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The s-exchange andf2-exchange mechanisms forr meson photoproduction are reexamined. Then the
commonly employeds-exchange amplitude is revised by using the recent information from the analyses on the
r→p0p0g decay and thesNN coupling constant from Bonn potential. Instead of relying on the Pomeron-f
proportionality assumption, thef2 meson exchange amplitude is established from an effective Lagrangian
which is constructed from the tensor structure of thef2 meson. Phenomenological information together with
tensor meson dominance and vector meson dominance assumptions are used to estimate thef2 coupling
constants. As a first step to improve the current theoretical models, we have also explored the effects due to the
uncorrelated 2p-exchange amplitude withpN intermediate state. This leading-order 2p-exchange amplitude
can be calculated using the coupling constants determined from the study of pion photoproduction and the
empirical width ofr→pp decay. In comparing with the existing differential cross section data, we find that a
model with the constructed 2p, s, and f2 exchanges is comparable to the commonly useds-exchange model
in which thes coupling parameters are simply adjusted to fit the experimental data. We suggest that experi-
mental verifications of the predicted single and double spin asymmetries in the smallutus,2 GeV2d region will
be useful for distinguishing the two models and improving our understanding of the nonresonant amplitude of
r photoproduction. Possible further improvements of the model are discussed.
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I. INTRODUCTION

The recent experiments at Thomas Jefferson National Ac-
celerator Facility(TJNAF) [1–4], GRAAL of Grenoble[5],
and LEPS of SPring-8[6] are expected to provide new op-
portunities for studying the electromagnetic production of
vector mesons at low energies. For example, the differential
cross section data forr photoproduction from the CLAS Col-
laboration at TJNAF show big differences with the old data
of 1970’s[7,8] in the large momentum-transfersutud region at
low energies, where one may learn about theVNN couplings
and other production mechanisms[9–12]. Much more new
data with similar high precisions will soon be available.

The study of vector meson photoproduction is expected to
shed light on the resolution of the so-called “missing reso-
nance” problem[13–17]. On the other hand, it is well known
that this can be achieved only when the nonresonant mecha-
nisms are well understood[18,19]. As a continuation of our
effort in this direction[14,18], we explore in this work the
nonresonant mechanisms ofr photoproduction.

There exist some investigations of the nonresonant
mechanisms for vector meson photoproduction. To account
for the diffractive features of the data in smallt region at
high energies, the Pomeron exchange model, as illustrated in
Fig. 1, was developed. However, this model fails to describe
the experimental observables at low energies. Indeed, meson
exchanges(or secondary Reggeon exchanges) are found to
be crucial in understanding the low energy data. In the case
of v photoproduction, it is well known that one-pion ex-

change is the most dominant process at low energies. Forr
photoproduction, however, the situation is not clear. Gener-
ally, there are two scenarios which are based on either the
s-meson exchange model[20,21] or the f2-exchange model
[10,22]. The s-exchange model was motivated[20] by the
observation that the decay width ofr→ppg is much larger
than the other radiative decays of ther meson. It is further
assumed that thepp in the ppg channel can be modeled as
a s meson so that thersg vertex can be defined and mod-
eled for calculating thes-exchange mechanism as illustrated
in Fig. 1(b). In practice, the product of the coupling constants
grsggsNN of this tree diagram is adjusted to fit the cross sec-
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FIG. 1. Models forr photoproduction.(a,b) t-channel Pomeron
and one-meson exchangessM = f2, p, h, sd, (c,d) s- and u-channel
nucleon pole terms.
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tion data ofr photoproduction at low energies. If we use
gsNN

2 /4p,8 from Bonn potential[23], we then find that the
resultinggrsg will yield a decay width ofr0→sg an order of
magnitude larger than the value extracted from the recent
experimental decay width ofr0→p0p0g [24–26]. Thus the
dynamical interpretation of the commonly useds meson ex-
change model forr meson photoproduction must be further
examined theoretically.

In this work, we would like to take a different approach to
account for the exchange ofpp in r photoproduction. First,
the commonly employeds-exchange amplitude isrevisedby
using the coupling constantgsNN from Bonn potential and
grsg from the recent experimental decay width ofr0

→p0p0g with the assumption[20] thatp0p0 in this decay is
strongly correlated and can be approximated as as particle.
This is our starting point of developing a new model which is
more consistent with the existing meson-exchange models
for NN scattering[23], pN scattering, and pion photoproduc-
tion [27]. We then consider the consequence of the strong
r→p+p− decay which accounts for almost the entire decay
width of the r meson. With the empirical value of ther
meson decay width, one can define therpp vertex, which
then leads naturally to the “uncorrelated” two-pion exchange
mechanism illustrated in Fig. 2 withM =p in the intermedi-
ate state. A more complete calculation of uncorrelated
2p-exchange contributions tor photoproduction should also
include other intermediate states such asvN andpD. How-
ever, the contributions from these intermediate states involve
propagation of two or three pions and must be considered
along with other multipion exchange mechanisms(such as
the crossed diagrams due to the interchange ofg andr lines
in Fig. 2). Obviously, this is a much more complex task and
will not be attempted in this exploratory investigation. Our
calculation of 2p exchange will be detailed in Sec. II F.

The f2-exchange model forr photoproduction was moti-
vated by the results from the analyses ofpp scattering data at
low energies[28]. In the study ofpp scattering the dominant
secondary Regge trajectory is represented by thef trajectory,
and the idea of Pomeron-f proportionality had been used to
model the Pomeron couplings using thef2 couplings until
1970’s[29–32] before the advent of the soft Pomeron model
by Donnachie and Landshoff[33]. By considering the role of
the f trajectory inpp scattering, it is natural to consider the
f2-exchange model for vector meson photoproduction. How-

ever, thef2-exchange model developed in Refs.[10,22] for r
photoproduction made use of the Pomeron-f proportionality
in the reverse direction. Namely, they assume that the struc-
ture of the f2 couplings are the same as that of the soft
Pomeron exchange model. Thus thef2 tensor meson was
treated as aC= +1 isoscalar photon, i.e., a vector particle. In
addition, the fit to the data is achieved by introducing an
additional adjustable parameter to control the strength of the
f2 coupling[10]. This is obviously not very satisfactory and
leaves a room for improvement.

