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Bose-Einstein correlations of two identically charg@dbosons are derived considering these patrticles to be
confined in finite volumes. Boundary effects on sin@éoson spectrum are also studied. We illustrate the
effects on the spectrum and on the t®@eboson correlation function by means of two toy models. We also
derive a generalized expression for the Wigner function depending on the deformation pa@nvetéch is
reduced to its original functional form in the limit @— 1.
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[. INTRODUCTION widely studied in statistical physid44] and also in heavy-
ion collisions[15]. Particularly interesting is the approach in
Two-boson interferometry has for a long time been linkedRef. [16], where it was shown that the composite nature of
to high energy heavy-ion collisions as one of the tools tothe particlegpseudoscalar mesongnder study could result
probe the existence of a new phase of matter of stronglynto Q-deformed structures linked to the deformation param-
interaction particles, the quark-gluon plasg@GP), at high  eterQ. In that reference this parameter is then interpreted as
temperature and high baryon dendily2]. The hope of dis- a measure of effects coming from the internal degrees of
covering the QGP in high energy heavy-ion collisions is tofreedom of composite particlésnesons, in our cagebeing
some extent connected to the possibility of measuring théhe value ofQ dependent on thelegree of overlapf the
geometrical sizes of the emission region of secondary pamextended structure of the particles in the medium. Being so,
ticles. And that is the connection point, i.e., so-calledthe Q parameter could be related to the powerpobbing
Hanbury-Brown-Twiss interferometry3,4] method, origi- lenses for mimicking the effects of internal constituents of
nally proposed in the 1950s for measuring stellar radii. Thighe bosons. In this case, and for high enoaghgnification
method has been largely studied over the last 20 years, aride bosonic behavior of th@ bosons could be blurred by the
has extensively been developed and improved ever $jce fermionic effect of their internal constituents, which would
In a previous papé€fi6], we have studied boundary effects result in decreasing the value . We will see that our
on the single-particle distribution and on the two-particleresults are also compatible with this interpretation.
correlation function, motivated by the need to consider more In view of our previous study of confined pions subjected
realistic finite systems, and by the idea suggested in[Rgf.  to finite size boundaries, and of ti@boson approach men-
In that reference, it was shown that in heavy-ion collisionstioned above, we realized it would be very interesting to
the pion system could be thought as a liquid of quasipiong@nalyze its effects on the two identic@tboson correlation
subjected to a surface tension. Naturally, it would be ex{function. Besides, adding this extra degree of freedom ex-
pected that this surface tension would affect the spectrurtends and generalizes our previous approach. Along these
distribution, which was shown in Ref$6,8—-13. As pion lines, Refs[15,17 turned out to be of special interest to our
interferometry is sensitive to the geometrical size of theinvestigation. However, in these references the approach was
emission region as well as to the underlying dynamics, wdocused on the interceph, of the two-particle correlation
would expect that the boundary would also affect the correfunction at zero momentum differencpg.e., A\=C(q=0,K)
lation function, which was indeed demonstrated in R6f. —1], and restricted to single modes only. All the possible
Some time ago, on the other hand, the concepuains  consequences on the effective geometrical information,
was suggestefil3] in association to aleformation param- which are generally even more interesting, were completely
eter Qwhich was viewed as an effective parameter able tmeglected. In this paper we develop fQHboson two-particle
encapsulate many essential features of complex dynamics @fterferometric relations and simultaneously study the addi-
different systems(We call the attention to the notation tional effects caused by the finite size boundary on the
adopted throughout the paper. We uQeto refer to the Q-boson spectrum and on the t\@boson correlation func-
bosons under study here for avoiding confusion with thetion.
relative momentum of the bosonic paig=p;—p,, com- This paper is organized as follows: in Sec. Il, we derive
monly used in interferometry and adopted here as Weft. ~ the Q-boson single-inclusive distribution, as well as the two-
fectively, the way it works is by reducing the complexity of Q-boson correlation function, considering a density matrix
the interacting systems under study into simpler relationssuited for describing charged identic@tboson correlation
nevertheless, at the expense of deforming their commutatiogffects. In Sec. Ill, the boundary effects on the t@dsoson
relations, and thus making these more complicated. This isorrelation and single-particle spectrum distribution are illus-
known asQ-deformed algebras, an approach which has beetrated by means of two simple specific examples. The con-

0556-2813/2004/62)/02490714)/$22.50 69 024907-1 ©2004 The American Physical Society



Q. H. ZHANG AND SANDRA S. PADULA PHYSICAL REVIEW C69, 024907(2004)

clusions are discussed in Sec. IV. Finally, we discuss twalete set, which satisfies the orthonormality condition
complementary topics in Appendixes. In Appendix A we dis-

cuss the limitQ — 0 in detail. In Appendix B, we rederive the * -

relations for the single- and two-particle distributions, as fdxw'(x)l’//'/(x) A @
well as the generalized version of the Wigner function for
another type ofQ boson[15,17, different than the one dis-
cussed in the text.

and completeness relation

2 % (X)h(y) = 8(x—y). (3)

Il. SPECTRUM AND TWO- Q-BOSON CORRELATION

FUNCTION Similarly, theQ-boson annihilation operator in coordinate

space can be written as

In this section, we derive general relations for describing .
the single-particle as well as the two-particle inclusive dis- #(X) :2 ai(x). (4)
tributions, which would be suited for describing charged !
bosons bounded in a finite_volume. For do?ng this, we extend |n momentum space, the correspondtpg)oson creation
the hypotheses assumed in R@] to the pions considered +
here as &@)-boson system. Essentially, these could be sumOperatOW (p) and annihilation operatow(p can be ex-
marized as follows: the effects of interaction among thePr€Ssed, respectively, as
Q-bosons could be modeled by considering that they move in T
an attractive mean-field potential, which extends over the QZ’T(p):;a'T‘/" (P) (5
whole system. In the tw¢quas) particle case, this implies
that they would not suffer any other effects besides theand
mean-field attraction and the identical particle symmetriza-
tion. The effect due to the fermioniconstituents internal #(p) = > ah(p), (6)
degrees of freedom, along the lines suggested in [R6f, if [
any, would be represented by the effective deformation pa-
rameterQ. In the present analysis, as assumed before in Ref'€
[6], the pions represented 1§y bosons are considered to be _
guasibound in the system, with the surface ten§idracting h(p) 3/2J i(x)ePXdx. (7)
as a reflecting boundary. Th@-boson wave function could (2 )

then be considered as vanishing outside this boundary. Once The Q bosons are then defined by means of the algebra

more, we assume that these particles become free when theistisfied by their creation and annihilation operators, i.e.,
average separation is larger than their interaction range a

we consider this transition to happen very rapidly, in such a

way that the momentum distribution of tif¢ bosons could é{ér, - Q‘sl,l’&té{ =4
be essentially governed by their momentum distribution just

before they freeze out. We then study the modifications on o At At

the observed®-boson momentum distribution caused by the [&4.8/]1=[4,4,]=0,
presence of this boundary. On the other hand, we know that

interferometry is sensitive to the geometrical size of the

here

emission region as well as to the underlying dynamics, and [N 1=~ a8
we would expect that the boundary would also affect the
correlation function, similarly as it affected the pions in Ref. [|§|I,é1‘r,] =§ I[é{t

