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The properties of baryon resonances are extracted from a complicated process of fitting sophisticated,
empirical models to data. The reliability of this process comes from the quality of data and the robustness of
the models employed. With the large amount of data coming from recent experiments, this is an excellent time
for a study of the model dependence of this extraction process. A test case is chosen where many theoretical
details of the model are required, tBg, partial wave. The properties of the two low@$t resonances in this
partial wave are determined using various models of the resonant and nonresonant amplitudes.
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[. INTRODUCTION fit from experimen{10]. In addition, constituent quark mod-

. els which describe thes®; resonances ad-wave) orbital

The problem of extracting baryon resonance parameters,  isations withJP=1/2" differ in their prediction of the
from observables measured in scattering experiments is mount of mixing between the two possible quark-spin states
fundamental importance. In order to understand the relevargg

d f freed | dtheir i . i th ], because of different models of the short-distance inter-
egrees ot Ireedom atlow energy and their interactions In thg -5 petween the qguarks. A comparison between partial
few dozenN" states found to date, reliable and objective

widths calculated in a given model and those extracted from

|nf9rr3a"[\|/lon d oln t?e;]r pt))ropertles extracted from ”data IS re'aata can be used to determine the nature of these short-
quired. Models of the baryon spectrum are usually comparefjiiance interactions. This makes the dependence of these

to masses defined in terms of effective Breit-Wigner params,  ia) wigths on the method used to extract them from fits to
eters. A more sensitive test of such models is the comparis

f | width db hing fracti n I Offata important, and relevant.
of total widths and branching fractions to open channels of  rpoqe jmnortant microscopic issues are unable to be

each resonance to those extracted from da_ta. These quantitiggyeqd with the uncertainty in the full and partial widths
are also dgfmed in terms of effective Breit-Wigner param- resently reported by the PDG, which vary widely among
eters, bu_t in general ShO.W more sensitivity to the me;tho arious studies. At one extreme, analyses of 4\ elastic
used to fit the data. What is not commonly appreciated is thg . ttering data tend to give a full width of about 120 MeV
dependence of these resonance parameters on the met S14(1539, with 7N as the dominant decay branf7]
used to extract them from a fit to the data. For example‘,‘ it '%,t the other extreme, threshold eta photoproduction data
not uncommon to see such parameters referred to as dat@ive a much larger full widt" ~ 210 MeV, with 7N as the
in the literature. o ’

The primary goal of this paper is to examine the rnodelIarger decay brancfB]. Only a unified treatment of all the

dependence in this process in a carefully chosen test c:as%ata can provide a consistent picture.
P : IS P sS | uily S S ’ The purpose of this paper is to examine the model depen-

stateshln thfl%hpa.rtla_lf_wa\;e 'r?WN S_t?tes Itn th('js pary;(_al gence ofS;; resonance parameters by extracting them from
wave have both significant physics Interest-and signiicant o, o o fits 10 a single set of partial-wave amplitudes for

Uncertainty in their parameters as reported by the Partily ", 6] and N — s [9] scattering in thesy, partia
[ 1%]aMor§tu§f(the Ii)t(elratur?alrcorfsr:fg\rls(:he I%:/\;gset-er:gr)ge; 'rizo\_/vave. These fits have different levels of sophistication in
nance in this partial wavS,,(1539] as a three-quark state their description of the scattering matrix. The analysis of

within the quark modef1]. However, the substantial branch these channels in this partial wave is chosen because the
. ) ‘ e " proximity of two overlapping resonanc 1535 and
ing fraction of S;;(1535 to %N has, given the small phase proximity Wo_overiapping d$1,(1539

1650] and thenN channel threshold makes it an inter-
space available for this decay, led to the interpretation of thiSll( 0l 7 > S| !

tat b | Latti lculati f %Sting and nontrivial example. Differing treatments of the
tsha €asa mes;)rt; aryorl TO eﬁ[ﬂgg a |cet|ca ;u a 'OSS 0 | rescattering processes are a key difference among the models

€ masses of these stales have recently been Gevelopgl jiay here and these effects should be most important near
[3,4]. The calculations of both Refs[3] and [4] are

. o a threshold. Although the number of open channels is much
quenched, and find masses &§(1539 similar to the values larger than two, the two channels that have been chosen are
the most important and account for 90%535 and about

80% (1650 of the decay width when all channels are in-
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"Electronic address: capstick@phy.fsu.edu Breit-Wigner models can get good fits to single-channel
*Electronic address: dytmar@pitt.edu data(e.g.,7mN— 7N [11], yN— 7N [12]), but have nontrivial
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uncertainties and at times surprising results. In simplifyingsmooth, analytic, unitaryf matrix in the physical region;
an intrinsically multichannel problem into a single-channelthey can also be incorporated intdkamatrix model to pro-
model, information from other reactions must be includedvide a unitary scattering matrix. While the poles and cuts in
with accompanying uncertainties. In addition, there is nothe left-hand part of the complexplane required by cross-
single commonly accepted form for the resonance shapgag symmetry are difficult to fully implement in the CMB
When a somewhat large~-10) set of asymptotic states can model, their effects in the physical region can be simulated
couple to eactN with high probability, including a large py a particular choice of strong form factor, and by the use of
sample of reactions and application of the unitarity constrainypthreshold poles. Another method adds to the resonant am-
are extremely important. Common multichannel techniquegyjitude polynomials quadratic in the parametexs=(s
include K-matrix [13,14 and Carnegie-Mellon Berkeley -5, Y2 for each exit channed, which can yield a unitar§t
(CMB) [9,15 models. Each has an established way of in'mat’rcix for theK-matrix approe;ch