Instead of relying on the Pomeron-f proportionality as-
sumption, thef2 meson exchange amplitude is evaluated in
this work starting with an effective Lagrangian which is con-
structed from the tensor structure of thef2 meson. Phenom-
enological information together with tensor meson domi-
nance and vector meson dominance assumptions are used to
estimate thef2 coupling constants. With this, we then explore
the extent to which ther photoproduction data can be de-
scribed by a model that includes this newly constructed
f2-exchange amplitude together with the reviseds-exchange
amplitude and the uncorrelated 2p-exchange amplitudes dis-
cussed above.

This paper is organized as follows. In Sec. II, we explic-
itly define the amplitudes for the consideredr photoproduc-
tion mechanisms, including the Pomeron exchange,s ex-
change, pseudoscalar meson exchanges,s- and u-channel
nucleon terms, and the newly constructedf2 exchange. The
2p-exchange amplitudes are then given to complete our
model construction. The numerical results are presented in
Sec. III. For comparison, we consider two models. Both
models contain thes- and u-channel nucleon terms and the
exchanges of Pomeron,p, andh. In addition, the first model
includes thes exchange with free parameters to fit the data
following Refs.[20,21], while the second model contains the
two-pion, s, and f2 exchanges, where the parameters of the
s exchange are fixed by Bonn potential andr→p0p0g de-
cay. We explore the extent to which these two rather different
models can be distinguished by examining the differential
cross sections and spin asymmetries. Section IV contains a
summary and discussions. The details on thef2 interactions
with the photon and hadrons are given in Appendix for com-
pleteness.

II. MODELS FOR r PHOTOPRODUCTION

In this section, we discuss possible production mecha-
nisms forgp→rp. We first discuss single particle exchanges
as depicted in Fig. 1. Then the 2p-exchange model will be
constructed. Each of the considered production amplitude, as
illustrated in Fig. 1, can be written as

Tfi = «m
* sVdMmn«nsgd, s1d

where «msVd and «nsgd are the polarization vectors of the
vector meson and the photon, respectively. We denote the
four-momenta of the initial nucleon, final nucleon, incoming
photon, and outgoing vector meson byp, p8, k, and q, re-
spectively. The Mandelstam variables ares=W2=sk+pd2, t
=sp−p8d2, andu=sp−qd2.

FIG. 2. 2p exchange inr photoproduction. The intermediate
meson stateM includesp, and the baryonB includes the nucleon.
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A. Pomeron exchange

We first consider the Pomeron exchange depicted in Fig.
1(a). In this process, the incoming photon first converts into
a qq pair, which interacts with the nucleon by the Pomeron
exchange before forming the outgoing vector meson. The
quark-Pomeron vertex is obtained by the Pomeron-photon
analogy[33], which treats the Pomeron as aC= +1 isoscalar
photon, as suggested by a study of nonperturbative two-
gluon exchanges[34]. We then have[33,35–37]

MP
mn = GPss, tdTP

mn, s2d

with

TP
mn = i12Î4paem

MV
2bqbq8

fV

1

MV
2 − t

S 2m0
2

2m0
2 + MV

2 − t
DF1std

3usp8dhk”gmn − kmgnjuspd, s3d

whereaem=e2/4p and F1 is the isoscalar electromagnetic
form factor of the nucleon,

F1std =
4MN

2 − 2.8t

s4MN
2 − tds1 − t/0.71d2 , s4d

with t in GeV2. The proton and vector meson masses are
represented byMN and MV, respectively.sMV=Mr in our
case.d

The Regge propagator for the Pomeron in Eq.(2) reads

GP = S s

s0
DaPstd−1

expH−
ip

2
faPstd − 1gJ . s5d

The Pomeron trajectory is taken to be the usual formaPstd
=1.08+aP8 t with aP8 =1/s0=0.25 GeV−2 f33g. In Eq. s3d, fV
is the vector meson decay constant:fr=5.33, fv=15.2, and
ff=13.4. Thecoupling constantsbu=bd=2.07 GeV−1, bs
=1.60 GeV−1, and m0

2=1.1 GeV2 are chosen to reproduce
the total cross section data at high energiesEgù10 GeV,
where the total cross section of vector meson photopro-
ductions are completely dominated by the Pomeron ex-
change. Forr photoproduction, we setbq=bq8=bu=bd.

B. s meson exchange

The s meson exchange model advocated by Friman and
Soyeur[20] is based on the observation thatGsr→ppgd is
the largest among allr meson radiative decays, which leads
to the assumption that ther photoproduction process at low
energies is dominated by the exchange of 2p. The 2p is then
effectively represented by as meson. The effective Lagrang-
ian for this model reads[9,20,21]

Ls =
egrsg

Mr

s]mrn]mAn − ]mrn]nAmds + gsNNNsN, s6d

whererm is ther0 meson field andAm the photon field. The
resultings meson exchange amplitude is

Ms
mn =

egrsggsNN

Mr

1

t − Ms
2 sk ·qgmn − kmqnd

3usp8duspdFsNNstdFrsgstd, s7d

where

FsNNstd =
Ls

2 − Ms
2

Ls
2 − t

, Frsgstd =
Lrsg

2 − Ms
2

Lrsg
2 − t

s8d

are the form factors. The cutoff parameters of the form fac-
tors and the product of coupling constantsgrsggsNN are ad-
justed to fit ther photoproduction data at low energies. It
was foundf20,21g that

Ms = 0.5 GeV, gsNN
2 /4p = 8.0, grsg = 3.0,

Ls = 1.0 GeV, Lrsg = 0.9 GeV. s9d

The resultings mass parameter is close to the valueMs

=0.55,0.66 GeV of Bonn potentialf23g. If we further
take the valuegsNN

2 /4p=8.3,10 from Bonn potential, we
then find that the resultinggrsg is close to the values from
the QCD sum rules,grsg=3.2±0.6 f38g or 2.2±0.4 f39g.
However, such a large value ofgrsg corresponds to the
r→sgs→p0p0gd decay width that is much larger than the
empirical value ofGsr0→p0p0gd f24,26g. If we accept the
empirically estimated, but model-dependent value of SND
experimentf26g, BRsr→sgd=s1.9−0.8

+0.9±0.4d310−5, which
gives Gsr→sgd<2.83 keV, we get

ugrsgu < 0.25, s10d

since the Lagrangians6d gives

Gsr → sgd =
aemgrsg

2

24Mr
5 sMr

2 − Ms
2d3. s11d

This value is smaller than that of Eq.s9d by an order of
magnitude. Therefore, thes-exchange model suffers from
the big uncertainty ofgrsg f24–26,40,41g. Furthermore, there
is no clear particle identification of as particle and the use
of s exchange in definingNN potential has been seriously
questioned. Thus it is possible that thes exchange may not
be the right major mechanism forr photoproduction.

