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In relativistic heavy-ion systems at the highest collision energies, new deconfinement signatures emerge and
indicate an increasingly clear separation between soft hadronic processes and hard partonic interactions in a
locally deconfined subsystem. Here the emphasis is on longitudinal variables, namely, net-baryon rapidity
distributions. As described in a Relativistic Diffusion Model, they change from bell shaped at the lower to
double humped at the higher SPS energy, but do not reach local statistical equilibrium. AtÎsNN=200 GeV in
the Au-Au system, however, they are shown to consist of three components. In addition to the nonequilibrium
contributions, a third fraction close to midrapidity containingZeq.22 protons reaches local statistical equilib-
rium in a discontinuous transition. It may be associated with a deconfinement of the participant partons and
thus, serve as a signature for quark-gluon matter formation.
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I. INTRODUCTION

Considerable progress has recently been made in the long-
standing attempts[1] to recreate a quark-gluon plasma under
laboratory conditions by means of relativistic heavy-ion col-
lisions. Quark matter is believed to constitute an important
intermediate state of the very early universe. There it is in
thermal equilibrium, but expands, cools, and ends in the
most dramatic event of a quark-hadron phase transition—a
thermal confinement transition—at about 10ms: quarks and
gluons condense to form a gas of nucleons and light mesons,
the latter decaying afterwards.

As the temperature drops to about 170 MeV, the hadron
gas becomes sufficiently dilute, and the hadron abundances
for different particle species remain fixed(“chemical freeze-
out”). The phase transition has thus set the stage for the
subsequent primordial synthesis of light nuclei(d, He-3,
He-4, Li-7) at timest.1 s, and temperaturesT.1 MeV in
the evolution of the early universe[2].

The attempt to investigate the quark-hadron phase transi-
tion in reverse order, as a deconfinement transition, together
with the subsequent confinement transition in the laboratory
by means of relativistic heavy-ion collisions experiences se-
vere difficulties. The system has to be sufficiently extended,
small collision partners such as protons or deuterons are not
suitable. The energy density has to reach values above the
critical one(about 1.5 GeV/fm3) for the transition to occur.

The typical time scale for relativistic heavy-ion collisions
in the laboratory is only about 10−23 s—to be compared with
the much larger time scale of the cosmological QCD transi-
tion of 10−5 s. Hence, it cannot be expected that thermal
equilibrium, which governs the physical description of the
early universe, remains a valid concept for theoretical mod-
els of relativistic heavy-ion collisions. Whereas particle
abundances have been shown to be described rather accu-
rately by phase-space(“thermal”) models[3–5], this does not
necessarily imply that the system has reached, or gone

through, thermal equilibrium. Instead, one has to look for
stages oflocal kinetic equilibrium in the short time evolution
of the system, and for the possibility that the deconfinement
transition occurs in such a stage of local thermal equilibrium,
affecting only a relatively small number of nucleons in a
relatively big system.

In the fixed-target experiments at the SPS with heavy
systems—in particular, with the Pb-Pb system atÎsNN
=17.3 GeV—a number of possible phase-transition signa-
tures such as strangeness enhancement and excess of dilep-
tons with invariant mass below that of ther meson had been
discussed. The most promising signal, namely, the sup-
pressed production of theJ/C meson in the presence of a
quark-gluon plasma due to vanishing string tension and
screening, had been predicted by theorists[6] and identified
at the SPS in heavy systems, but since it could also be caused
by hadronic final-state interactions(nuclear absorption) it
seemed not fully convincing.

Whether the “extra suppression” which was then detected
in the Pb-Pb system atÎsNN=17.3 GeV and which could not
easily be accounted for by absorption constitutes a qgp sig-
nature is still a matter of debate. At the relativistic heavy-ion
collision (RHIC) energy of 200 GeV per particle, the
PHENIX Collaboration has presented preliminary results for
the J/C-meson[7] showing a slight suppression. In view of
the large error bars, however, this is not yet conclusive either,
one has to wait for more precise data.

In a probably more promising effort, the four RHIC
Au-Au experiments have carefully investigated the particle
production in central collisions at high transverse momenta.
When compared top-p data that are scaled with the number
of binary collisions, a significant suppression of the produced
hadrons is found, which is interpreted as a final-state effect
of the produced dense medium—and possibly, of a quark-
gluon plasma. The effect may be due to “jet quenching”:
energetic partons traversing the dense medium lose energy or
are completely absorbed, and the remaining observed had-
ronic jets are mostly created from partons produced near the
surface and directed outwards.

The effect is not observed(instead, the inclusive yield is*Email address: wolschin@uni-hd.de http://wolschin.uni-hd.de
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slightly enhanced) in the lighter d-Au system, where com-
pression and heating is much less pronounced, and where
qgp formation is therefore unlikely[8–11]. Moreover, back-
to-back pairs are also strongly suppressed in central Au-Au
for similar reasons, whereas near-side pairs exhibit jetlike
correlations that are similar top-p and d-Au results, also
pointing towards jet absorption in the dense(qgp?) medium
[12].