cluding a variety of interactions respecting multichannel uni- The procedure used here is to calculate, using the CMB,

tarity with varying ability to include dynamics. . S
Three methods are used here to perform the extraction df-Matrix, and Breit-Wigner approaches, the maffiy, for

resonance parameters via a fit to the partial-wave amplitudeSCattering between the channgsb} e {#N, 7N} in terms of

The most constrained is the CMB model, which was devel2 Set of parameters describing the resonant and nonresonant
oped[16] to describerN elastic and inelastic scattering, and @mplitudes. Different treatments of the background are ex-
extended and modernized in Rgd]. This approach has mul- plored, giving a total of eight different models. & statistic
tichannel unitarity, and the scattering mat¢amatrix in the is minimized by varying these parameters to best fit the
space of channelsas the required analytic structure. Reso-partial-wave amplitudes for theN— 7N [6] and 7N — 7N
nances are modeled as “bare” poles, which are “dressed” bip] reactions.

coupling to the open asymptotic channels. The goals of this work are somewhat limited in order to

The second, simpler approach is to describe the unitary make a clear statement about model dependence, and for this
matrix using a real symmetri& matrix, which is in turn reason the resonance parameters which result should not be
written directly in terms of resonance parameters. This apconsidered for use in understanding the microscopic struc-
proach maintains multichannel unitarity, but does not satisfyiure of theS;; resonance states. The channel space is greatly
analyticity constraints. The third, simplest approach is tosimplified to only the two principal channels, leaving out
build the T matrix directly from a sum of relativistic Breit- other channels such as\ that are a much smaller part of the
Wigner forms for the resonances. In this case, minimal conamplitudes, but which must be included for the optimal val-
straints on the scattering amplitudes are available. Betaw ues. From ten-channel fits to botfN and yN reactions, the
production threshold, the overall amplitude can be made uni$;;(1650 width is known to be~50 % larger than in a two-
tary using Watson’s theorem. However, th channel must channel fit. In addition, the sophisticatdt¢tmatrix tech-
be included for a good description of ti8, partial wave, niques developed by the Giessen grdug] are not used
and onlyad hoc methods[12] are available to accomplish here.
this. The Breit-Wigner models used here are neither unitary

: Il. MODELS OF THE SCATTERING MATRIX
nor analytic.

Nonresonant amplitudes must be added to account for In this section the form of the scattering matrix in the
scattering processes which do not invotsehannelN" reso-  various models is described, along with the implementation
nances. Although a fairly small set of diagrams describingof the two forms of background described above. All of the
nonresonant processes can be identified at lower total energyodels used here require partial-wave amplitud®a&/A) as
(W~ 1.3 GeV), the set of possible diagrams grows rapidly asinput. These extract the energy dependence of amplitudes
the total energy increases to 2.0 GeV. To date, no publishedith specific isospin, parity, and angular momentieng.,
work has included all the relevant diagrams. Empirical de-S;;) from the large number of experimental data points.
scriptions of the nonresonant amplitudes can be chosen singehout 20 years ago, significant efforts were made to find
each resonance has a strong signal in at least one of tmodel independent methods for partial-wave analysisNf
reactions studied, and most publications find the nonresonastastic datg7]. More recent efforts by the George Washing-
amplitudes to be smaller than the resonant amplitudes. Iton University(GWU) group[6] incorporate most of the the-
addition, the most basic physics assumption is that the res@retical constraints developed previously. Although the fits in
nances come from the long-distance part of the interactiotthis work do not use the most recent GWU work, results
and are seen in the sharp energy features of the data, whilssing the most recent PWA would not produce different con-
the nonresonant amplitudes arise from the short-range part gfusions. Since the number of data points for t#é— zN
the interaction and provide smooth energy dependence. Thigaction is much smaller, there is more model dependence.
implies that, in this case, the influence of the choice of nonThese amplitudes are discussed in R&f, using a method
resonant amplitudes on the extracted resonance propertiésat accurately couples theN elastic and inelastic data with
should be small. The “distant-poles” model of the nonreso-minimal model dependence. Until another study is done, this
nant amplitudes is designed for use with the CMB modelis the only PWA result available forrN— 7N.