C. Pseudoscalar meson exchanges

The p and h meson exchanges are also allowed forr
photoproduction, although their contributions are known to
be not important. They are calculated from

Lrgw =
egrgw

MV
emnab]mrn]aAbw,

LwNN =
gwNN

2MN
Ngmg5]mwN, s12d

wherew=p0, h. The coupling constantsgrgw are fixed by the
r→wg decay widths
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Gsr → wgd =
aemgrgw

2

24MV
5 sMV

2 − Mw
2d3. s13d

Using the experimental dataf42g, Gsr0→p0gdexpt

=121±31 keV andGsr0→hgdexpt=62±17 keV, we get

grgp = 0.756, grgh = 1.476. s14d

This also givesgvgp=1.843 and gvgh=0.414. We use
gpNN

2 /4p=14.3 and the SUs3d relation to get ghNN
2 /4p

=0.99. Although there are other estimates on the value of
ghNN reported in the literature, the role of theh exchange
is much suppressed inr photoproduction and the depen-
dence of our results onghNN is negligible.

The pseudoscalar meson exchange amplitude, Fig. 1(b),
calculated from the Lagrangian(12) reads

Mw
mn =

iegrgwgwNN

2MNMV

1

t − Mw
2 «mnabqakb

3usp8dsp” − p”8dg5uspdFwNNstdFrwgstd, s15d

where the form factors are

FwNNstd =
Lw

2 − Mw
2

Lw
2 − t

, Frwgstd =
Lrwg

2 − Mw
2

Lrwg
2 − t

. s16d

We useLp=0.6 GeV,Lrpg=0.77 GeV,Lh=1.0 GeV, and
Lrhg=0.9 GeVf14,20g.

D. Nucleon pole terms

The s- andu-channel nucleon terms, Figs. 1(c) and 1(d),
are calculated from

Lgpp = − eNFAmgm −
kp

2MN
smn]

nAmGN,

Lrpp = −
grNN

2
NFrmgm −

kr

2MN
smn]

nrmGN. s17d

The resulting production amplitude is

MN
mn =

egrNN

2
usp8dFGV

msqd
p” + k” + MN

s− MN
2 Gg

nskdFNssd

+ Gg
nskd

p” − q” + MN

u − MN
2 GV

msqdFNsudGuspd, s18d

where

GV
m = gm − i

kr

2MN
smnqn, Gg

m = gm + i
kp

2MN
smnkn. s19d

The form factor has the formf43g

FNsrd =
LN

4

LN
4 + sr − MN

2d2 , s20d

with LN=0.5 GeV taken from Refs.f9,14g. This choice of
the nucleon form factor leads to a satisfactory explanation
of the steep rise of the differential cross sections with

increasingutu in terms of theu-channel nucleon termfFig.
1sddg.

BecauseFNssdÞFNsud, the above amplitude does not sat-
isfy the gauge invariance. In order to restore the gauge in-
variance, we project out the gauge noninvariant terms as

GV
m → GV

m −
km

k ·q
q · GV, Gg

m → Gg
m −

qm

k ·q
k · Gg. s21d

For therNN coupling constants, we take the values deter-
mined in the analyses of pion photoproduction andpN scat-
tering f27g:

grNN = 6.2, kr = 1.0, s22d

and the anomalous magnetic moment of the nucleon iskp
=1.79.

E. f2 meson exchange

We now discuss the exchange of thef2s1270d tensor me-
son, which has quantum numbersIGsJPCd=0+s2++d. The
mass and decay width of thef2s1270d are Mf

=1275.4±1.2 MeV andGsf2d=185.1−2.6
+3.4 MeV [42]. Because

of its quantum numbers, it has been once suggested as a
candidate for the Pomeron. But this assumption violates the
duality with the a2 trajectory which includesIGsJPCd
=1−s2++d state and it is now believed that thef2 does not lie
on the Pomeron trajectory.

In the approach of Ref.[10], the f2 is treated as aC
= +1 isoscalar photon just like the Pomeron. This leads to a
Regge amplitude of the following form:

M f2
mn = k f2

Gf2
ss, tdTP

mn, s23d

where1

Gf2
ss, td = S s

s1
Daf2

std−1h1 + expf− ipa f2
stdgjpa f2

8

2 sin fpa f2
stdgGfa f2

stdg
, s24d

with s1=1/a f2
8 <1 GeV2, while the form ofTP

mn is the same
as given in Eq.s3d. The f2 trajectory is linearly approxi-
mated asa f2

std<0.47+0.89t f22,28g. In order to control
the strength of thef2 couplings to the hadrons, a free
parameterk f2

was introducedf10g and adjusted to fit the
r-photoproduction data at low energies.

In this paper, we depart from this Regge parametrization
and construct anf2-exchange model solely based on the ten-
sor structure of thef2 meson. We will use the experimental
data associated with thef2 meson, the tensor meson domi-
nance, and vector meson dominance assumptions to fix thef2
coupling constants, such that the strength of the resulting

1The form ofGf2
in Eq. (24) is due to the fact that thef2 interac-

tion is treated as that of an isoscalar photon, i.e., a vector particle
interaction. If we use the tensor structure of thef2 interaction, it
would be

Gf2
ss, td = S s

s1
Da f2

std−2 s1 + expf− ipa f2
stdgdpa f2

8

2 sin fpa f2
stdgGfa f2

std − 1g
.
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f2-exchange amplitude is completely fixed in this investiga-
tion. Following Refs.[44,45], the effective Lagrangian ac-
counting for the tensor structure of thef2NN interaction is
written as2

L fNN = − 2i
GfNN

MN
Nsgm]n + gn]mdNfmn + 4

FfNN

MN
]mN]nNfmn,

s25d

where fmn is the f2 meson field. This gives the following
form of the fNN vertex function:

Vbe,d = − emnuspddHGfNN

MN
fSmgn + gnSmg +

FfNN

MN
2 SmSnJuspbd,

s26d

whereSm=spb+pddm, pb andpd are the incoming and outgo-
ing nucleon momentum, respectively, andemn is the polar-
ization tensor of thef2 meson.

