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I. INTRODUCTION

Two-boson interferometry has for a long time been linked
to high energy heavy-ion collisions as one of the tools to
probe the existence of a new phase of matter of strongly
interaction particles, the quark-gluon plasma(QGP), at high
temperature and high baryon density[1,2]. The hope of dis-
covering the QGP in high energy heavy-ion collisions is to
some extent connected to the possibility of measuring the
geometrical sizes of the emission region of secondary par-
ticles. And that is the connection point, i.e., so-called
Hanbury-Brown-Twiss interferometry[3,4] method, origi-
nally proposed in the 1950s for measuring stellar radii. This
method has been largely studied over the last 20 years, and
has extensively been developed and improved ever since[5].

In a previous paper[6], we have studied boundary effects
on the single-particle distribution and on the two-particle
correlation function, motivated by the need to consider more
realistic finite systems, and by the idea suggested in Ref.[7].
In that reference, it was shown that in heavy-ion collisions
the pion system could be thought as a liquid of quasipions
subjected to a surface tension. Naturally, it would be ex-
pected that this surface tension would affect the spectrum
distribution, which was shown in Refs.[6,8–12]. As pion
interferometry is sensitive to the geometrical size of the
emission region as well as to the underlying dynamics, we
would expect that the boundary would also affect the corre-
lation function, which was indeed demonstrated in Ref.[6].

Some time ago, on the other hand, the concept ofquons
was suggested[13] in association to adeformation param-
eter Q which was viewed as an effective parameter able to
encapsulate many essential features of complex dynamics of
different systems.(We call the attention to the notation
adopted throughout the paper. We useQ to refer to the
bosons under study here for avoiding confusion with the
relative momentum of the bosonic pairs,q=p1−p2, com-
monly used in interferometry and adopted here as well.) Ef-
fectively, the way it works is by reducing the complexity of
the interacting systems under study into simpler relations,
nevertheless, at the expense of deforming their commutation
relations, and thus making these more complicated. This is
known asQ-deformed algebras, an approach which has been

widely studied in statistical physics[14] and also in heavy-
ion collisions[15]. Particularly interesting is the approach in
Ref. [16], where it was shown that the composite nature of
the particles(pseudoscalar mesons) under study could result
into Q-deformed structures linked to the deformation param-
eterQ. In that reference this parameter is then interpreted as
a measure of effects coming from the internal degrees of
freedom of composite particles(mesons, in our case), being
the value ofQ dependent on thedegree of overlapof the
extended structure of the particles in the medium. Being so,
the Q parameter could be related to the power ofprobing
lenses, for mimicking the effects of internal constituents of
the bosons. In this case, and for high enoughmagnification,
the bosonic behavior of theQ bosons could be blurred by the
fermionic effect of their internal constituents, which would
result in decreasing the value ofQ. We will see that our
results are also compatible with this interpretation.

In view of our previous study of confined pions subjected
to finite size boundaries, and of theQ-boson approach men-
tioned above, we realized it would be very interesting to
analyze its effects on the two identicalQ-boson correlation
function. Besides, adding this extra degree of freedom ex-
tends and generalizes our previous approach. Along these
lines, Refs.[15,17] turned out to be of special interest to our
investigation. However, in these references the approach was
focused on the intercept,l, of the two-particle correlation
function at zero momentum difference,[i.e., l=Csq=0,Kd
−1], and restricted to single modes only. All the possible
consequences on the effective geometrical information,
which are generally even more interesting, were completely
neglected. In this paper we develop fullQ-boson two-particle
interferometric relations and simultaneously study the addi-
tional effects caused by the finite size boundary on the
Q-boson spectrum and on the two-Q-boson correlation func-
tion.

This paper is organized as follows: in Sec. II, we derive
theQ-boson single-inclusive distribution, as well as the two-
Q-boson correlation function, considering a density matrix
suited for describing charged identicalQ-boson correlation
effects. In Sec. III, the boundary effects on the two-Q-boson
correlation and single-particle spectrum distribution are illus-
trated by means of two simple specific examples. The con-
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clusions are discussed in Sec. IV. Finally, we discuss two
complementary topics in Appendixes. In Appendix A we dis-
cuss the limitQ→0 in detail. In Appendix B, we rederive the
relations for the single- and two-particle distributions, as
well as the generalized version of the Wigner function for
another type ofQ boson[15,17], different than the one dis-
cussed in the text.

II. SPECTRUM AND TWO- Q-BOSON CORRELATION
FUNCTION

In this section, we derive general relations for describing
the single-particle as well as the two-particle inclusive dis-
tributions, which would be suited for describing chargedQ
bosons bounded in a finite volume. For doing this, we extend
the hypotheses assumed in Ref.[6] to the pions considered
here as aQ-boson system. Essentially, these could be sum-
marized as follows: the effects of interaction among the
Q-bosons could be modeled by considering that they move in
an attractive mean-field potential, which extends over the
whole system. In the two-(quasi) particle case, this implies
that they would not suffer any other effects besides the
mean-field attraction and the identical particle symmetriza-
tion. The effect due to the fermionic(constituents) internal
degrees of freedom, along the lines suggested in Ref.[16], if
any, would be represented by the effective deformation pa-
rameterQ. In the present analysis, as assumed before in Ref.
[6], the pions represented byQ bosons are considered to be
quasibound in the system, with the surface tension[7] acting
as a reflecting boundary. TheQ-boson wave function could
then be considered as vanishing outside this boundary. Once
more, we assume that these particles become free when their
average separation is larger than their interaction range and
we consider this transition to happen very rapidly, in such a
way that the momentum distribution of theQ bosons could
be essentially governed by their momentum distribution just
before they freeze out. We then study the modifications on
the observedQ-boson momentum distribution caused by the
presence of this boundary. On the other hand, we know that
interferometry is sensitive to the geometrical size of the
emission region as well as to the underlying dynamics, and
we would expect that the boundary would also affect the
correlation function, similarly as it affected the pions in Ref.
[6]. However, as we shall see later, there is a significant
difference in the present case: the parameterl, i.e., the in-
tercept(at q=0) of the two-particle correlation function, will
be considerably different as compared to the case of a normal
(i.e., in the limit ofQ→1) pion, but will be recovered in the
appropriate limit.

For deriving the relations that allow to describe the
single- and two-particle inclusive distributions, we start by
assuming that theQ-boson creation operator in coordinate
space can be expressed by[6]

ĉ†sxd = o
l

âl
†cl

*sxd, s1d

whereâl
† is the creation operator for creating aQ boson in a

quantum state characterized by a quantum numberl. Then,
clsxd is one of eigenfunctions belonging to a localized com-

plete set, which satisfies the orthonormality condition

E dxcl
*sxdcl8sxd = dl,l8, s2d

and completeness relation

o
l

cl
*sxdclsyd = dsx − yd. s3d

Similarly, theQ-boson annihilation operator in coordinate
space can be written as

ĉsxd = o
l

âlclsxd. s4d

In momentum space, the correspondingQ-boson creation

operator ĉ†spd and annihilation operatorĉspd can be ex-
pressed, respectively, as

ĉ†spd = o
l

âl
†c̃l

*spd s5d

and

ĉspd = o
l

âlc̃lspd, s6d

where

c̃lspd =
1

s2pd3/2E clsxdeip·xdx. s7d

The Q bosons are then defined by means of the algebra
satisfied by their creation and annihilation operators, i.e.,
[17]

âlâl8
† − Qdl,l8âl8

† âl = dl,l8

fâl,âl8g = fâl
†,âl8

† g = 0,

fN̂l,âl8g = − dl,l8âl

fN̂l,âl8
† g = dl,l8âl

†,

fN̂l,N̂l8g = 0. s8d

HereQ is a sC-numberd parameter, assumed to be within the

interval f−1,1g, andN̂l is the number operator, which can be
expressed as

N̂l = o
s=1

`
s1 − Qds

s1 − Qsd
sal

†dssalds. s9d

It can be easily verified that, forQ=1, the normal bosonic
limit is recovered, i.e., the particles then obey the regular
bosonic commutation relations, as it would be expected.

