relevant baryon number densitiesxn,xp,xL, and xo are re-
lated to each other by the following three constraints: baryon
conservation, charge neutrality, and chemical equilibrium for
strong processes and in particular for the reactionn+L↔p
+o−. By using these conditions one can expressx in terms of
the fractionsxi and assuming that all leptonic reaction rates
are much smaller than those which produce the hyperon bulk
viscosity, one obtains in the density region withnpo− matter
f6g

FIG. 1. The particle fraction as a function of the baryon number
density(Balberg and Gal[12] case 1 withg=d=2).

FIG. 2. The particle fraction as a function of the baryon number
density(Balberg and Gal[12] case 2 withg=d=5/3).
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dx

dxn
= 2 ann − sapn + ao−n + anp + ano−d + s1/2dsapp + ao−p

+ apo− + ao−o−d, s16d

and in the region withnpo−L matter

dx

dxn
= ann +

sbn − bLdsanp − aLp + ano− − aLo−d

2bL − bp − bo−
− aLn

−
s2bn − bp − bo−dsanL − aLLd

2bL − bp − bo−
, s17d

where thea’s correspond to the partial derivatives of the
chemical potentials with respect to the various fractions

ai j = S ] mi

] xj
D

nk,kÞ j

, s18d

and

bi = ani + aLi − api − ao−i , s19d

wherei and j stand forn, p, o−, andL. These quantities are
obtained from the EoS.

The real part of the hyperon bulk viscosity is

Re z =
− nBt

1 + v2t2S ] P

] xn
D dxn

dnB
, s20d

wheret is given in Eq.s15d. The core of the neutron star is
assumed to pulsate with a frequency of aboutv
,103–104 s−1. In the high frequency limit 1!vt the bulk
viscosity z is proportional to the inverse of the relaxation
time, z~t−1~l, whereas in the low frequency limit 1
@vt the bulk viscosity is proportional to the relaxation
time, z~t~l−1. In the following section the difference in
the rates given byDG in Eq. s14d in first order in x is
derived, from whichl=DG /x can be obtained.

IV. COLLISION RATE

In this section the various ratesDGN1N2N8Y8 for the pro-
cessesN1+N2↔N8+Y8 are considered, where theN is a
nucleon and theY is a hyperon. First we consider the one-
pion exchange in Born approximation. For completeness the
rates using the contactW exchange interaction[6] are given
in Sec. IV B.

A. One-pion exchange

In order to obtainDGN1N2N8Y8, first the rateGN1N2→N8Y8 is
considered. The relevant free space diagrams are shown in
Fig. 3. The strangeness changing weak vertex is given by

FNY8
w = GFmp

2sĀNY8 + B̄NY8g5d, s21d

for which the constantsĀ and B̄ determine the strengths of
the parity violating and parity conservingY→N+p ampli-
tudes, respectively, and are specified in Sec. V. The strong
vertex is

FNN8
s = gNN8g5. s22d

To compute the rates in the medium one needs to account
for Pauli blocking; it is convenient to use the optical theorem
to convert the free space diagrams of Fig. 3 to the closed
diagrams of Fig. 4. Using finite temperature Green’s func-
tions in the QPA, one can express the collision rate as

GN1N2→N8Y8 =
1

S
E d4pN1

s2pd4

d4pN2

s2pd4

d4pN8

s2pd4

d4pY8

s2pd4Zs2pd4

3d4spN1 + pN2 − pY8 − pN8d. s23d

In Eq. s23d one has

Z = Za + Zb, s24d

with

Za = Tr †GN1
−+spN1dFN1N8

s GN8
+−spN8dFN1N8

s†
g

3 Tr fGN2
−+spN2dFN2Y8

w GY8
+−spY8dFN2Y8

w†
‡Dpsk1

2d2

+ hN1 ↔ N2j s25d

with Dpsk2d=1/skW2+mp
2d, andkW i =pWNi−pWN8 sfor i =1,2d, cor-

responding to the diagram on the left in Fig. 4, and

Zb = Tr fGN1
−+spN1dFN1N8

s GN8
+−spN8dFN2N8

s†

3GN2
−+spN2dFN2Y8

w GY8
+−spY8dFN1Y8

w†
gDpsk1

2dDpsk2
2d

+ hN1 ↔ N2j s26d

corresponding to that of the right in Fig. 4. The symmetry
factor S for the pnpL process isS=1 and for thennpo and
nnnL processesS=2. After evaluation of thep0 integrals in
the QPA, one obtains