Whereas these results focus essentially on transverse vari-
ables, longitudinal variables also offer very interesting con-
clusions regarding hadronic vs partonic interactions, and the
possibility of qgp formation. In this contribution, I shall
therefore concentrate on longitudinal variables—in particu-
lar, rapidity distributions of net baryons. The analysis is
based on a Relativistic Diffusion Model(RDM) that allows
to deal with analytical solutions, rather than numerical codes
that often provide little insight into the physical assumptions.

II. RELATIVISTIC DIFFUSION MODEL

The Relativistic Diffusion Model emphasizes the
nonequilibrium-statistical features of relativistic heavy-ion
collisions. It also encompasses kinetic(thermal) equilibrium
of the system for times that are sufficiently larger than the
relaxation times of the relevant variables such as transverse
energyE' or rapidity y.

A first (linear) version of the RDM had been proposed in
1996 and applied successfully to the analysis of AGS and
SPS data, with an emphasis on transverse energy distribu-
tions integrated over all particle species, and the mean value
of the rapidity as function of transverse energy[13]. Al-
though transverse energy spectra of produced particles turn
out to be close to thermal equilibrium, some deviations from
equilibrium appear in the transverse variables. Based on ana-
lytical solutions of a transport equation, accurate predictions
of transverse energy spectra were made, such as in case of
the Pb-Pb system at the highest SPS energy.

Distributions of longitudinal variables are of greater inter-
est in the RDM-approach since they remain farther away
from thermal equilibrium. This is particularly true for the
rapidity y=1/2 ln(sE−pd / sE−pd), which is the Lorentz-
invariant counterpart of the velocity in the beam direction at
relativistic energies. Hence, I have focussed the RDM in
1999 on rapidity distributions[14]. For net (participant)
baryons,d-function initial conditions corresponding to the
beam rapidities are appropriate, and analytical solutions of
the rapidity transport equation can be compared with data for
net-proton rapidity spectra.

Although the initial conditions are less straightforward for
produced hadrons, Biyajimaet al. have started in 2002[15]
to use the analytical RDM—which they had developed inde-
pendently from, but with exactly the same result as in Refs.
[14,16]—for produced hadrons. Comparing to a vast amount
of RHIC data for produced charged hadrons(PHOBOS and
BRAHMS) at both 130 GeV and 200 GeV center-of-mass
energy per particle pair, they obtain high-precision fits of the
data with adjusted values of the friction coefficient(rapidity
relaxation time in my terminology) and the variance(rapidity
diffusion coefficient) [15,17]. With the RDM approach, they

are also able to relate pseudorapidity and rapidity distribu-
tions to each other, and to establish scaling of the charged-
particle rapidity distributions with the number of charged
hadrons(rather than the number of participants, or binary
collisions).

Based on rapidity diffusion coefficients that are not fitted,
but instead calculated analytically using a dissipation-
fluctuation theorem in the weak-coupling limit(where the
time between two subsequent interactions is large compared
to the duration of an individual interaction), in 1999 I have
obtained good RDM results for net-proton distributions at
the low SIS energies of about 1 GeV per particle. However,
this limit is not attained at AGS and SPS energies, where
progressively larger deviations between RDM weak-
coupling result and data occur[16]. These deviations have
been confirmed in an independent numerical calculation by
Lavagno in 2002[18].

Two solutions of this problem have been offered so far. In
a strong-coupling treatment, the diffusion coefficientDy in
rapidity space becomes time dependent[16,19]. For certain
parametrizations ofDystd, analytical solutions of the RDM
are still possible. As a simple substitute in comparisons with
data, the enhancement factor due to multiparticle(collective)
effects may be determined from the deviation between weak-
coupling solution and data. Typical results for net-proton ra-
pidity distributions at the lower SPS beam momentum of
40 GeV/c, the higher SPS beam momentum of 158 GeV/c
per particle, and RHIC(100 GeV/c per particle in each
beam) are shown in Fig. 1.

Alternatively, one may resort to nonextensive statistics,
with the underlying relativistic diffusion equation in rapidity
space becoming nonlinear. This approach has been used by
Alberico et al. in 2000 for transverse mass spectra and trans-
verse momentum fluctuations at SPS energies, assuming that
they were in statistical equilibrium[20]. In view of the dis-
crepancy between the nonequilibrium weak-coupling result
and the SPS Pb-Pb data, the approach has been extended to
the nonequilibrium situation in rapidity space, where Tsallis’
nonextensivity parameter[21] q has been determined from
the 158A GeV Pb-Pb data[18]. Whereas this may well be a
reasonable phenomenological parametrization of the data, it
appears to cover up the multiparticle effects which emerge
explicitly in the linear approach when comparing data and
weak-coupling dissipation-fluctuation theorem.

Subsequently both the linear(extensive) and the nonlinear
(nonextensive) approach to nonequilibrium processes in rela-
tivistic many-body systems are pursued further, with an em-
phasis on the most recent high-energy results which are in-
vestigated experimentally at RHIC. I concentrate here on net
baryons, and refer the reader to Biyajimaet al. for produced
hadrons in the linear RDM[15,17,22].

