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The properties of baryon resonances are extracted from a complicated process of fitting sophisticated,
empirical models to data. The reliability of this process comes from the quality of data and the robustness of
the models employed. With the large amount of data coming from recent experiments, this is an excellent time
for a study of the model dependence of this extraction process. A test case is chosen where many theoretical
details of the model are required, theS11 partial wave. The properties of the two lowestN* resonances in this
partial wave are determined using various models of the resonant and nonresonant amplitudes.
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I. INTRODUCTION

The problem of extracting baryon resonance parameters
from observables measured in scattering experiments is of
fundamental importance. In order to understand the relevant
degrees of freedom at low energy and their interactions in the
few dozenN* states found to date, reliable and objective
information on their properties extracted from data is re-
quired. Models of the baryon spectrum are usually compared
to masses defined in terms of effective Breit-Wigner param-
eters. A more sensitive test of such models is the comparison
of total widths and branching fractions to open channels of
each resonance to those extracted from data. These quantities
are also defined in terms of effective Breit-Wigner param-
eters, but in general show more sensitivity to the method
used to fit the data. What is not commonly appreciated is the
dependence of these resonance parameters on the method
used to extract them from a fit to the data. For example, it is
not uncommon to see such parameters referred to as “data”
in the literature.

The primary goal of this paper is to examine the model
dependence in this process in a carefully chosen test case,
states in theS11 partial wave inpN. States in this partial
wave have both significant physics interest and significant
uncertainty in their parameters as reported by the Particle
Data Group(PDG) in their Review of Particle Properties
[10]. Most of the literature considers the lowest-energy reso-
nance in this partial wavefS11s1535dg as a three-quark state
within the quark model[1]. However, the substantial branch-
ing fraction of S11s1535d to hN has, given the small phase
space available for this decay, led to the interpretation of this
state as a meson-baryon molecule[2]. Lattice calculations of
the masses of these states have recently been developed
[3,4]. The calculations of both Refs.[3] and [4] are
quenched, and find masses forS11s1535d similar to the values

fit from experiment[10]. In addition, constituent quark mod-
els which describe theseS11 resonances as(P-wave) orbital
excitations withJP=1/2− differ in their prediction of the
amount of mixing between the two possible quark-spin states
[5], because of different models of the short-distance inter-
actions between the quarks. A comparison between partial
widths calculated in a given model and those extracted from
data can be used to determine the nature of these short-
distance interactions. This makes the dependence of these
partial widths on the method used to extract them from fits to
data important, and relevant.

These important microscopic issues are unable to be
settled with the uncertainty in the full and partial widths
presently reported by the PDG, which vary widely among
various studies. At one extreme, analyses of thepN elastic
scattering data tend to give a full width of about 120 MeV
for S11s1535d, with pN as the dominant decay branch[6,7].
At the other extreme, threshold eta photoproduction data
give a much larger full widthG,210 MeV, withhN as the
larger decay branch[8]. Only a unified treatment of all the
data can provide a consistent picture.

The purpose of this paper is to examine the model depen-
dence ofS11 resonance parameters by extracting them from
several fits to a single set of partial-wave amplitudes for
pN→pN [6] and pN→hN [9] scattering in theS11 partial
wave. These fits have different levels of sophistication in
their description of the scattering matrix. The analysis of
these channels in this partial wave is chosen because the
proximity of two overlapping resonances[S11s1535d and
S11s1650d] and thehN channel threshold makes it an inter-
esting and nontrivial example. Differing treatments of the
rescattering processes are a key difference among the models
studied here and these effects should be most important near
a threshold. Although the number of open channels is much
larger than two, the two channels that have been chosen are
the most important and account for 90%(1535) and about
80% (1650) of the decay width when all channels are in-
cluded[10].

Breit-Wigner models can get good fits to single-channel
data(e.g.,pN→hN [11], gN→pN [12]), but have nontrivial

*Electronic address: alvin@heisenberg.physics.fsu.edu
†Electronic address: capstick@phy.fsu.edu
‡Electronic address: dytman1@pitt.edu

PHYSICAL REVIEW C 69, 025205(2004)

0556-2813/2004/69(2)/025205(12)/$22.50 ©2004 The American Physical Society69 025205-1



uncertainties and at times surprising results. In simplifying
an intrinsically multichannel problem into a single-channel
model, information from other reactions must be included
with accompanying uncertainties. In addition, there is no
single commonly accepted form for the resonance shape.
When a somewhat larges,10d set of asymptotic states can
couple to eachN* with high probability, including a large
sample of reactions and application of the unitarity constraint
are extremely important. Common multichannel techniques
include K-matrix [13,14] and Carnegie-Mellon Berkeley
(CMB) [9,15] models. Each has an established way of in-
cluding a variety of interactions respecting multichannel uni-
tarity with varying ability to include dynamics.

Three methods are used here to perform the extraction of
resonance parameters via a fit to the partial-wave amplitudes.
The most constrained is the CMB model, which was devel-
oped[16] to describepN elastic and inelastic scattering, and
extended and modernized in Ref.[9]. This approach has mul-
tichannel unitarity, and the scattering matrix(a matrix in the
space of channels) has the required analytic structure. Reso-
nances are modeled as “bare” poles, which are “dressed” by
coupling to the open asymptotic channels.

