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are then calculated. The differences between unpaired and color-flavor locked quark matter are discussed.
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I. INTRODUCTION

It is widely believed that hadronic matter undergoes a
phase transition to quark matter at high densities and/or high
temperatures. The high temperature limit is important in
heavy ion collisions and/or cosmology, whereas the high
baryon density behavior is important for the study of neu-
tron, hybrid, and quark stars.

After a gravitational collapse of a massive star takes
place, a neutron star with practically zero temperature can be
born few seconds after deleptonization. The correct calcula-
tions of the star properties depend on the appropriate equa-
tions of state(EOS) that describe its crust and interior. The
crust of the neutron star, where density is low, is believed to
be adequately described by hadronic matter. Its interior, how-
ever, where density is of the order of five to ten times nuclear
saturation density, remains to be properly understood.
Whether the central part of the star is composed of quark
matter only, of mixed matter, or of paired quark matter is one
of the subjects of the present work.

In the present paper we are interested in building the EOS
for mixed matter of quark and hadron phases. We employ the
quark-meson coupling model(QMC) [1,2] including hyper-
ons in order to describe the hadron phase. In the QMC
model, baryons are described as a system of nonoverlapping
MIT bags which interact through the effective scalar and
vector mean fields, very much in the same way as in the
Walecka model[quantum hadrodynamics(QHD)] [3]. Many
applications and extensions of the model have been made in
the last years[4–10].

While the QMC model shares many similarities with
QHD-type models, it however offers new opportunities for
studying nuclear matter properties. One of the most attractive
aspects of the model is that different phases of hadronic mat-
ter, from very low to very high baryon densities and tempera-
tures, can be described within the same underlying model,
namely, the MIT bag model. In the QMC, matter at low
densities and temperatures is a system of nucleons interact-
ing through meson fields, with quarks and gluons confined
within MIT bag. For matter at very high density and/or tem-
perature, one expects that baryons and mesons dissolve and
the entire system of quarks and gluons becomes confined
within a single, big MIT bag. Another important aspect of the

QMC is that the internal structure of the nucleon is intro-
duced explicitly. It is found that the EOS for infinite nuclear
matter at zero temperature derived from the QMC model is
much softer than the one obtained in the Walecka model[3].
Also, the QMC model nucleon effective mass lies in the
range 0.7–0.8 of the free nucleon mass, which agrees with
results derived from nonrelativistic analysis of scattering of
neutrons from lead nuclei[11] and is larger in comparison
with Walecka model effective mass. Consequently, we ex-
pect that contrary to the NL3 and TM1 parametrizations of
the nonlinear Walecka model(NLWM ) with hyperons, the
mass of the nucleon does not become zero at densities
r,10r0,r0 being the density of nuclear matter at saturation.
At finite temperature, there arises yet another difference be-
tween predictions of QMC and QHD, namely, the behavior
of the effective nucleon mass with the temperature at fixed
baryon density. While in QHD-type models the nucleon mass
always decreases with temperature, in the QMC it increases.
The difference arises because of the explicit treatment of the
internal structure of the nucleon in the QMC. When the bag
is heated up, quark-antiquark pairs are excited in the interior
of the bag, increasing the internal energy of the bag[8]. In
what follows we consider the QMC with a constant bag con-
stant, e.g., not dependent on the scalar meson field as in the
modified quark-meson coupling models(MQMC) [9,10].
Contrary to the QMC result, the bag radius increases with
density for all MQMC models with a meson dependent bag
constant[10]. For densities not much larger than nuclear
matter saturation densityr0 the bags start to overlap which
implies a breakdown of the model. In the present work we
are interested in describing the properties of nuclear matter
for densities which go beyond the saturation density, and
therefore have chosen to consider the QMC model.

For the quark phase we have chosen to use both unpaired
quark matter (UQM) described by the MIT bag model
[12–15] and paired quarks described by the color-flavor
locked (CFL) phase. Recently many authors[16–21] have
discussed the possibility that the quark matter is in a color-
superconducting phase, in which quarks near the Fermi sur-
face are paired, forming Cooper pairs which condense and
break the color gauge symmetry[22]. At sufficiently high
density the favored phase is called CFL, in which quarks of
all three colors and all three flavors are allowed to pair.
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Once the mixed EOS is built by enforcing appropriate
Gibbs criteria and chemical equilibrium conditions, the prop-
erties of the stars are calculated and discussed. We have re-
stricted ourselves to the investigation of neutron starssT
=0d at least a couple of minutes old where the effects of
finite temperature and neutrino trapping are not important
[23,24].