The coupling constants associated with thef2 meson were
first estimated by using the dispersion relations to analyze
the backwardpN scattering[44] and thepp→NN partial-
wave amplitudes. The results are summarized in Table I.
Note that the value estimated based on the tensor meson
dominance[46] is much smaller than the empirical values.
(See Appendix for details.)

The most general form for thefVg vertex satisfying
gauge invariance reads[51]

kgskdVsk8duf2l =
1

Mf
eke8lfmnAklmn

fVg sk, k8d, s27d

wheree ande8 are the polarization vectors of the photon and
the vector meson, respectively, and

Aklmn
fVg sk, k8d =

f fVg

Mf
3 fgklsk ·k8d − kk8klgsk − k8dmsk − k8dn

+ gfVgfgklsk − k8dmsk − k8dn + glmkk8sk − k8dn

+ glnkk8sk − k8dm − gkmklsk − k8dn

− gknklsk − k8dm − 2k ·k8sgkmgln + gknglmdg.

s28d

The tensor meson dominance assumption together with
the vector meson dominance gives[51]

f fVg = 0 and gfVg =
e

fV
GfVV, s29d

where

GfVV = Gfpp = 5.76. s30d

Here Gfpp is determined from the decay width off2→pp.
The details on thef2 interactions with the photon and had-
rons, and tensor meson dominance are given in Appendix.

With the above formulas, it is straightforward to obtain
the production amplitude as

M f2
mn = − uspdGabsp, p8duspd

3
Pab;rs

sp − p8d2 − Mf
2Vrs;nmsk, qdFfNNstdFfVgstd,

s31d

where

Gabsp, p8d =
GfNN

MN
fsp + p8dagb + sp + p8dbgag

+
FfNN

MN
2 sp + p8dasp + p8db,

Pab;rs = 1
2sgargbs + gasgbrd − 1

3gabgrs,

Vrs;nmsk, qd =
f fVg

Mf
4 f− gmnsk ·qd + qnkmgsk + qdrsk + qds

+
gfVg

Mf
fgmnsk + qdrsk + qds − gmrqnsk + qds

− gmsqnsk + qdr − gnrkmsk + qds

− gnskmsk + qdr + 2k ·qsgnrgms + gnsgmrdg,

s32d

and

gmn = − gmn +
sp − p8dmsp − p8dn

Mf
2 . s33d

The form factors are chosen as

FfNNstd =
L fNN

2 − Mf2
2

L fNN
2 − t

, FfVgstd =
L fVg

2 − Mf2
2

L fVg
2 − t

, s34d

where the cutoff parameters will be discussed in Sec. III. The
relative phases amongf2 couplings are fixed by tensor me-
son dominance.

F. 2p exchange

In this section, we discuss the 2p exchange forr photo-
production as shown in Fig. 2. We only consider the contri-
bution from setting the intermediate statesMBd=spNd. As2In the conventions of Ref.[45], GfNN

s1d =GfNN andGfNN
s2d =FfNN.

TABLE I. Estimates on thefNN coupling constantsGfNN and
FfNN usingpN dispersion relations. The values are compared with
the prediction of tensor meson dominance[46].

GfNN
2 /4p FfNN/GfNN

1.12 — Ref.[44]

3.31 <0 Ref. [47]

3.31±0.63 0.06±0.17 Ref.[48]

4.0±1.0 0.00±0.07 Ref.[49]

2.2±0.9 0.6±0.9 Ref.[50]

0.38±0.04 <0 Ref. [46]
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discussed in Sec. I, the contributions from other intermediate
states likepD and vN involve propagation of two or three
pions and hence are neglected along with the other multime-
son exchange amplitudes in this exploratory investigation.

We compute the loop amplitude of Fig. 2 by making use
of the method of Sato and Lee[27], which gives

Tloop =E d3q8f«sgd ·BgN,MNsk, q8;EdgGMNsq8, Ed

3f«*sVd ·VMN,rNsq8, q:Edg, s35d

where

GMNsq8, Ed =
1

E − ENsq8d − EMsq8d + ie
. s36d

Obviously, BgN,MN and VMN,rN are the one-pion-exchange
amplitudes illustrated in Fig. 2. We only considersMNd
=spNd intermediate state in this paper.

Equation(35) can be rewritten as

Tloop = PE d3q8
«*sVd ·Vsq8, qd«sgd ·Bsk, q8d

W− EBsq8d − EMsq8d

− i E dVkt
rBMsk td«*sVd ·Vsk t, qd«sgd ·Bsk, k td

3usW− MM − MBd, s37d

where the subscripts ofV andB are understood. Hereusxd is
the step function and

rBMskd =
pkEBskdEMskd
EBskd + EMskd

, s38d

whereEBskd andEMskd are the energies of the intermediate
baryon and meson with momentumk. Through the on-shell
conditionW=EBsktd+EMsktd, kt is determined as

kt =
1

2W
ÎlsW2, MM

2 , MB
2d, s39d

where

lsx, y, zd = x2 + y2 + z2 − 2sxy+ yz+ zxd. s40d

For the consideredsMNd=spNd case, the one-pion-
exchange amplitudesBgN,pN and VpN,rN in Eq. (35) can be
calculated from

Lgpp = ef]mp 3 pg3Am,

Lrpp = grpprm · sp 3 ]mpd,

LpNN =
gpNN

2MN
Ngmg5t · ]mpN. s41d

The coupling constantgrpp is determined from the decay
width Gsr→ppd, which reads

Gsr → ppd =
grpp

2

48pMr
2sMr

2 − 4Mp
2d3/2. s42d

Using Gsr0→p+p−d=150.7 MeVf42g, we obtain

grpp = 6.04. s43d

Then the 2p-exchange transition amplitude with intermedi-
atepN channel reads

M̃pN
mn ; Vmsq8, qdBnsk, q8d

=
1

s2pd3

MN

ENspBd
1

2Epsq8d
egrppgpNN

2

4MN
3 sq8 − pB + p8dm

3spB − p − q8dn

3
1

spB − pd2 − Mp
2

1

spB − p8d2 − Mp
2 usp8dGuspd,

s44d

where

G = sp”8 − p”Bdsp”B − MNdsp”B − p” d. s45d

The loop integration must be regularized by introducing
form factors. We include the form factors for each vertices.
In addition, we also introduce the form factor to take into
account the off-shellness of the intermediate states,

F,sq8d = S L,
2 + k t

2

L,
2 + q82D2

. s46d

Thus the final form of the form factor is

F = F,sq8dFrppst1dFrppst2dFpNNst1dFpNNst2d, s47d

where

Frppstd =
Lrpp

2 − Mp
2

Lrpp
2 − t

, FpNNstd =
LpNN

2 − Mp
2

LpNN
2 − t

, s48d

and t1=spB−pd2 and t2=spB−p8d2. Here the inclusion of
Frppst1d implies the vector meson dominance assumption.
The cutoff parameters will be discussed in Sec. III.