The second, simpler approach is to describe the unitaryT
matrix using a real symmetricK matrix, which is in turn
written directly in terms of resonance parameters. This ap-
proach maintains multichannel unitarity, but does not satisfy
analyticity constraints. The third, simplest approach is to
build theT matrix directly from a sum of relativistic Breit-
Wigner forms for the resonances. In this case, minimal con-
straints on the scattering amplitudes are available. Belowpp
production threshold, the overall amplitude can be made uni-
tary using Watson’s theorem. However, thehN channel must
be included for a good description of theS11 partial wave,
and onlyad hocmethods[12] are available to accomplish
this. The Breit-Wigner models used here are neither unitary
nor analytic.

Nonresonant amplitudes must be added to account for
scattering processes which do not involves-channelN* reso-
nances. Although a fairly small set of diagrams describing
nonresonant processes can be identified at lower total energy
sW,1.3 GeVd, the set of possible diagrams grows rapidly as
the total energy increases to 2.0 GeV. To date, no published
work has included all the relevant diagrams. Empirical de-
scriptions of the nonresonant amplitudes can be chosen since
each resonance has a strong signal in at least one of the
reactions studied, and most publications find the nonresonant
amplitudes to be smaller than the resonant amplitudes. In
addition, the most basic physics assumption is that the reso-
nances come from the long-distance part of the interaction
and are seen in the sharp energy features of the data, while
the nonresonant amplitudes arise from the short-range part of
the interaction and provide smooth energy dependence. This
implies that, in this case, the influence of the choice of non-
resonant amplitudes on the extracted resonance properties
should be small. The “distant-poles” model of the nonreso-
nant amplitudes is designed for use with the CMB model.
Bare poles well below and well above the thresholds for the
channels being studied, i.e., distant poles, are fit to the
partial-wave data with methods very similar to those used for
the resonance poles. In the CMB model they provide a

smooth, analytic, unitaryT matrix in the physical region;
they can also be incorporated into aK-matrix model to pro-
vide a unitary scattering matrix. While the poles and cuts in
the left-hand part of the complexs plane required by cross-
ing symmetry are difficult to fully implement in the CMB
model, their effects in the physical region can be simulated
by a particular choice of strong form factor, and by the use of
subthreshold poles. Another method adds to the resonant am-
plitude polynomials quadratic in the parametersxc=ss
−sth,cd1/2 for each exit channelc, which can yield a unitaryT
matrix for theK-matrix approach.

The procedure used here is to calculate, using the CMB,
K-matrix, and Breit-Wigner approaches, the matrixTab for
scattering between the channelsha,bjP hpN,hNj in terms of
a set of parameters describing the resonant and nonresonant
amplitudes. Different treatments of the background are ex-
plored, giving a total of eight different models. Ax2 statistic
is minimized by varying these parameters to best fit the
partial-wave amplitudes for thepN→pN [6] andpN→hN
[9] reactions.

The goals of this work are somewhat limited in order to
make a clear statement about model dependence, and for this
reason the resonance parameters which result should not be
considered for use in understanding the microscopic struc-
ture of theS11 resonance states. The channel space is greatly
simplified to only the two principal channels, leaving out
other channels such aspD that are a much smaller part of the
amplitudes, but which must be included for the optimal val-
ues. From ten-channel fits to bothpN andgN reactions, the
S11s1650d width is known to be,50 % larger than in a two-
channel fit. In addition, the sophisticatedK-matrix tech-
niques developed by the Giessen group[13] are not used
here.

II. MODELS OF THE SCATTERING MATRIX

In this section the form of the scattering matrix in the
various models is described, along with the implementation
of the two forms of background described above. All of the
models used here require partial-wave amplitudes(PWA) as
input. These extract the energy dependence of amplitudes
with specific isospin, parity, and angular momentum(e.g.,
S11) from the large number of experimental data points.
About 20 years ago, significant efforts were made to find
model independent methods for partial-wave analysis ofpN
elastic data[7]. More recent efforts by the George Washing-
ton University(GWU) group[6] incorporate most of the the-
oretical constraints developed previously. Although the fits in
this work do not use the most recent GWU work, results
using the most recent PWA would not produce different con-
clusions. Since the number of data points for thepN→hN
reaction is much smaller, there is more model dependence.
These amplitudes are discussed in Ref.[9], using a method
that accurately couples thepN elastic and inelastic data with
minimal model dependence. Until another study is done, this
is the only PWA result available forpN→hN.

A. CMB model

In this work theS11 partial wave inpN elastic andpN
→hN scattering is described using only the two light reso-
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nancesS11s1535d and S11s1650d. In the CMB model back-
ground(t- andu-channel) processes are simulated using one
high-energy and two subthresholds-channel poles, which are
treated identically to the resonances in order to preserve the
analytic structure of theT matrix. The transition amplitudes
[9,16] are

Tab = o
i=1

5

o
j=1

5

fassdÎrassdgaiGijssdgbk
Îrbssdfbssd, s1d

whereha,bjP hpN,hNj label the channels, andi , j label the
poles, which can represent the resonances or the background.
The model used in this paper has five polesstwo for real
resonances and three for background resonancesd. It is easy
to add channels with this formalism if the input data are
available. The phase-space factorrassd has the form

rassd =
pa

Îs
, s2d

where pa is the c.m. frame momentum andgai is the real-
valued coupling constant of resonancei to the channela. The
form factor fa in Eq. s1d is unity in theS wave.