We write the density matrix operator for ourQ-bosonic
system as
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r̂ = expF−
1

T
sĤ − mN̂dG = p

l

r̂l ,

r̂l = expF−
1

T
sĤl − mN̂ldG , s10d

where

Ĥ = o
l

Ĥl, Ĥl = ElN̂l, N̂ = o
l

N̂l , s11d

are the Hamiltonian and number operators, respectively,T is
the temperature.

The corresponding normalization is explicitly included in
the definition of the expectation value of observables as, for

instance, for an operatorÂ

kÂl =
trhr̂Âj
trhr̂j

. s12d

With the above definitions, it is easy to verify that

trsr̂ld = o
n

lknur̂lunl l =
1

1 − expF−
1

T
sEl − mdG , s13d

where

unll =
1

Îfng!
sâl

†dnu0l, fng =
1 − Qn

1 − Q
. s14d

From the above equations, we can compute the expecta-
tion values

kâl
†âll =

1

expF1

T
sEl − mdG − Q

, s15d

and

kâl
†âl

†âlâll =
1 + Q

he1/TsEl−md − Qjhe1/TsEl−md − Q2j
. s16d

Then, the singleQ-boson distribution can be written as

P1spd = kĉ†spdĉspdl = o
l

o
l8

c̃l
*spdc̃l8spdkâl

†âl8l. s17d

The expectation valuekâl
†âl8l is related to the occupation

probability of a single-particle statel ,Nl, by the following
relation

kâl
†âl8l = dl,l8Nl . s18d

For a Q-bosonic system in equilibrium at a temperatureT
and chemical potentialm, Nl is represented by the modified
Bose-Einstein distribution

Nl =
1

expF1

T
sEl − mdG − Q

. s19d

By inserting Eqs.(18) and (19) into Eq. (17), we obtain
the single-particle spectrum for oneQ-boson species as

P1spd = o
l

Nlc̃l
*spdc̃lspd. s20d

Similarly, the two-Q-boson distribution function can be
written as

P2sp1,p2d = kĉ†sp1dĉ†sp2dĉsp1dĉsp2dl

= o
l1,l2,l3,l4

c̃l1
* sp1dc̃l2

* sp2dc̃l3
sp1dc̃l4

sp2dkâl1
† âl2

† âl3
âl4

l

= o
l1,l2,l3,l4

c̃l1
* sp1dc̃l2

* sp2dc̃l3
sp1dc̃l4

sp2d

3fkâl1
† âl3

lkâl2
† âl4

ll1Þl2
+ kâl1

† âl4
lkâl2

† âl3
ll1Þl2

+ kâl1
† âl2

† âl3
âl4

ll1=l2=l3=l4
g

= P1sp1dP1sp2d + Uo
l

Nlc̃l
*sp1dc̃lsp2dU2

+ o
l

c̃l
*sp1dc̃l

*sp2dc̃lsp1dc̃lsp2d

3fkâl
†âl

†âlâll − 2kâl
†âll2g. s21d

Using Eqs.(15) and (16), we finally have

P2sp1,p2d = P1sp1dP1sp2d + Uo
l

Nlc̃l
*sp1dc̃lsp2dU2

− o
l

c̃l
*sp1dc̃l

*sp2dc̃lsp1dc̃lsp2d

3s1 − Qd ·Nl
2

expF1

T
sEl − mdG + Q

expF1

T
sEl − mdG − Q2

. s22d

The two-particle correlation can then be written as

C2sp1,p2d =
P2sp1,p2d

P1sp1dP1sp2d

= 1 +Ho
l

Nluc̃lsp1du2o
l

Nluc̃lsp2du2J−1

3 o
l,l8

NlNl8c̃l
*sp1dc̃l8

* sp2dc̃lsp2dc̃l8sp1d

351 − dl,l8s1 − Qd ·

expF1

T
sEl − mdG + Q

expF1

T
sEl − mdG − Q26 .

s23d

It is interesting to note that, forQ=1, we regain the re-
sults in Ref.[6]. Moreover, forQ=0, we also get identical
results as shown in Appendix A of Ref.[6], corresponding to
classicalBoltzmann distribution, for either single or multi-
modes. Nevertheless, the naively expected classical limit of
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C2sp1,p2d→1 is recovered for single mode only, indepen-
dently on the values ofp1 andp2.

In analogy to the common practice in bosonic interferom-
etry, it is natural to introduce the intercept parameterl by
means of the relationl=Csq=0,K d−1 i.e., as the intercept
of the two-particle correlation function from which the clas-
sical limit is subtracted(this procedure, however, hasno re-
lation to the historical interpretation ofl as a parameter
signaling either total chaoticity or partial coherence of the
emitting source).

From Eq. (23), it is straightforward to show that, when
q=p1−p2=0, and, consequently,K = 1

2sp1+p2d=p1=p2

C2sK ,K d = 2 −
1

o
l

Nluc̃lsK du2o
l

Nluc̃lsK du2

3 3s1 − Qdo
l

c̃l
*sK dc̃l

*sK dc̃lsK dc̃lsK d ·Nl
2

3

expF1

T
sEl − mdG + Q

expF1

T
sEl − mdG − Q24 . s24d

We see that, forQ=1, we regain the ideal result for the
bosonic intercept at the zero momentum difference,q=p1
−p2=0, i.e., C2sK ,K d=2. On the other hand, forQ=0 we
again recover the naively expected Boltzmann result,
C2sK ,K d=1 for single modes only, and in particular forp1

=p2=K , as discussed above. For multimodes, however, it is
not recovered, since there is some remnant communication
amongQ bosons approaching the classical limit in this case,
also verified in the result presented in the appendix men-
tioned above.

From Eq.(24) the intercept of the correlation functionl
can be immediately identified as

lsK d = C2sK ,K d − 1

= 1 −
s1 − Qd

o
l

Nluc̃lsK du2o
l

Nluc̃lsK du2

3 3o
l

c̃l
*sK dc̃l

*sK dc̃lsK dc̃lsK d ·Nl
2

31 expF1

T
sEl − mdG + Q

expF1

T
sEl − mdG − Q224 . s25d

We see that the intercept decreases with decreasingQ, being
always smaller than unity for 0øQø1. On the other hand, it
is interesting to point that the definition for the intercept

parameter given by Eq.s25d differs from the one in Refs.
f15,17g, mainly, but not only, because it is there defined
exclusively for a single mode. In that reference, comparison
is made with experimental points forl, which has always
been in the limit 0ølø1. We could proceed similarly
within our model as well, by comparing Eq.s25d to the ex-
perimental points. Nevertheless, we prefer not to do so be-
cause it is well known that other factors, such as resonances,
dynamical and multi-particle effects, as well as kinematical
cuts, could also cause the intercept to drop into that interval.