We now comment on the loop calculation described
above. We do not consider the crossed diagrams of Fig. 2,
since such diagrams include three-particle intermediate states
and hence are of higher-order effects which are neglected in
this exploratory study. However by neglecting the crossed
diagrams, the resulting amplitude does not satisfy gauge in-
variance. In this study, therefore, we restore gauge invariance
of the amplitude(44) by projecting out the gauge noninvari-
ant terms as[37]

M̃mn → Pmm8M̃m8n8Pn8n, s49d

where the projection operator reads

Pmn = gmn −
kmqn

k ·q
. s50d
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III. CROSS SECTIONS AND POLARIZATION
ASYMMETRIES

In this work we first reexamine the commonly employed
s exchange by considering model(A) which includes the
Pomeron,s, p, h exchanges, and thes- and u-channel
nucleon terms. We then explore model(B) which is con-
structed by replacing thes exchange in model(A) by the f2
and 2p exchanges. We also add thes exchange to model(B)
as a correlated 2p exchange with the couplings determined
by r→p0p0g decay and Bonn potential. All parameters of
the models are explained in Sec. II. In particular, the
s-exchange parameters in model(A) are given in Eq.(9),
which are chosen to reproduce ther photoproduction data.

For model(B), we use thef2 couplings as(see Appendix)

GfNN
2 /4p = 2.2, FfNN = 0, GfVV = 5.76, s51d

with the relations29d. The recently estimatedGsr→sgd f26g
is used to constraingrsg as

grsg = 0.25. s52d

The other parameters for thes exchange are the same as
given in Eq. s9d. The only unspecified parameters are the
cutoff parametersL fNN andL fVg for the f2 exchange and the
cutoff parameters of Eq.s47d for regularizing the loop inte-
grations. The parameterL, for all loop integrations is fixed
to be 0.5 GeV which is identical to the value used in our
previous investigationf18g of the one-loop corrections on
v photoproduction. The other cutoffs includingLrpp and
LpNN in the loop calculation are chosen to be 0.6GeV.
The other two parameters of modelsBd are adjusted to fit
the cross section data and are found to be

L fNN = L fVg = 1.4 GeV. s53d

This is a unsatisfactory aspect of this work, but it is unavoid-
able in any phenomenological approach. Future theoretical
calculations of form factors are therefore highly desirable.

The differential cross sections forgp→rp calculated
from model(A) are compared with the SLAC data[52] and
the recent CLAS data[3] in Fig. 3. We see that the full
calculations(solid curves) are dominated by thes-exchange
contributions (dot-dashed curves). The contributions from
the other exchange mechanisms(dashed curves) become
comparable only in the very forward and backward angles.
This is mainly due to the fact that the Pomeron exchange
[Fig. 1(a)] is forward peaked and theu-channel nucleon term
[Fig. 1(d)] is backward peaked. It is clear that the data can
only be qualitatively reproduced by model(A). The main
difficulty is in reproducing the data in the largeutu (larger
than about 3 GeV2) region. No improvement can be found
by varying the cutoff parameters of various form factors of
model(A). This implies the role of other production mecha-
nisms in this region.

The differential cross sections calculated from model(B)
are shown in Fig. 4. The solid curves are the best fits to the
data we could obtain by choosing the cutoff parameters
given in Eq.(51) for the f2 exchange. In the same figures, we
also show the contributions from thef2 exchange(dot-
dashed curves), 2p and s exchanges(dashed curves), and

the rest of the production mechanisms(dotted curves). It is
interesting to note that thef2 exchange in model(B) (dot-
dashed curves in Fig. 4) drops faster than thes exchange in
model(A) (dot-ashed curves in Fig. 3) ast increases. On the
other hand, the 2p ands exchanges(dashed curves in Fig. 4)
give a nontrivial contribution in largeutu region at lower en-
ergies but are suppressed as the energy increases. Therefore
such effects are expected to be seen at energies very close to
the threshold. As expected, thes meson exchange contribu-
tion is much suppressed than in model(A).

Thus we find that model(B) is comparable to model(A)
that is the commonly useds exchange model in fitting the
differential cross section data of SLAC and TJNAF. In par-
ticular, the data at smallutus,2 GeV2d can be equally well
described by both models, as more clearly shown in Fig. 5,
where the full calculations of two models are compared. On
the other hand, both models cannot fit the data at large
utus.2 GeV2d. But this is expected since we have not in-
cludedN* andD* excitation mechanisms which were found
[14] to give significant contributions tov photoproduction at
large utu. However, we will not address this rather nontrivial
issue here. The main difficulty here is that most of the reso-
nance parameters associated with isospinT=3/2 D* reso-
nances, which do not contribute tov photoproduction, are
not determined by Particle Data Group or well constrained
by theoretical models. Before we use our model to determine
a large number of resonance parameters by fitting the exist-
ing limited data, it would be more desirable to further test
and improve the nonresonant amplitudes such as including
more complete calculations of 2p exchanges. Hence, in this

FIG. 3. Differential cross sections of model(A) at Eg=sad2.8,
(b) 3.28,(c) 3.55, and(d) 3.82 GeV. The dot-dashed lines are from
s exchange and the dashed lines are withouts exchange. The solid
lines are the full calculation. Experimental data are from Ref.[52]
(open squares) and Ref.[3] (filled circles).
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paper, we focus on exploring which experimental observ-
ables are useful for distinguishing more clearly the model
(B) from model(A) in the smallutus,2 GeV2d region where
both models can describe the differential cross section data
to a large extent and theN* andD* effects are expected to be
not important. Experimental verifications of our prediction in
this limited t region will be useful for understanding the
nonresonant amplitudes ofr photoproduction at low ener-
gies.