The dressed propagatorGijssd allows resonancei to
couple to resonancej through rescattering, and is the solu-
tion of the Dyson equation

Gijssd = Gij
0ssd + Gik

0 ssdSklssdGljssd. s3d

The bare propagatorGij
0ssd has the form

Gij
0ssd =

di jei

s0i − s
, s4d

whereei = +1 for the resonances and the high-energy back-
ground pole, ands0i is the bare mass of the resonancesback-
ground poled. One subthreshold pole hasei = +1 srepulsived,
and the other hasei =−1 sattractived.

The self-energySkl in Eq. (3) is the sum over channelsc,

Skl = o
c=1

2

gckfcssdgcl, s5d

wherefcssd is the channel propagator, which plays a central
role in the CMB model. The sum is over the two channels in
this simplified problem. Two-pion channels such asrN can
be included by treating them as quasi-two-body channels,
which results in an enlargedT matrix. The rescattering sum
in Eq. s5d will then extend over the additional channels. The
imaginary part offc is the product of phase space,rcssd,
with the square of the form factor for channelc sthis quantity
will be seen in the other models belowd and the real part is
obtained through a once-subtracted dispersion integral
f9,16g. The desired analyticity of the entire amplitude is then
assured.

Unitarity comes about because of the democracy of the
rescattering in the Dyson equation, Eq.(3). In the multichan-
nel context, unitarity is expressed through a generalized op-
tical theorem,

Im Tab = o
c

Tac
* Tcb. s6d

Unitarity is also related to the properties in the complex
plane through the discontinuity in the amplitude across the
right-hand cut.

The dressed propagatorGijssd can be found by solving
algebraically the matrix equation(3), with the result

Hijssd ; fG−1ssdgi j = fG0ssd−1gi j − Si jssd =
s0i − s

ei
di j − Si jssd,

s7d

and the matrixGssd can be found by invertingHssd. This
completes the necessary ingredients for calculating theT ma-
trix in the CMB model of Eq.s1d in terms of three param-
eters for each resonance or background pole. These are the
bare mass squareds0,i, and the coupling strengthsgpN,i and
ghN,i. Since there are five poles, this model has a total of 15
parameters.

Once thisT matrix is fitted to the partial-wave data by
varying these 15 parameters, baryon resonance parameters
are extracted from the resonant part of theT matrix. The
procedure for doing this is described in what follows.

B. Extraction of resonance parameters in the CMB model

Poles in the resonant part of theT matrix occur at com-
plex values ofs where the denominator of the resonance
propagator vanishes. A search program finds these pole loca-
tions, and these are the model-free output(see Ref.[9] for
details). This is possible because the amplitude has reason-
able properties for complex values ofs.

However, it is important to derive effective Breit-Wigner
parameters for each resonance from this model. Once the
pole positions are found, the matrixHsspoled is diagonalized
to eliminate interference between resonances. The denomina-
tor of the resonant part of theT matrix in the vicinity of each
pole is then expanded ins. The constant term becomes the
dispersive correction to the mass, and the term linear ins
becomes the width of a generalized relativistic Breit-Wigner
form. Thus, although the energy dependence of a resonance
in the CMB model is much more sophisticated than the nor-
mal Breit-Wigner shape, all characteristics of a resonance
can be expressed in this commonly used form.

C. CMB model with polynomial background

This is a modified CMB model which uses a polynomial
function to describe the background. Care must be taken to
maintain unitarity of theT matrix. Using a technique from
Ref. [17], the full S matrix is written

S= B†RB, s8d

whereR andB are the resonant and nonresonantS matrices,
respectively. HereR= I +2iT uses the CMB-modelT matrix,
and B is a unitary matrix that need not be symmetric. The
background matrixB is constructed from a real symmetric
matrix KB,
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B = s1 + iKBds1 − iKBd−1, s9d

where for the two-channel case of interest

KB = Fkppxp + kpp8 xp
2 kphxh + kph8 xh

2

kphxh + kph8 xh
2 khhxh + khh8 xh

2 G , s10d

or

Kab
B = kabxb + kab8 xb

2, s11d

xb=Îs−smN+mbd2 for s above exit channel threshold and
zero otherwise, and the coefficientskab and kab8 are real.
Note that the off-diagonal terms inKB are zero fors below
hN threshold. This ensures that the diagonal and off-
diagonal elements ofR are not mixed, so thepN→hN
amplitude vanishes belowhN threshold. This model has
six real parameters describing the background, and six
describing the resonances, for a total of 12 real param-
eters.

Once theS matrix in Eq. (8) is formed, it can be easily
converted usingS= I +2iT to aT matrix that can be fit to the
partial-wave amplitudes by varying these 12 parameters in
the usual way, and the extraction of the baryon parameters is
identical to that of the original CMB model.