[6]. However, as we shall see later, there is a significant

difference in the present case: the paramatere., the in- L

tercept(at q=0) of the two-particle correlation function, will [N,N;/]=0. (8)

be considerably different as compared to the case of a normal

(i.e., in the limit of Q— 1) pion, but will be recovered in the HereQ is a(C-numbey parameter, assumed to be within the

appropriate limit. interval[-1,1], andN| is the number operator, which can be
For deriving the relations that allow to describe theexpressed as

single- and two-particle inclusive distributions, we start by

assuming that th&-boson creation operator in coordinate 1- Q)S

space can be expressed [y E (1 QS) )%(ay)®. 9
Ty = S af
¥ = ; &4 (%), (1 It can be easily verified that, fo®=1, the normal bosonic

limit is recovered, i.e., the particles then obey the regular
WhereéyT is the creation operator for creating@boson in a  bosonic commutation relations, as it would be expected.
guantum state characterized by a quantum nurhb&hen, We write the density matrix operator for o@-bosonic
#1(x) is one of eigenfunctions belonging to a localized com-system as
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By inserting Eqs(18) and (19) into Eqg. (17), we obtain
the single-particle spectrum for o@boson species as

ﬁzexp[—%(ﬁ—ﬂﬂl)]:m.
|

Py(p) = ; Ni; (p)h(p).- (20)

R 1~ ~
PFeXP[‘ _(H|‘MN|)], (10) o S .
T Similarly, the twoQ-boson distribution function can be
where written as
A=3H, A=EN, N=2N, 1) Pap1p2) = (¥ (P (p2) Py iAp2)
| |

= 2 U D% (P, (), ()G A A A

are the Hamiltonian and number operators, respectiveiy, Ilglgla

the temperature. _ ~ ~ ~ ~
The corresponding normalization is explicitly included in 0 |§|: | ‘ﬂll(pl)‘Mz(pZ)'ﬂ'a(pl)%(pZ)
11234

the definition of the expectation value of observables as, for

instance, for an operatax x[(af & )@ ) .1, + (Bl a )G B,

+ @1&2@ SN ===,

(hy = 1A 12 B
trip} = Pi(py)Py(P2) + | X N (PO Yi(p2)
With the above definitions, it is easy to verify that :
) ) 1 + 2 U (PO (P2 (P Yh(P2)
tr(py) = 2 (nlpln), = 1 , (13 '
! 1—eﬂ{ﬂﬁ5-uﬁ *[(ala/aa) - 26/a)°). (21)
where Using Eqgs.(15) and(16), we finally have
~ o~ 2
—o" Po(p1,P,) = P1(p)P N
)= ,i—(éf)“loh (= 1 _Q . (14 2(P1,P2) = P1(p1)P1(p2) + ; 1 (P1) #i(p2)
Vn]! 1-Q . e
From the above equations, we can compute the expecta- - 2 i (P1)¥i (p2)t1(Py)vh(p2)
tion values L
Ata 1 eXP[?(El‘M)] +Q
(&'a) = 1 : (15 X(1-Q)-N? n . (22
exp[?(ﬁ—,u)J -Q exp[?(EF,U«)J -Q?
and The two-particle correlation can then be written as
ATaTA ) = 1+Q P2(py,

Then, the singl&-boson distribution can be written as

P1(p) = (4 (P)ip)) = P U () (p)EE ). (17)
|!
The expectation valué/a, ) is related to the occupation

probability of a single-particle stateN,, by the following
relation

@a)=a,N. (18)
For a Q-bosonic system in equilibrium at a temperatdre
and chemical potentigk, N, is represented by the modified
Bose-Einstein distribution

=1 +{2 N||1~ﬂ|(p1)|2$ ’\‘||l~ﬂ|(pz)|2}_1

X 2 NNy (P04 (P2) (P2 s (pa)

K
1
eXP[.I_.(El - M)] +Q

1
eXp[?(EI -p | -Q?
(23

XY1-6,/(1-Q)-

It is interesting to note that, foR=1, we regain the re-
sults in Ref.[6]. Moreover, forQ=0, we also get identical
results as shown in Appendix A of Rg¢B], corresponding to
classical Boltzmann distribution, for either single or multi-
modes. Nevertheless, the naively expected classical limit of

(19

1
N| = 1 .
eXP[.I—.(El -w|-Q
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C,(p1,p2) — 1 is recovered for single mode only, indepen- parameter given by Eq25) differs from the one in Refs.
dently on the values gb; andp.. [15,17, mainly, but not only, because it is there defined
In analogy to the common practice in bosonic interferom-exclusively for a single mode. In that reference, comparison
etry, it is natural to introduce the intercept parameteny is made with experimental points far, which has always
means of the relation=C(q=0,K)-1 i.e., as the intercept peen in the limit B\<1. We could proceed similarly
of the two-particle correlation function from which the clas- within our model as well, by comparing E(R5) to the ex-
sical limit is subtractedthis procedure, however, ha® re-  perimental points. Nevertheless, we prefer not to do so be-
lation to the historical interpretation ok as a parameter cause it is well known that other factors, such as resonances,
signaling either total chaoticity or partial coherence of thegynamical and multi-particle effects, as well as kinematical

emitting sourcg _ cuts, could also cause the intercept to drop into that interval.
From Eq.(23), it is stra|ghtforw?rd to show that, when e apove derivation can also be reformulated within the
0=p;1~-P,=0, and, consequentl =3(p1+pPz) =p1=p; Wigner function approach. For doing this, we develop the
1 product of four wave-functiong”) in Eq. (23) into the prod-
CyK,K)=2- uct of the corresponding Fourier transforms, leading to