The above derivation can also be reformulated within the
Wigner function approach. For doing this, we develop the
product of four wave-functionscs* d in Eq. (23) into the prod-
uct of the corresponding Fourier transforms, leading to

c̃l
*sp1dc̃l8

* sp2dc̃lsp2dc̃l8sp1d

=E d3r1

s2pd3/2e−ip1·r 1cl
*sr 1d E d3r2

s2pd3/2e−ip2·r 2cl
*sr 2d

3E d3r28

s2pd3/2eip2·r 28cl8sr 28d E d3r18

s2pd3/2eip1·r 18cl8sr 18d

=E d3xe−iq·xE d3Dx

s2pd3e−iK ·Dxcl
*Sx +

Dx

2
DclS−

Dx

2
D

3E d3y eiq·yE d3Dy

s2pd3eiK ·Dycl8
* Sy −

Dy

2
D

3cl8Sy +
Dy

2
D , s26d

where we have definedK =sp1+p2d /2 as the two-Q-boson
average momentum, andq=p1−p2 as their relative momen-
tum. For writing the last equality, we have also changed
variables as follows:r 1−r 2=Dx; r 1+r 2=2x; r 18−r 28=Dy; r 18
+r 28=2y.

Then we can define the Wigner function associated to the
statel as

glsx,K d =E d3Dx

s2pd3e−iK ·Dxcl
*Sx +

Dx

2
DclSx −

Dx

2
D .

s27d

We can proceed analogously to define the equivalent
function for the integration iny and Dy, remembering that
glsx ,K d=gl

*sx ,K d. Then, denoting by

gsx,K d = o
l

Nl gl ,

we can finally define the generalized Wigner function of the
problem as
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gsx,K ;y,K d = gsx,K dgsy,K d

− s1 − Qdo
l 5Nl

23 expF1

T
sEl − mdG + Q

expF1

T
sEl − mdG − Q24

3glsx,K dglsy,K d6 . s28d

We see that, forQ=1, the above expression is reduced to the
usual result of the original Wigner function, i.e.,
gsx ,K ;y ,K d=gsx ,K dgsy ,K d. On the other hand, forQ=0,
Eq. s28d is identically zero for single modes only, as it would
be expected in the limit of Boltzmann statistics. Neverthe-
less, in the multimode case, as already shown in Eq.s24d,
there seems to be some sort of residual correlation among
Q-bosons even in the classical limit. Aiming at better under-
standing this limit we further explore theQ→0 case in Ap-
pendix A.

By means of this Wigner function, the two-Q-boson cor-
relation function can be rewritten as

C2sp1,p2d = 1 +
E E e−iq·sx−ydgsx,K ;y,K ddxdy

E gsx,p1ddxE gsy,p2ddy

. s29d

The above generalized Wigner functiongsx ,K d can be
interpreted as the probability of finding aQ boson at a point
x with momentumK . Differently from previous formulations
Refs. [18–20] we see that, if pions are treated asQ bosons
under certain regimes, there is now an additional term in Eq.
(28). The modified two-particle Wigner function no longer
can be reduced to the Fourier transform of the product of two
single-particle Wigner functions, but acquires an extra term
depending onQ in a nontrivial way. As a consequence, for
0øQø1, we can anticipate that the correlation function
would be narrower and the intercept parameterl would drop
below unity. We will illustrate more clearly the effects of the
deformation parameter Qon the correlation function and on
the intercept parameter in the following section, by means of
two toy models.

In summary, we could say that, maybe under certain cir-
cumstances, pions produced in heavy-ion collisions could be
treated as free particles. Nevertheless, and as motivated in
the beginning of the present section, in many others, the
interactions of pions among themselves and with other par-
ticles produced in relativistic heavy-ion collisions may not
be negligible. In these cases, similar to what has been sug-
gested in Refs.[17,15], what it is proposed here is to mimic
those interactions by considering pions asQ bosons. In par-
ticular, the interpretation ofQ as an effective parameter re-
flecting the fermionic constituents[16] of the Q bosons is
appealing. Mainly, if we consider that unconfined degrees of
freedom could be produced in high energy heavy ion colli-
sions and manifest themselves asQ bosons in the prebosonic

stages. In this sense, they would be regarded asmemory
traces from those preconfined stages, just before the boson
emission.

III. TWO- Q-BOSON CORRELATION
FROM A FINITE VOLUME

A. Toy model

To explore the effects of the deformation parameterQ and
of the boundary on the single- and two-Q-boson distribution
functions, we assume that they are confined in a one-
dimensional (1D) box, f0,Lg, for simplicity. The three-
dimensional extension should be straightforward. It can be
easily checked that the corresponding wave function in the
1D case is given by

cksxd =Î2

L
ssin kd x, s30d

with

kL = np,n = 1,2,3, . . . . s31d

Then, the corresponding Fourier transformc̃kspd can be
expressed as

c̃kspd =
1

s2pd1/2

1
Î2L

Fexpfisk − pdLg − 1

p − k

−
expf− isk + pdLg − 1

p + k
G , s32d

or equivalently, its square modulus would be written as

uc̃kspdu2 =
1

pL
3sin2sp − kdL

2

sp − kd2 +

sin2sp + kdL
2

sp + kd2

+

2 sinS sk − pdL
2

D2 sinS sk − pdL
2

D
sp − kdsp + kd

cosskLd4 .

s33d

On the other hand, if we recall the definition of the
d-function

dsxd = lim
L→`

1

p

sinsxLd
x

, s34d

it is easily verified that, whenL→`, we have

P1spd =
L

2p
Np =

L

2p

1

expSEp − m

T
D − Q

. s35d

That is, in the limit of an infinite 1D box, we obtain a
modified Bose-Einstein distribution, where the deformation
parameterQ replaces the unity factor, characteristic of Bose-
Einstein statistics. In the finite box case, however, the spec-
trum should change more drastically, due to quantum effects,
which we already showed in Ref.[6]. Moreover, in the
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present case, we have both the finite size and the deformation
parameter effects combined. To illustrate this, we show in
Fig. 1, the single spectrum distribution for two different box
sizes. In that plot, as in all the others that follow, we have
chosen a null chemical potential, i.e.,m=0, for simplicity.
For comparison, the Bose-Einstein spectrum distribution, as
well as the corresponding modified form given by Eq.(35),
are also shown. It is interesting to note that for finite systems
and decreasing values of theQ parameter, the width of single
Q-boson distribution becomes broader, causing the maxi-
mum of the distribution to drop and the tail to rise, due to the
conservation of the number of particles. The drop of the
maximum for the same value of the momentum but for a
smaller value ofQ would correspond to aweaker bosonic
behavior of the particles when compared to theQ→1 limit,
leading to a lower occupancy for small values of the mo-
menta. The effect is more pronounced for increasing size of
the emission region. On the other hand, decreasing the values
of the deformation parameterQ has a similar effect as to
decreasing the source emission size(see Ref.[6]), which is
consistent with the uncertainty principle since, as the volume
of the system decreases, the uncertainty in the pion coordi-
nate decreases accordingly, causing larger fluctuations in the
pion momentum distribution, which then becomes broader.