D. K-matrix models

A unitary S matrix can be constructed from a real, sym-
metricK matrix viaT=Ks1−iKd−1. This method is very com-
mon in the literature[13,18–20] for investigating hadrons in
reactions. Recently, effective Lagrangian models[13] have
been used with aK matrix for studies ofN* states. Nonrela-
tivistic reductions of Feynman diagrams make these studies
more sophisticated than what is presented here. The earlier
work of Moorhouse and collaborators[19] is very similar to
the method used here.

The differences between the CMB andK-matrix models
are well known. A common problem with allK-matrix meth-
ods is the difficulty in maintaining analyticity. Only the work
of Longacre[18] accomplished this. Thus, pole positions and
residues can be obtained from the CMB fits and not from the
K-matrix fits. Many researchers feel these values have less
model dependence. Any microscopic model(e.g., lattice
QCD) which has the analytic properties as an output can
only use the CMB results. While the CMB model has a full
treatment of rescattering, only the imaginary part of the
channel propagator is included in theK-matrix model. The
choice of theS11 resonances nearhN threshold as a test case
is motivated by the expectation that these rescattering effects
are most important close to threshold. As discussed above,
the K-matrix method can be incorporated directly into an
effective Lagrangian formulation[13]. As a result, the non-
resonant amplitudes can be added diagram by diagram. This
is a significant advantage over the present version of the
CMB model, which is formulated in terms of amplitudes
rather diagrams. In this work, we use the amplitude form of
the K-matrix model[19,20].

Although the CMB model is preferred on theoretical
grounds, theK-matrix model has practical advantages. It is

more commonly used, and the less complicated treatment of
interference and rescattering effects simplifies the fits to
partial-wave amplitudes.

As in the CMB model, two subthreshold poles and one
high-energy pole can be used to describe the nonresonant
part of the scattering matrix. The contributions from the reso-
nance and nonresonant poles are

Kab
i ssd =

ÎrassdfassdgaigbifbssdÎrbssd
ssi − sdei

. s12d

Here the form is similar on the surface to what is used in
CMB model. The phase spacerassd is given by Eq.s2d, fassd
is the form factorsnone is needed forS waved, gai is the
coupling constant of the resonance or background polei to
channela sbut with units different from the CMB modeld,
andsi is the position of theith sreald pole. The signsei are
the same as those used in CMB model, withe= +1 for the
resonances, the high-energy background pole, and one sub-
threshold background pole, while the second subthreshold
background pole hase=−1. TheK matrix is formed from a
simple sum over the resonance and background poles,

Kabssd = o
iPpoles

Kab
i ssd. s13d

When theK matrix is converted to aT matrix, rescattering
(“dressing” of the resonance) comes about naturally and the
resonance gains a finite width. In this model theK matrix is
written directly in terms of the resonance parameters, so that
Mi =Îsi is the mass of the resonance associated with the pole
at si, the partial width of theith resonance to channela is

Gai =
rassidfa

2gai
2

Mi
, s14d

and the total width is the sum of the partial widths. As dis-
cussed above, the differences between CMB andK-matrix
formalism are seen only when interactions with other reso-
nances and nonresonant amplitudes occur. These differences
are expected to be maximized close to a channel threshold,
which is the reason for the choice of theS11 partial wave
with resonances nearhN threshold. In this case, the CMB
model is expected to give more reliable results.

An alternate description of the background is using the
polynomial form of Eq.(10), which is added to the reso-
nanceK matrix

Kab = o
iPresonances

Kab
i ssd + Kab

B . s15d

With either method of treating the background, these
K-matrix models have the same total number of parameters
as the CMB models, 15 for the distant-poles background and
12 for the polynomial background.

E. Breit-Wigner models

There are two kinds of Breit-Wigner model used here
along with two kinds of nonresonant amplitude parametriza-
tion. In each model, the resonant and nonresonantT matrices
are summed,
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Tabssd = o
iPresonances

Tab,res
i ssd + Tab,nonresssd. s16d

This form is inconsistent with unitarity without special ef-
fort.

The resonant amplitudeTab,res
i ssd is given by

Tab,res
i ssd =

ÎGaiGbi
Îs

eissi − sd − iÎsGi

eiui
ab

. s17d

The signsei are the same as in the CMB andK-matrix mod-
els, si is the pole positionswith Mi =Îsi for resonance
polesd, and Gi =oa Gai is the total width of resonancei.
Using a procedure similar to that of Ref.f12g, an arbitrary
phase expsiui

abd is associated with each pole in each chan-
nel. As shown below, the freedom to fit these additional
phases is crucial to achieving a good fit with a Breit-
Wigner model to theS11 partial-waveT-matrix elements in
these channels.