In recent works[25,26], two of us have studied the prop-
erties of mixed stars whose equations of state were built with
the NLWM for the hadron matter[3] and the MIT bag
[12–15], and the Nambu–Jona-Lasinio[27] models for the
unpaired quark matter. In the first work[25] the effects of
temperature were investigated and in the second one the con-
sequences of imposing neutrino trapping at fixed entropies
were studied. In both works, only in very special cases, the
interior of the stars was made of quarks only. In general, a
mixed phase of hadrons and quarks was favored.

In what follows we compare the properties of neutron
stars obtained within the QMC model with hyperons and
with both quark models discussed above, namely, the onset
of hyperons, mixed and quark phases, strangeness content,
the maximum allowed masses, and core composition.

The present paper is organized as follows: in Sec. II the
QMC model with hyperons is reviewed. In Secs. III and IV
the unpaired quark matter and the CFL phase are described.
In Sec. V the mixed phase is implemented, and the results
are shown and discussed in Sec. VI. Finally, in the last sec-
tion, the conclusions are drawn.

II. THE QUARK-MESON COUPLING MODEL FOR
HADRONIC MATTER

In the QMC model, the nucleon in nuclear medium is
assumed to be a static spherical MIT bag in which quarks
interact with the scalar and vector fields,s, v, and r, and
these fields are treated as classical fields in the mean-field
approximation. The quark fieldcqsxd inside the bag then
satisfies the following equation of motion:

fi]” − smq
0 − gs

qsd − gv
qvg0 + 1

2gr
qtzr03gcqsxd = 0, q = u,d,s,

s2.1d

wheremq
0 is the current quark mass, andgs

q, gv
q , andgr

q de-
note the quark-meson coupling constants. The normalized
ground state for a quark in the bag is given byf1,2g

cqsr ,td = Nqexps− ieqt/RBdS j0sxqr/RBd
ibqsW · r̂ j1sxqr/RBd

D xq

Î4p
,

s2.2d

where

eq = Vq + RBsgv
qv + 1

2gr
qtzr03d ; bq =ÎVq − RBmq

*

Vq + RBmq
* ,

s2.3d

with the normalization factor given by

Nq
−2 = 2RB

3 j0
2sxqdfVqsVq − 1d + RBmq

* /2g/xq
2, s2.4d

where Vq;Îxq
2+sRBmq

*d2,mq
* =mq

0−gs
qs, RB is the bag

radius of the baryon, andxq is the quark spinor. The quan-
tities cq,eq,bq,Nq,Vq,mq

* all depend on the baryon con-
sidered. The bag eigenvaluexq is determined by the
boundary condition at the bag surface

j0sxqd = bqj1sxqd. s2.5d

The energy of a static bag describing baryonB consisting of
three ground state quarks can be expressed as

EB
bag= o

q

nq
Vq

RB
−

ZB

RB
+

4

3
pRB

3BB, s2.6d

whereZB is a parameter which accounts for zero-point mo-
tion andBB is the bag constant. The set of parameters used in
the present work is given in Table I. The effective mass of a
nucleon bag at rest is taken to be

MB
* = EB

bag. s2.7d

The equilibrium condition for the bag is obtained by mini-
mizing the effective massMB

* with respect to the bag radius,

d MB
*

d RB
= 0. s2.8d

For the QMC model, the equations of motion for the meson
fields in uniform static matter are given by

ms
2s = o

B

gsBCBssd
2JB + 1

2p2 E
0

kB MB
* ssd

fk2 + MB
*2ssdg1/2k2dk,

s2.9d

mv
2v0 = o

B

gvBs2JB + 1dkB
3/s6p2d, s2.10d

mr
2r03 = o

B

grBI3Bs2JB + 1dkB
3/s6p2d. s2.11d

TABLE I. Bag constants for the baryons at the free space value
BB

1/4. The third and fourth columns are obtained forBB
1/4=210.854

and the mass of the quarks taken asmu=md=5.5 MeV andms

=150 MeV. The last two columns are forBB
1/4=211.303 and the

mass of the quarks taken asmu=md=0 MeV andms=150 MeV.