It is interesting to check how our result would compare
with the interpretation given in Ref.[16], for which Q could
be viewed as an effective parameter reflecting the internal
degrees of freedom of the bosons. In that reference, the de-
formation parameterQ is related to the ratio of the bosonic
volume sL3d to the system volumesVd by Q2<1−L3/V,
whereL is the boson’s rms radius. The ratio is then corre-
lated to the degree ofbosonic overlap. Although we do not
consider here the bosons as extended objects, we still could
try and see if that picture is compatible with our study. Let us

first consider that the bosons have a fixed size. We then com-
pare the above relation for two values of the system volume
(whereV2.V1), associating a value ofQ to each case. It is
very simple to see thatQ2=Î1−sV1/V2ds1−Q1

2d, i.e., an in-
crease in the volume would result in a bigger deformation
parameter, reflecting a smaller overlapping of the bosons and
their constituents. In other words, for a fixed bosonic size
and if we enlarge the volume that contains the bosons, the
resolution decreases, implying thatQ increases, i.e., gets
closer to the boson statistics case for whichQ=1. Let us take
another approach, by consideringQ fixed and studying what
happens for increasing volumes. In this case, a system ofQ
bosons in a volumeV1 would be associated to aL1

3/V1 and
another one, in similar conditions but with a volumeV2.V1,
would haveL2

3/V2. In order to keepQ the same, the ratio has
to be kept the same, which means thatL2.L1. This could be
interpreted as if we had higher resolution of the internal de-
grees of freedom in the second case(i.e., the boson with
bigger L would have the effect of its internal constituents
more sharply probed). Consequently, for the same value of
Q, we would expect that the larger the system is, more sen-
sitive it would be to fixed value ofQ. This is precisely what
we can see in Fig. 1, since the effect is more pronounced for
L=8 fm than it is forL=4 fm.

We have seen that the deformation parameter has a sig-
nificant effect on the spectrum of the bosons. We discuss
next what this implies to the interferometry of two identical
Q-bosons. In Fig. 2, the correlation functions for two values
of the mean momentumK are shown for different deformed
parameterQ as a function of the pair relative momentum,uqu.
For Q=1, as already shown in Ref.[6], we see that, as the
mean momentum increases, the source radius increases ac-
cordingly, due to the fact that contributions from small mo-
menta come from smaller quantum statesl which, in turn,
corresponds to larger spread in coordinate space. Similar be-
havior in the radius is seen asQ decreases below unity.

FIG. 1. (Color online) The normalized spectrum(in arbitrary
units) vs momentumupu (in GeV/c) is shown. The input tempera-
ture is T=0.14 GeV and the chemical potential ism=0. The solid
line corresponds to the modified Bose-Einstein distribution, i.e., to
the limit R→`. The dotted and dashed lines correspond, respec-
tively, to L=8 fm andL=4 fm. The thicker lines refer toQ=1.0 and
the thinner ones toQ=0.5.

FIG. 2. (Color online) Two-pion correlation vs momentum dif-
ferenceuqu (in GeV/c). The input temperature isT=0.14 GeV and
the chemical potential ism=0. The solid line corresponds to mean
momentumK=0.3 GeV/c and dashed one toK=0.5 GeV/c. The
thicker lines refer to the case ofQ=1.0 and the thinner one toQ
=0.5. The box size isL=4 fm.
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Another interesting point concerns the way the parameter
Q changes the intercept parameterl of the two-Q-boson
correlation function. The effects onl are more pronounced
as smaller values ofK are considered, which is natural, as for
large values of the average momentum, the quantum effects
become less relevant. From Eq.(25), we can see that, for
increasingK, the dominant factors come from the largerl
states which, on the other hand, give smaller contribution to
the two-Q-boson correlation, due to the factorNl, which
decreases for increasingK, as can be seen from Eq.(9).
Consequently, this makes the intercept parameter to vary
more slowly for increasing values ofK. This is illustrated in
Fig. 3, wherel is shown as a function ofQ for different
values of the mean momentum and for different source radii.
Again, we note that as the source radius becomes bigger, the
Q effects on the intercept parameter become less significant,
since in this case the quantum effects are smaller. In the plot,
we only show the variation ofl for Q in the intervalf0,1g,
corresponding tolø1. Of course, ifQ is larger than one, as
one could expect from Eq.(25), the value ofl could be
bigger than one. Also if the value ofQ is negative,l could
be less than zero. However, we are treating here bosons with
a modified commutation relation. Since such unexpected be-
havior for the intercept parameter was never observed ex-
perimentally, for any type of bosons, we do not consider this
case here. In other words, our analysis refers basically to the
interval, 0øQø1. Nevertheless, we should keep in mind
that the intercept parameter of the two identically charged
Q-bosons could be bigger than one or less than zero, for
some specific values ofQ.

Although shown in Fig. 3, the limitQ→0 deserves a
closer analysis. As we briefly discussed in Sec. II, the naive
classical limit C2sp1,p2d→1 is recovered only for single
modes. The multimode case is analyzed in detail in Appendix
A but we summarize the main results here. We start with the

limit Q→0, for which the first of the commutation relations
for equal modes in Eq.(8) is reduced toaa+=1. Neverthe-
less, we demonstrate in Appendix A that it is not only the
commutation relations that matter when discussing the be-
havior of the intercept parameter,l. The density matrix
seems to play an essential role, at least for the type of
Q-boson we analyze here. In this case, with the density as
defined in Eq.(11), we getl→0 for very small system sizes
(andQ=0), recovering what would be naively expected for
classical particles. In the opposite limit, i.e., for very large
systems, we get a constantNk, resulting inl→1/3.

The above limits could suggest that we get different re-
sults depending on the wave function and boundary condi-
tions, reflecting the dependence on the dimensions of the
system and, consequently, onEK, since the particularrk we
chose contains an explicit dependence on the energy of the
state. However, we also demonstrate in Appendix A that, if
we had chosen a different density matrix than the one in Eq.
(11), for instance,rk=const, the wave function would not
play any role, since we haveNk=const, and there is no en-
ergy dependence in this case. As a result, we getl→1/3,
independently on the system size andEK. Although we do
not show in Fig. 3 the limitlsK=0d, we can still check the
consistency of the results plotted there with the analysis we
have just made. For that, we should look into the smallest
value of momentum shown in that plot, i.e.,K=0.3 GeV/c.
Then, according to our analysis in Appendix A, the value of
the intercept parameter for small systems would tend to ap-
proach the limitl→0, whereas for large ones, it should ap-
proachl→1/3. Adapted to our plot, this would mean that
lsL=4 fmd,lsL=8 fmd for Q=0 andK=0.3 GeV/c, which
is precisely what is seen in Fig. 3. We can also verify that
this result is more general, since the same feature is again
reproduced in Fig. 6, as we shall see in the following section.

Furthermore, if we return to the expression of the gener-
alized Wigner function, Eq.(28), we see that the usual
Wigner function is recovered(last term vanishes) for Q=0
but, again, for single modes only. For multimodes, however,
the Wigner function is modified, even forQ=0. This result
seems to indicate the existence of some kind ofresidual
correlationsamong the particles in the system, i.e., an extra
communication among the particles of different states, beside
the commutation relation defined among particles in the
same state.