The width commonly used to describe a nonrelativistic
Breit-Wigner form is the energy-dependent width

Gai
n.r.ssd = Gaissid

rassd
rassid

, s18d

with the phase-space factorrassd as in Eq.s2d. sNote that this
is not the same as the conventional nonrelativistic Breit-
Wigner energy dependence.d An alternative, relativistic form
results from the assumption that the numerator of the contri-
bution of resonancei to theK matrix in Eq.s12d is the same
as that in the Breit-Wigner form in Eq.s17d. If the partial
width used in theK-matrix formalism, Eq.s14d, is general-
ized to an energy-dependent function by replacingMi with
Îs, then theK-matrix numerator of Eq.s12d is

Îrassdfassdgaigbi
Îrbssdfbssd = sGai

Îsd1/2sGbi
Îsd1/2

= ÎGaiGbi
Îs, s19d

which is the same as the numerator in Eq.s17d. This suggests
the use of

Gai
relssd = Gaissid

Îsi

Îs

rassd
rassid

, s20d

for the energy-dependent partial width in a relativistic Breit-
Wigner form. In what follows models using bothGai

n.r.ssd,
labeled BWn.r., and Gai

relssd, labeled BWrel, are used in fit-
ting the Breit-Wigner form in Eq.s17d to the S11 partial-
wave T-matrix elements, and the results are compared.
The relativistic form is the same as that advocated by
Chunget al. [20].

The first nonresonant form uses distant poles to describe
the background contributions to theT matrix, so that the total
T matrix is a simple sum

Tabssd = o
iPpoles

Tab
i ssd. s21d

This form of background has two low-energy poles and one
high-energy pole, the same as was used with the CMB and
K-matrix models. To get a good fit, each of these terms

requires an additional phase in each channel, as described
above. With the background described by distant poles, there
are 15 parameterssmass, width, andpN branching fraction
for each termd associated with the five poles, and ten phases,
for a total of 25 real parameters. Of the models used in this
work, this model has the largest number of parameters.

As with CMB andK-matrix models, it is possible to de-
scribe the nonresonant background by a polynomial function,
so that

Tabssd = o
iPresonances

Tab,res
i ssd + Tab,nonresssd, s22d

where the backgroundT-matrix elements are the polynomials

Tab,nonres= kabxb + kab8 xb
2. s23d

As with the other models,xb=Îs−smN+mbd2 for s above
exit channel threshold and zero otherwise, but now the
coefficientskab and kab8 are complex. In this model there
are six resonance parameters associated with the two
poles, and eight background parametersstwo complex
numbers for each of two channelsd, for a total of 18 real
parameters.

III. RESULTS

In order to understand the complications in theS11 partial
wave, model predictions for a hypothetical isolated reso-
nance are first considered. Figure 1 compares the results of
all four models for the scattering amplitude of an isolated
single-channelS-wave resonance. AnS-wave resonance is
chosen with a mass of 1710 MeV and width of 215 MeV in
the pN→hN reaction, which avoids any complications with
centrifugal barriers. Agreement among the different formula-
tions is striking, despite the deliberate choice of a resonance
mass close tohN threshold. TheK-matrix and CMB models
have identical forms for an isolated resonance. The relativis-
tic Breit-Wigner is chosen to be identical with the CMB
model in this limit. Even the Breit-Wigner amplitude with
the nonrelativistic width is in good agreement with the other
forms. If the complex amplitudes are plotted on an Argand
diagram(with the real part of the amplitude on the horizontal
axis, and the imaginary part on the vertical axis), all will
show the typical counterclockwise circular motion of a reso-
nance. Nonresonant background will cause a shift or a dis-
tortion of this basic shape, and inelasticity will decrease the
radius. Interference between resonances can have significant
effects.

A partial-wave amplitude with thisW dependence is the
most visible signature of a resonance, producing a peak in
the total cross section with an appropriate width. Such a peak
is seen in the total cross section forpN→hN, and is often
interpreted as a resonance. TheS11 partial-wave amplitude
dominates the total cross section for this reaction, and is
shown in the bottom two panels of Fig. 2. Since the higher
mass resonanceS11s1650d couples weakly to this channel,
this appears to be an isolated resonance with small nonreso-
nant amplitudes.

Single-channel fits of thepN→hN amplitudes have been
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made, which are shown as curves in the bottom two panels
of Fig. 2. The results are similar to those of single-channel
fits with a Breit-Wigner energy dependence to the total cross
sections forp−p→hn andgp→hp [8]. The data can be fit
using anS-wave Breit-Wigner form if a small, but important
contribution from nonresonant amplitudes is included and
the energy region used in the fit is truncated. This rough fit
can be used to determine the product of the initial and final
state couplings to the resonance, requiring information from
more complete fits to account for the missing decay strength
of the S11s1535d resonance to other channels. The single-
channel, one-resonance fit shown in Fig. 2 is made with a
Breit-Wigner resonant shape with the relativistic form of the
width, the polynomial form of the background, and a single
phase multiplying the resonant amplitude, truncating the fit
at 1700 MeV. The result is a mass of 1543 MeV, a width of

134 MeV, and apN branching fraction of 48%. This shows
that it is possible to find fit parameters that roughly agree
with the more complete models, but these results are of un-
certain value given the strong model dependence.

The elasticpN amplitude(the upper two panels of Fig. 2)
is more complicated, showing two structures overlapping in
energy. The resonanceS11s1650d couples strongly topN
with peaks atW,1.7 GeV in ImsTd andat W,1.65 GeV in
ResTd. Although this rapid energy dependence is a clear reso-
nant signal, there is also a nontrivial nonresonant amplitude
which greatly distorts the typical Argand diagram. The en-
ergy dependence ofS11s1535d is more complicated inpN
elastic scattering because of the strong coupling to thehN
channel at its thresholdsW=1.487 GeVd, which is within the
resonant shape. This produces a cusp in the real part at
threshold in addition to a peak in the imaginary part at ap-

FIG. 1. Real parts(left panel) and imaginary
parts (right panel) of pN→hN resonant scatter-
ing amplitudes calculated with an isolated
S-wave resonance of mass 1710 MeV and width
215 MeV, in each of the four models used here.