; N.l"«lz.(K)@ N (K2

U (p) ¥ (P2 th(p2) ()

x| (1= ¥ (K)g (KK (K) - N Fry o dro oo
: = 3lze 1‘/4 (rl 3/2e 2 2‘/’| (rz)
(2m) (2m)
5 o By o,
exph(a—m} *Q “) @ )3’2ép2r2'/’"(rz)f2—)3’2é"1r1¢|/(f1)
X . (24)
1 2 f 3 —| xf —|K -AX ( AX) ( AX)
Z(E - - d°xe™d
We see that, foQ=1, we regain the ideal result for the Xf R éq.yf e'K Ay ( Ay)
bosonic intercept at the zero momentum differengep, y (2m)® I 2
-p,=0, i.e.,CxK,K)=2. On the other hand, fa@=0 we A
again recover the naively expected Boltzmann result, ><¢/;|,<y+—) (26)

C,(K,K)=1 for single modes only, and in particular fpg

=p,=K, as discussed above. For multimodes, however, it is

not recovered, since there is some remnant communication

amongQ bosons approaching the classical limit in this casewhere we have defined =(p,+p,)/2 as the twaQ-boson
also verified in the result presented in the appendix menaverage momentum, amp=p;—p, as their relative momen-

tioned above. tum. For writing the last equality, we have also changed
From Eq.(24) the intercept of the correlation function  variables as followsr—r,=Ax; r;+r,=2x; ri-ry=Ay; ry
can be immediately identified as +r,=2y.
Then we can define the Wigner function associated to the
AMK) =Cy(K,K) -1 statel as
. (1-Q
2 NP2 N g (K)J? 3A A
| | g(XK)=fd —|KAxl//( )(//(X—_X>
[ASa¥] (2 )3 | | 2
o (27)
* * 2
X 2 i (K)h (K (K) i (K) - Nj We can proceed analogously to define the equivalent

function for the integration iry and Ay, remembering that
g/(x,K)=g, (x,K). Then, denoting by

1
eXP[;(El-M)] +Q

X : (25) _
eX%%(El_M)J _QZ g(er)_;Nl gl:

We see that the intercept decreases with decre&giiging
always smaller than unity for€ Q=<1. On the other hand, it we can finally define the generalized Wigner function of the
is interesting to point that the definition for the intercept problem as
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a(x,K;y,K) =g(x,K)g(y,K) stages. In this sense, they would be regardednamory
1 tracesfrom those preconfined stages, just before the boson
exp[—(E| - M)} +Q emission.
5 T
~(1-Q24N 1
I exp[—(E, - |- Qz I1l. TWO- Q-BOSON CORRELATION
T FROM A FINITE VOLUME
A. Toy model
X g (%, K)g(y,K) ¢ . (28) To explore the effects of the deformation param&emd

of the boundary on the single- and t¥@boson distribution
functions, we assume that they are confined in a one-
dimensional (1D) box, [0,L], for simplicity. The three-
We see that, foQ=1, the above expression is reduced to thegimensional extension should be straightforward. It can be
usual result of the original Wigner function, i.e., easily checked that the corresponding wave function in the
9(x,K;y,K)=g(x,K)g(y,K). On the other hand, foQ=0, 1D case is given by
Eq. (29) is identically zero for single modes only, as it would
be expected in the limit of Boltzmann statistics. Neverthe- ]2
Pi(x) = \/E(sm K) X,

less, in the multimode case, as already shown in (24), (30)
there seems to be some sort of residual correlation among.
Q-bosons even in the classical limit. Aiming at better under-With
standing this limit we further explore t@— 0 case in Ap- KL=nmn=12.3 (31)
pendix A. ' U
By means of this Wigner function, the tw@-boson cor- Then, the corresponding Fourier transfori(p) can be
relation function can be rewritten as expressed as
Jfe“q'(X‘Wg(x,K;y,K)dxdy Tlp) = 11/2;[9)('[{“'(_ pL]-1
Ca(p1,p2) =1+ . (29 (2m)™2y2L p-k
f g(x,py)dx j gy, p)dy _exd-i(k+p)L] - 1} (53
p+k '

The above generalized Wigner functigiix,K) can be
interpreted as the probability of finding@boson at a point
X with momentunK . Differently from previous formulations (p-
Refs.[18-2Q we see that, if pions are treated @sbosons sir? >
under certain regimes, there is now an additional term in Eq. |T/,k(p)|2: - S+ 5
(28). The modified two-particle Wigner function no longer 7wl (p-k) (p+k)
can be reduced to the Fourier transform of the product of two r( (k- p)L) n< (k- p)L)

. 2 si > 2 si >

or equivalently, its square modulus would be written as
k)L )L

sinz(er k
2

single-particle Wigner functions, but acquires an extra term
depending orQ in a nontrivial way. As a consequence, for
0=<Q=<1, we can anticipate that the correlation function (p-K(p+k)

would be narrower and the intercept paramaterould drop (33
below unity. We will illustrate more clearly the effects of the ) o
deformation parameter @n the correlation function and on _ On the other hand, if we recall the definition of the
the intercept parameter in the following section, by means of*-function

cogkL) |.

two toy models. 1 sin(xL)

In summary, we could say that, maybe under certain cir- ox)=lim————, (34)
cumstances, pions produced in heavy-ion collisions could be LT
treated as free particles. Nevertheless, and as motivated jfijs easily verified that, whei. — o, we have
the beginning of the present section, in many others, the
interactions of pions among themselves and with other par- Lo L 1
ticles produced in relativistic heavy-ion collisions may not 20 P 2w E,— u