Along the lines discussed above, only recently we became
aware of a Monte Carlo event generator by Wilket al. (Ref.
[21]), which makes an attempt to improve Bose-Einstein cor-
relations in numerical modeling. It would be very interesting
to run their simulation and check for consistency with our
numerical calculation of the correlation function,C2sp1,p2d
and of the intercept parameterlsKd mainly regarding the
multiparticle effects.

B. Q-bosons are confined inside a sphere

In this section, we consider that the pions produced in
high energy heavy-ion collisions, treated here as the hypo-
thetical Q-bosons, could be bounded in a sphere up to the
time immediately preceding the freeze-out of the system.

FIG. 3. (Color online) The intercept parameter,l, is shown vs
Q, the deformation parameter. The input temperature isT
=0.14 GeV and the chemical potential ism=0. The solid line cor-
responds to mean momentumK=0.3 GeV/c and dashed one to the
caseK=0.5 GeV/c. The thicker lines refer to the caseL=4 fm and
the thinner ones toL=8 fm.
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This is conceived in such a way that their distribution func-
tions are essentially the ones they had while confined. Analo-
gously to the procedure developed in Ref.[6], the pion wave
function in this case should be determined by the solution of
the Klein-Gordon equation, i.e.,

fD + k2gcsr d = 0, s36d

wherek2=E2−m2 is the momentum of the pion. On writing
the above equation, we have assumed confinement, i.e., the
potential felt by the pion inside the sphere is zero, while
outside it is infinite. The boundary condition to be respected
by the solution is

ucsr dur=R = 0, s37d

whereR is the radius of the sphere at freeze-out time.
The normalized wave function corresponding to the solu-

tion of the above equation can easily be written as

cklmsr d =
1

RJl+s3/2dskRd
Î2

r
Ylmsu,fdJl+s1/2dskrd sr , Rd,

= 0 sr ù Rd. s38d

The momentum of the bounded particlek can be deter-
mined as the solution of the equation

Jl+s1/2dskRd = 0. s39d

Inserting Eq.(38) into Eq.(7), we can determine the Fou-
rier transform of the confined solution of a pion inside the
sphere, as a function of the momentump, as[6]

c̃klmspd =Î2

p
ilYlmsp̂dF − k

p2 − k2GJl+s1/2dspRd. s40d

In terms of Eqs.(19) and(20), the single-inclusive distri-
bution function can be written as

P1spd = o
klm

Nklmc̃klm
* spdc̃klmspd

= o
k,l

1

expSEkl − m

T
D − Q

S2l + 1

2pp
DSkJl+s1/2dspRd

p2 − k2 D2

.

s41d

In the limit R→`, the single-particle spectrum, can then
be written as

P1spd =
1

expSEp − m

T
D − Q

F V

s2pd3G , s42d

where V=s4p /3dR3 is the volume of the sphere. We see
from Eq. s42d that the modified Bose-Einstein distribution is
recovered in the limit of very large volumes.

In Fig. 4, the normalized single-particle distribution is
plotted as a function ofupu. We clearly see that, due to the
boundary effects, the maximum value ofupu in the spectrum
decreases for decreasing volumes, being always smaller than
the case corresponding to theR→` limit. On the other hand,

this is similar to the result obtained with the previous ex-
ample of the 1D box, and the confinement does not seem to
cause a significant effect on the spectrum.

We can write the expectation value of the product of two
Q-boson creation operators in momentum space as before,
resulting in

kĉ†sp1dĉsp2dl = o
klm

c̃klm
* sp1dc̃klmsp2d

expSEkl − m

T
D − Q

= o
klm

1

expSEkl − m

T
D − Q

Î 2

p1
s− idlYlm

* sp̂1d

3F − k

p1
2 − k2GJl+s1/2dsp1RdÎ 2

p2
sidlYlm

* sp̂2d

3F − k

p2
2 − k2GJl+s1/2dsp2Rd

= o
kl

1

expSEkl − m

T
D − Q

Î 4

p1p2

3
k2

sp1
2 − k2dsp2

2 − k2d
Jl+s1/2dsp1Rd

3 Jl+s1/2dsp2RdS2l + 1

4p
DPlsp̂1 · p̂2d. s43d

The two-pion interferometry correlation function can then
be estimated by inserting the expressions(41) and(43), into
Eq. (23). We see from the above results that, in general, this
function depends on the angle betweenp1 andp2, similarly

FIG. 4. (Color online) The normalized spectrum(in arbitrary
units) vs momentumupu (in GeV/c) is shown. The input tempera-
ture is T=0.12 GeV and the chemical potential ism=0. The solid
line corresponds to the caseR=3 fm, the dotted one to the caseR
=6 fm, and the dashed line corresponds to the case,R=`. The
thicker lines refer toQ=1.0 and the thinner ones toQ=0.5.
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to what was discussed in Ref.[6]. For the sake of simplicity,
however, we will also consider herep1 parallel top2, imply-
ing that Plsp̂1·p̂2= ±1d=s±1dl. The results for two-pion in-
terferometry corresponding to two different values of the pair
average momentumK =sp1+p2d /2, but fixed temperature,
are shown in Fig. 5. ForQ=1 we can see that, as the pair
average momentumK increases, the apparent source radius
becomes bigger, which reproduces the result obtained in Ref.
[6]. However, consideringK=0.3 GeV/c, if we compare the
cases corresponding toQ=1 andQ=0.5, respectively, we see
that the resulting correlation function becomes narrower and
the intercept parameterl drops below its previous unit value.
On the other hand, if we now keep this value ofQ=0.5 but
considerK=0.5 GeV/c, the width is even narrower, but the
intercept is higher than that corresponding toK
=0.3 GeV/c, although it still is below one. This due to the
fact that for smaller momentum pairs, the quantum effects
are stronger, as in the previous toy model studied in Fig. 2.
The effect comes from the contribution of the third term in
two-Q-boson interferometry formula, in Eq.(23). We could
understand these results by noting that pions with larger mo-
mentum come from larger quantuml states which, in turn,
correspond to a smaller spread in coordinate space. Due to
the weight factor in Eq.(23), of modified Bose-Einstein
form, larger quantum states will give a smaller contribution
to the source distribution, causing the effective source radius
to appear larger. On the other hand, this behavior is interest-
ing if we compare to results corresponding to expanding sys-
tems. In this last case, the probed part of the system de-
creases with increasing average momentum[22,23].
Naturally, our present approach does not consider the effects
of expansion and the enlargement of the system’s apparent
dimensions with increasingK, seen in Figure 5, has its origin
in the strong sensitivity to the dynamical matrix. In Ref.[24],
the combined effects of a finite boundary and an expanding

system were considered together. What they observed was an
opposite effect, i.e., the effective source radius extracted
from two-pion interferometry would decrease asK increases.
However, for small values of the momentumK, it seems that
the boundary effects are dominant over the expansion effects.

In Fig. 6, we plot the intercept parameterl vs Q for
different values of momenta and source radii. We see that the
similarity to the results in Fig. 3 is evident:l becomes bigger
as either the total momentum of the pairK or the source radii
R increases, reaching values significantly below one for suf-
ficiently small values of either one of those variables. This is
expected, since the quantum effects are more prominent for
smaller momenta. Again, the comments relating these results
to the speculation in Ref.[16] apply here, as in the previous
example.