Bare poles well below and well above the thresholds for the

channels being studied, i.e., distant poles, are fit to the A. CMB model

partial-wave data with methods very similar to those used for In this work theS;; partial wave in#N elastic and7N

the resonance poles. In the CMB model they provide a— N scattering is described using only the two light reso-
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nancesS;4(1535 and S;;(1650. In the CMB model back- IMToap= > TocTeh. (6)
ground(t- andu-channe) processes are simulated using one c

high-energy and two subthreshadhannel poles, which are
treated identically to the resonances in order to preserve t
analytic structure of th@ matrix. The transition amplitudes

pdnitarity is also related to the properties in the complex
plane through the discontinuity in the amplitude across the

[9,16] are right-hand cut.
The dressed propagat@;;(s) can be found by solving
55 I . algebraically the matrix equatiai), with the result
Tap= E 2 fa(S) Vpa(S) YaiGij(9) Yok pu(S)fu(S), (1) s
= Hij(s) =[G (9] =[G~ — Zjj(9) = SOI—5i‘ - Z;(9),
where{a,b} e {7N, #N} label the channels, andj label the &
poles, which can represent the resonances or the background. (7)

The model used in this paper has five poleso for real  gngd the matrixG(s) can be found by invertingd(s). This

resonances and three for background resonantteis €asy  completes the necessary ingredients for calculating tha-
to add channels with this formalism if the input data areyix in the CMB model of Eq.1) in terms of three param-

available. The phase-space factg(s) has the form eters for each resonance or background pole. These are the
bare mass squaresd;, and the coupling strengthg,; and
pa(s) = p—i 2) Y- Since there are five poles, this model has a total of 15
s parameters.

Once thisT matrix is fitted to the partial-wave data by
varying these 15 parameters, baryon resonance parameters
are extracted from the resonant part of fhematrix. The
procedure for doing this is described in what follows.

where p, is the c.m. frame momentum ang; is the real-
valued coupling constant of resonande the channeh. The
form factorf, in Eq. (1) is unity in theS wave.

The dressed propagatdg;j(s) allows resonance to
couple to resonancgthrough rescattering, and is the solu-

tion of the Dyson equation B. Extraction of resonance parameters in the CMB model
G (s)=Go(s) + GO(s G (S). 3 Poles in the resonant part of tﬁ'(_amatrix occur at com-
i i(8)* Gid92u(91Gy(9) ® plex values ofs where the denominator of the resonance
The bare propagatc@-ﬁ(s) has the form propagator vanishes. A search program finds these pole loca-
tions, and these are the model-free out(aee Ref[9] for
5i€ detaily. This is possible because the amplitude has reason-
0 — () ] .
Gij(s) - S-S (4) able properties for complex values &f

However, it is important to derive effective Breit-Wigner
whereg=+1 for the resonances and the high-energy backparameters for each resonance from this model. Once the
ground pole, andy; is the bare mass of the resonariback-  pole positions are found, the matrik(s,q ) is diagonalized
ground polé. One subthreshold pole has=+1 (repulsive,  to eliminate interference between resonances. The denomina-
and the other hag=-1 (attractive. tor of the resonant part of tiEmatrix in the vicinity of each

The self-energ,, in Eqg. (3) is the sum over channets  pole is then expanded is The constant term becomes the
dispersive correction to the mass, and the term lineas in
becomes the width of a generalized relativistic Breit-Wigner
5= 2 Yekbe(S) Vo, (5 form. Thus, although the energy dependence of a resonance

c=t in the CMB model is much more sophisticated than the nor-
mal Breit-Wigner shape, all characteristics of a resonance
can be expressed in this commonly used form.

2

where ¢.(s) is the channel propagator, which plays a centra
role in the CMB model. The sum is over the two channels in
this simplified problem. Two-pion channels suchgé can

be included by treating them as quasi-two-body channels,
which results in an enlargetl matrix. The rescattering sum

in Eq. (5) will then extend over the additional channels. The ~ This is a modified CMB model which uses a polynomial
imaginary part of¢, is the product of phase spaces), function to describe the background. Care must be taken to
with the square of the form factor for chanme(this quantity maintain unitarity of thel matrix. Using a technique from
will be seen in the other models belpand the real part is Ref. [17], the full S matrix is written

C. CMB model with polynomial background

obtained through a once-subtracted dispersion integral s=B'RB ®)
[9,16]. The desired analyticity of the entire amplitude is then '
assured. whereR andB are the resonant and nonreson8mhatrices,

Unitarity comes about because of the democracy of theespectively. Her&R=1+2iT uses the CMB-model matrix,
rescattering in the Dyson equation, E8). In the multichan- andB is a unitary matrix that need not be symmetric. The
nel context, unitarity is expressed through a generalized ofhackground matriXB is constructed from a real symmetric
tical theorem, matrix K&,
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B=(1+iKB)(1-ikB®™, (9) more commonly used, and the less complicated treatment of
. interference and rescattering effects simplifies the fits to
where for the two-channel case of interest partial-wave amplitudes.
K K2k K2 As in the CMB model, two subthreshold poles and one
KB = | Fmr ¥ KX KXy KXy (10  high-energy pole can be used to describe the nonresonant
KXy + k;mxf] K,y Xy + k;mxf] ’ part of the scattering matrix. The contributions from the reso-
nance and nonresonant poles are
or -
- VPa(9)fa(S) Yai ybifb(S) Vpo(S)
KE,= kako + kG, (11) Kl = 20— (12
1

Xp= S (my+my)? for s above exit channel threshold and Here the form is similar on the surface to what is used in

zero otherwise, and the coefficienkg, and k;, are real.  CMB model. The phase spapg(s) is given by Eq(2), f4(s)

Note that the off—d_iagonal terms k°® are zero fosbelow s the form factor(none is needed foB wave, y,; is the