. - B

be negligible. In these cases, similar to what has been sug- ex T Q
gested in Refs[17,19, what it is proposed here is to mimic
those interactions by considering pions@$osons. In par- That is, in the limit of an infinite 1D box, we obtain a

ticular, the interpretation of) as an effective parameter re- modified Bose-Einstein distribution, where the deformation

flecting the fermionic constituentd 6] of the Q bosons is parameteR replaces the unity factor, characteristic of Bose-

appealing. Mainly, if we consider that unconfined degrees oEinstein statistics. In the finite box case, however, the spec-
freedom could be produced in high energy heavy ion colli-trum should change more drastically, due to quantum effects,
sions and manifest themselves@bosons in the prebosonic which we already showed in Ref6]. Moreover, in the
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0.06 T T T 2 T T T
—— Q= 1, L=infinity — K=0.3GeV/c,Q=1
e Q=1,L=8fm : — K=0.5GeV/c,Q=1
g B ——- Q=1,L=4fm R o—o K =0.3GeV/c, Q=0.5
L o004 o . =i16f & 1
o & e—o Q=0.5, L=infinity = & s--8 K =0.5 GeV/c, Q=0.5
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0.02 | A-—AQ=0,L=4fm 12 i ]
2\ g
o g- A
g = B
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FIG. 1. (Color onling The normalized spectrurtin arbitrary FIG. 2. (Color online Two-pion correlation vs momentum dif-

units) vs momenturrjp| (in GeV/c) is shown. The input tempera- ferencelq| (in GeV/c). The input temperature =0.14 GeV and
ture isT=0.14 GeV and the chemical potentialgs=0. The solid the chemical potential igz=0. The solid line corresponds to mean

line corresponds to the modified Bose-Einstein distribution, i.e., tg o~ 0 3 GeVk and dashed one t§=05 GeVE. The

the limit R—o. The dotted and da;hed !ines correspond, respeCicker lines refer to the case @=1.0 and the thinner one 1@
tively, toL=8 fm andL=4 fm. The thicker lines refer tQ=1.0 and =0.5. The box size it =4 fm

the thinner ones tQ=0.5.

first consider that the bosons have a fixed size. We then com-
present case, we have both the finite size and the deformatiqrare the above relation for two values of the system volume
parameter effects combined. To illustrate this, we show inwhereV,>V,), associating a value @ to each case. It is
Fig. 1, the single spectrum distribution for two different box very simple to see tha(Dzz\/l—(Vllvz)(l—Qi), i.e., an in-
sizes. In that plot, as in all the others that follow, we havecrease in the volume would result in a bigger deformation
chosen a null chemical potential, i.ex=0, for simplicity.  parameter, reflecting a smaller overlapping of the bosons and
For comparison, the Bose-Einstein spectrum distribution, atheir constituents. In other words, for a fixed bosonic size
well as the corresponding modified form given by £86),  and if we enlarge the volume that contains the bosons, the
are also shown. It is interesting to note that for finite systemgesolution decreases, implying tha® increases, i.e., gets
and decreasing values of tparameter, the width of single closer to the boson statistics case for whigh1. Let us take
Q-boson distribution becomes broader, causing the maxianother approach, by consideri@yfixed and studying what
mum of the distribution to drop and the tail to rise, due to thehappens for increasing volumes. In this case, a syste@ of
conservation of the number of particles. The drop of thePosons in a volume/; would be associated to l&/V, and
maximum for the same value of the momentum but for a@hother one,sln similar conditions but with avquM§>.V1,
smaller value ofQ would correspond to aveaker bosonic Would haveL>/V;. In order to keef the same, the ratio has
behavior of the particles when compared to @e-1 limit,  t© Pe kept the same, which means that-L,. This could be

leading to a lower occupancy for small values of the mo_interpreted as if we had higher resolution of the internal de-
rees of freedom in the second case., the boson with

tmhgngﬁ";i;rsri]gne:(faeg;i:;rzs gﬁ;ﬁfg‘:ﬁg#ﬁ;ﬁg fg;é?g;i?%nt%;'\faelu(%gger L would have the effect of its internal constituents
S oy re sharply probed Consequently, for the same value of
of the d_eformauon paramgt@ has a similar effec.t as to Q, we would expect that the larger the system is, more sen-
decreasing the source emission sigee Ref[6]), which i gjive it would be to fixed value of). This is precisely what
consistent with the uncertainty principle since, as the volumgye can see in Fig. 1, since the effect is more pronounced for
of the system decreases, the uncertainty in the pion coordj-=g fm than it is forL=4 fm.
nate decreases aCCOfdineg, CaUSing Iarger fluctuations in the We have seen that the deformation parameter has a Sig_
pion momentum distribution, which then becomes broader. nificant effect on the spectrum of the bosons. We discuss
It is interesting to check how our result would comparenext what this implies to the interferometry of two identical
with the interpretation given in Ref16], for whichQ could  Q-bosons. In Fig. 2, the correlation functions for two values
be viewed as an effective parameter reflecting the internadf the mean momentur are shown for different deformed
degrees of freedom of the bosons. In that reference, the dgarameteQ as a function of the pair relative momentulay,
formation paramete® is related to the ratio of the bosonic For Q=1, as already shown in Reff6], we see that, as the
volume (L% to the system volum&V) by Q*~1-L3/V, mean momentum increases, the source radius increases ac-
wherel is the boson’s rms radius. The ratio is then corre-cordingly, due to the fact that contributions from small mo-
lated to the degree dfosonic overlapAlthough we do not menta come from smaller quantum stateshich, in turn,
consider here the bosons as extended objects, we still coulbrresponds to larger spread in coordinate space. Similar be-
try and see if that picture is compatible with our study. Let ushavior in the radius is seen &y decreases below unity.
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1 limit Q— 0, for which the first of the commutation relations

for equal modes in Eq8) is reduced toma'=1. Neverthe-
09 | less, we demonstrate in Appendix A that it is not only the
¢ commutation relations that matter when discussing the be-
havior of the intercept parametex, The density matrix
0.8 r seems to play an essential role, at least for the type of
Q-boson we analyze here. In this case, with the density as
defined in Eq(11), we get\ — 0O for very small system sizes
(and Q=0), recovering what would be naively expected for
—— K=0.3GeV/c,L=41fm classical particles. In the opposite limit, i.e., for very large
0.6 =~ ——- K=0.5GeV/c, L =4fm ] systems, we get a consta, resulting in\ —1/3. _
The above limits could suggest that we get different re-
e | e—oK=0.3GeV/c,L=8fm | sults depending on the wave function and boundary condi-
&-—aK=05GeVc, L=8fm tions, reflecting the dependence on the dimensions of the
system and, consequently, &g, since the particulap, we
0.4 3 35 id 5B e 3 chose contains an explicit dependence on the energy of the
’ ' ] ’ state. However, we also demonstrate in Appendix A that, if
we had chosen a different density matrix than the one in Eq.
FIG. 3. (Color onling The intercept parametex, is shown vs  (11), for instance,p,=const, the wave function would not
Q, the deformation parameter. The input temperature Tis play any role, since we havg,=const, and there is no en-
=0.14 GeV and the chemical potential4s=0. The solid line cor-  ergy dependence in this case. As a result, wehgetl/3,
responds to mean momentu¥0.3 GeVE and dashed one to the independently on the system size afg Although we do
caseK=0.5 GeVk. The thicker lines refer to the cake=4 fm and not show in Fig. 3 the limit\(K=0), we can still check the
the thinner ones th.=8 fm. consistency of the results plotted there with the analysis we