We have explored the consequences of the constructed
models (A) and (B) in predicting the spin asymmetries,
which are defined, e.g., in Ref.[37]. The results for the
single spin asymmetries are shown in Fig. 6 forEg

=3.55 GeV. Clearly the single spin asymmetries including
the target asymmetryTy, the recoiled proton asymmetryPy,
and the tensor asymmetryVxxyy of the producedr meson
would be useful to distinguish the two models and could be
measured at the current experimental facilities. Of course our
predictions are valid mainly in the smallt region since theN*

andD* excitations[14] or G-pole contributions[22], which
are expected to be important at larget, are not included in
this calculation.

Our predictions on the beam-target and beam-recoil
double asymmetries[37] are given in Fig. 7. Here again we
can find significant differences between the two models in
the region of smallutu. Experimental tests of our predictions
given in Figs. 6 and 7, therefore, will be useful in under-
standing the nonresonant mechanisms ofr photoproduction.

Since both thes and f2 exchanges are natural parity ex-

changes, it would be difficult to test them using parity asym-
metry or photon asymmetry that can be measured from the
decay distribution of ther meson produced by polarized
photon beam. For completeness, we give the predictions of
the two models on these asymmetries in Fig. 8. As expected,
it is very hard to distinguish the two models in the forward
scattering angles with these asymmetries.

FIG. 4. Differential cross sections of model(B) at Eg=sad2.8,
(b) 3.28,(c) 3.55, and(d) 3.82 GeV. The dot-dashed lines are from
f2 exchange, the dashed lines are from 2p ands exchanges, and the
dotted lines are from the other processes, i.e., withoutf2, 2p, ands
exchanges. The solid lines are the full calculation. Experimental
data are from Ref.[52] (open squares) and Ref.[3] (filled circles).

FIG. 5. Differential cross sections of model(A) and (B) at Eg

=s1d2.8, (b) 3.28,(c) 3.55, and(d) 3.82 GeV. The dashed lines are
the results of model(A) and the solid lines are those of model(B).
Experimental data are from Refs.[3,52].

FIG. 6. Single spin asymmetries of model(A) and (B) at Eg

=3.55 GeV. Notations are the same as in Fig. 5. The definitions of
the spin asymmetries are from Ref.[37].
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IV. SUMMARY AND DISCUSSION

In this paper we have reexamined thes-exchange and
f2-exchange mechanisms ofr photoproduction reactions. It
is found that the commonly employeds-exchange amplitude
is weakened greatly if thes coupling constants are evaluated
by using the recent information about ther→p0p0g decay
and thesNN coupling constant of Bonn potential. This has
led us to introduce the uncorrelated 2p-exchange amplitude
with pN intermediate state. This leading-order 2p-exchange
amplitude can be calculated realistically using the coupling
constants determined from the study of pion photoproduction
and the empirical width ofr→pp.

In the investigation off2-exchange mechanism, we evalu-
ate its amplitude using an effective Lagrangian which is con-
structed from the tensor structure of thef2 meson. Phenom-

enological information together with tensor meson
dominance and vector meson dominance assumptions are
used to estimate thef2 coupling constants. This approach,
which is more consistent with the conventional meson-
exchange models, is rather different from thef2-exchange
model of Laget[10], where thef2 interaction structure was
borrowed from that of Pomeron exchange assuming
Pomeron-f proportionality, i.e.,f2-photon analogy.

In comparing with the existing differential cross section
data, we find that a model with the constructed 2p, s, and f2
exchanges is comparable to the commonly useds-exchange
model in which thes coupling parameters are simply ad-
justed to fit data. Both models can describe the data equally
well in the smallutus,2 GeV2d region, but fail at largeutu. We
suggest that experimental verifications of the predicted single
and double spin asymmetries in the smallutu region will be
useful for distinguishing two models and improving our un-
derstanding of the nonresonant amplitude ofr photoproduc-
tion.

Finally, we would like to emphasize that the present in-
vestigation is just a very first step toward obtaining a com-
plete dynamical exchange model ofr photoproduction at low
energies. The following steps are to examine the additional
2p-exchange mechanisms due to, for example,vN and pD
intermediate states and the crossed diagrams of Fig. 2. The
effects due toN* andD* effects must be included for a real-
istic understanding of the interplay between the nonresonant
and resonant amplitudes. Theoretical predictions of the reso-
nance parameters associated withD* resonance states will be
highly desirable for making progress in this direction.
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APPENDIX: TENSOR MESON DOMINANCE
AND f2-HADRON INTERACTIONS

The free Lagrangian and the propagator of the tensor me-
son were studied in Refs.[53–57]. The propagator of the
tensor meson which has momentump reads

Gmn;rs =
1

p2 − Mf
2 + ie

Pmn;rs, sA1d

whereMf is the tensor meson mass and

Pmn;rs = 1
2sgmrgns + gmsgnrd − 1

3gmngrs, sA2d

with

gmn = − gmn +
pmpn

Mf
2 . sA3d

1. f2pp coupling

The effective Lagrangian forf2pp interaction reads[45]

FIG. 7. Double spin asymmetriesCzx
BT, Czz

BT, Czx8
BR, and Czz8

BR of
model (A) and (B) at Eg=3.55 GeV. Notations are the same as in
Fig. 5.

FIG. 8. Spin asymmetriesPs and Sf of model (A) and (B) at
Eg=3.55 GeV. Notations are the same as in Fig. 5.
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L fpp = −
2Gfpp

Mf
]mp · ]npfmn, sA4d

where fmn is the f2 meson field. This gives thef2pp vertex
function as

Vfpp = −
Gfpp

Mf
spa + pcdmspa + pcdnemnsl fd, sA5d

wherepa andpc are the incoming and outgoing pion momen-
tum, respectively. The minus sign in the LagrangiansA4d is
to be consistent with the tensor meson dominancef58g. The
LagrangiansA4d gives thef2→pp decay width as

Gsf2 → ppd =
Gfpp

2

80p
MfS1 − 4

Mp
2

Mf
2D5/2

. sA6d

Using the experimental data,Gsf2→ppdexpt<156.9 MeV
f42g, we obtain

Gfpp
2

4p
< 2.64, sA7d

which givesGfpp<5.76.