7N threshold. This ensures that_ the diagonal and offtoupling constant of the resonance or background pate

diagonal elements oR are not mixed, so thetN—#N  channela (but with units different from the CMB modg!

amplitude vanishes belowN threshold. This model has angs is the position of theth (real) pole. The signs are

six real parameters describing the background, and si¥he same as those used in CMB model, wéth+1 for the

describing the resonances, for a total of 12 real paramregpnances, the high-energy background pole, and one sub-

eters. o _ ) _ threshold background pole, while the second subthreshold
Once theS matrix in Eq.(8) is formed, it can be easily packground pole has=-1. TheK matrix is formed from a

converted using=1+2iT to aT matrix that can be fit to the  sjimple sum over the resonance and background poles,
partial-wave amplitudes by varying these 12 parameters in

the usual way, and the extraction of the baryon parameters is Ka(9) = > KL(s). (13)
identical to that of the original CMB model. i epoles

When theK matrix is converted to & matrix, rescattering
D. K-matrix models (“dressing” of the resonanteomes about naturally and the
resonance gains a finite width. In this model #enatrix is
written directly in terms of the resonance parameters, so that
M;=\'s is the mass of the resonance associated with the pole
at s, the partial width of théth resonance to channalis

A unitary S matrix can be constructed from a real, sym-
metricK matrix viaT=K(1-iK)™L. This method is very com-
mon in the literaturg¢13,18-20 for investigating hadrons in
reactions. Recently, effective Lagrangian moddi8] have
been used with & matrix for studies oN" states. Nonrela- pa(S) 292
tivistic reductions of Feynman diagrams make these studies r,=—"—2a2a
more sophisticated than what is presented here. The earlier Mi
work of Moorhouse and collaboratof$9] is very similarto  and the total width is the sum of the partial widths. As dis-
the method used here. cussed above, the differences between CMB Knuhatrix

The differences between the CMB aKdmatrix models  formalism are seen only when interactions with other reso-
are well known. A common problem with al-matrix meth-  nances and nonresonant amplitudes occur. These differences
ods is the difficulty in maintaining analyticity. Only the work are expected to be maximized close to a channel threshold,
of Longacre[18] accomplished this. Thus, pole positions andwhich is the reason for the choice of tiS, partial wave
residues can be obtained from the CMB fits and not from thevith resonances neajN threshold. In this case, the CMB
K-matrix fits. Many researchers feel these values have lesgodel is expected to give more reliable results.
model dependence. Any microscopic modelg., lattice An alternate description of the background is using the

QCD) which has the analytic properties as an output carpolynomial form of Eq.(10), which is added to the reso-
only use the CMB results. While the CMB model has a full nanceK matrix

treatment of rescattering, only the imaginary part of the _

channel propagator is included in tikematrix model. The Kap= E Kip(S) + Kgb. (15)
choice of theS;; resonances neaN threshold as a test case i eresonances

is motwatt_ed by the expectation that these res_catterlng effectgi either method of treating the background,
are most important close to threshold. As discussed abov

(14)

these
%-matrix models have the same total number of parameters

the K-matrix method can be incorporated directly into an g the cMB models, 15 for the distant-poles background and
effective Lagrangian formulatiofiL3]. As a result, the non- 12 for the polynomial background.

resonant amplitudes can be added diagram by diagram. This
is a significant advantage over the present version of the
CMB model, which is formulated in terms of amplitudes
rather diagrams. In this work, we use the amplitude form of There are two kinds of Breit-Wigner model used here
the K-matrix model[19,20Q. along with two kinds of nonresonant amplitude parametriza-

Although the CMB model is preferred on theoretical tion. In each model, the resonant and nonresomanatrices
grounds, theK-matrix model has practical advantages. It isare summed,

E. Breit-Wigner models
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- i requires an additional phase in each channel, as described
Tab(S) igregance:ab’res(s) * TabnomedS)- (16 above. With the background described by distant poles, there
) o ] ) o ) ) are 15 parameter@nass, width, and7N branching fraction
This form is inconsistent with unitarity without special ef- 5 a5ch termassociated with the five poles, and ten phases,
fort. . i o for a total of 25 real parameters. Of the models used in this
The resonant amplitud€,, .{s) is given by work, this model has the largest number of parameters.
As with CMB andK-matrix models, it is possible to de-

\e‘"’Faini\f"S elglab

TiaIO NOE — (17)  scribe the nonresonant background by a polynomial function,
' &(s—9s) —ivsl] so that
The signsg are the same as in the CMB_aKdmatrix mod- T.(s) = T S +T s 29
els, s is the pole position(with M;=vs for resonance aS) ieregames anredS) + TabnonredS) (22)

poles, and I';=2, I'y is the total width of resonance ) ]
Using a procedure similar to that of R¢1.2], an arbitrary where the backgroun@-matrix elements are the polynomials
phase exp‘aﬁ‘b) is associated with each pole in each chan- T - + o 32 23
nel. As shown below, the freedom to fit these additional abnonres™ KatXo ™ Kabp- (23
phases is crucial to achieving a good fit with a Breit- As with the other models,=/s—(my+my)? for s above
Wigner model to theS;; partial-waveT-matrix elements in  exit channel threshold and zero otherwise, but now the