FIG. 3. The pion exchange diagrams in Born approximation for
the weak nonleptonic hyperon processes with only one hyperon
involved.

FIG. 4. The two types of closed diagrams at the two-loop level.
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GN1N2→N8Y8 =E d3pN1

2 mN1s2pd3

d3pN2

2 mN2s2pd3

3
d3pN8

2 mN8s2pd3

d3pY8

2 mY8s2pd3

3
1

S
uMN1N2N8Yu2fN1fN2s1 − fN8ds1 − fY8d

3 s2pd4dsEN1 + EN2 − EN8 − EY8dd
3spN1 + pN2

− pN8 − pY8d, s27d

wherepi andEi are the particle momentum and energy, re-
spectively, and f i =h1+expfsei −mid /Tgj−1 is the Fermi-
Dirac distribution function. The matrix element is

MN1N2N8Y8 = fūN8FN1N8
s uN1ūY8FN2Y8

w ūN2Dpsk1
2d

− ūN8FN2N8
s uN2ūY8FN1Y8

w ūN1Dpsk2
2dg. s28d

The evaluation ofGN1N2→N8Y8 with the standard technique
f14g takes advantage of the strong degeneracy of the partici-
pating particles in neutron star matter. The multidimensional
integral is decomposed into an energy and an angular inte-
gration. All momentapi are placed on the appropriate Fermi
spheres wherever possible. Furthermore, we introduce the
dimensionless quantities

yi =
ei − mi

T
, j =

x

T
. s29d

The rate in Eq.s27d can be factorized in the form

GN1N2→N8Y8 = GN1N2N8Y8
s0d Isjd, s30d

with

Isjd = p
i=1

4 E
−`

`

dyi fsyiddSo
i=1

4

yi + jD =
ej

ej − 1

4p2j + j3

6
,

s31d

and

GN1N2N8Y8
s0d =

pFN1T
3

8s2pd6 E duN8duY8

Qs1 − uCsuN8,uY8dud
Î1 − C2suN8,uY8d

3
1

S
o
spin

uMN1N2N8Y8u
2, s32d

wherepFNi is the Fermi momentum of baryonNi, uN8 is the
angle betweenpWN1 andpWN8, uY8 is the angle betweenpWN1 and
pWY8, and

CsuN8,uY8d = f− pFN1
2 − pFN8

2 − pFY8
2 + 2 pFN1 pFN8 cossuN8d

+ 2 pFN1 pFY8 cossuY8d

− 2 pFN8
2 pFY8

2 cossuN8dcossuY8d

+ pFN2
2 g/f2 pFN8

2 sinsuN8dsinsuY8dg. s33d

The conditions in Sec. II, Eqs.s6d–s11d, apply in thermody-

namic equilibrium. However, small deviations from thermo-
dynamic equilibrium occur just after a neutron star is born.
For the bulk viscosity the small deviations from the weak
chemical equilibrium are important. For this purpose we
need to consider DGN1N2N8Y8=GN1N2→N8Y8−GN8Y→N1N2,
where the inverse rate isGN8Y→N1N2=G

N1N2N8Y8
s0d

Is−jd. There-
fore, in the linear approximation, valid for small deviations
uj u = ux u /T!1 one has

DGN1N2N8Y8 = GN1N2N8Y8
s0d

DI , s34d

with

DI = Isjd − Is− jd =
4p2

3
j. s35d

The DI is the same for the weak nonleptonic hyperon pro-
cesses of Eqs.s3d–s5d. The total rate considered for the hy-
peron bulk viscosity is

DG = DGpnpL + DGnnnL + 2DGnnpo−. s36d

This result is inserted into Eq.s15d to obtain the relaxation
time.