FIG. 2. Real parts(left panels) and imaginary
parts (right panels) of pN→pN (upper panels)
and pN→hN (lower panels) scattering ampli-
tudes,T, in theS11 partial wave. The curves in the
lower panels are the single-channel, one-
resonance Breit-Wigner fit to these amplitudes
described in the text. Dotted lines give the reso-
nant, dashed lines the nonresonant, and solid
lines the total scattering amplitude. Partial-wave
amplitudes are shown with error bars.
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proximately the resonance mass. Given this complicated
structure, analyticity of the scattering amplitude and disper-
sive scattering effects can be expected to be most important
for this state. For this reason, the elastic amplitude includes
many of the important dynamical effects studied here.

After this somewhat pedagogical introduction, the main
results of this work are now presented. The fits to theS11
partial-wave data for theT-matrix elementsTpN→pN and
TpN→hN for each resonant-non-resonant model are shown in
Figs. 3–10. Unlike most previous papers studyingN* reso-
nances, which show only the full amplitude, the nonresonant
amplitude(with all resonant couplings set to zero) and the
resonant amplitude(with all nonresonant couplings set to
zero) are also shown here. The effective Breit-Wigner prop-
erties of the two resonances extracted from these fits are
given in Tables I and II. Errors in the first four columns of
results are determined from the fitting uncertainties only.

A common criterion in fits is the value ofx2, given in the
last row of the tables. A comparison of the two-channel fits
shows that the lowest values ofx2 are attained using the
Breit-Wigner models with distant-poles background, the
more theoretically sophisticated models are in between, and
the Breit-Wigner models with polynomial background have
the highestx2 values. Breit-Wigner models commonly have
better fits because they are most often applied to study
single-channel reactions, but are much more likely to have
additional local minima close to the global minimum, reflect-
ing the lack of theoretical constraints. The extra parameters
required to get a good fit unfortunately obscure the physics
results. The extraction of physically meaningful results for
resonances depends more on the quality of the theoretical
constraints placed on the fit than on the quality of the fit
itself. In some cases the fit function is not as sharp as the
data, e.g., the CMB andK-matrix model ImsTpN→pNd ampli-

FIG. 3. Real parts(left panels) and imaginary
parts (right panels) of pN→pN (upper panels)
and pN→hN (lower panels) scattering ampli-
tudes in theS11 partial wave. Dotted lines give
the resonant, dashed lines the nonresonant, and
solid lines the total scattering amplitude. Partial-
wave amplitudes are shown with error bars. The
resonant model used here is the two-resonance,
two-channel CMB model described in the text,
with nonresonant amplitudes described by distant
poles.

FIG. 4. Caption as in Fig. 3, except the reso-
nant model used here is theK-matrix model de-
scribed in the text, with nonresonant amplitudes
described by distant poles.
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tudes with polynomial background, although this is not ap-
parent from the totalx2, which is summed over all data
points. All models are able to match the shape of the cusp at
hN threshold in ResTpN→pNd, since this is a property of in-
terfering amplitudes and there are many possible solutions.

In the figures more detail is shown than is customary. For
all models, the amplitudes are separated into resonant and
nonresonant parts. The resonant amplitudes provide rapid en-
ergy fluctuations and a rough match to the data, especially
for pN→hN. The nonresonant amplitudes are generally
smooth. However, analyticity constraints require a cusp at
hN threshold, a feature of all nonresonant amplitudes using
distant-poles background. At first glance, the fits all look
similar. More careful inspection reveals differences in the
detailed balance between resonant and nonresonant ampli-
tudes and in the channel coupling effects. One of the most
striking features is seen in thepN→pN amplitude for the
relativistic Breit-Wigner model with distant-poles back-

ground, Fig. 6. The imaginary part of the nonresonant am-
plitude is much larger atW,1.7 GeV due to coupling tohN
than in the other models, a coupled channel effect. The reso-
nant part of the amplitude is then smaller than in the other
models and this model has a very smallBhN for S11s1650d.

The resonance parameters extracted using the various
models are compared in Tables I and II. Variations among the
results for the resonance masses, the full width, and thepN
branching fraction are all significant given the estimated er-
ror bars of this study. The estimated errors would have to be
much larger for the models to be in agreement. For reference,
the result for the CMB model fitting two resonances with all
open channels is shown in Table I. Note that the errors
quoted for the CMB results include systematic errors from
model uncertainties, and so are larger than the errors arising
only from fitting uncertainties in the results of the present
work. Many resonance parameters found in the two-channel
CMB model are within the estimated errors of the full model.

FIG. 5. Caption as in Fig. 3, except the reso-
nant model used here is the Breit-Wigner model
with nonrelativistic widths described in the text,
with nonresonant amplitudes described by distant
poles.