III. NET BARYON RAPIDITY SPECTRA

Rapidity distributions of participant(net) baryons are very
sensitive to the dynamical and statistical properties of
nucleus-nucleus collisions at high energies. Recent results
for net-proton rapidity spectra in central Au+Au collisions at
the highest RHIC energy ofÎsNN=200 GeV show an unex-
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pectedly large rapidity density at midrapidity. The BRAHMS
Collaboration finds[23] dN/dy=7.1±0.7 (stat.) ±1.1 (sys.)
at y=0.

The L ,L̄ feed-down corrections reduce this yield by
17.5%[23] when performed in accordance with the PHENIX
L−results[24] at 130 GeV, but the amount of stopping re-
mains significant, although a factor of about 4 smaller as
compared to Pb-Pb at the highest SPS energy.(A correspond-
ing STAR result[25] for y=0 at 130 GeV does not yet in-
clude the feed-down correction). Many of the available nu-
merical microscopic models encounter difficulties to predict
the net-proton yield in the central midrapidity valley of the
distribution, together with the broad peaks at the detected
positions.

Here I interpret the data in the nonequilibrium-statistical
Relativistic Diffusion Model. The net baryon rapidity distri-
bution at RHIC energies emerges from a superposition of the
beamlike nonequilibrium components that are broadened in
rapidity space through diffusion due to soft(hadronic, low
p') collisions and particle creations, and a statistical equilib-

rium (thermal) component at midrapidity that arises from
hard (partonic, highp') processes[26].

At RHIC energies, the underlying distribution functions
turn out to be fairly well separated in rapidity space. Since
the transverse degrees of freedom are in(or very close to)
thermal equilibrium, they are expected to decouple from the
longitudinal ones. The time evolution of the distribution
functions is then governed by a Fokker-Planck[27] equation
(FPE) in rapidity space[14,16,18,28,29,15,26]. In the more
general case of nonextensive(nonadditive) statistics[21] that
accounts for long-range interactions and violations of Boltz-
mann’s Stoßzahlansatz[18,28,20] as well as for non-
Markovian memory(strong coupling) effects[19,20], the re-
sulting FPE for the rapidity distribution functionRsy,td in
the center-of-mass frame is[26]

]

] t
fRsy,tdgm = −

]

] y
fJsydfRsy,tdgmg + Dstd

]2

] y2fRsy,tdgn.

s1d

Here, the rapidity diffusion coefficientDstd may in general
be time dependent, although I will use a constantDy in most
of the applications in this work. It accounts for the broaden-
ing of the rapidity distributions due to interactions and par-
ticle creations, and it is related to the drift termJsyd by
means of a dissipation-fluctuation theorem which will be
used to actually calculateDy. The drift Jsyd determines the
shift of the mean rapidities towards the central value, and I
shall discuss linear and nonlinear forms of this drift function.

In derivations of generalized FPE’s from the Boltzmann
equation, a nonlinear equation(m ,nÞ1; nonlinear drift func-
tion) could in principle be traced back to the nonlinearities in
the transition probabilities between single-particle states
[30]. However, this would not yet include non-Markovian
effects. Instead, Eq.(1) offers the possibility to describe
strong-coupling systems that are beyond the realm of the
Boltzmann equation.

Since the norm of the rapidity distribution has to be con-
served,m=1 is required here. It is convenient to introduce a
nonextensivity parameter that governs the shape of the
power-law equilibrium distribution,q=2−n [21]. In statisti-
cal equilibrium, transverse mass spectra and transverse mo-
mentum fluctuations in relativistic systems at SPS-energies
ÎsNN=17.3 GeV require values ofq very slightly above one,
typically q=1.038 for produced pions in Pb-Pb[20]. For q
→1, the equilibrium distribution converges to the exponen-
tial Boltzmann form, whereas for larger values ofq (with
q,1.5) significantly broader equilibrium distributions are
obtained, and the time evolution towards them becomes su-
perdiffusive[21,31].

To study rapidity distributions in multiparticle systems at
RHIC energies in a nonequilibrium-statistical framework
[14,16,18,28,29,26], I start withq=n=1 corresponding to the
standard FPE. For a linear drift function

Jsyd = syeq− yd/ty s2d

with the rapidity relaxation timety, this is the so-called
Uhlenbeck-Ornstein processf32g, applied to the relativistic
invariant rapidity. The equilibrium value isyeq=0 in the