these channels. coefficientsky, and «}, are complex. In this model there
The width commonly used to describe a nonrelativisticare six resonance parameters associated with the two
Breit-Wigner form is the energy-dependent width poles, and eight background parametétao complex
© numbers for each of two channgldor a total of 18 real
(9 = Iafs) 2=, (18 ~ parameters.
pa(S)

with the phase-space factpy(s) as in Eq.(2). (Note that this

is not the same as the conventional nonrelativistic Breit-
Wigner energy dependengén alternative, relativistic form In order to understand the complications in g partial
results from the assumption that the numerator of the contriwave, model predictions for a hypothetical isolated reso-
bution of resonanceto theK matrix in Eq.(12) is the same nance are first considered. Figure 1 compares the results of
as that in the Breit-Wigner form in Eq17). If the partial  all four models for the scattering amplitude of an isolated
width used in theK-matrix formalism, Eq(14), is general-  single-channelS-wave resonance. As-wave resonance is
ized to an energy-dependent function by repladidgwith  chosen with a mass of 1710 MeV and width of 215 MeV in

Ill. RESULTS

Vs, then theK-matrix numerator of Eq(12) is the 7N — #N reaction, which avoids any complications with
—= — B F1/ 12 centrifugal barriers. Agreement among the different formula-
VPa(9)fa(8) Vai Yo VPu(9)To(S) = (Tai V) “(I'biV's) tions is striking, despite the deliberate choice of a resonance
=\T.T\s (199 ~ mass close toyN threshold. The&k-matrix and CMB models
ai+ bi V=

o _ _ have identical forms for an isolated resonance. The relativis-
which is the same as the numerator in ELy). This suggests tic Breit-Wigner is chosen to be identical with the CMB

the use of model in this limit. Even the Breit-Wigner amplitude with
— the nonrelativistic width is in good agreement with the other
r5(s) :Fai(si)gpa(s) , (200 forms. If the complex amplitudes are plotted on an Argand

Vs pa(s) diagram(with the real part of the amplitude on the horizontal

axis, and the imaginary part on the vertical axiall will

for the energy-dependent partial width in a relativistic Breit-gq,y the typical counterclockwise circular motion of a reso-
Wigner form. In what follows models using both;"(s),

ol i\ nance. Nonresonant background will cause a shift or a dis-
labeled BW,,, andI';i(s), labeled BW,,, are used in fit-  tortion of this basic shape, and inelasticity will decrease the
ting the Breit-Wigner form in Eq(17) to the S;; partial-  yadius. Interference between resonances can have significant
wave T-matrix elements, and the results are comparedeffects.

The relativistic form is the same as that advocated by A partial-wave amplitude with thisV dependence is the
Chunget al. [20]. most visible signature of a resonance, producing a peak in

The first nonresonant form uses distant poles to describge total cross section with an appropriate width. Such a peak
the background contributions to tﬁ'ematrlx, so that the total is seen in the total cross section foN — 7]N’ and is often

T matrix is a simple sum interpreted as a resonance. T8g partial-wave amplitude
B i dominates the total cross section for this reaction, and is
Tan(s) - E| Tan(S)- (21 shown in the bottom two panels of Fig. 2. Since the higher
i e poles

mass resonancg;;(1650 couples weakly to this channel,
This form of background has two low-energy poles and onehis appears to be an isolated resonance with small nonreso-
high-energy pole, the same as was used with the CMB andant amplitudes.

K-matrix models. To get a good fit, each of these terms Single-channel fits of theN— N amplitudes have been
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0.25

0.15
%- 0.05 %__
/l\ /I\ FIG. 1. Real partgleft pane) and imaginary
lZi lZ_g parts(right pane) of #N— #N resonant scatter-
= = ing amplitudes calculated with an isolated
@ -0.05r £ Swave resonance of mass 1710 MeV and width
o - 215 MeV, in each of the four models used here.

-0.15 |

———- B-Wrel.
-0.25 . . . . -0
1.4 16 1.8 1.4 16 1.8 2
Energy (GeV)

made, which are shown as curves in the bottom two panel$34 MeV, and arN branching fraction of 48%. This shows
of Fig. 2. The results are similar to those of single-channethat it is possible to find fit parameters that roughly agree
fits with a Breit-Wigner energy dependence to the total crosavith the more complete models, but these results are of un-
sections form p— 7n and yp— up [8]. The data can be fit certain value given the strong model dependence.

using anS-wave Breit-Wigner form if a small, but important ~ The elasticrN amplitude(the upper two panels of Fig) 2
contribution from nonresonant amplitudes is included andS more complicated, showing two structures overlapping in
the energy region used in the fit is truncated. This rough fignergy. The resonanc8;;(1650 couples strongly tomN

can be used to determine the product of the initial and finawith peaks atW~ 1.7 GeV in In(T) andatW~ 1.65 GeV in
state couplings to the resonance, requiring information fronRRe(T). Although this rapid energy dependence is a clear reso-
more complete fits to account for the missing decay strengthant signal, there is also a nontrivial nonresonant amplitude
of the S;1(1535 resonance to other channels. The single-which greatly distorts the typical Argand diagram. The en-
channel, one-resonance fit shown in Fig. 2 is made with &rgy dependence d§;;(1535 is more complicated inrN
Breit-Wigner resonant shape with the relativistic form of theelastic scattering because of the strong coupling toziNe
width, the polynomial form of the background, and a singlechannel at its thresholdV=1.487 GeV, which is within the
phase multiplying the resonant amplitude, truncating the fitesonant shape. This produces a cusp in the real part at
at 1700 MeV. The result is a mass of 1543 MeV, a width ofthreshold in addition to a peak in the imaginary part at ap-