Another interesting point concerns the way the paramete'?ave just made. For that, we should look into the smallest

Q changes the intercept parameterof the two-Q-boson value of momentum shown in_th_at plot, i.da;,:o.3 GeVE.
correlation function. The effects ar are more pronounced 1hen, according to our analysis in Appendix A, the value of

as smaller values df are considered, which is natural, as for the intercept parameter for small systems would tend to ap-
large values of the average momentum, the quantum effecfyoach the limitx —0, whereas for large ones, it should ap-
become less relevant. From E@5), we can see that, for ProachA—1/3. Adapted to our plot, this would mean that
increasingK, the dominant factors come from the larder A(L=4 fm) <A(L=8 fm) for Q=0 andK=0.3 GeVk, which
states which, on the other hand, give smaller contribution tds precisely what is seen in Fig. 3. We can also verify that
the twoQ-boson correlation, due to the factdl,, which  this result is more general, since the same feature is again
decreases for increasing, as can be seen from E@). reproduced in Fig. 6, as we shall see in the following section.
Consequently, this makes the intercept parameter to vary Furthermore, if we return to the expression of the gener-
more slowly for increasing values &f. This is illustrated in ~ alized Wigner function, Eq(28), we see that the usual
Fig. 3, where\ is shown as a function o) for different  Wigner function is recoveredast term vanishgsfor Q=0
values of the mean momentum and for different source radiibut, again, for single modes only. For multimodes, however,
Again, we note that as the source radius becomes bigger, ttibe Wigner function is modified, even f@=0. This result

Q effects on the intercept parameter become less significanggems to indicate the existence of some kindresfidual
since in this case the quantum effects are smaller. In the plocorrelationsamong the particles in the system, i.e., an extra
we only show the variation of for Q in the interval[0,1], = communication among the particles of different states, beside
corresponding ta.<1. Of course, ifQ is larger than one, as the commutation relation defined among particles in the
one could expect from Eq25), the value of\ could be same state.

bigger than one. Also if the value @ is negative \ could Along the lines discussed above, only recently we became
be less than zero. However, we are treating here bosons wigtware of a Monte Carlo event generator by Wélkkal. (Ref.

a modified commutation relation. Since such unexpected bd21]), which makes an attempt to improve Bose-Einstein cor-
havior for the intercept parameter was never observed exelations in numerical modeling. It would be very interesting
perimentally, for any type of bosons, we do not consider thigo run their simulation and check for consistency with our
case here. In other words, our analysis refers basically to theumerical calculation of the correlation functioB;(p;,p,)
interval, 0<Q=1. Nevertheless, we should keep in mind and of the intercept parametafK) mainly regarding the
that the intercept parameter of the two identically chargednultiparticle effects.

Q-bosons could be bigger than one or less than zero, for
some specific values @).

Although shown in Fig. 3, the limiQ—0 deserves a
closer analysis. As we briefly discussed in Sec. Il, the naive In this section, we consider that the pions produced in
classical limit Cx(p1,p,)—1 is recovered only for single high energy heavy-ion collisions, treated here as the hypo-
modes. The multimode case is analyzed in detail in Appendithetical Q-bosons, could be bounded in a sphere up to the
A but we summarize the main results here. We start with théime immediately preceding the freeze-out of the system.

0.7

B. Q-bosons are confined inside a sphere
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This is conceived in such a way that their distribution func- 0.06 ' ' '
tions are essentially the ones they had while confined. Analo- —— R=infinity, @ =1.0
gously to the procedure developed in Réf, the pion wave N\ R<6fm Qe 10
function in this case should be determined by the solution of ke - e
the Klein-Gordon equation, i.e., 008 A —-—-R=3fm,Q=1.0
[A+K2JyAr) =0, (36) n_g = A e—e R=infinity, Q = 0.5

. . " ---aR=6fm, Q=0.
wherek?=E?-n? is the momentum of the pion. On writing B---aR=6im Q=05
the above equation, we have assumed confinement, i.e., th --—oR=3fm, Q=05
potential felt by the pion inside the sphere is zero, while 0.02 | h. A---AR=6fm, Q=0
outside it is infinite. The boundary condition to be respected 3
by the solution is

w(r)|r=R:01 (37)

whereR is the radius of the sphere at freeze-out time. 0, 03 -

The normalized wave function corresponding to the solu-

tion of the above equation can easily be written as

\/EYIm(a D) JIrapkr) (r<R),

(38)

The momentum of the bounded partidtecan be deter-
mined as the solution of the equation

Ji+2(kR) = 0.

L

=0 (r=R).

(39)
Inserting Eq(38) into Eq.(7), we can determine the Fou-

rier transform of the confined solution of a pion inside the

sphere, as a function of the momentpmas[6]

~ -k
am(P) = \/gl Ylm(p)[ kz]JH 12(PR). (40

In terms of Eqs(19) and(20), the single-inclusive distri-
bution function can be written as

P1(P) = 2 Niim(P) i)

kim

=2

kil

1 <2I + 1>(k3|+(1/2)(PR)>2
Eq—p) \ 27p p? - K
Xp( T ) Q
(41)

In the limit R— o, the single-particle spectrum, can then
be written as

-
(2m?3]’

Pi(p) = (42)

e

where V=(47/3)R® is the volume of the sphere. We see
from Eq. (42) that the modified Bose-Einstein distribution is
recovered in the limit of very large volumes.

In Fig. 4, the normalized single-particle distribution is
plotted as a function ofp|. We clearly see that, due to the
boundary effects, the maximum value|pf in the spectrum

FIG. 4. (Color online The normalized spectrurtin arbitrary
units) vs momentunip| (in GeV/c) is shown. The input tempera-
ture isT=0.12 GeV and the chemical potentialis=0. The solid
line corresponds to the ca&=3 fm, the dotted one to the cake
=6 fm, and the dashed line corresponds to the cBser. The
thicker lines refer tdQ=1.0 and the thinner ones ©=0.5.

this is similar to the result obtained with the previous ex-
ample of the 1D box, and the confinement does not seem to
cause a significant effect on the spectrum.

