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Within the framework of the relativistic plane wave impulse approximation, we study the observable con-
sequences of employing a complete Lorentz invariant representation of the nucleon-nidig@tattering
matrix in terms of 44 independent amplitudes, as opposed to the previously employed, but ambiguous, five-
term Lorentz invariant parametrization of tiNN scattering matrix, for the prediction of complete sets of
exclusive(p,2p) polarization transfer observables. Two kinematic conditions are considered, namely, proton
knockout from the 8, state of2%%b at an incident energy of 202 MeV for coplanar scattering angles
(28.0°,-54.6%, as well as an incident energy of 392 MeV for the angle a.5°,-80.0}. The results
indicate that certain spin observables are ideal for discriminating between the two representations.
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[. INTRODUCTION tent with parity and time-reversal invariance as well as
charge symmetry. These invariant amplitudes are obtained by
fitting to free NN scattering data. There are, however, an
infinite number of five-term representations with the same
on-shell matrix elements for freN scattering, and which
also respect the above symmetijés]|. Hence, free on-shell
RN scattering data cannot distinguish between different five-
term representations. However, for applications to nuclear
Creactions, different five-term representations result in drasti-
Schrodinger-equation-based predictions completely faiFa"y (_jifferent observables, thereby clouding physical inter-
[1-3). For both dynamical models, however, the comparisorPrétation of the data. In Ref$6-8 we demonstrated the
of theoretical predictions to unpolarized cross section datdmitations of the 1Al representation for applications to in-
yields similar spectroscopic factors which are also in goodflUsive quasielastic proton-nucleus scattering: for example,
agreement with those extracted frof,e'p) studies. The ©ne type of five-term representation descrilpsp’) data,
above results highlight the important role that spin observWhereas a different representation is required(fon) scat-
ables(such as the analyzing powsslay, as opposed to un- tering.
polarized cross sections, in effectively discriminating be- The ambiguities associated with the 1Al representation
tween different dynamical effects and, at the same time, alsoan be eliminated by employing the more appropriate, but
pointing to the Dirac equation as the preferred equation ofore complicated, IA2 representation developed by Tjon and
motion. Wallace [9-12, whereby theNN scattering matrix is ex-
However, before claiming the latter statement with absopanded in terms of a complete set of 44 independent invari-
lute certainty, it is necessary to subject our relativistic DWIA ant amplitudes consistent with the above-mentioned symme-
models to additional tests, such as comparing model predigries. It follows therefore that IA1 neglects 39 additional
tions to additional spin observable data, other than the comamplitudes that should appear on the grounds of very general
monly measured analyzing power. In particular, it is impor-symmetry principles. The aim of this paper is to apply the
tant to eliminate obvious ambiguities associated with the A2 representation, for the first time, to exclusive proton
choice of representation for ti¢N scattering matrix. Essen- knockout reactions and to compare results to corresponding
tially, the problem is related to the direct application of thelAl predictions of complete sets of spin observables.
free on-shellNN scattering matrix for the description of We have already studied the observable consequences of
nucleons scattering from nuclei: the external nucleons paremploying the 1A2, rather than the IA1 representation, for
taking in free on-shelNN scattering are represented by free describing inclusive quasielastic proton-nucleus scattering
positive-energy Dirac spinors, whereas for scattering fronf13,14. The aim of the latter paper was to identify spin
nuclei the scattering wave functions are linear combinationsbservables which are sensitive enough to extract informa-
of both positive- and negative-energy Dirac spin@ese Sec. tion regarding the modification of the properties of the strong
V). To date, all applications of Dirac relativity to describe nuclear force by nuclear matter. In particular, we demon-
exclusive(p,2p) reactions have adopted the so-called IAlstrated that the IA1 representation severely overestimates the
parametrization, whereby the fré¢N scattering matrix is importance of nuclear medium modifications on il in-
parametrized in terms of five Loren{scalar, pseudoscalar, teraction, whereas application of the IA2 representation sug-
vector, axial-vector, and tenganvariants which are consis- gests that quasielastic spin observables are insensitive to

The representation of the nucleon-nucléhiiN) scattering
matrix, within the context of an appropriate dynamical
framework is crucial for the description of nuclear reactions
and nuclear structure.