; ; ; ; : : : 09
N o | fl 07
o~ I r IIH 1Y% ~
A - Dyl 2
s s I H o5
z 01 < " 1 1 11
S i T &
E o1} fl I r I 108 = FIG. 2. Real partgleft panel$ and imaginary
£ III[H]]I LT I £ parts (right panels of 7N— 7N (upper panels
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FIG. 3. Real partgleft panel§ and imaginary
parts (right panel$ of #N— =N (upper panels
and 7N— 7N (lower panel¥ scattering ampli-
tudes in theS;; partial wave. Dotted lines give
0.1 the resonant, dashed lines the nonresonant, and
solid lines the total scattering amplitude. Partial-

Re T(aN >TN)

= 103 = wave amplitudes are shown with error bars. The
N 3 resonant model used here is the two-resonance,
01 two-channel CMB model described in the text,
Z Z. . . . .
B s with nonresonant amplitudes described by distant
= = poles.
e £
as {1 03—
05 1 1 1 1 1 1 1 1 05
1 1.2 14 1.6 18 1 1.2 1.4 1.6 1.8 2
Energy (GeV)

proximately the resonance mass. Given this complicated A common criterion in fits is the value gf, given in the
structure, analyticity of the scattering amplitude and disperiast row of the tables. A comparison of the two-channel fits
sive scattering effects can be expected to be most importashows that the lowest values gf are attained using the
for this state. For this reason, the elastic amplitude includeBreit-Wigner models with distant-poles background, the
many of the important dynamical effects studied here. more theoretically sophisticated models are in between, and
After this somewhat pedagogical introduction, the mainthe Breit-Wigner models with polynomial background have
results of this work are now presented. The fits to $g¢  the highesty? values. Breit-Wigner models commonly have
partial-wave data for thél-matrix elementsT _ .y and  better fits because they are most often applied to study
Tno,n fOr each resonant-non-resonant model are shown isingle-channel reactions, but are much more likely to have
Figs. 3—-10. Unlike most previous papers studyhigreso-  additional local minima close to the global minimum, reflect-
nances, which show only the full amplitude, the nonresonaning the lack of theoretical constraints. The extra parameters
amplitude(with all resonant couplings set to zgrand the required to get a good fit unfortunately obscure the physics
resonant amplitudéwith all nonresonant couplings set to results. The extraction of physically meaningful results for
zerg are also shown here. The effective Breit-Wigner prop-resonances depends more on the quality of the theoretical
erties of the two resonances extracted from these fits areonstraints placed on the fit than on the quality of the fit
given in Tables | and II. Errors in the first four columns of itself. In some cases the fit function is not as sharp as the
results are determined from the fitting uncertainties only. data, e.g., the CMB an-matrix model In{T y_, .n) ampli-
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o1 FIG. 4. Caption as in Fig. 3, except the reso-
' nant model used here is ttematrix model de-
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FIG. 5. Caption as in Fig. 3, except the reso-
0.1 nant model used here is the Breit-Wigner model
0.39 with nonrelativistic widths described in the text,
= — with nonresonant amplitudes described by distant
3 R poles.
0.01
g g
o 0.21—=
2 £
« 041~
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tudes with polynomial background, although this is not ap-ground, Fig. 6. The imaginary part of the nonresonant am-
parent from the total®, which is summed over all data plitude is much larger atv~ 1.7 GeV due to coupling tgN
points. All models are able to match the shape of the cusp d@han in the other models, a coupled channel effect. The reso-
7N threshold in RET n_..n), Since this is a property of in- nant part of the amplitude is then smaller than in the other
terfering amplitudes and there are many possible solutionsmodels and this model has a very snij, for S;,(1650.

In the figures more detail is shown than is customary. For The resonance parameters extracted using the various
all models, the amplitudes are separated into resonant andodels are compared in Tables | and II. Variations among the
nonresonant parts. The resonant amplitudes provide rapid eresults for the resonance masses, the full width, andrtkie
ergy fluctuations and a rough match to the data, especiallpranching fraction are all significant given the estimated er-
for mN— »N. The nonresonant amplitudes are generallyror bars of this study. The estimated errors would have to be
smooth. However, analyticity constraints require a cusp amuch larger for the models to be in agreement. For reference,
7N threshold, a feature of all nonresonant amplitudes usinghe result for the CMB model fitting two resonances with all
distant-poles background. At first glance, the fits all lookopen channels is shown in Table I. Note that the errors
similar. More careful inspection reveals differences in thequoted for the CMB results include systematic errors from
detailed balance between resonant and nonresonant ampiirodel uncertainties, and so are larger than the errors arising
tudes and in the channel coupling effects. One of the mosbnly from fitting uncertainties in the results of the present
striking features is seen in theN— 77N amplitude for the work. Many resonance parameters found in the two-channel
relativistic Breit-Wigner model with distant-poles back- CMB model are within the estimated errors of the full model.
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FIG. 6. Caption as in Fig. 3, except the reso-
nant model used here is the Breit-Wigner model
with relativistic widths described in the text, with
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3 3 poles.
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Re T(rN >rnN)