Baryons MB ZB RB ZB RB

N 939.0 4.00506 0.6 3.98699 0.6

L 1115.6 3.69005 0.62525 3.68029 0.62428

o+ 1189.3 3.45577 0.63977 3.44628 0.63870

o0 1192.5 3.40386 0.64038 3.43600 0.63931

o− 1197.4 3.42970 0.64038 3.42024 0.64024

J0 1314.9 3.29260 0.65336 3.29188 0.65182

J− 1321.3 3.27173 0.65455 3.27105 0.65301
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In the above equationsJB, I3B, andkB are, respectively, the
spin, isospin projection, and the Fermi momentum of the
baryon speciesB. The hyperon couplings are not relevant to
the ground state properties of nuclear matter, but information
about them can be available from the levels inL hypernuclei
f28g. Here

gsB = xsBgsN, gvB = xvBgvN, grB = xrBgrN

and xsB, xvB, and xrB are equal to 1 for the nucleons and
acquire different values in different parametrizations for the
other baryons. Note that thes quark is unaffected by thes
andv mesons, i.e.,gs

s =gv
s =0.

In Eq. (2.9) we have

gsBCBssd = −
] MB

* ssd
] s

= −
] EB

bag

] s
= o

q=u,d
nqgs

qSBssd,

s2.12d

where

SBssd =E
bag

dr c̄qcq =
Vq/2 + RBmq

*sVq − 1d
VqsVq − 1d + RBmq

* /2
, q ; su,dd.

s2.13d

The total energy density and the pressure including the lep-
tons can be obtained from the grand canonical potential and
they read

« =
1

2
ms

2s2 +
1

2
mv

2v0
2 +

1

2
mr

2r03
2 + o

B

2JB + 1

2p2 E
0

kB

k2dkfk2

+ MB
*2ssdg1/2 + o

l

1

p2E
0

kl

k2dkfk2 + ml
2g1/2, s2.14d

P = −
1

2
ms

2s2 +
1

2
mv

2v0
2 +

1

2
mr

2r03
2

+
1

3o
B

2JB + 1

2p2 E
0

kB k4dk

fk2 + MB
*2ssdg1/2

+
1

3o
l

1

p2E
0

kl k4dk

fk2 + ml
2g1/2. s2.15d

The lepton Fermi momenta are the positive real solutions
of ske

2+me
2d1/2=me andskm

2 +mm
2d1/2=mm=me. The equilibrium

composition of the star is obtained by solving the set of Eqs.
(2.9)–(2.11) in conjunction with the charge neutrality condi-
tion (2.16) at a given total baryonic densityr=oBs2JB

+1dkB
3 / s6p2d; the baryon effective masses are obtained self-

consistently in the bag model.
For stars in which the strongly interacting particles are

baryons, the composition is determined by the requirements
of charge neutrality andb-equilibrium conditions under the
weak processesB1→B2+ l + n̄l andB2+ l →B1+nl. After de-
leptonization, the charge neutrality condition yields

qtot = o
B

qBs2JB + 1dkB
3/s6p2d + o

l=e,m
qlkl

3/s3p2d = 0,

s2.16d

whereqB corresponds to the electric charge of baryon species
B andql corresponds to the electric charge of lepton species
l. Since the time scale of a star is effectively infinite com-
pared to the weak interaction time scale, weak interaction
violates strangeness conservation. The strangeness quantum
number is therefore not conserved in a star and the net
strangeness is determined by the condition ofb equilibrium
which for baryonB is then given bymB=bBmn−qBme, where
mB is the chemical potential of baryonB and bB its baryon
number. Thus the chemical potential of any baryon can be
obtained from the two independent chemical potentialsmn
andme of neutron and electron, respectively.

We start by fixing the free-space bag properties for the
QMC model. For the bag radiusRN=0.6, we first fixed the
two unknownsZN and BN for nucleons. These are obtained
by fitting the nucleon massM =939 MeV and enforcing the
stability condition for the bag at free space. The values ob-
tained areZN=3.986 99 andBN

1/4=211.303 MeV for mu
=md=0 MeV andZN=4.005 06 andBN

1/4=210.854 MeV for
mu=md=5.5 MeV. We then fixed these bag valuesBB for all
baryons, and the parameterZB and RB of the other baryons
are obtained by reproducing their physical masses in free
space and again enforcing the stability condition for their
bags. The values obtained forZB and RB are displayed in
Table I formu=md=0 MeV and formu=md=5.5 MeV. Note
that for a fixed bag value, the equilibrium condition in free
space results in an increase of the bag radius and a decrease
of the parametersZB for the heavier baryons.