FIG. 1. Net-proton rapidity spectra in the RDM, solid curves, at
the lower SPS momentum of 40 GeV/c per particle(top; data not
yet available), at 158 GeV/c (compared to NA 49 data[38]; cf. Fig.
6 for error bars) and at the highest RHIC energyÎsNN=200 GeV
(compared to preliminary BRAHMS data[23]). The variableY
=y/yb renormalizes they distributions in the center of mass with
the beam rapidities ±yb. Dashed lines are thermal equilibrium re-
sults without expansion. The transition from bell shaped to double
humped is clearly shown in the RDM.
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center-of-mass for symmetric systems, whereasyeq is calcu-
lated from the given masses and momenta for asymmetric
systems. Usingd-function initial conditions at the beam ra-
pidities ±yb s±5.36 at p=100 GeV/c per nucleond, the
equation has analytical Gaussian solutions. The mean val-
ues shift in time towards the equilibrium value according
to

ky1,2stdl = yeqf1 − exps− 2t/tydg ± yb exps− t/tyd. s3d

For a constant diffusion coefficientDy, the variances of both
distributions have the well-known simple form

s1,2
2 std = Dytyf1 − exps− 2t/tydg, s4d

whereas for a time-dependent diffusion coefficientDystd that
accounts for collectivesmultiparticled and memory effects
the analytical expression for the variances becomes more in-
volved f19g. At short timest /ty!1, a statistical description
is of limited validity due to the small number of interactions.
A kinematical cutoff prevents the diffusion into the unphysi-
cal region uy u .yb. For larger values oft /ty, the system
comes closer to statistical equilibrium such that the FPE is
valid.

Since the equation is linear, a superposition of the distri-
bution functions[14] emerging fromR1,2sy,t=0d=dsy7ybd,

Rsy,td =
1

2Îf2ps1
2stdg

expF−
sy − ky1stdld2

2s1
2 G

+
1

2Îf2ps2
2stdg

expF−
sy − ky2stdld2

2s2
2 G , s5d

yields the exact solutionsnormalized to 1d. With the total
number of net baryonssor protons, depending on the experi-
mental resultsd N1+N2 the rapidity density distribution of net
baryonssprotonsd becomes

dNsy,t = tintd
dy

= N1R1sy,tintd + N2R2sy,tintd. s6d

The value oft /ty at the interaction timet=tint fthe final time
in the integration of Eq.s1dg is determined by the peak po-
sitions f14g of the experimental distributions. The same ap-
proach has also been applied successfully by Biyajimaet al.
to produced particles at RHIC energies[15], although the
initial conditions are less straightforward for produced par-
ticles, as compared to participant baryons(they use
d-function initial conditions also for produced hadrons).

The microscopic physics is contained in the diffusion co-
efficient. Macroscopically, the transport coefficients are re-
lated to each other in the weak-coupling limitsDy

wd through
the dissipation-fluctuation theorem(Einstein relation) with
the equilibrium temperatureT,

Dy
w = a ·T . fsty,Td. s7d

In Ref. f14g I have obtained the analytical result forDy
w as

function of T and ty from the condition that the stationary
solution of Eq.s1d is equated with a Gaussian approximation
to the thermal equilibrium distribution iny spaceswhich is
not exactly Gaussian, but very close to itd as

Dy
wsty,Td =

1

2pty
HCsÎs,Td ·F1 + 2

T

m
+ 2S T

m
D2GJ−2

3expS2m

T
D s8d

with CsÎs,Td given in Ref.f16g in closed form: for a given
equilibrium distribution, the rapidity diffusion coefficient
is then determined by the dissipative constantty. The pro-
ton mass ism, andCsÎs,Td ensures that the corresponding
thermal distribution functionRth is normalized to 1 for
each temperatureT

E
−`

+`

Rthsyddy= 1. s9d

This yields

CsÎs,Td = yb3E
−`

+`

f1 + 2xTsyd + 2xTsyd2gexpS − 1

xTsyd
Ddy4

−1

s10d

with the beam rapidityyb in the center of mass, and

xTsyd =
T

m coshsyd
. s11d

sNote that in Ref.f16g the result is written for the beam
rapidity in the laboratory systemy1=5.83 at the SPSenergy
for Pb-Pb, corresponding here toyb= ±2.195 in thecenter
of massd.

At fixed beam rapidityyb, the diffusion coefficient dis-
plays the expected behavior, namely, it rises with increasing
temperature of the corresponding equilibrium distribution as
in the Einstein relation; the rise is almost linear withT. This
allows to maintain the linearity of the model and hence, to
solve the FPE analytically, although small corrections are to
be expected. They cause minor deviations in the calculated
rapidity distributions that are within the size of the error bars
of the experimental data at SPS energies.

IV. STRONG-COUPLING DIFFUSION: MEMORY
EFFECTS

In the linear model, net baryon rapidity spectra at low SIS
energies(about 1 GeV per particle) are well reproduced,
whereas at AGS and SPS energies I find discrepancies[16] to
the data that rise strongly withÎs. The origin are most likely
strong-coupling effects at high energy: the time between two
subsequent interactions becomes smaller than the duration of
an individual interaction, such that the system becomes non-
Markovian and develops memory effects. In a schematic ap-
proach that serves to outline the effect analytically, one may
account for the system memory by a time-dependent diffu-
sion coefficient through a relaxation ansatz
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] Dystd
] t