2. Tensor meson dominance

The tensor meson dominance(TMD) is an assumption of
meson pole dominance for matrix elements of the energy
momentum tensor just as the vector meson dominance
(VMD ) is a pole dominance of the electromagnetic current.
By using TMD, one can determine the universal coupling
constant of thef2 meson from its decay into two pions,
which can then be used to determine thef2NN and f2VV
couplings. When combined with VMD, this also allows us to
estimate thefgg and fVg vertices. It is interesting to note
that the TMD underestimates the empiricalf2NN coupling
while it overestimates thef2→gg decay width. But it shows
that thef2 couplings with hadrons and photon can be under-
stood by TMD and VMD at least qualitatively. Here, for
completeness, we briefly review the method of Refs.[46,51]
to illustrate how to use TMD to get thef2-hadron couplings.

Let us first apply TMD to spinless particles[46,59]. The
energy-momentum tensor between spinless particles can be
written as

kpuumns0dup8l = F1sD2dSmSn + F2sD2dsDmDn − gmnD2d,

sA8d

with Sm=sp+p8dm and Dm=sp−p8dm. Then with the covari-
ant normalization one has

kpuE u00sxdd3xupl = ENp, sA9d

whereNp is the normalization constant. By comparing with
Eq. sA8d, one can find

F1s0d = 1
2 . sA10d

Now we define the effective couplings for tensor mesons
as

kf uumns0du0l = gfMf
3emn, kpuf up8l = − emnSmSnGfpp

Mf
,

sA11d

where the latter equation is consistent with Eq.sA5d. The
pole dominance gives

kpuumnup8l = o
f

kpuf up8lkf uumnu0l
1

D2 − Mf
2

= − o
f

gfMf
3emneab

* SaSbGfpp

Mf

1

D2 − Mf
2

= − o
f

gfMf
2Gfpp

D2 − Mf
2 SSmSn −

1

3
gmnS2 +

1

3

DmDn

Mf
2 S2D ,

sA12d

which leads to

F1sD2d = − o
f

gfMf
2Gfpp

D2 − Mf
2 . sA13d

Thus we have

F1s0d = o
f

gfGfpp = 1
2 . sA14d

It should be noted that the sum of Eq.(A14) contains
tensor meson nonet, i.e.,f2s1270d and f28s1525d. But in the
case of thef2pp coupling, if we assume the ideal mixing
between thef2s1270d and the f28s1525d, the f28s1525d de-
couples by the Okubo-Zweig-Iizuka(OZI) rule. Therefore
we obtainGf8pp<0, and the universal coupling constantgf
is determined as

gf =
1

2Gfpp

< 0.087, sA15d

using the value of Eq.sA7d.
With the universal coupling constantgf determined above,

one can now use it to estimate thef2NN coupling. For this
purpose, we apply TMD to spin-1/2 baryon state. The
energy-momentum tensor of the spin-1/2 baryons can be
written as

kpuumns0dup8l = uspdH1

4
sgmSn + gnSmdF1sD2d +

SmSn

4MN
F2sD2d

+ sDmDn − gmnD2dF3sD2dJusp8d. sA16d

With the covariant normalization, the conditions

kpuE u00sxdd3xupl = ENp,
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kp, p = 0,s3 = + 1
2u E hx1u02sxd − x2u01sxdj

3d3xup, p = 0,s3 = + 1
2l = 1

2Np, sA17d

give

F1s0d = 1, F2s0d = 0. sA18d

Now using the form forf2NN coupling in Eq.(26), as-
suming the pole dominance gives the following relations:

− 1 = 4gfGfNN
Mf

MN
+ 4gf8Gf8NN

Mf8

MN
,

0 = 4gfFfNN
Mf

MN
+ 4gf8Ff8NN

Mf8

MN
. sA19d

Again by assuming the decoupling of thef28 from the nucleon
coupling, we can havef46g

GfNN =
1

4gf

Mp

Mf
=

Gfpp

2

Mp

Mf
< 2.12,

FfNN = 0. sA20d

This givesGfNN
2 /4p<0.38 asshown in Table I, which is

smaller than the values estimated bypN dispersion rela-
tions by an order of magnitude. It should also be noted
that the values estimated bypN dispersion relations may
be affected by the inclusion of other meson exchanges.
More rigorous study in this direction is, therefore, highly
desirable.

3. f2VV coupling

Before we discussf2gg and f2Vg couplings, we first ap-
ply TMD to f2VV coupling, whereV stands for vector me-
sons. The energy-momentum tensor between identical vector
mesons contains six independent matrix elements[51],

kVuumnuV8l = G1sD2dse · e8dSmSn + G2sD2dse · Sdse8 · SdSmSn

+ G3sD2dhse · Sdem8Sn + se · Sden8Sm

+ se8 · SdemSn + se8 · SdenSmj + G4sD2d

3hse · Ddem8Dn + se · Dden8Dm + se8 · DdemDn

+ se8 · DdenDm− 2se · Ddse8 · Ddgmn − D2semen8

+ em8endj + G5sD2dse · e8dsDmDn − D2gmnd

+ G6sD2dse · Sdse8 · SdsDmDn − gmnD2d, sA21d

whereSm=sp+p8dm, Dm=sp−p8dm ande, e8 are the polariza-
tion vectors ofV and V8, respectively. Then the conditions
like Eq. sA17d give

G1s0d = − 1
2, G3s0d = 1

2 . sA22d

In the pole model, the form factorsG1sD2d, . . . ,G4sD2d are
dominated by tensor meson poles. Because of the symmetry
property of the tensor meson, we have generally fourf2VV
coupling vertices

kVuf uV8l =
G1

Mf
se · e8dsSmSnfmnd +

G2

Mf
3se · Sdse8 · Sd

3sSmSnfmnd +
G3

Mf
hse · Sdem8Sn + se · Sden8Sm

+ se8 · SdemSn + se8 · SdenSmjfmn

+
G4

Mf
s− D2dsemen8 + em8endfmn, sA23d

while we have usedDmfmn= fm
m=0 in writing theG4 term. For

our later use, an effective vertexHsD2, p2, p82d is introduced
to replace −sG4/MfdD2 as f51g

HsD2, p2, p82d =
G4

Mf
h− D2 + asp2 + p82 − 2MV

2dj.

sA24d

Now we use the pole dominance again using Eq.(A11) to
find

G1sD2d =
gfMf

2G1

D2 − Mf
2 , sA25d

which leads to

1
2 = gfG1, G3 = − G1, sA26d

combined with Eq.sA22d. Therefore, with Eq.sA15d we get

G1 = − G3 = Gfpp < 5.76. sA27d

The above relation should hold forf2rr and f2vv. The
SUs3d symmetry and the ideal mixing give

G1sf28ffd = Î2G1sf2rrd, G1sf28fvd = G1sf2ffd = 0.

sA28d

Note that two couplingsG1 and G3 are determined by
TMD but G2 and G4 cannot be estimated without further
assumptions.