Next we fit the quark-meson coupling constants ,gs
q ,gv

=3gv
q , andgr=gr

q for the nucleon to obtain the correct satu-
ration properties of the nuclear matter,EB;e /r−M
=−15.7 MeV at r=r0=0.15 fm−3, asym=32.5 MeV, K
=257 MeV, and M* =0.774M. We have gs

q =5.957, gvN
=8.981, andgrN=8.651. We take the standard values for the
meson masses:ms=550 MeV, mv=783 MeV, and mr

=770 MeV.
For the meson-hyperon coupling constants we have opted

for three sets discussed in the literature: set(a), based on
quark counting arguments we takexsB=xvB=xrB=Î2/3 as in
Ref. [29]; set (b), according to Ref.[30,31] we choose the
hyperon coupling constants constrained by the binding of the
L hyperon in nuclear matter, hypernuclear levels, and neu-
tron star masses(xs=0.7 andxv=xr=0.783) and assume that
the couplings to theo and J are equal to those of theL
hyperon; set(c), based on the SUs6d symmetry for the light
quarkssu,dd counting rule[5] we takexsB=xvB=2/3 and
xrL=0,xro=2,xrJ=1.

In Fig. 1 we have plotted the EOS obtained with the
above parametrization of QMC and two choices of the hy-
peron couplings, sets(a) and (b) together with the corre-
sponding EOS obtained with NLWM with cubic and quartic
s terms (K=300 MeV and M* =0.7M). Although the
NLWM-EOS is harder at low densities, it becomes softer at
higher energies after the onset of the hyperons. This fact has
consequences on the behavior of the mixed phase and on the
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star properties. Moreover, one can see that different choices
of the meson-hyperon parameters have a greater influence on
the NLWM, for which the curves separate at lower densities
and become more distant one from the other at high densi-
ties, than in the QMC.

III. UNPAIRED QUARK MATTER EQUATION OF STATE

The possible existence of quark matter in the core of neu-
tron stars is an exciting possibility[13]. Densities of these
stars are expected to be high enough to force the hadron
constituents or nucleons to overlap, thereby yielding quark
matter. We take the quark matter equation of state as in Refs.
[14,15] in which u, d, and s quark degrees of freedom are
included in addition to electrons. Up and down quark masses
are set to 5.5 MeV and the strange quark mass is taken to be
150 MeV. In chemical equilibriummd=ms=mu+me. In terms
of neutron and electric charge chemical potentialsmn andme,
one has

mu = 1
3mn − 2

3me, md = 1
3mn + 1

3me, ms = 1
3mn + 1

3me.

s3.1d

The pressure for quark flavorf, with f =u,d, or s is [15]

Pq =
1

4p2o
f
Fm fkfsm f

2 − 2.5mf
2d + 1.5mf

4 lnSm f + kf

mf
DG ,

s3.2d

where the Fermi momentum iskf =sm f
2−mf

2d1/2.
For the leptons, the pressure reads

Pl =
1

3p2o
l
E p4dp

Îp2 + ml
2
. s3.3d

The total pressure, including the bag constantB, which
simulates confinement becomes

P = Pl + Pq − B. s3.4d

There are only two independent chemical potentialsmn
andme. me is adjusted so that the matter is electrically neu-
tral, i.e.,]P/]me=0.

IV. COLOR-FLAVOR LOCKED QUARK PHASE

In this section we study the equation of state taking into
consideration a CFL quark paired phase. We treat the quark
matter as a Fermi sea of free quarks with an additional con-
tribution to the pressure arising from the formation of the
CFL condensates.

The CFL phase can be described with the help of the
thermodynamical potential which reads[17]

VCFLsmq,med = Vquarkssmqd + VGBsmq,med + Vlsmed,

s4.1d

wheremq=mn/3; and

Vquarkssmqd =
6

p2E
0

n

p2dpsp − mqd +
3

p2E
0

n

p2dpsÎp2 + ms
2

− mqd −
3D2mq

2

p2 + B, s4.2d

with mu=md set to zero,

n = 2mq −Îmq
2 +

ms
2

3
; s4.3d

VGBsmq,med is a contribution from the Goldstone bosons
arising due to the chiral symmetry breaking in the CFL phase
f17,32g,

VGBsmq,med = −
1

2
fp
2me

2S1 −
mp

2

me
2D2

, s4.4d

where

fp
2 =

s21 − 8 ln 2dmq
2

36p2 , mp
2 =

3D2

p2fp
2 mssmu + mdd; s4.5d

Vlsmed is the negative of expressions3.3d; and the quark
number densities are equal, i.e.,

ru = rd = rs =
n3 + 2D2mq

p2 . s4.6d

In the above expressionsD, the gap parameter is taken to be
100 MeV f17g.