B. Contact W exchange interaction

In order to illustrate the difference between the pion ex-
change approach and the contactW exchange picture(Fig.
5), we also consider the latter. The rates forW exchange have
been calculated before by Haenselet al. [4] and by Lindblom
and Owen[6], however, in the angle-averaged approxima-
tion. Performing an analogous derivation as in the preceding
section, one obtains the expression in Eq.(15). For conve-
nience of the reader here we give the simpler matrix ele-
ments in the nonrelativistic limit(for the general expression
for the matrix elements we refer to Ref.[6]):

uMnnpo−u2 = 8GF
2 sin2 s2 uCdmn

2mp mo−s1 + 3 cA
np cA

no−
d2

s37d
and

uMpnpLu2 = 8GF
2 sin2 s2 uCdmn mp

2 mLs1 + 3ucA
npu2ucA

pLu2d,

s38d

respectively. Note that no meson propagatorsDsk2d are
present in Eqs.s37d and s38d, i.e., in the medium these ma-
trix elements have a different density dependence than the
OPE ones. ThennnL process has no simpleW exchange
contribution. The results are shown in the following section.

FIG. 5. The diagram of the contactW exchange interaction for
the nnpo− process and thepnpL process.
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V. RESULTS AND DISCUSSION

Some remarks about the differences between the meson
exchange and theW exchange picture are appropriate. First
in the OPE(in which phenomenological input is used for
both the weak and strongpNN couplings) the pion exchange
leads to a finite range interaction and the pseudoscalarpNN
coupling to the presence of momentum dependent terms,
pi /m. These effects are absent in the simpleW point cou-
pling. Hence, in addition to a different overall strength one
also expects to find a different density dependence of the
matrix elements for the two processes in the medium. Sec-
ond, the neutral current process, such asnnnL process, can-
not be described in the simpleW exchange approach.

The EoS applied for the following figures is given by
Balberg and Gal[12] with parametrizationg=d=2 (case 1)
and alsog=d=5/3 (case 2). In the calculation for the case of
pion exchange we use the following values for the strong and
weak vertices:gnn

2 / s4pd=14.2 andgnp=Î2gnn. The values

Āno−=1.93, ĀnL=−1.07, ĀpL=1.46, B̄no−=−0.63, B̄nL

=−7.19, andB̄pL=9.95 are based upon the experimental data
on pionic decay of hyperons[15,16]. In the W exchange
picture the standard values of the weak coupling constants

are cA
np=−gA=−1.26, cA

pL=−0.72, andcA
no−

=0.34 andGF is
the Fermi weak coupling constant. These values are also
used by Lindblom and Owen[6], while Haenselet al. [4]
treat the interaction matrix as a free parameter. Compared to
the work of Lindblom and Owen[6] and Haenselet al. [4]
effects of superfluidity are not taken into account and there is
no angle averaging in this work.

In Fig. 6 we compare the rates for then+n→p+o− pro-
cess for theW exchange and the pion exchange as a function
of density for case 1 of the EoS. Concerning theW exchange,
we note that the nonrelativistic result is a poor approximation
to the relativistic result since there is an almost complete
cancellation between the leading order vector and axial-

vector contributions,s1+3cA
npcA

no−
d2<1/16. The overall rate

calculated with OPE is almost two orders of magnitude
larger than the one corresponding to relativisticW exchange.

The difference can be attributed to larger values of the cou-
plings, ĀNY8 ,B̄NY8 and gNN8.1, in the OPE case. At low
momentum transfer(low density), this effect would be com-
pensated for by thep-wave character of thepNN coupling,

sW ·kW. However, for momenta relevant in neutron stars this
does not happen. In addition, a stronger density dependence
is observed, which is related to finite range pion exchange in
Eq. (28).