FIG. 7. Caption as in Fig. 3, except the reso-
0.1 nant model used here is the two-resonance, two-
channel CMB model described in the text, with

2 = nonresonant amplitudes described by polynomi-
als.
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The exception is the width of thg;;(1650, where the full that vary the most from the PDG values. Compared to the
CMB-model value is larger than that of any of the other eightother results, the Breit-Wigner models have significantly
models. The full CMB-model fit apparently has a compli- lower mass, and smaller widths amtN branching fractions
cated interference between the second resonance and tfeg S;4(1650. This is more true for the fits using the poly-
channels that are excluded in the truncated versions. We alsmmial background than for those using the distant-poles
list the recommended physical parameters for these state®nresonant amplitudes. Since the resonant peak {if)Im
from the Particle Data GrouplO]. Almost all results are smoothly blends in with the nonresonant background, the
within the conservative estimated ranges they publish. It i$5,,(1650 width is very sensitive to how this background is
interesting that although the results for t8g (1535 full treated. Therefore, it is not surprising that the biggest dis-
width have significant variations using the different modelscrepancies arise in this resonance property. Interference with
studied here, the values are all in the lower part of the PDGhe overlapping lower-energy state also has an important in-
estimated range. Similarly, the CMB aidmatrix results for  fluence.
B,y are all in the lower part of the PDG estimated range for Comparisons between the CMB aKematrix models are
that quantity. the most interesting. The full fit amplitudes in Figs. 3 and 4
Breit-Wigner models with relativistic and nonrelativistic are very similar. They even miss the sharp structure in the
resonance shapes are fitted separately and give almost idemN elastic amplitude atWW~ 1.6 GeV in the same way. At
tical results. Despite having the best fits, they give resultdirst glance the resonant and nonresonant amplitudes are also
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Re T(rN >nN)

FIG. 9. Caption as in Fig. 3, except the reso-
nant model used here is the Breit-Wigner model
with nonrelativistic widths described in the text,

z los & with nonresonant amplitudes described by poly-
x C s nomials.
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very similar, but the small difference in the shape of thechannels,m7N and #N. This partial wave is interesting be-
imaginary elastic amplitude is the primary source of the dif-cause of the physics interest in tiSg, resonances and the
ferences in the extracted full width in the two models. Thelarge uncertainty in their properties as reported by the PDG
S$11(1539 full width from the CMB model with distant-poles [10]. By using identical input amplitudes and fitting strate-
background is larger than for thé-matrix model with dis-  gies, we have made tfiest objective comparisoaf N* reso-
tant poles, and vice versa for t18,(1650 full width. For ~ nance extraction models. Four different resonance models
the error bars we derive, the difference in the full width is(CMB, K matrix, and Breit-Wigner with nonrelativistic and
more significant than the difference By. This shows the relativistic widthg, and two different empirical models for
interplay of the interfering resonances. On the other handhe nonresonant amplituddistant poles and polynomjedre
the same two models with polynomial backgroufwehere  employed. These models are in regular use for the extraction
the CMB model no longer satisfies analytigitjave very of hadronic properties. It should be emphasized that the four
similar values for the full width. Interpretation of this result resonance models have almost identical amplitudes for iso-
will be a key component of the discussion. lated resonances. The primary differences among the models
come from the way the dynamics of resonance interference,
IV. DISCUSSION multichannel effects, and nonresonant amplitudes are treated.
A variety of empirical models were used to fit partial- Although resonance models of widely varying quality are
wave amplitudeqthe input “dataj for a carefully chosen employed, the nonresonant models are both rather empirical.
problem, theS;; partial wave and its two most important However, this partial wave in these channels has nonresonant
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FIG. 10. Caption as in Fig. 3, except the reso-
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Z 02} 03 Z nonresonant amplitudes described by polynomi-
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TABLE I. Results for resonance parameters from fits toThaatrix elements forrN— 7N, #N in the S;, partial wave, using the CMB,
K-matrix, and Breit-WignetBW) models described in the text. The third to last column shows the results of a fit inclabing =N, 7N,
pN, mA, oN, and7N* partial-wave amplitudef9]. The next to last column shows results for a fit of # data andyN— =N, #N data[21],
and the last column shows the range in the central values and estimated values from tfiPD@Gnresonant contributions to tiematrix
are described in terms of distant poles in all cases. Since the primary results of this work come from a two-channel model, only the branching
fraction to#N is given, sinceB,n=1-B,y. The last row gives thg? per data point of each fit.