FIG. 6. Caption as in Fig. 3, except the reso-
nant model used here is the Breit-Wigner model
with relativistic widths described in the text, with
nonresonant amplitudes described by distant
poles.
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The exception is the width of theS11s1650d, where the full
CMB-model value is larger than that of any of the other eight
models. The full CMB-model fit apparently has a compli-
cated interference between the second resonance and the
channels that are excluded in the truncated versions. We also
list the recommended physical parameters for these states
from the Particle Data Group[10]. Almost all results are
within the conservative estimated ranges they publish. It is
interesting that although the results for theS11s1535d full
width have significant variations using the different models
studied here, the values are all in the lower part of the PDG
estimated range. Similarly, the CMB andK-matrix results for
BpN are all in the lower part of the PDG estimated range for
that quantity.

Breit-Wigner models with relativistic and nonrelativistic
resonance shapes are fitted separately and give almost iden-
tical results. Despite having the best fits, they give results

that vary the most from the PDG values. Compared to the
other results, the Breit-Wigner models have significantly
lower mass, and smaller widths andpN branching fractions
for S11s1650d. This is more true for the fits using the poly-
nomial background than for those using the distant-poles
nonresonant amplitudes. Since the resonant peak in ImsTd
smoothly blends in with the nonresonant background, the
S11s1650d width is very sensitive to how this background is
treated. Therefore, it is not surprising that the biggest dis-
crepancies arise in this resonance property. Interference with
the overlapping lower-energy state also has an important in-
fluence.

Comparisons between the CMB andK-matrix models are
the most interesting. The full fit amplitudes in Figs. 3 and 4
are very similar. They even miss the sharp structure in the
pN elastic amplitude atW,1.6 GeV in the same way. At
first glance the resonant and nonresonant amplitudes are also

FIG. 7. Caption as in Fig. 3, except the reso-
nant model used here is the two-resonance, two-
channel CMB model described in the text, with
nonresonant amplitudes described by polynomi-
als.

FIG. 8. Caption as in Fig. 4, except the reso-
nant model used here is theK-matrix model de-
scribed in the text, with nonresonant amplitudes
described by polynomials.
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very similar, but the small difference in the shape of the
imaginary elastic amplitude is the primary source of the dif-
ferences in the extracted full width in the two models. The
S11s1535d full width from the CMB model with distant-poles
background is larger than for theK-matrix model with dis-
tant poles, and vice versa for theS11s1650d full width. For
the error bars we derive, the difference in the full width is
more significant than the difference inBpN. This shows the
interplay of the interfering resonances. On the other hand,
the same two models with polynomial background(where
the CMB model no longer satisfies analyticity) have very
similar values for the full width. Interpretation of this result
will be a key component of the discussion.

IV. DISCUSSION

A variety of empirical models were used to fit partial-
wave amplitudes(the input “data”) for a carefully chosen
problem, theS11 partial wave and its two most important

channels,pN and hN. This partial wave is interesting be-
cause of the physics interest in theS11 resonances and the
large uncertainty in their properties as reported by the PDG
[10]. By using identical input amplitudes and fitting strate-
gies, we have made thefirst objective comparisonof N* reso-
nance extraction models. Four different resonance models
(CMB, K matrix, and Breit-Wigner with nonrelativistic and
relativistic widths), and two different empirical models for
the nonresonant amplitude(distant poles and polynomial) are
employed. These models are in regular use for the extraction
of hadronic properties. It should be emphasized that the four
resonance models have almost identical amplitudes for iso-
lated resonances. The primary differences among the models
come from the way the dynamics of resonance interference,
multichannel effects, and nonresonant amplitudes are treated.
Although resonance models of widely varying quality are
employed, the nonresonant models are both rather empirical.
However, this partial wave in these channels has nonresonant

FIG. 9. Caption as in Fig. 3, except the reso-
nant model used here is the Breit-Wigner model
with nonrelativistic widths described in the text,
with nonresonant amplitudes described by poly-
nomials.

FIG. 10. Caption as in Fig. 3, except the reso-
nant model used here is the Breit-Wigner model
with relativistic widths described in the text, with
nonresonant amplitudes described by polynomi-
als.
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amplitudes which are comparatively small. Since the non-
resonant amplitudes have a smooth energy dependence, their
influence on the extracted resonance parameters should be
small. The main purpose of this work is to study the model
dependence of the extraction ofS11 properties(mass, width,
and pN branching fraction) in a case where overlapping
resonances, multichannel effects, and analyticity constraints
are all expected to be important.

The models used here can be put in order according to the
theoretical constraints employed. The CMB model with
distant-poles background satisfies multichannel unitarity and
constraints from analyticity, and handles resonance-
resonance quantum mechanical interference well. In fact, the
CMB model includes the most complete resonance propaga-
tion effects of any of the existing models. TheK-matrix
model used here does not satisfy analyticity constraints, and
leaves out rescattering dynamics present in the CMB model.
The Breit-Wigner models used here satisfy essentially no
theoretical constraints. However, unitary Breit-Wigner mod-
els [12] and K-matrix models that satisfy analyticity con-
straints[18] have been developed.