In summary, by comparing the interferometric results cor-
responding to the two toy models, we see that a general
behavior is roughly reproduced in both cases. First, Figs. 1
and 4 show that the results for the normalized spectra are
very similar, the maximum of the curves dropping with de-
creasing values ofQ, followed by the rise of the respective
tails, this being related to the conservation of the number of
particles. Second, the width of the correlation functions, as
seen in Figs. 2 and 5, seems to decrease for increasing values
of Q. Besides, we see from Figs. 3 and 6 that theQ-boson
effects cause the intercept parameterl to drop below unity.
This clearly demonstrates that treating pions asQ boson in-
deed alter the two-pion interferometry. Besides, we saw in
our examples that it also modifies and generalizes the form
of two particles Wigner function. Nevertheless, we also saw
that the effects for the bounded case are less pronounced as
compared to the unbounded one, at least for the set of pa-
rameters adopted in the calculation.

FIG. 5. (Color online) Two-pion correlation vs momentum dif-
ference uqu (in GeV/c) is shown. The input temperature isT
=0.12 GeV and the chemical potential ism=0. The solid line cor-
responds to mean momentumK=0.3 GeV/c and the dashed one, to
the caseK=0.5 GeV/c. The thicker lines refer to the case ofQ
=1.0 and the thinner ones toQ=0.5. The sphere size isR=3 fm.

FIG. 6. (Color online) The intercept parameter,l, is shown vs
the deformationQ. The input temperature isT=0.12 GeV and the
chemical potential ism=0. The solid line corresponds to mean mo-
mentumK=0.3 GeV/c and dashed one to the caseK=0.5 GeV/c.
The thicker lines refer to the caseR=3 fm and the thinner ones to
R=6 fm.
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IV. CONCLUSIONS

In this paper, we derive spectrum and correlation function
relations by adopting the density matrix given in Eq.(10),
suitable for describing chargedQ bosons. The finite volume
effects on theQ-boson spectrum were then studied in Figs. 1
and 4, for two specific examples, leading to similar results as
in Refs.[6,8,10,11], for Q=1. We find that the small momen-
tum region is depleted for the modified Bose-Einstein distri-
bution with respect to case whenQ→1. The effects on two
equally chargedQ-boson correlation function were also ana-
lyzed here. The results in Figs. 2 and 5 show that the corre-
lation function shrinks for increasing average pair momen-
tum, corresponding to an increase of its inverse width[6].
We also observe that its intercept drops for decreasingQ. In
other words, it was shown in Figs. 3 and 6 that the intercept
parameterl decreases for increasingQ, for the same values
of the average transverse momentum and source radius. On
the other handl becomes larger when either the mean mo-
mentum of two-Q-boson or the source radius increases. This
result reflects a strong sensitivity to the dynamical matrix,
through the modified Bose-Einstein weight factor. ForQ=1,
previous pion interferometry results are regained, as well as
the Boltzmann-type distribution forQ=0, as can be verified
in Ref. [6].

We have also derived a generalized version of the two-
boson Wigner function, allowing to treat the case of twoQ
bosons. This result is particularly important because it shows
that, in more general situations, the Wigner function is dis-
torted with respect to its decoupled form, i.e.,gsx ,K ;y ,K d
=gsx ,K dgsy ,K d. The extra terms it acquires, as shown in
Eq. (28) [see also Eq.(B7) in Appendix B], reflect nontrivial
interactions among theQ bosons. This generalization, how-
ever, is reduced to its well-known form in the limitQ→1, as
it should.

We also analyzed in the current work how our results
compare with the interpretation given in Ref.[16], for which
Q could be viewed as an effective parameter reflecting the
internal degrees of freedom of the bosons. If we consider a
fixed value for the deformation parameterQ and compare
results for increasing volumes, our result would be compat-
ible with that interpretation. To summarize the comparison
we could say that, for increasing volumes and keeping the
same value ofQ, we would have to increase theresolution,
i.e., the sensitivity of the probe to the internal degrees of
freedom of the boson. Consequently, for the same value of
Q, we would expect that the larger the system is, more sen-
sitive it would be to this parameter. This is precisely what we
can see in Fig. 1, since the effect is more pronounced forL
=8 fm than it is forL=4 fm.

The derivation analyzed here has several common fea-
tures with the one in Refs.[15,17] but here we adopt an
entirely different approach, focusing on what seems to us the
most important part of an interferometric analysis, i.e., the
correlation functions themselves. We also analyze the effects
on the spectra and on the intercept parameterl but, again,
our result is more general than in that reference, since it is
there restricted to single modes.

Another remark concerns the relation of the parameterl
and its possible interpretation as a partial coherence of the

emitting source for values below unity, as commonly found
in the literature on boson interferometry. It is well known
that many effects, such as resonances, dynamical and multi-
particle effects, as well as kinematical cuts, could also con-
tribute to yield values of so-called chaoticity or coherence
parameter below unity, although those effects have no rela-
tion to partial coherence of the source. Similarly, the behav-
ior we discussed of the intercept parameterl, when consid-
ering decreasing values of the deformationQ, are not related
to the way the source emit those bosons. The effects dis-
cussed here are meant to show that they also could cause a
deviation from the idealized picture. Moreover, for keeping
the analysis simple, we are not taking all the above effects
into account in our study. For this reason, we preferred to not
compare our results with experimental data, and thus did not
introduce any quantitative analysis of this picture.

Also, for completeness, we derive in Appendix B, the
equations associated to the so-called type-B Q-boson inter-
ferometry[15,17], corresponding to slightly different com-
mutation relations. The derived relations for the single- and
two-particle distributions are in Eq.(B5), and Eq.(B6), re-
spectively. Also for this case, we propose a generalized form
for the Wigner function, as can be seen in Eq.(B7).
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APPENDIX A
We here analyze theQ=0 limit in more detail. We can see

its implications on the expectation values, directly from Eqs.
(15) and(16), on the correlation function, from Eq.(23), and
on the intercept parameter,l, from Eq. (25), by simply im-
posing the limitQ=0. Alternatively, we can start with our
definitions in Eq.(8), and thus simultaneously test our re-
sults. Lets also go back to the definition in Eq.(14). For Q
=0 we see that

fng = H1 → n Þ 0

0 → n = 0.
sA1d

Thus,fng ! =1 in both the above cases. Consequently, instead
of Eq. s14d, we have

unll = sal
†dnu0l. sA2d
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If we apply to the above equation the annihilation and
creation operators, we have

alunll = alsal
†dnu0l = un − 1l, al

†unll = un + 1l, sA3d

which follow from the first commutation relations in Eq.s8d
and from the conditionalu0l=0. The other commutation re-
lations remain unchanged in this limit.

Let us now estimate the trace of the density matrix, trsrld.
From Eqs.(10) and (11), we have

trsrld = o
n

lknurlunl l = o
n=0

`

o
m=0

` F−
1

T
sEl − mdnGm 1

m!