The electric charge density carried by the pion condensate
is given by

FIG. 1. EOS obtained with QMC and set(a) (solid line), QMC
and set(b) (dot-dashed line), NLWM and set(a) (dashed line), and
NLWM and set(b) (dotted line) including hyperons.
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QCFL = fp
2meS1 −

mp
4

me
4D . s4.7d

In the above thermodynamic potential, we have neglected the
contribution due to the kaon condensation which is an effect
of orderms

4 and thereby small compared to theD2mq
2 contri-

bution to the thermodynamic potential forD,100 MeV.

V. MIXED PHASE AND HYBRID STAR PROPERTIES

We now consider the scenario of a mixed phase of had-
ronic and quark matter. In the mixed phase charge neutrality
is imposed globally, i.e., the quark and hadronic phases are
not neutral separately but rather the system prefers to rear-
range itself so that

xrc
QP + s1 − xdrc

HP + rc
l = 0, s5.1d

where rc
QP and rc

HP are the charge densities of quark and
hadron phases,x is the volume fraction occupied by the
quark phase,s1−xd is the volume fraction occupied by the
hadron phase, andrc

l is the lepton charge density. As usual,
the phases boundary of the coexistence region between the
hadron and quark phases is determined by the Gibbs criteria.
The critical pressure and critical neutron and electron chemi-
cal potentials are determined by the conditions

mHP,i = mQP,i = mi, i = n,e, THP = TQP,

PHPsmHP,Td = PQPsmQP,Td,

reflecting the needs of chemical, thermal, and mechanical
equilibrium, respectively. The energy density and the total
baryon density in the mixed phase read

« = x«QP + s1 − xd«HP + «l , s5.2d

r = xrQP + s1 − xdrHP. s5.3d

Notice that in all equations above the quark phase(QP)
can be either the UQM or the CFL phase. The EOS for the
mixed phase are then constructed. Once they are obtained,
the properties of the neutron stars can be computed. The
equations for the structure of a relativistic spherical and
static star composed of a perfect fluid were derived from
Einstein’s equations by Oppenheimer and Volkoff[33]. They
are

dP

dr
= −

G

r

f« + PgfM + 4pr3Pg
sr − 2GMd

, s5.4d

dM

dr
= 4pr2«, s5.5d

with G as the gravitational constant andMsrd as the enclosed
gravitational mass. We have usedc=1. Given an EOS, these
equations can be integrated from the origin as an initial value
problem for a given choice of the central energy densitys«0d.
The value ofrs=Rd, where the pressure vanishes defines the
surface of the star. We solve the above equations to study the
structural properties of the star, using the EOS derived
above.

VI. RESULTS AND DISCUSSION

In all figures shown, set(a) for the meson-hyperon cou-
pling constants was used, unless stated otherwise. We have
omitted all results for the parameter sets(b) and(c) because
they are very similar to the ones obtained with set(a). Actu-
ally, all differences appear only in the hadron phase at den-
sities where the mixed phase is already the dominant one. It
is worth emphasizing that, as stated in Secs. III and IV, theu
andd quark masses are different in the UQM and CFL mod-
els.

In Figs. 2(a) and 2(b) the EOS obtained with the unpaired
quark model and the color-flavor locked phase are displayed
for different values of the bag pressureB. The onset of the
mixed phase and quark pure phase occurs at lower densities
for smaller values ofB. This effect has already been dis-
cussed in Ref.[34] for the UQM description. A smaller value
of B gives a softer EOS in the mixed phase because the onset
of the mixed phase occurs at lower densities. However at
higher densities, after the onset of the quark phase it be-
comes harder. The mixed phase shrinks with the decrease of
the B parameter in both quark models. This fact can be also
observed in Table II, where the beginning and ending energy
densities of the mixed phase are displayed in the last two
columns. For the CFL, no mixed phase was found forB1/4

=180 MeV withms=150 MeV andD=100 MeV, giving rise
to a pure quark matter star. For the sake of comparison we
have plotted the EOS for the same bag pressure for the UQM
and CFL phase in Fig. 3. We include in the same figure the
EOS obtained with NLWM plus UQM(short-dashed line).