We can write the expectation value of the product of two
Q-boson creation operators in momentum space as before,
resulting in

¢k|m(p1)¢k|m(p2)
Ew—n
exp( - ) o
1 2 o
E \/:(_i)IYIm(pl)
xp( Kl M)_Q P1
T
-k 2 s
X{W}‘]H(l/a(le) \/p:z(l)l\ﬂm(pz)
-
p _ie2 a2 P2

1 4
- % Eu—n P1P2
S

k2
X —
(P?-K)(p3 - K?)

CACAITEDS

kim

Ji+a(P1R)

><3|+(1/2)(F32R)< :T ) PP p2). (43

The two-pion interferometry correlation function can then
be estimated by inserting the expressiohd) and(43), into

decreases for decreasing volumes, being always smaller th&g. (23). We see from the above results that, in general, this

the case corresponding to tRe- < limit. On the other hand,

function depends on the angle betwggnand p,, similarly
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1

0.9 0.9
< 08 < 08
W | —— K=0.3GeV/c, R=3fm I W | —— K=0.3GeV/c, R=3fm I
—-—- K=0.5GeV/c, R=3fm —-—- K=0.5GeV/c, R=3fm
0.6 R 0.6 R
e—o K=0.3GeV/c, R=6fm e—o K=0.3GeV/c, R=6fm
05 | =--—a K=0.5GeV/c, R=6fm | 05 | =--—a K=0.5GeV/c, R=6fm |
0.4 L 1 L 1 0.4 L 1 L 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
FIG. 5. (Color onling Two-pion correlation vs momentum dif- FIG. 6. (Color onling The intercept parametex, is shown vs

ference|q| (in GeV/c) is shown. The input temperature & the deformatiorQ. The input temperature i§=0.12 GeV and the
=0.12 GeV and the chemical potentialis=0. The solid line cor-  chemical potential ig«=0. The solid line corresponds to mean mo-
responds to mean momentuf¥ 0.3 GeVk and the dashed one, to mentumK=0.3 GeVt and dashed one to the case 0.5 GeVEL.
the caseK=0.5 GeVk. The thicker lines refer to the case ¢ The thicker lines refer to the caga=3 fm and the thinner ones to
=1.0 and the thinner ones ©=0.5. The sphere size R=3 fm. R=6 fm.

to what was discussed in R¢6]. For the sake of simplicity,

however, we will also consider hep parallel top,, imply- system were considered together. What they observed was an

ing that P,(p;-p,=+1)=(x1)". The results for two-pion in- . X i :
terferometry corresponding to two different values of the pairOppOSIte effect, i.e., the effective source radius extracted

average momentuni =(p,+p,)/2, but fixed temperature, from two-pion interferometry would decrease_lémcreases.

are shown in Fig. 5. Fo=1 we can see that, as the pair However, for small values of 'Fhe momentun it seems that
average momenturi increases, the apparent source radiughe boundary effects are dominant over the expansion effects.
becomes bigger, which reproduces the result obtained in Ref. In Fig. 6, we plot the intercept parametervs Q for

[6]. However, considering{=0.3 GeVk, if we compare the different values of momenta and source radii. We see that the
cases corresponding @=1 andQ=0.5, respectively, we see similarity to the results in Fig. 3 is evidet:becomes bigger
that the resulting correlation function becomes narrower anas either the total momentum of the pkior the source radii

the intercept parametardrops below its previous unit value. R increases, reaching values significantly below one for suf-
On the other hand, if we now keep this value@£0.5 but ficiently small values of either one of those variables. This is
considerK=0.5 GeV L, the width is even narrower, but the expected, since the quantum effects are more prominent for
intercept is higher than that corresponding tK smaller momenta. Again, the comments relating these results
=0.3 GeVk, although it still is below one. This due to the to the speculation in Ref16] apply here, as in the previous
fact that for smaller momentum pairs, the quantum effectexample.

are stronger, as in the previous toy model studied in Fig. 2. In summary, by comparing the interferometric results cor-
The effect comes from the contribution of the third term inresponding to the two toy models, we see that a general
two-Q-boson interferometry formula, in E@g23). We could  behavior is roughly reproduced in both cases. First, Figs. 1
understand these results by noting that pions with larger maand 4 show that the results for the normalized spectra are
mentum come from larger quantulrstates which, in turn, very similar, the maximum of the curves dropping with de-
correspond to a smaller spread in coordinate space. Due tweasing values o, followed by the rise of the respective
the weight factor in Eq.(23), of modified Bose-Einstein tails, this being related to the conservation of the number of
form, larger quantum states will give a smaller contributionparticles. Second, the width of the correlation functions, as
to the source distribution, causing the effective source radiuseen in Figs. 2 and 5, seems to decrease for increasing values
to appear larger. On the other hand, this behavior is interestf Q. Besides, we see from Figs. 3 and 6 that @¥oson

ing if we compare to results corresponding to expanding syseffects cause the intercept parameteio drop below unity.
tems. In this last case, the probed part of the system deFhis clearly demonstrates that treating piongaboson in-
creases with increasing average momentui22,23. deed alter the two-pion interferometry. Besides, we saw in
Naturally, our present approach does not consider the effectsur examples that it also modifies and generalizes the form
of expansion and the enlargement of the system’s apparenf two particles Wigner function. Nevertheless, we also saw
dimensions with increasinl§, seen in Figure 5, has its origin that the effects for the bounded case are less pronounced as
in the strong sensitivity to the dynamical matrix. In Rg4], = compared to the unbounded one, at least for the set of pa-
the combined effects of a finite boundary and an expandingameters adopted in the calculation.
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IV. CONCLUSIONS emitting source for values below unity, as commonly found