= o
n=0

`

e−s1/TdsEl−mdn =
1

1 − expF−
1

T
sEl − mdG . sA4d

For estimating the limits of Eqs.(15) and (16) for Q→0
along the lines above, we have to estimate the traces
trsal

†alrld and trsal
†al

†alalrld, as follows

trsal
†alrld = o

n
lknual

†alrlunl l

= o
n=0

`

o
m=0

`

lknual
†alF−

sEl − md

T
Gm Nl

m!
unl l

= o
n=1

o
m
F−

1

T
sEl − mdnGm 1

m!
lkn − 1un − 1l l

= o
n=0

e−s1/TdsEl−mdn − 1 =
e−s1/TdsEl−md

1 − expF−
1

T
sEl − mdG .

sA5d

trsal
†al

†alalrld = o
n

lknual
†al

†alalrlunl l

= o
n=0

`

o
m=0

`

lknual
†al

†alalF−
1

T
sEl − mdGm Nl

m!
unl l

= o
n=1

`

o
m=0

` F−
1

T
sEl − mdnGm 1

m!

3 lkn − 1ual
†alun − 1l l

= o
n=2

`

o
m=0

` F−
1

T
sEl − mdnGm 1

m! lkn − 2un − 2l l

= o
n=0

`

e−s1/TdsEl−mdn − e−s1/TdsEl−md − 1

=
e−s2/TdsEl−md

1 − e−s1/TdsEl−md . sA6d

From the above results and our definition in Eq.(12), it
follows immediately that

kal
†all = e−s1/TdsEl−md = Nl , sA7d

and

kal
†al

†alall = e−s2/TdsEl−md. sA8d

It is then straightforward to conclude that both results
coincide with the ones in Eqs.(15) and(16), reinforcing the
correctness of our results.

The purpose of the above derivation goes beyond what we
have just discussed, it is also helpful for discussing more
deeply the peculiar limit ofQ→0. As we have already
pointed out in the body of the manuscript, we recover the
expected classical result in that limit for single modes only.
In other words, only forsingle modeswe have, forq=p1
−p2=0 (and, consequently,K=p1=p2)

lim
Q→0

C2sK,Kd = 2, lim
Q→0

lsKd = 0.

In this case, we also recover the well known form of the
Wigner function, i.e.,

lim
Q→0

glsx,K d = gsx,K dgsy,K d.

Nevertheless, when multimodes are taken into account,
the behavior of the above quantities change considerably. For
better illustrating this fact, it is convenient to adopt a specific
example. Let us choose our toy model in Sec. III A, for sim-
plicity, restricting ourselves to theQ=0 case. In general,l
=lsq=p1−p2=0d=lsK=p1=p2d but, for simplifying our
analytical study, we restrict our analysis tolsK=0d. In this
case, we see that the square modulus of the wave function in
momentum space can be written as

uc̃ks0du2 =
2 sin2skL/2d

pLk2 f1 − cosskLdg, sA9d

kL = npsn = 1,2, . . .d,

from this we see that only odd values ofn, i.e.,n=2m−1 can
contribute, resulting in

uc̃ks0du2 = 5 4L

s2m− 1d2p3 sm= 1,2, . . .d

0 sn evend.

sA10d

Then, for writing the chaoticity parameter in the limit of
Q=0 for the toy model, we rewrite Eq.(25) for this particu-
lar case, as

lsK d = 1 −

o
l

Nl
2uc̃lsK du4

So
l

Nluc̃lsK du2DSo
l

Nluc̃lsK du2D . sA11d

We have then to estimate the sums separately, as follows

o
l

Nluc̃lsK du2 = o
l

e−sEl/Tduc̃lsK du2. sA12d
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o
l

Nl
2uc̃lsK du4 = o

l

e−s2El/Tduc̃lsK du4. sA13d

For estimating the above sums, it is more convenient to
consider appropriate limits for the size of the 1D box. Let us
first assume the limit of very small sizes, i.e.,L→0. In this
case,El <np /L, we denote as

Hx = e−sEl/Td ! 1sn = 1d
E2m−1 = s2m− 1dp/L = s2m− 1dE1

J ⇒ N2m−1 = x2m−1.

sA14d

Consequently, the sums forK =0 can be written as

o
m

Nmuc̃ms0du2 = o
m

x2m−14L

p3

1

s2m− 1d2 =
4L

p3o
m

x2m−1

s2m− 1d2 .

sA15d

o
m

N2m−1
2 uc̃2m−1s0du4 = o

m

x2s2m−1d 16L2

s2m− 1d4p6

=
16L2

p6 o
m

x2s2m−1d

s2m− 1d4 . sA16d

If we then bring Eqs.(A15) and(A16) into Eq.(A11), we
get

lim
L→0sx→0d

lsK = 0d

= 1 −

o
m

x2s2m−1d

s2m− 1d4

Ho
m

x2m−1

s2m− 1d2J2

= 1 − lim
L→0sx→0d

x2S1 +
x4

34
+

x8

54
+

x12

74
+ ¯ D

x2S1 + 2
x2

32
+

x4

34
+ 2

x4

52
+ ¯ D

= 1 − 1 = 0, sA17d

and thus, the expected limit forclassicalparticles is recov-
ered forQ=0, whenL→0.

In the opposite limit ofL→`, however, we can see that
k=s2m−1dp /L→0, which implies thatEk→mp. Conse-
quently,Nk→N0=const. In this case

lim
L→0sx→0d

lsK = 0d = 1 −

o
m

N0
216L2

p6s2m− 1d4

Ho
m

N04L

p3s2m− 1d2J2
= 1 −

p4

96

Hp2

8
J2

= 1 −
2

3
=

1

3
. sA18d

From the result in Eq.(A17) we see that, for the particular
density matrix we chose in Eq.(11), the intercept parameter,
lsK =0d, can still have the expected value for bosonic inter-
ferometry in the classical limit, i.e.,lsK =0d=0, even for
multimodes, due to the combined effects of the density of

statesNk and of the wave functions,c̃lsK =0d. However, in
the second case, we see from Eq.(A18), that limL→`lsK
=0d=1/3. This is reflecting the relation betweenL and k
coming from the shape of the wave function and boundary
conditions in a finite system, as in Eq.(A9). Moreover, the
difference among the two limits reflects the particular choice
of the density matrix. In order to demonstrate this, we choose
a much simpler example than in Eq.(11). For instance, let us
chooserk=const, and proceed analogously as before. In this
case, instead of Eqs.(A7) and (A8), we would have

kal
†all = 1 =Nl, kal

†al
†alall = 1. sA19d

As a consequence, we get for the sums in Eqs.sA12d, sA13d,
and sA18d

5o
l

uc̃ls0du2 =
4L

p3

o
l

uc̃ls0du4 =
16L2

p6
6⇒ lsK = 0d

=1 −

16N0
2L2p4

96p6

H4N0Lp2

8p3
J2

= 1 −
2

3
=

1

3
.

sA20d

From what we just saw above, we could say that, if we
choose a different type of density matrix, i.e.,rk=const, for
instance, the wave function does not seem to play any role,
since we getNk=const. Consequently, for this much simpler
density matrix, we see that we getl→1/3, independently on
the energy of the statesEk and on the size of the 1D box,L.