FIG. 2. EOS obtained with QMC plus UQM
(a) for B1/4=180 (solid line), 200 (short-dashed
line), and 210.85 MeV(long-dashed line); and
QMC plus CFL (b) for B1/4=200 (short-dashed
line) and 211 MeV(long-dashed line).
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One can see from this figure and Table II that the mixed
phase in the CFL appears and ends at lower energy densities
than in the UQM. This result has the same qualitative behav-
ior as the ones shown in Ref.[17]. Comparing QMC and
NLWM with UQM one can see that they behave similarly at
low densities. Fore.4.5 fm−4 the NLWM-EOS becomes
softer in the mixed phase. This is due to the fact that at
higher densities the NLWM with hyperons becomes softer
than the QMC-EOS, Fig. 1.

In Fig. 4 the particle population for the baryons, leptons,
and quarks are shown for the UQM and different bag pres-
sures and for the CFL with one chosen bag value. Hyperons
only appear if the bag constant is very high, in our case
B1/4=210.85 MeV . This value corresponds to theBB value
of the bag used in the QMC model for the hadronic phase. A
different behavior was obtained with NLWM in Ref.[25]

where the hyperons are present both forB1/4=180 and
190 MeV. As already discussed, both the mixed phases and
the quark phase appear at lower densities for lowerB values.
For the CFL phase andB1/4=200 MeV, the quarks appear at
2.67 nuclear saturation density. In Ref.[17], for a bag pres-
sure of B1/4=190 MeV, the quarks appear at 2.149r0. We
can see that our results are compatible with the ones shown
there, obtained within a NLWM formalism withK
=240 MeV andM* =0.78M. While in Fig. 4(c), u,d, ands
quark populations come out different, in Fig. 4(d), because of
the imposition of equal quark densities in the CFL model,
they are forced to be equal. Also, thee− population, which
disappears at the onset of the quark phase in all the EOS
studied, in the CFL model, goes to zero at a much lower
density than in the UQM model, because the onset of a pure
quark phase occurs at lower densities.

As already discussed in Refs.[25,26], the presence of
strangeness in the core and crust of neutron and proto-
neutron stars has important consequences in understanding
some of their properties. In Fig. 5 we show the strangeness
fraction defined as

rs = xrs
QP + s1 − xdrs

HP s6.1d

with

rs
QP =

rs

3r
, rs

HP =
oB

uqs
BurB

3r
,

whereqs
B is the strange charge of baryonB, for the different

models discussed in this work. In all cases the strangeness
fraction rises steadily. If the UQM is used, at the onset of the
pure quark phase it has reached 30% of thebaryonic matter.
Although the amount of strangeness varies in the mixed
phase, it is the same in the pure quark phase independent
of the model used to describe the hadron phase. Neverthe-
less, if the CFL model is used for the quark phase, as a
result of the equal quark densities imposition, the strange-
ness content reaches 1/3 of the total baryonic matter.
Comparing QMC and NLWM with UQM, we conclude
the strangeness content increases faster when the NLWM
is used. This is due to the fact that in this model the
hyperons also contribute.

In Table II we show the values obtained for the maximum
mass of a neutron star as a function of the central density for

TABLE II. Mixed star properties.

Model B1/4 sMeVd Mmax/M( «0 sfm−4d «min sfm−4d «max sfm−4d

QMC+UQM 180 1.41 8.53 1.26 5.24

QMC+UQM 190 1.58 5.52 1.63 7.02

QMC+UQM 200 1.73 4.85 2.05 8.74

QMC+UQM 210.854 1.85 4.68 2.73 10.57

QMC+CFL 190 1.32 12.56 1.35 4.56

QMC+CFL 200 1.49 3.31 1.92 6.25

QMC+CFL 211.303 1.76 3.94 2.66 8.28

NLWM+UQM 180 1.40 7.38 1.17 4.62

NLWM+UQM 190 1.64 4.58 1.81 6.06

FIG. 3. EOS obtained with QMC plus UQM(solid line), QMC
plus CFL (dashed line), and NLWM plus UQM(dotted line) with
B1/4=190 MeV. Only here we have consideredmu=md=0 MeV in
both QMC models to compare the equations of state.