CMB all 7N,
Model CMB K matrix BW,. BW,q CMB all =N N PDG
S11(1539
Mass(MeV) 1539+1 1533+1 1549+2 1558+1 1547+3 1539+5 1520
-1555153H
Width (MeV) 135+4 115+3 142+9 143+4 131+19 122+20 100 - Q18D
B.n (%) 29+1 34x1 67+5 671 3414 39+5 35-55
S11(1650
Mass(MeV) 1682+1 1685+2 1648+5 1637+2 1690+12 1684+15 1640
-16801650
Width (MeV) 144+3 190+5 147+10 145+4 227+40 227+58 145 -1%BD)
B.n (%) 80x1 77£1 74+5 791 753 75%3 55-90
Y2IN 3.8 3.7 1.5 1.9 3.6 5.6

amplitudes which are comparatively small. Since the nonS;; resonances in the Review of Particle Properfitd is
resonant amplitudes have a smooth energy dependence, thalso found here. This is evidence that much of the uncer-
influence on the extracted resonance parameters should k&nty in the PDG estimates d§,; properties comes from
small. The main purpose of this work is to study the modelmodel dependence, since the same input amplitudes are used
dependence of the extraction 8f; properties(mass, width, in every fit. No evidence is found for a thii$}, state in the
and 7N branching fraction in a case where overlapping energy range studied. Some of the Breit-Wigner models have
resonances, multichannel effects, and analyticity constraintthe best fits to the data, but this is due to the flexibility of
are all expected to be important. these models rather than an ability to describe the underlying
The models used here can be put in order according to theynamics. Arbitrary adjustments must be employed in order
theoretical constraints employed. The CMB model withto obtain good fits to the data. The empirical phases between
distant-poles background satisfies multichannel unitarity anthe resonances provide a simple way to adjust the resonance-
constraints from analyticity, and handles resonanceresonance interference at the cost of obscuring the physics
resonance quantum mechanical interference well. In fact, theutput. As a result, the physical properties of 81650
CMB model includes the most complete resonance propagatetermined with the Breit-Wigner models are very different
tion effects of any of the existing models. Thkematrix  than with the other models.
model used here does not satisfy analyticity constraints, and The models with the strongest theoretical constraints, the
leaves out rescattering dynamics present in the CMB modelCMB and K-matrix models with distant-poles background,
The Breit-Wigner models used here satisfy essentially ngrovide better agreement with each other and with the CMB
theoretical constraints. However, unitary Breit-Wigner mod-fits to a much larger set of reactiof,21]. One major result
els [12] and K-matrix models that satisfy analyticity con- of the present work is the differences between CMB and
straints[18] have been developed. K-matrix models found in a situation where their differences
The large range of properties for the two lowest-energyshould be the largest. The extent of the disagreement cannot

TABLE II. Caption as in Table |, except nonresonant contributions toltheatrix are described in terms
of polynomials.

Model CMB K matrix BW, . BW,g
S14(1539 Mass(MeV) 1526+2 1533+1 1539+2 1538+2
Width (MeV) 112+6 119+3 130+6 13046
B.n (%) 3042 33+1 39+1 38+1
S11(1650 Mass(MeV) 1688+2 1682+2 1648+2 1647+2
Width (MeV) 193+6 18445 109+5 109+5
B, (%) 78+2 75+1 51+1 51+1
Y2IN 5.0 3.9 5.0 5.0
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be simply stated. For the error bars given for the input ame€omparison, such a conclusion is likely premature. This issue
plitudes and those determined in our fits, the difference berequires further study, particularly from the theoretical side.
tween theS;1(1535 mass and full width for the CMB and We should note that many" states will not be obscured
K-matrix models with distant poles is significant. This is anby strong threshold effects and will not have strong interfer-
important measure of the difference in these two models. ence with other states of the same angular momentum and
Other considerations could contribute to these differencegarity. The simplified dynamics of thi€-matrix model then
The estimated errors quoted in the partial-wave amplitudgive it the practical advantage of a simpler and more stable
fits have a direct effect on the values quoted here. It is pospath to a good fit to the partial-wave amplitudes. Proper use
sible that the errors in the partial-wave amplitudes are undemef this model in the analysis dfi* data is unlikely to give
stated due to a lack of understanding of the model deperresults that are badly incorrect. For resonances with a larger
dence. Although a more sophisticated nonresonant amplitudeumber of open channels, the interaction of the nonresonant
could be required, the smoothness of these amplitudes in alnd resonant amplitudes can be much more complicated and
models argues against this. Each model has problems that asginplified fitting can give erroneous results.
likely due to the truncated channel space employed. The The primary result of this paper is that even in a small
most obvious problem is with the width &,(1650. About  multichannel problem, dynamics are important. Since Breit-
20% of the overall strength that was supposed to go to charWigner models have very few theoretical constraiatshoc
nels other thamrN and N has to be included somewhere in parameters are required to fit real data such as those of the
the smaller channel space. two-channel problem studied here. We therefore suggest that
In the context of the small but important test case chosegonsideration of these issues be part of any attempt to deter-
for this study, the results of the CMB art-matrix model —mine global recommendations for baryon resonance proper-
fits are found to have small, but potentially important differ- ties.
ences. Since the CMB model is better constrained theoreti-
cally, the resonance properties. extracted using this model ACKNOWLEDGMENTS
should be preferred when there is reason to doubt other mod-
els. A possible conclusion could be that this proves that the This research was supported by the U.S. Department of
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