The large range of properties for the two lowest-energy

S11 resonances in the Review of Particle Properties[10] is
also found here. This is evidence that much of the uncer-
tainty in the PDG estimates ofS11 properties comes from
model dependence, since the same input amplitudes are used
in every fit. No evidence is found for a thirdS11 state in the
energy range studied. Some of the Breit-Wigner models have
the best fits to the data, but this is due to the flexibility of
these models rather than an ability to describe the underlying
dynamics. Arbitrary adjustments must be employed in order
to obtain good fits to the data. The empirical phases between
the resonances provide a simple way to adjust the resonance-
resonance interference at the cost of obscuring the physics
output. As a result, the physical properties of theS11s1650d
determined with the Breit-Wigner models are very different
than with the other models.

The models with the strongest theoretical constraints, the
CMB and K-matrix models with distant-poles background,
provide better agreement with each other and with the CMB
fits to a much larger set of reactions[9,21]. One major result
of the present work is the differences between CMB and
K-matrix models found in a situation where their differences
should be the largest. The extent of the disagreement cannot

TABLE I. Results for resonance parameters from fits to theT-matrix elements forpN→pN, hN in theS11 partial wave, using the CMB,
K-matrix, and Breit-Wigner(BW) models described in the text. The third to last column shows the results of a fit includingpN→pN, hN,
rN, pD, sN, andpN* partial-wave amplitudes[9]. The next to last column shows results for a fit of thepN data andgN→pN, hN data[21],
and the last column shows the range in the central values and estimated values from the PDG[10]. Nonresonant contributions to theT matrix
are described in terms of distant poles in all cases. Since the primary results of this work come from a two-channel model, only the branching
fraction topN is given, sinceBhN=1−BpN. The last row gives thex2 per data point of each fit.

Model CMB K matrix BWn.r. BWrel CMB all pN
CMB all pN,

gN PDG

S11s1535d
Mass(MeV) 1539±1 1533±1 1549±2 1558±1 1547±3 1539±5 1520

−1555s1535d
Width (MeV) 135±4 115±3 142±9 143±4 131±19 122±20 100−200s150d
BpN s%d 29±1 34±1 67±5 67±1 34±4 39±5 35−55

S11s1650d
Mass(MeV) 1682±1 1685±2 1648±5 1637±2 1690±12 1684±15 1640

−1680s1650d
Width (MeV) 144±3 190±5 147±10 145±4 227±40 227±58 145−190s150d
BpN s%d 80±1 77±1 74±5 79±1 75±3 75±3 55−90

x2/N 3.8 3.7 1.5 1.9 3.6 5.6

TABLE II. Caption as in Table I, except nonresonant contributions to theT matrix are described in terms
of polynomials.

Model CMB K matrix BWn.r. BWrel

S11s1535d Mass(MeV) 1526±2 1533±1 1539±2 1538±2

Width (MeV) 112±6 119±3 130±6 130±6

BpN s%d 30±2 33±1 39±1 38±1

S11s1650d Mass(MeV) 1688±2 1682±2 1648±2 1647±2

Width (MeV) 193±6 184±5 109±5 109±5

BpN s%d 78±2 75±1 51±1 51±1

x2/N 5.0 3.9 5.0 5.0
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be simply stated. For the error bars given for the input am-
plitudes and those determined in our fits, the difference be-
tween theS11s1535d mass and full width for the CMB and
K-matrix models with distant poles is significant. This is an
important measure of the difference in these two models.

Other considerations could contribute to these differences.
The estimated errors quoted in the partial-wave amplitude
fits have a direct effect on the values quoted here. It is pos-
sible that the errors in the partial-wave amplitudes are under-
stated due to a lack of understanding of the model depen-
dence. Although a more sophisticated nonresonant amplitude
could be required, the smoothness of these amplitudes in all
models argues against this. Each model has problems that are
likely due to the truncated channel space employed. The
most obvious problem is with the width ofS11s1650d. About
20% of the overall strength that was supposed to go to chan-
nels other thanpN andhN has to be included somewhere in
the smaller channel space.

In the context of the small but important test case chosen
for this study, the results of the CMB andK-matrix model
fits are found to have small, but potentially important differ-
ences. Since the CMB model is better constrained theoreti-
cally, the resonance properties extracted using this model
should be preferred when there is reason to doubt other mod-
els. A possible conclusion could be that this proves that the
constraints provided by analyticity, a superior treatment of
rescattering, and an improved treatment of resonance inter-
ference are important in this case. From the present limited

comparison, such a conclusion is likely premature. This issue
requires further study, particularly from the theoretical side.

We should note that manyN* states will not be obscured
by strong threshold effects and will not have strong interfer-
ence with other states of the same angular momentum and
parity. The simplified dynamics of theK-matrix model then
give it the practical advantage of a simpler and more stable
path to a good fit to the partial-wave amplitudes. Proper use
of this model in the analysis ofN* data is unlikely to give
results that are badly incorrect. For resonances with a larger
number of open channels, the interaction of the nonresonant
and resonant amplitudes can be much more complicated and
simplified fitting can give erroneous results.

The primary result of this paper is that even in a small
multichannel problem, dynamics are important. Since Breit-
Wigner models have very few theoretical constraints,ad hoc
parameters are required to fit real data such as those of the
two-channel problem studied here. We therefore suggest that
consideration of these issues be part of any attempt to deter-
mine global recommendations for baryon resonance proper-
ties.
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