P. K. PANDA, D. P. MENEZES, AND C. PROVIDÊNCIA PHYSICAL REVIEW C69, 025207(2004)

025207-6



some of the EOS studied in this work with UQM and CFL.
Different bag parameters are used. We can see that the maxi-
mum mass of the star increases and its central energy de-
creases with increasingB. This result agrees with the fact
that a largerB value corresponds to a harder EOS at high
densities as shown in Fig. 2. ForB1/4=180 MeVsQMC
+UQMd and B1/4=190 MeVsQMC+CFLd, the central den-
sity of the star lies outside of the range of the mixed phase,
which is an indication of a star with a quark core. In the last
case we get a very high central density due to the very soft
EOS this parametrization gives rise to. In fact the predicted
maximum mass for a hybrid star within this parametrization
is too low as discussed below. In all the other cases discussed
the central density of the star is always within the mixed
phase. We have also added some results obtained with the
nonlinear Walecka model[25] instead of the QMC for the
hadron phase for the sake of comparison. For the sameB, the
maximum mass is about the same, the central core is also
made up of quarks, and the mixed phase starts and finishes at
lower densities. In Ref.[17], the authors have found maxi-
mum masses around 1.6M( for maximumB values ofB1/4

=185 MeV. For theseB values, our results come out at the
same order.

The radius of the maximum mass star is sensitive to the
low density EOS. In order to calculate the radius and to plot
it versus the star mass, we have used the results of Baym,
Pethick, and Sutherland[35] for low baryonic densities.

In Fig. 6 the mass of the family of stars obtained with
QMC is plotted in terms of their radii for both quark models
used andB1/4=190 and 200 MeV. We also include the family
of stars obtained with NLWM plus UQM withB1/4

=190 MeV. The radii of the stars within QMC
are 11.95 KmsB1/4=190 MeVd and 12.47 KmsB1/4

=200 MeVd for UQM and 8.79 KmsB1/4=190 MeVd and
13.31 KmsB1/4=200 MeVd for CFL. For the NLWM family
of stars we getR=12.53 KmsB1/4=190 MeVd. Some con-

clusions can be drawn. Comparing QMC and NLWM for
B1/4=190 MeV, the maximum mass of a stable star is similar
for both models. The fact that NLWM-M( is larger shows
that the main contribution to the star comes from the less
dense regions, where the NLWM-EOS is harder than the
QMC-EOS (see Fig. 3). We consider now the families of
stars obtained within QMC for bothB values using UQM
and CFL. The quark contribution becomes more important
for the smallerB values mainly for the CFL results. In par-
ticular, for B1/4=190 MeV we get a quite small maximum

FIG. 5. Strangeness content obtained with QMC plus UQM
(solid line), QMC plus CFL(dotted line), and NLWM plus UQM
(dashed line) for B1/4=190 MeV.

FIG. 4. Particle fractionsYi =ri /r for i= bary-
ons, leptons, and quarks, obtained with the
QMC+UQM (a) for B1/4=180 MeV, QMC
+UQM (b) for B1/4=210.85 MeV,QMC+UQM
(c) for B1/4=200 MeV, and QMC+CFL(d) for
B1/4=200 MeV.
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M( and a corresponding small radius. A maximum mass of
1.32M( is too small for accounting for the presently known
radio-pulsar masses[36], even after corrections due to rota-
tion. Similar numbers were obtained with the NLWM plus
CFL in Ref.[17] for slightly different values ofB andms. In
fact, since these maximum mass stars have a small hadron
exterior region the properties of the star are mainly deter-
mined by the quark model used. It is also clear from Fig. 6
that the star properties are sensitive to theB value, in par-
ticular within the CFL formalism. TakingB1/4=200 MeV the
contribution of the mixed phase to stable stars is much
smaller, restricted to the core of the star. In Fig. 6(b) the
properties of the stars which only contain hadronic matter do
not coincide because we have takenmu=md=5.5 MeV for
the QMC parametrization for the results QMC plus UQM
and zero otherwise.

A straightforward method of determining neutron star
properties is by measuring the gravitational redshift of spec-
tral lines produced in neutron star photosphere which pro-
vides a direct constraint on the mass-to-radius ratio. Recently
a redshift of 0.35 from three different transitions of the spec-
tra of the x-ray binary EXO0748-676 was obtained in Ref.
[37]. This redshift corresponds toM( /Rskmd=0.15. In Fig. 6
we have added the line corresponding to this constraint, and
only the EOS for QMC plus CFL withB1/4=190 MeV barely
satisfies this constraint. In fact, the above constraint excludes
all the EOS with hyperons, quarks, or obtained within a rela-
tivistic mean-field approach, as compiled in Ref.[38].