= −
1

ts
fDystd − Dy

wg. s12d

Here the diffusion coefficient for weak couplingDy
w is ap-

proached for timest@ts larger than the timets that is char-
acteristic for strong coupling—when all secondary particles
have been created.Dy

w is well defined in terms of the tem-
perature of the corresponding equilibrium distribution, and
the particle mass as discussed above. However, for short
times in the initial phase of the collision before and during
particle production, the strong-coupling diffusion coefficient
Dy

s dominates and enhances the diffusion iny space beyond
the weak-coupling value. This enhancement rises strongly
with incident energy as shown in Ref.f16g. It is decisive for
a proper representation of the available data for relativistic
heavy-ion collisions at and beyond SPS energies. The relax-
ation equation for the rapidity diffusion coefficient with the
strong-coupling valueDy

s as an initial condition can be
solved as

Dystd = Dy
wF1 − expS−

t

ts
DG + Dy

s expS−
t

ts
D . s13d

A lower limit for the characteristic time for strong coupling
ts can be estimated from the time delay of particle produc-
tion due to quantum coherencef33g which yields about
0.4 fm/c at SPS energies, or simply from the uncertainty
principle, which gives about the same value for a pion.
The strong-coupling timets is, however, much larger
since it refers to many particles that are created from the
available relativistic energy. The transverse energy relax-
ation time f13g—which is of the order of, but slightly
smaller than the interaction time at SPS energies—gives a
reasonable estimate for the strong-coupling time such that

ts , tint , ty s14d

at SPS energies. Not much is presently known about the
strong-coupling diffusion coefficientDy

s except that it is sig-
nificantly larger than its weak-coupling counterpart at these
energies. UnlikeDy

w, it cannot be derived from the known
equilibrium distribution. Moreover, energy and momentum
conservations are not fulfilled in the strong-coupling phase
of the collision. Leaving a microscopic model to the future, I
presently adjust in the linear modelDyst=tintd to the data as
outlined in the following section. Due to the strong coupling
at short times t /ty!1, Dy is initially far above the weak-
coupling valueDy

w s8d, and it remains there throughout the
interaction time at SPS energies, even though it drops
slightly until freeze-out occurs. The corresponding variance
in rapidity space is obtained analytically through a solution
of the corresponding differential equation for the variances
with the time-dependent diffusion coefficients13d contained
in the inhomogeneity

d

dt
sy

2std + 2sy
2std = 2Dystdty. s15d

It can be written as a sum of weak- and strong-coupling
contributions, respectively,

sy
2std = sw

2std + ss
2std s16d

with

sw
2std = Dy

wty exps− 2t/tydHfexps2t/tyd − 1g

+
2ts

ty − 2ts
FexpS− t/ty

ty − 2ts

ts
D − 1GJ s17d

and

ss
2std = Dy

sty exps− 2t/tydF − 2ts

ty − 2ts
G

3FexpS− t/ty
ty − 2ts

ts
D − 1G . s18d

In the limit of ts→0 the fluctuations due to strong coupling
vanish, and the remaining weak-coupling result for the vari-
ance of the rapidity distribution function attains the familiar
form s4d

sy
2std → Dy

wtyf1 − exps− 2t/tydg for ts → 0. s19d

Results for the standard deviations inY spacesY=y/ybd of
the superposed FPE solutionss5d that build up the baryon
rapidity distributions in the relativistic system 158 GeV/c
per nucleon Pb-Pb are shown in Fig. 2. The strong-
coupling valuesupper curved would persist if no particles
were created. Due to particle creation, the actual fluctua-
tions pass a maximum and gradually approach the weak-
coupling result for large times. The interaction timeshere
for a central collisiond corresponds approximately to the
maximum: freeze-out occurs for large fluctuations in ra-
pidity at SPS energies and beyond.

V. FROM SPS TO RHIC ENERGIES

At SPS energies[34], the discrepancy between weak-
coupling result and data has recently been confirmed inde-
pendently in a numerical calculation[18,28] based on a non-
linear drift

FIG. 2. Standard deviationssYstd of the solutions of the Fokker-
Planck equation that build up the Pb-Pb baryon rapidity distribution
at SPS momenta of 158 GeV/c per particle inY space(Fig. 1). The
upper curve is the strong-coupling result. Due to particle creation,
the actual fluctuations(middle curve) gradually approach the weak-
coupling result, lower curve. The interaction timetint /ty (arrow)
approximately corresponds to the maximum of the fluctuations in
rapidity space.
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Jsyd = − a ·m' sinhsyd ; − a · p s20d

with the transverse massm'=Îm2+p'
2 , and the longitudi-

nal momentum pi. Together with the dissipation-
fluctuation theorems7d, this yields exactly the Boltzmann
distribution as the stationary solution of Eq.s1d for n=q
=1. The corresponding numerical solution withd-function
initial conditions at the beam rapidities is, however, only
approximately correct since the superposition principle is
not strictly valid for a nonlinear drift. Still, the numerical
result shows almost the same large discrepancy between
data and theoretical rapidity distribution as the linear
model. In aq=1 framework, the net-proton distribution in
Pb-Pb at the highest SPS energy requires a rapidity width
coefficient ÎDyty that is enhanced beyond the theoretical
value s7d by a factor ofgsÎsd.2.6 due to memory and
collective effectsf14,16,19g, Fig. 1.