APPENDIX B
For completeness, we will also derive below the so-called

type-B Q-boson interferometry formulation, as defined in
Ref. [17]. For type-B Q boson, the operatorsbi andbj satisfy
the following commutation relations

blbl8
† − Qdl,l8bl8

† bl = dl,l8Q
−Nl ,

blbl8
† − Q−dl,l8bl8

† bl = dl,l8Q
Nl ,

fbl,bl8g = fbl
†,bl8

† g = 0,

fN̂l,bl8g = − dl,l8bl ,

fN̂l,bl8
† g = dl,l8bl

†,
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fN̂l,N̂l8g = 0. sB1d

In the above relationsQ is a parameter, which can be
assumed withinf−1,1g. If we define it, following Ref.[17],
as Q=eius0øu,2pd or, equivalently, cossud= 1

2sQ+Q−1d,
then

kbl
†bll =

expF1

T
sEl − mdG − 1.

expF2

T
sEl − mdG − 2 cossudexpF1

T
sEl − mdG + 1

=

expF− 1

2T
sEl − mdGsinhF 1

2T
sEl − mdG

coshF1

T
sEl − mdG − cossud

sB2d

and

kbl
†bl

†blbll

=
2 cossud

expF2

T
sEl − mdG − 2 coss2udexpF1

T
sEl − mdG + 1

=

cossudexpF− 1

T
sEl − mdG

coshF1

T
sEl − mdG − coss2ud

. sB3d

As before, the expectation valuekb̂l
†b̂l8l is related to the

occupation probability of the single-particle statelNl
sbd, by a

similar relation, i.e.,

kb̂l
†b̂l8l = dl,l8Nl

sbd. sB4d

Then similar to the derivation of Eqs.(16) and (20), we
have

P1spd = o
l

kbl
†bllc̃l

*spdc̃lspd sB5d

and

P2sp1,p2d = P1sp1dP1sp2d + Uo
l

c̃l
*sp1dc̃lsp2dU2

+ o
l

c̃l
*sp1dc̃l

*sp2dc̃lsp1dc̃lsp2dfkbl
†bl

†blbll − 2kbl
†bllg

= P1sp1dP1sp2d + o
l,l8

NlNl8c̃l
*sp1dc̃l8

* sp2dc̃lsp2dc̃l8sp1d

351 − dl,l8s1 − cosud34 cosh2SEl − m

2T
D +

cosuscosu − 1d

sinh2SEl − m

2T
D

coshSEl − m

T
D − coss2ud 46 . sB6d

Analogously to what was done at the end of Sec. II, we can also define a modified Wigner function for type-B Q boson. The
new Wigner function for this case can be defined similarly as before, resulting in

gsbdsx,K ;y,K d = gsbdsx,K dgsbdsy,K d − o
l 5sNl

sbdd2s1 − cosud34 cosh2SEl − m

2T
D +

cosuscosu − 1d

sinh2SEl − m

2T
D

coshSEl − m

T
D − coss2ud 46 . sB7d

Then the two-pion interferometry formula follows analogously to Eq.(29) for this case, i.e.,

C2
sbdsp1,p2d = 1 +

E E e−iq·sx−ydgsbdsx,K ;y,K ddxdy

E gsbdsx,p1ddxE gsbdsy,p2ddy

. sB8d

Q-BOSON INTERFEROMETRY AND GENERALIZED… PHYSICAL REVIEW C 69, 024907(2004)

024907-13



[1] See for example: C. Y. Wong,Introduction to High Energy
Heavy-Ion Collisions (World Scientific, Singapore, 1994);
Quark-Gluon-Plasma 2, edited by R. C. Hwa(World Scien-
tific, Singapore, 1995).

[2] Proceedings of Quark Matter 2001, SUNY, New York, 2001,
edited by T. J. Hallman, D. E. Kharzeev, J. T. Mitchell, and T.
Ullrich [Nucl. Phys.A698, 3c (2002)]; Proceedings of Quark
Matter 2002, Nantes, France, 2002, edited by H. Gutbrod, J.
Aichelin, and K. Werner[Nucl. Phys.A715, 3c (2003)].

[3] R. Hanbury-Brown and R. Q. Twiss, Philos. Mag.45, 663
(1954); Nature(London) 177, 27 (1956); 178, 1447(1956).

[4] G. Goldhaber, S. Goldhaber, W. Lee, and A. Pais, Phys. Rev.
120, 300 (1960).

[5] For a long list of references on interferometry, see,Proceed-
ings of the NATO Advanced Study Institute on Particle Produc-
tion in Highly Excited Matter, edited by H. Gutbrod and J.
Rafelski(Plenum, New York, 1992), p. 435; D. H. Boal, C. K.
Gelbke, and B. K. Jennings, Rev. Mod. Phys.62, 553 (1990);
R. M. Weiner, Bose-Einstein Correlation in Particle and
Nuclear Physics(Wiley, New York, 1997); U. Heinz and B. V.
Jacak, Annu. Rev. Nucl. Part. Sci.49, 529 (1999).

[6] Q. H. Zhang and Sandra S. Padula, Phys. Rev. C62, 024902
(2000).

[7] E. V. Shuryak, Phys. Rev. D42, 1764(1990).
[8] C. Y. Wong, Phys. Rev. C48, 902 (1993).
[9] Yu. Sinyukov, Nucl. Phys.A566, 589c(1994).

[10] M. G.-H. Mostafa and C. Y. Wong, Phys. Rev. C51, 2135

(1995).
[11] A. Ayala and A. Smerzi, Phys. Lett. B405, 20 (1997); A.

Ayala, J. Barreiro, and L. M. Montaño, Phys. Rev. C60,
014904(1999).

[12] S. Sarkar, P. K. Roy, D. K. Srivastava, and B. Sinha, J. Phys. G
22, 951 (1996).

[13] 64, 705 (1990); O. W. Greenberg, Phys. Rev. D43, 4111
(1991).

[14] D. D. Coon, S. Yu, and M. Baker, Phys. Rev. D5, 1429
(1972); P. Kulish and E. Damaskinsky, J. Phys. A23, L415
(1990); S. Chaturvedi, A. K. Kapoor, R. Sandhya, V. Srini-
vasan, and R. Simon, Phys. Rev. A43, 4555(1991).

[15] D. V. Anchishkin, A. M. Gavrilik, and S. Y. Panitkin, hep-ph/
0112262.

[16] S. S. Avancini and G. Krein, J. Phys. A28, 685 (1995).
[17] D. V. Anchishkin, A. M. Gavrilik, and N. Z. Iorgov, Eur. Phys.

J. A 7 229 (2000); Mod. Phys. Lett. A15 1637 (2000).
[18] S. Pratt, Phys. Rev. Lett.53, 1219(1984).
[19] S. S. Padula, M. Gyulassy, and S. Gavin, Nucl. Phys.B329,

357 (1990).
[20] W. Q. Chao, C. S. Gao, and Q. H. Zhang, Phys. Rev. C49,

3224 (1994).
[21] O. V. Utyuzh, G. Wilk, M. Rybczyński, and Z. Wlodarczyk,

hep-ph/0210328.
[22] Urs Wiedemann and U. Heinz, Phys. Rep.318, 145 (1999).
[23] T. Csorgo, Heavy Ion Phys.15, 1 (2002).
[24] A. Ayala and A. Sanchez, Phys. Rev. C63, 064901(2001).

Q. H. ZHANG AND SANDRA S. PADULA PHYSICAL REVIEW C69, 024907(2004)

024907-14