In this paper, we derive spectrum and correlation functior" the literature on boson interferometry. It is well known
relations by adopting the density matrix given in Eg0), that many effects, such as resonances, dynamical and multi-
suitable for describing charge@ bosons. The finite volume particle effects, as well as kinematical cuts, could also con-
effects on theQ-boson spectrum were then studied in Figs. 1tribute to yield values of so-called chaoticity or coherence
and 4, for two specific examples, leading to similar results aparameter below unity, although those effects have no rela-
in Refs.[6,8,10,11, for Q=1. We find that the small momen- tion to partial coherence of the source. Similarly, the behav-
tum region is depleted for the modified Bose-Einstein distri-ior we discussed of the intercept parametewhen consid-
bution with respect to case wh&p— 1. The effects on two €ring decreasing values of the deformat@nare not related
equally charged-boson correlation function were also ana- to the way the source emit those bosons. The effects dis-
lyzed here. The results in Figs. 2 and 5 show that the correcussed here are meant to show that they also could cause a
lation function shrinks for increasing average pair momendeviation from the idealized picture. Moreover, for keeping
tum, corresponding to an increase of its inverse wih ~ the analysis simple, we are not taking all the above effects
We also observe that its intercept drops for decrea§inm into account in our study. For this reason, we preferred to not
other words, it was shown in Figs. 3 and 6 that the intercepgompare our results with experimental data, and thus did not
parametei decreases for increasir@, for the same values introduce any quantitative analysis of this picture.
of the average transverse momentum and source radius. On Also, for completeness, we derive in Appendix B, the
the other hand. becomes larger when either the mean mo-equations associated to the so-called t§p&-boson inter-
mentum of two®-boson or the source radius increases. Thigerometry[15,17, corresponding to slightly different com-
result reflects a strong sensitivity to the dynamical matrix,mutation relations. The derived relations for the single- and
through the modified Bose-Einstein weight factor. Epr1,  two-particle distributions are in EqBS5), and Eq.(B6), re-
previous pion interferometry results are regained, as well agpectively. Also for this case, we propose a generalized form
the Boltzmann-type distribution fa@=0, as can be verified for the Wigner function, as can be seen in &g7).
in Ref. [6].

We have also derived a generalized version of the two- ACKNOWLEDGMENTS
boson Wigner function, allowing to treat the case of t@o
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ible with that interpretation. To summarize the comparison, . appendix to the manuscript
we could say that, for increasing volumes and keeping the '
same value of), we would have to increase thesolution
i.e., the sensitivity of the probe to the internal degrees of APPEND!X_A )
freedom of the boson. Consequently, for the same value of We here analyze th@=0 limit in more detail. We can see
Q, we would expect that the larger the system is, more sents implications on the expec_:tatlon va}lues, directly from Egs.
sitive it would be to this parameter. This is precisely what we(15 and(16), on the correlation function, from E@3), and
can see in Fig. 1, since the effect is more pronounced.for N the intercept parametex, from Eq.(25), by simply im-
=8 fm than it is forL=4 fm. posing the limitQ=0. Alternatively, we can start with our

The derivation analyzed here has several common fegdefinitions in Eq.(8), and thus simultaneously test our re-
tures with the one in Refg15,17 but here we adopt an sults. Lets also go back to the definition in Ef4). For Q
entirely different approach, focusing on what seems to us thg 0 We see that
most important part of an interferometric analysis, i.e., the {1_> n+0
correlation functions themselves. We also analyze the effects [n]=
on the spectra and on the intercept paramgtéut, again, 0—n=0.
our result is more general than in that reference, since it ighys [n]!=1 in both the above cases. Consequently, instead
there restricted to single modes. . of Eq. (14), we have

Another remark concerns the relation of the paramgter
and its possible interpretation as a partial coherence of the In), = (&))" 0). (A2)

(A1)
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If we apply to the above equation the annihilation and

creation operators, we have

a@)Noy=In-1), afny=|n+1),

which follow from the first commutation relations in E()

aln) = (A3)

and from the conditiorg|0y=0. The other commutation re-

lations remain unchanged in this limit.
Let us now estimate the trace of the density matrifg tr
From Egs.(10) and(11), we have

e

11 . (Ad)
1- exy{— TE- M)J

For estimating the limits of Eqg15) and(16) for Q—0

tr(p) = 2|<”|P||”>| EE

n=0 m=0

[

= g WDE-wN=
n=0

along the lines above, we have to estimate the trac

tr(alap) and t(a'alaap), as follows

trajayp) = 2 (nlafayp|n),

- %mE_ (rlaf [ (E'T "“)} iy
—ngl% [——(E M)n] ,(n—1|n—1)|
=S e WMEN_ ] = e_(lmf'_”) _
"o 1—ex;{—_|—_(E,—,u)}
(AS5)
tr(a/aaaip) = E (nlafalaaym|n)

1 MmN
—2 2 nfay aITaIai[_T-(EI_/-L)] Hl!|n>|

n=0 m=0
o0 o0 r 1 _ml
=33 [~ 3E-wn| =
n=1m=0 L T I J m!
><|<n—1|afa1|n—1),
[ 1 1m1
= -—=(E - —{n-2n-2
nEmE__ T(' m!'<n In-2)

©

= e WNE-wn _ WM E-w) _ 1
n=0
& @ME-1)

T e UME-w" (AB)

From the above results and our definition in E&2), it
follows immediately that

PHYSICAL REVIEW C 69, 024907(2004

(AM)(E=w)

(alay=¢€ =N, (A7)

and

(afafaay)=e@MEH, (A8)

It is then straightforward to conclude that both results
coincide with the ones in Eq$l5) and(16), reinforcing the
correctness of our results.

The purpose of the above derivation goes beyond what we
have just discussed, it is also helpful for discussing more
deeply the peculiar limit ofQ—0. As we have already
pointed out in the body of the manuscript, we recover the
expected classical result in that limit for single modes only.
In other words, only forsingle modesve have, forq=p;
-p,=0 (and, consequentlK=p;=p,)

lim Cy(K,K) =2,  lim\(K)=0.
Q—0 Q—0

In this case, we also recover the well known form of the

eﬁ/lgner function, i.e.,

lim gi(x,K) = g(x,K)g(y,K).
Q—0

Nevertheless, when multimodes are taken into account,
the behavior of the above quantities change considerably. For
better illustrating this fact, it is convenient to adopt a specific
example. Let us choose our toy model in Sec. Il A, for sim-
plicity, restricting ourselves to th@=0 case. In general
=NQg=p;—p,=0)=A(K=p;=p,) but, for simplifying our
analytical study, we restrict our analysis X¢K=0). In this
case, we see that the square modulus of the wave function in
momentum space can be written as

2 sm’-(kL/Z)

(% (0)2 = [1-cogkL)], (A9)

kL=nmw(n=1,2, ...,

from this we see that only odd valuesnfi.e.,n=2m-1 can
contribute, resulting in

aL
GoP={em-pr M2 )
0 (neven.