Alternatively, a transition to nonextensive statistics
[20,21,31] maintaining the weak-coupling diffusion coeffi-
cient from Eq.(7) requires a value ofq that is significantly
larger than one. In an approximate numerical solution of Eq.
(1) with the nonlinear drift(20), q=1.25 has been determined
for the net-proton rapidity distribution in Pb-Pb collisions at
the SPS[18,28]. The only free parameter isq, whereas in the
linear q=1 case the strong-coupling enhancement ofDy be-
yond Eq.(7) is the only parameter.

This value ofq in the nonlinear model is considerably
larger than the resultqsÎsNNd=1.12 extrapolated from Wilk
et al. [29] at the SPS energyÎsNN=17.3 GeV. Here, the rela-
tivistic diffusion approach is applied to produced particles in
proton-antiproton collisions in the energy rangeÎs
=53 GeV–1800 GeV, and used to predict LHC results. The
nonlinearityq.1 appears to be an essential feature of thepp̄
data. The larger value ofq in heavy systems as compared to
pp̄ at the same NN-center-of-mass energy emphasizes the
increasing superdiffusive effect of multiparticle collisions

both between participants, and between participants and pro-
duced particles. It is, however, conceivable that both a vio-
lation of Eq.(7) due to memory effects, andq.1 have to be
considered in a complete description.

The Au−Au system at RHIC energies is then investigated
first in the linearq=1 model for central collisions(10% of
the cross section). Based on the experience at AGS and SPS
energies[14,16,19], it is expected that the nonequilibrium
net-proton rapidity spectrum calculated with the weak-
coupling dissipation-fluctuation theorem(7) underpredicts
the widths of the nonequilibrium fractions of the experimen-
tal distribution significantly. At RHIC energies, the precise
value of the enhancement due to multiparticle effects re-
mains somewhat uncertain at present since the largest-
rapidity experimental points are on the edge of the nonequi-
librium distribution [23,35]. Typical solutions of the linear
FPE for various values of t /ty representing the diffusive time
evolution of the baryonic system due to interactions and par-
ticle creations are shown in Fig. 3.

In the comparison with the BRAHMS data[23] shown in
Fig. 4 (bottom), the temperatureT=170 MeV is taken from a
thermal fit of charged antiparticle-to-particle ratios in the
Au−Au system at 200 GeV per nucleon[4,36], and the the-
oretical value of the rapidity width coefficient calculated
from the analytical expression(6) is ÎDyty=7.6310−2. The

FIG. 3. Analytical solutions of the Relativistic Diffusion Model
for various values of t /ty representing the diffusive time evolution
of the baryonic system(here: net protons) due to interactions and
particle creations for central Au-Au at RHIC energiesÎsNN

=200 GeV. Here the net-proton content is 136 protons. This sub-
system remains in a nonequilibrium state in the actual experiment,
cf. Fig. 6. FIG. 4. Nonequilibrium contributions to the net-proton rapidity

spectra of central Au-Au atÎsNN=200 GeV in the RDM with an
equilibrium temperature ofT=170 MeV (bottom). The solid curve
is obtained in the linear modelsq=1d. Its width is (“anomalously”)
enhanced as compared to the theoretical weak-coupling value(dot-
ted curves) by gsÎsd=3.7 due to multiparticle effects[16,19] ac-
cording to the preliminary BRAHMS data[23], squares. The net-
proton content is 158. The dashed curve corresponds toq=1.4 and
km'l=1.2 GeVin the nonlinear model. Reasonable agreement with
the midrapidity data requires that 14% of the net protons reach local
thermal equilibrium in a discontinuous transition, top(dashed
curve, thermal equilibrium result for 22 protons; shaded area,
broadening due to multiparticle effects withgsÎsd=3.7).
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weak-coupling nonequilibrium distributions without en-
hancement due to multiparticle effects(dotted curves in Fig.
4) are by far too narrow to represent the data, justifying the
term “anomalous” for the experimental result.

The calculated distributions become even slightly nar-
rower whenT is lowered in order to account for the fact that
the equilibrium temperature in the diffusion model should be
associated with the kinetic freeze-out temperature(which is
not yet precisely known at RHIC), rather than the chemical
freeze-out temperature. As has been discussed in Ref.[16],
the weak-coupling rapidity diffusion coefficient is propor-
tional to the temperature as in the theory of Brownian motion
[37], Dy~T/ty. Hence, lowering the temperature by 40 MeV
reduces the widths of the nonequilibrium distributions by
12%—which is hardly visible on the scale of Fig. 4.

It was shown in Ref.[18] for SPS results that the discrep-
ancy between nonequilibrium weak-coupling result and data
persists in case of the nonlinear drift(20) that yields the
exact Boltzmann-Gibbs equilibrium solution forq=1,

E
d3N

d3p
=

d3N

dy ·m'dm'df
~ E · exps− E/Td. s21d

Hence, it is expected that the nonlinear drifts20d does not
improve the situation in theq=1 case at RHIC energies.