4. f2gg and f2Vg couplings

The remaining two couplingsG2 andG4 of Eq. (A23) are
estimated by using VMD and gauge invariance. We consider
f2→gg using VMD as illustrated in Fig. 9.

By usinge ·k=e8 ·k8=0 and VMD, we have

FIG. 9. f2→gg decay in vector meson dominance.
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kgskdgsk8dufl =
e2

sk2 − MV
2dsk82 − MV

2d
H G̃1

Mf
se · e8dsk − k8dm

3sk − k8dnfmn −
G̃2

Mf
3se ·k8dse8 ·kdsk − k8dm

3sk − k8dnfmn +
G̃3

Mf
f− se ·k8dem8 sk − k8dn

− se8 ·k8den8sk − k8dm+ se8 ·kdemsk − k8dn

+ se8 ·kdensk − k8dmgfmn+
G̃4

Mf
f− Mf

2 + ask2

+ k82 − 2MV
2dgsemen8 + em8endfmnJ , sA29d

where we have introduced the notation

G̃i = SMr
2

fr
D2

Gi
frr + SMv

2

fv
D2

Gi
fvv, sA30d

with

k0u jm
emuVl =

MV
2

fV
emsVd. sA31d

Because of isospin, there is no mixing between the inter-
mediater andv mesons. By looking at the amplitude(A29),
however, one can find that it is not gauge invariant, i.e., it
does not vanish when replacingem by km. This gives a con-
straint on the couplings. The most general form forf2gg
satisfying gauge invariance has two independent couplings
as [51]

kgskdgsk8dufl =
e2

MV
4 hAfse · e8dsk ·k8d − se ·k8dse8 ·kdg

3sk − k8dmsk − k8dnfmn + Bfse · e8dsk − k8dm

3sk − k8dn + em8 sk − k8dnse ·k8d + en8

3sk − k8dmse ·k8d − emsk − k8dnse8 ·kd − en

3sk − k8dmse8 ·kd − 2sk ·k8d

3semen8 + em8endgfmnj, sA32d

which then gives

G̃1

Mf
= sk ·k8dA + B,

G̃2

Mf
3 = A,

G̃3

Mf
= − B,

G̃4

Mf
f− Mf

2 + ask2 + k82 − 2MV
2dg

= − 2sk ·k8dB = sk2 + k82 − Mf
2dB. sA33d

Solving this system atk2=k82=0 andG̃1=−G̃3 gives

A = G̃2 = 0. sA34d

Since gauge invariance applies to isoscalar and isovector
photons separately, we getG2=0 for V=r, v. Still we do not

fix G̃4 anda, but have a constraint,

G̃4sMf
2 + 2aMV

2d = G̃1Mf
2. sA35d

To complete the model, let us finally considerfVg vertex.
Here again, we use the VMD as in Fig. 10. The gauge in-
variance of the vertex atk2=MV

2 andk82=0 leads to

G̃4sMf
2 + aMV

2d = G̃1sMf
2 − MV

2d. sA36d

Then solving the coupled equationssA35d and sA36d gives
f51g

G̃4 = G̃1
Mf

2 − 2MV
2

Mf
2 , a =

Mf
2

Mf
2 − 2MV

2 . sA37d

Thus we have determined all couplings of Eq.sA23d with the
relation sA30d.

The above procedure shows that thef2gg and f2Vg ver-
tices can be written with two form factors because of gauge
invariance, which read

kgskdgsk8duf2l =
1

Mf
eke8lfmnAklmn

fgg sk, k8d,

kgskdVsk8duf2l =
1

Mf
eke8lfmnAklmn

fVg sk, k8d, sA38d

where

Aklmn
fgg sk, k8d =

f fgg

Mf
3 fgklsk ·k8d − kk8klgsk − k8dmsk − k8dn

+ gfggfgklsk − k8dmsk − k8dn + glmkk8sk − k8dn

+ glnkk8sk − k8dm − gkmklsk − k8dn − gknkl

3sk − k8dm − 2k ·k8sgkmgln + gknglmdg.

sA39d

The vertex functionAklmn
fVg sk, k8d can be obtained fromAklmn

fgg

FIG. 10. f2→Vg decay in vector meson dominance.
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by replacingf fgg andgfgg by gfVg andgfVg, respectively.
With Eqs. (A38) and (A39), we can obtain thef2→gg

decay width as3

Gsf2 → ggd =
Mf

20p
S 1

24
f fgg
2 + gfgg

2 D . sA40d

Then TMD and VMD givef51g

f fgg = 0, gfgg = e2S 1

fr
2 +

1

fv
2 DGfVV. sA41d

The vector meson decay constants arefr=5.33, fv=15.2,
and ff=13.4. By noting that TMD givesGfVV=Gfpp, we
get

Gsf2 → ggd < 8.8 keV, sA42d

while its experimental value is Gsf2→ggdexpt

=2.6±0.24 keV. Thus we can find that this procedure
overestimates the experimental value by a factor of 3–4.

The decay width off2→Vg can be computed using Eqs.
(A38) and (A39) as

Gsf2 → Vgd =
Mf

10p
s1 − xd3H 1

24
uf fVgu2s1 − xd4 − sf fVggfVg

*

+ f fVg
* gfVgd

xs1 − xd2

12
+ ugfVgu2S1 +

x

2
+

x2

6
DJ ,

sA43d

wherex=MV
2/Mf

2. TMD combined with VMD givesf51g

f fVg = 0, gfVg =
e

fV
GfVV. sA44d

This leads to

Gsf2 → rgd/Gsf2 → vgd =
gfrg

2

gfvg
2 =

fv
2

fr
2 = 8.14 ± 1.2

sA45d

and f58g

Gsf2 → rgd/Gsf2 → ggd = 2
gfrg

2

gfgg
2 s1 − xd3S1 +

x

2
+

x2

6
D = 155.

sA46d

Those quantities are not measured yet. Therefore, measuring
those quantities will be very useful to test TMD and VMD.
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