Then, for writing the chaoticity parameter in the limit of
Q=0 for the toy model, we rewrite E@25) for this particu-
lar case, as

>N (K)[

|
(2 N.l%(K)F)(E N||7ﬂ|(K)|2)
| |
We have then to estimate the sums separately, as follows

2 N (K)[2= 2 & B (K)[2.

MK) =

(A12)
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>N (K[ = X e B[y (K)[*. (A13)
| |

PHYSICAL REVIEW C69, 024907(2004)

From the result in EQLA17) we see that, for the particular
density matrix we chose in E@ll), the intercept parameter,
MK =0), can still have the expected value for bosonic inter-

For estimating the above sums, it is more convenient tQerometry in the classical limit, i.eA(K =0)=0, even for
consider appropriate limits for the size of the 1D box. Let USmultimodes, due to the combined effects of the density of

first assume the limit of very small sizes, i.e+ 0. In this
case E =nw/L, we denote as

{x =e®M<1(n=1)

0 sz_l_ 2m—1
E2m_1: (2m_ 1)7T/L = (2m_ 1)E1

(A14)

Consequently, the sums fgr=0 can be written as

a1 A x2m-1
EN Y 0)|2-2 2l = —
mirm m (2m- 1)2 o (2m-1)?
(A15)
- 1612
2 _ _
% N3l om-1(0)[* = % x2@m Dm
16L2 X2(2m—1)
= . Al6
6 % (2m-1)4 (A16)

If we then bring Eqs(A15) and(A16) into Eq.(Al11), we
get

im XK =0)
L~>0(X~>O)
x2(2m-1)
m (2m-— 1)4
=1-
X2m—1 2
m (2m- 1)?
X4 X8 X12
Xl 14—+ —+—+ -
34 54 74
=1- lim
L~>O(X~>O) X2 X4 X4
A 142—+— 42—+ -
3?2 3 5
=1-1=0, (A17)

and thus, the expected limit fmlassical particles is recov-
ered forQ=0, whenL — 0.

In the opposite limit ofL — <, however, we can see that

k=(2m-1)7r/L—0, which implies thatE,—m_. Conse-
quently,N,— Ng=const. In this case

NZ16L2 ”
m 7o(2m- 1)* 96
lim )\(K 0)=1- =1-
L—0(x— N04L 2 2|2
m 7 (2m- 1)2 8
—1-221 (A18)
3 3

statesN, and of the wave functions;(K =0). However, in

the second case, we see from E418), that lim _ . A(K
=0)=1/3. This is reflecting the relation betwedn and k
coming from the shape of the wave function and boundary
conditions in a finite system, as in EGA9). Moreover, the
difference among the two limits reflects the particular choice
of the density matrix. In order to demonstrate this, we choose
a much simpler example than in Ed1). For instance, let us
choosep,=const, and proceed analogously as before. In this
case, instead of Eq§A7) and (A8), we would have

(alay=1=N, (afafaa)=1. (A19)

As a consequence, we get for the sums in EA&2), (A13),
and (A18)

- 4L
> |w(0)2= -
| T
, (O AMK=0)
16L
2 [mO)*=—
7T
16N3L27*
. % 2.1
{4N0L7T2}2 3 3
8
(A20)

From what we just saw above, we could say that, if we
choose a different type of density matrix, i.p=const, for
instance, the wave function does not seem to play any role,
since we gelN,=const. Consequently, for this much simpler
density matrix, we see that we get-1/3, independently on
the energy of the statds, and on the size of the 1D bok,

APPENDIX B
For completeness, we will also derive below the so-called
typeB Q-boson interferometry formulation, as defined in
Ref.[17]. For typeB Q boson, the operatots andb; satisfy
the following commutation relations

bbl - Q%rblb = &,,Q™M,
oS b b = N
bib), - Q7% by = &,.QN,
[b,by1=[bf,b’1=0,
[N|yb|']:‘5|,|'b|a

[N,,b1=&,bf,
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[N|,N|/] =0. (Bl) <b|Tb|Tb|b|>
In the above relation®) is a parameter, which can be - 5 2 cogf)
assumed withii-1,1]. If we define it, following Ref[17], p[_ e J o codo p[ 1o J )
as Q=€?(0=<¢<2m) or, equivalently, co(s9):%(Q+Q‘1), ex T( 1~ #) cog26)ex T( |t
then -1
COS(O)EXp{?(E - ,u,)}
= . (B3)
1 cosr{i(E - ,u)J —-c0g206)
exp[?(E,—,u)]—l. T
oy o
(bby) = 2 1 As before, the expectation valyg/b ) is related to the
exp (B~ u) | -2 cogblexp —(E—p) | +1 occupation probability of the single-particle stété”, by a
similar relation, i.e.,
-1 . 1 non
exp[E(El—u)}smh[z—T(E _M)} (bfby =& /NP (B4)
B 1 (B2) Then similar to the derivation of Eq$l6) and (20), we
cos $(E,—,u) —-cog6) have
P1(p) = 2 (b/b) i (p)h(p) (B5)
[
and and
|
- T 2 NI (0T (0.7 N t
P2(p1,p2) = P1(p)Py(py) + ; U (P Wi(p2) |+ 2 U1 (P ¥ (P2) 1P ¥ () [(bbbyby) — (b))

= P1(py)Py(p2) + 2 NNy 41 (p1) ¥, (P2) i (p2) - (P1)

Y

s B 1Y)
E, - cosd(cosf-1
4cosﬁ( ! 'u>+ ( )

2T E-u
i 55
Sin oT \

cosl’( 5 ’u) —-c0g206)
\ L T -/

Analogously to what was done at the end of Sec. Il, we can also define a modified Wigner function fBr@y/peson. The
new Wigner function for this case can be defined similarly as before, resulting in

4
X|1-6,/(1-cosb) (B6)

( _4COSH<E|—/.L>+COS€(COS(9—1)-\
g0 K;y,K) =g (x,K)g®(y,K) = 2 | (NP)2(1 - coso) - (B7)
! cos)’( IT M) —cog20)
. R iy

Then the two-pion interferometry formula follows analogously to &9) for this case, i.e.,

Jfe‘iq'("‘y)g(b)(x,K;y,K)dxdy
CP(pypo) =1+ : (B8)
J g®(x,py)dx f 9™y, p2)dy
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