Instead, an enhancement of the weak-coupling rapidity
width coefficient by a factor ofgsÎsd.3.7 due to collective
and memory effects in the system corresponding to a viola-
tion of Eq. (7) yields a good reproduction of the nonequilib-
rium contributions withtint /ty=0.26. However, the midra-
pidity valley that is present in the data is completely absent
in the extensive nonequilibriumq=1 case, solid curves in
Fig. 4 (bottom).

This remains true in the nonextensive case
s1,q,1.5d, with an approximate distribution function

[18,21,26,28,29,31] that is given by a linear superposition of
power-law solutions of Eq.(1),

R1,2sy,td = F1 − s1 − qd
m'

T
coshsy − ky1,2stdldG1/1−q

.

s22d

The dashed curves in Fig. 4sbottomd show the result forq
=1.4, T=170 MeV, and a meantransverse masskm'l
=1.2 GeV. This solution is far from the nonextensive
equilibrium distribution which would be reached for
ky1,2st→`dl=yeq, and it is significantly below the midra-
pidity data. The result is even worse for larger values of
m'. In contrast, the Pb-Pb data at SPS energiesf38g are
well described both in the linear modelf14g sFig. 6, topd
and in the nonlinear casescf. Ref. f18g for results with a
time-dependent temperature and an integration over trans-
verse massd.

VI. LOCAL DECONFINEMENT AT RHIC

It turns out, however, that the RHIC data can be inter-
preted rather precisely in the linearq=1 framework with the

FIG. 5. Analytical solutions of the Relativistic Diffusion Model
for various values of t /ty representing the time evolution of a local
subsystem of net protons in central Au-Au at RHIC energiesÎsNN

=200 GeV with a sudden enhancement of the number of degrees of
freedom due to deconfinement, and the subsequent fast local equili-
bration. The net-proton content of this local subsystem is 22. The
shaded area is the local equilibrium distribution centered at midra-
pidity.

FIG. 6. Net-proton rapidity spectra for central collisions of
Au-Au at ÎsNN=200 GeV consist of two nonequilibrium compo-
nents(solid peaks, bottom; 136 protons) plus a local equilibrium
contribution atT=170 MeV. The shaded area shows its broadening
due to collective(multiparticle) effects by the same factorgsÎsd
=3.7 as the nonequilibrium fractions. After hadronization, it con-
tains Zeq.22 protons. Superposition creates the flat valley near
midrapidity (bottom) in agreement with the preliminary BRAHMS
data points[23]. Diamonds includeL feed-down corrections aty
=0 s17.5%d and y=2.9s20%d, respectively. Arrows indicate the
beam rapidities ±yb. At SPS energies(top), NA49 data [38] for
central Pb-Pb eventss5%d including L feed-down corrections are
compared with the pure nonequilibrium result of the linear model
[14,19]. Here, the net-proton content is 164.
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conjecture that a fraction ofZeq.22 net protons near midra-
pidity reaches local statistical equilibrium in the longitudinal
degrees of freedom, Figs. 4(top) and 5. The variance of the
equilibrium distributionReqsyd at midrapidity is broadened as
compared to the Boltzmann result due to collective(multi-
particle) effects by the same factor that enhances the theoret-
ical weak-coupling diffusion coefficient derived from Eq.
(7), shaded areas in Figs. 4 and 5. This may correspond to a
longitudinal expansion(flow) velocity of the locally equili-
brated subsystem as accounted for in hydrodynamical de-
scriptions. In the nonextensive model, the corresponding lo-
cal equilibrium distribution is broadened(blue shifted)
according toq.1.4. Here the enhanced value ofq appears
as a convenient parametrization of collective expansion
(“longitudinal flow”).

Microscopically, the baryon transport over 4–5 units of
rapidity to the equilibrated midrapidity region is not only due
to hard processes acting on single valence(di)quarks that are
described by perturbative QCD, since this yields insufficient
stopping. Instead, additional processes such as the nonpertur-
bative gluon junction mechanism[39] are necessary to pro-
duce the observed central valley. This may lead to substantial
stopping even at LHC energies where the separation of non-
equilibrium and equilibrium net baryon fractions in rapidity
space is expected to be even better than at RHIC. In the late
thermalization stage[40], nonperturbative approaches to
QCD thermodynamics are expected to be important.

Recent work indicates that one may account for the ob-
served stopping in heavy-ion collisions at SPS and RHIC
energies with string-model parameters determined from
hadron-hadron collisions[41]. If this was confirmed, the cor-
responding rapidity distributions would not be considered to
be anomalous from a microscopic point of view. However,
this view does not offer a distinction between nonequilibrium
and equilibrium contributions to the net baryon rapidity
spectra, which both exist at RHIC energies, and are anoma-
lously broadened.