Because of the rapid increase of theL fraction after its
appearance, the proton ando− fraction drop abruptly and
also their Fermi momenta. Therefore, the kink in the rate can
be attributed to the appearance of theL at nB<0.33 fm−3.

The rates forpnpL process are shown in Fig. 7. As men-
tioned above the OPE shows a stronger density dependence
because of the presence of the meson propagator. Although
at baryon densities where the hyperons are present a partial
cancellation between the direct and exchange OPE matrix
elements occurs, the overall OPE rate is about one order of
magnitude larger than the one obtained withW exchange,
which again can be attributed to the larger values of the
meson couplings.

FIG. 8. The relaxation timet as a function of the baryon num-
ber density atT=109 K.

FIG. 6. The equilibrium rateG for n+n→p+o− as a function of
the baryon number density atT=109 K.

FIG. 7. The equilibrium rateG for p+n→p+L and n+n→n
+L as a function of the baryon number density atT=109 K.
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As mentioned above the neutral currentnnnL process
does not receive a contribution fromW exchange. In the OPE
approach the magnitude of this rate is a factor 2–3 smaller
than that of thepnpL process. We note that there exists
experimental information on the ratio of thennnL andpnpL
processes in the weak decay of hypernuclei which suggests
that the simple OPE mechanism is not sufficiently accurate
[11]. The inclusion of other mesons, such as kaons, could
improve the situation.

The relaxation time is shown as a function of the baryon
density in Fig. 8. One sees that the relaxation time in the
OPE picture is about two orders of magnitude smaller than in
the W picture. In the latter case after the appearance ofo−,
the relaxation time is determined by thennpo− process; after
the occurrence of theL, the pnpL process takes over and it
dominates the relaxation time. Therefore, a drop in the relax-
ation time occurs at the appearance density of theL. In the
OPE picture after the appearance of theL, the nnpo− pro-
cess remains the most important process for the relaxation
time. Therefore at the appearance density of theL a small
abrupt increase in the relaxation time occurs.

To compute the viscosity one needs to assume a value for
the frequency; typical values of the frequency of the pulsa-
tions arev=103–104 s−1. We have usedv=104 s−1 in Fig. 9.
For the OPE picture, the high frequency limit is applicable.
Whereas forW exchange atT=109 K and at low density we
are even in the low frequency limit. The bulk viscosity in the
OPE picture is about one to two orders of magnitude smaller
than that in theW exchange picture.

To investigate the sensitivity of the bulk viscosity to de-
tails of the EoS we also considered different values of the
parameters. As can be seen in Fig. 10 the bulk viscosity is
rather insensitive to the details of the EoS except with re-
spect to the appearance of theL.

VI. CONCLUSION

In this paper the bulk viscosity due to weak nonleptonic
hyperon processes has been studied. This viscosity is rel-
evant in connection with damping of neutron star pulsations,
especially in the damping ofr modes. In particular we con-
sidered pion exchange, which is based upon empirical input,
in Born approximation to describe the weak nonleptonic hy-
peron processes instead of theW exchange[4–6]. The con-
clusions are the following:

(i) The bulk viscosity in the OPE picture is about one to
two orders of magnitude smaller than that in theW exchange
picture.

(ii ) The rates of thennpo and pnpL process are of the
same order of magnitude using OPE. This result is in con-
trast with the case ofW exchange, because thepnpL process
is one order of magnitude larger thannnpo process.

(iii ) The nnnL process can be included in the calculation
for the bulk viscosity using OPE.

(iv) The bulk viscosity is rather insensitive for the EoS
used except with respect to the appearance of theL.

Therefore, the contactW exchange interaction is probably
too naive for quantitative calculations. In a more realistic
OPE approach the contributions of the hyperons to the bulk
viscosity are less pronounced.
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FIG. 9. The bulk viscosityz as a function of the baryon number
density.

FIG. 10. The bulk viscosityz as a function of the baryon num-
ber density for different equations of state atT=1010 K.
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