VII. CONCLUSIONS

In the present paper we have studied the EOS for neutron
stars using both the unpaired quark matter based on the MIT
bag model and the CFL phase for describing the quark phase
and a relativistic mean-field quark-meson coupling descrip-
tion in which quarks interact via the exchange ofs, v, andr
mesons for the hadron phase.

We have compared the results obtained within the QMC
model with the ones obtained within the NLWM. For similar
properties at nuclear saturation we conclude that contrary to
NLWM, with the QMC the hyperons only appear for a very
high value of the bag constant. Also hyperons make the
NLWM-EOS much softer than the QMC-EOS. For the
hyperon-meson couplings we have used three choices and

verified that they did not have any effect on the onset of
hyperons. The none appearance of hyperons affects the varia-
tion of the strangeness content of the star with density: ex-
cept for the quark phase we get higher fractions with the
NLWM.

For the bag pressure parameterB we have used three dif-
ferent values, which produce different EOS and consequently
the properties of the stars are dependent on them. SmallB
values give stable stars with a quark core. However, for a
given gap constantD we obtain a phase transition to a de-
confined CFL phase only ifB is greater than a critical value.
For lower values we get an EOS of pure quark matter and
pure quark matter stars. ForD=100 MeV we should have
B1/4ù185 MeV. For B1/4=190 MeV and ms=150 MeV,
with QMC plus CFL we are not able to obtain stable stars
with masses equal to most of radio-pulsar masses known. We
have also shown that just one of the EOS we have studied
satisfies the constraint imposed by the recently measured
redshift of 0.35 from three different transitions of the spectra
of the x-ray binary EXO0748-676[37].

We have concluded that the EOS in QMC is so soft that
hyperons would only make the EOS softer at densities for
which the EOS has already been softened by the presence of
quarks, except if we take a quite hard quark matter EOS. A
direct consequence is that the appearance of a strange phase
only occurs with the onset of the mixed phase. For the EOS
with a CFL phase there is even a steep jump on the strange-
ness fraction from zero to almost 0.1 and the strangeness
fraction rises faster than in the quark unpaired phase. It has
been shown in different cases that newly born star with a
strange phase supports more mass than a cold one[19,34]
giving rise to a retarded collapse to a black hole. We may
expect a similar mechanism in the present situation. Thera-
diation radiusdefined asR`=R/Î1−2M /R, obtained by red-
shifting the stars luminosity and temperature[38], is a mea-
surable quantity which imposes restrictions on the acceptable
EOS for stellar matter; namely,R,R` must be satisfied.
Except for the EOS obtained with QMC plus CFL forB1/4

=190 MeV, all the other EOSs studied in the present work
would be excluded if a radiation radiusR`,14 km would be
measured. In conclusion, the EOSs obtained within the QMC
model for hadronic matter plus a quark phase will only sat-
isfy the recent measurement of the gravitational redshift of
spectral lines produced in the neutron star photosphere for a
particular choice of the parameters and with a CFL phase.

FIG. 6. Neutron star mass vs radius obtained
with the (a) QMC plus UQM (solid line), QMC
plus CFL (dotted line), and NLWM plus UQM
(long-dashed line) for B1/4=190 MeV; (b) QMC
plus UQM (dotted line) and QMC plus CFL
(dashed line) for B1/4=200 MeV. The dots indi-
cate the beginning and end of the mixed phases.
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Further measurements may impose further constraints. As
most relativistic models the QMC and bag models are also
parameter dependent. A more systematic study has to be
done in order to verify whether a set of acceptable param-
eters for the QMC1 MIT bag model gives a family of stars
which contains the measured value.

In Ref. [5], strange meson fields, namely, the scalar meson
field f0s975d and the vector meson fieldfs1020d, were also
considered in order to reproduce the observed strongly at-
tractiveLL interaction. They have shown that the introduc-
tion of these strange mesons makes the EOS harder due to
the repulsive effect of thefs1020d, meson. A harder EOS for
the hadronic matter gives rise to an onset of the mixed phase
at lower densities and a smaller mixed phase. The inclusion
of these mesons and their influence on the properties of the
stars are under investigation.

It has been shown that the effect of temperature on the
maximum mass of stable stars is small compared to the effect
of neutrino trapping[25,26,34]. Therefore, it would be inter-
esting to include neutrino trapping even atT=0 MeV and
impose leptonic number conservation in the models used
here, and check the properties of the arising stars.
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