Macroscopically, the complete solution of Eq.(1) in the
q=1 case is a linear superposition of nonequilibrium and
local equilibrium distributions(Fig. 6, bottom)

Rsy,t = tintd = R1sy,tintd + R2sy,tintd + Req
locsyd s23d

with the same enhancement factorgsÎsd due to multiparticle
scollectived effects for all three distributions. The net-
baryon rapidity distribution becomes

dNsy,t = tintd
dy

= N1R1sy,tintd + N2R2sy,tintd + NeqReq
locsyd

s24d

with the numberNeq of net baryonsshere: net protonsd in
local equilibrium near mid rapidity, andN1+N2+Neq equal
to the total number of net baryonss158 net protons for cen-
tral Au-Aud. This yields a good representation of the prelimi-
nary BRAHMS dataf23g. sIn theq.1 case, the correspond-
ing solution is questionable because the superposition
principle is violatedd. Based on Eq.s24d, the transition from
net-proton rapidity spectra with a central plateau in Pb-Pb at
the lower SPS energiesf19g, via a double-humped distribu-

tion at the maximum SPS energyf14,18,19,28,38g to the
central valley at RHICf23,26g is well understood. It has not
yet been possible to identify a locally equilibrated subsystem
of net baryons at midrapidity below RHIC energies, although
it cannot be excluded that it exists. At SPS energies, the data
f38g are well described by the nonequilibrium distributions,
and it is much more difficultsand probably impossibled to
identify a locally equilibrated component because the rel-
evant rapidity region is comparatively small, and an equili-
brated contribution cannot be separated from the nonequilib-
rium components in rapidity space. Inpp̄ collisions atÎs
=53–900 GeV, noconvincing signatures of a phase tran-
sition were foundf42g.

Most remarkably, Figs. 4–6 suggest that in central Au
−Au collisions at ÎsNN=200 GeV there is no continuous
transition from the nonequilibrium to the equilibrium contri-
bution in net-proton rapidity spectra as function of time. The
central valley in net-proton rapidity spectra at RHIC energies
could thus be used as an indicator for partonic processes that
lead to a baryon transfer over more than four units of rapid-
ity, and for quark-gluon plasma formation. The discontinuity
may well be due to a sudden enhancement in the number of
degrees of freedom as encountered in the deconfinement of
participant partons, which enforces a very rapid local equili-
bration in a fraction of the system as indicated in Figs. 4 and
5 through a discontinuity in the time evolution of the solu-
tions of the FPE, which are afterwards very close to the
equilibrium result. Here, the sudden enhancement in the
number of degrees of freedom by a factor of about 6 in the
quark-gluon plasma as compared to the hadronic phase[2] is
modeled by a corresponding increase in time, Fig. 5.

The linear RDM with three sources[26] including a local
equilibrium fraction near midrapidity has recently also been
adopted by Biyajimaet al. [22] for produced particles in
analyses of BRAHMS[43] and PHOBOS[44] pseudorapid-
ity data at Îs=130 GeV and 200 GeV, using the proper
Jacobian to transform fromy to h=−ln tansu /2d. In particu-
lar, the PHOBOS data[44] at 130 (200) GeV and 0–6%
centrality are well reproduced with 3134(3858) charged had-
rons in the central source indicative of an equilibrated qgp,
whereas only 896(1102) charged hadrons reside in the non-
equilibrated fragmentation regions.

These very recent results for produced charged hadrons
are, however, still somewhat ambiguous in view of(1) the
uncertainties regarding the initial conditions for produced
particles in rapidity space and(2) the difficulties to clearly
separate fragmentation and central regions for produced par-
ticles. Nevertheless, the RDM analyses of produced hadrons
by Biyajima et al. [42] provide additional evidence for local
equilibrium near midrapidity.

VII. CONCLUSION

To conclude, I have interpreted recent results for central
Au-Au collisions at RHIC energies in a Relativistic Diffu-
sion Model (RDM) for multiparticle interactions based on
the interplay of nonequilibrium and local equilibrium(“ther-
mal”) solutions. In the linear version of the model, analytical
results for the rapidity distribution of net protons in central
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collisions have been obtained. The anomalous enhancement
of the diffusion in rapidity space as compared to the expec-
tation from the weak-coupling dissipation-fluctuation theo-
rem due to high-energy multiparticle effects has been dis-
cussed using extensive and nonextensive statistics.

A significant fraction of about 14% of the net protons
reaches local statistical equilibrium in a fast and discontinu-
ous transition which is likely to indicate parton deconfine-
ment. The precise amount of protons in local equilibrium is
related to the experimental value of the rapidity density close

to y=0 and hence, possible changes in the final data will
affect the percentage. It has not yet been possible to isolate a
corresponding fraction of longitudinally equilibrated net pro-
tons in the Pb-Pb system at SPS energies. Since no signa-
tures of a transition to the quark-gluon plasma have been
observed inpp̄ collisions, quark-matter formation is clearly a
genuine many-body effect occurring only in heavy systems
at sufficiently high-energy density. Consequently, a detailed
investigation of the flat midrapidity valley found at RHIC,
and of its energy dependence is very promising.
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