Recently, we demonstrated that a model based on the rel
tivistic distorted wave impulse approximatigBWIA) pro-
vides an almost perfect description of exclusipe2p) ana-
lyzing power data, whereas corresponding nonrelativisti
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these effects. This emphasizes the critical role played by the ﬁl,
representation of thEN scattering matrix in giving a correct O/'
interpretation of the results. .
Although we have already demonstrated that a quantita- - b .
tive description of(p,2p) spin observable data requires the O ! _. _(_'_}_ .
inclusion of nuclear medium effects on the scattering wave A R
functions[2], in this paper we consider a relativistic plane 2 s Te.
wave approximation, thus neglecting the role of distorting O\
optical potentials on the scattering wave functions. This sim-
plification will allow us to uniquely focus on the effect of the

different representations employed fér Two kinematic k
conditions are considered, namely, proton knockout from the

3sy, state of2°Pb at an incident energy of 202 MeV for Initial channel Final channel
coplanar scattering angl€8,, 6,)=(28.0°,-54.69, as well

as an incident energy of 392 MeV for coplanar scattering FIG. 1. Schematic representation for the coplaim2p) reac-
angles(6,, 6,)=(32.5°,-80.09. The reaction kinematics at tion of interest.

202 MeV are chosen to correspond to recent measurements

by Nevelinget al.[1] at iThemba Laboratory for Accelerator

Based Scienced-aure, South Africa and the kinematics at I .
392 MeV correspond to present and future experimental prognd also the binding energy of the proton that is to be

Japar{15]. In addition, the above kinematics are also chosen,ise stated, all kinematic quantities are expressed in natural
so as to minimize complications associated with the incluypits (.e., i=c=1).

still maintaining the validity of the impulse approximation. re|ativistic transition matrix element associated with Fig. 1 is
In Sec. I, we present the formalism for the relativistic given by[2,3]

plane wave impulse approximation. Thereafter, in Sec. lll,

we derive expressions for the relativistic scattering matrix _ | waaoeL I ayE
element based on both IA1 and IA2 representations of the Toom(SaSarn ) = | X7 (R ke S2) © LY
NN interaction. The expressions for calculating complete sets

of spin observables are presented in Sec. IV. Results are XF[Y(% ke S2) © dLam (K], (1)
given in Sec. V, and we summarize and draw conclusions in
Sec. VL. where ® denotes the Kronecker product. The four-
component scattering wave functiogé, Ei ,S;) are solutions
Il. RELATIVISTIC PLANE WAVE IMPULSE to the fixed-energy Dirac scattering equation? (X, K, s,)
APPROXIMATION is the relativistic scattering wave function associated with the

Consider an exclusive(p,2p) reaction, written as incident particlea with outgoing boundary conditior{sndi-

A(a,a'b)C for notational purposes and depicted schematicated by the superscrigt)], wherek, is the momentum of
cally in Fig. 1, whereby an incident protanknocks out a particlea in the laboratory frame, ansl is the spin projec-
bound protorb from a specific orbital in the target nucleus tion thereof with respect tk, as thez-quantization axis;

A, resulting in three particles in the final state, namely, the$->(>z,|2-,s,-) is the adjoint relativistic scattering wave func-

H H H ’ ]
rec.0|l residual nucleus and_ tvyo outgoing protona’ andb tion for particlej [j=(a’,b)] with incoming boundary condi-
which are detected in coincidence at coplanar laborator

scattering anglegn opposite sides of the incident beaéy, fions [indicated by the superscrigt)], wherek; is the mo-
and 6,, respectively. All kinematic quantities are completely Mentum of particlej in the laboratory frame, ang is the
determined by specifying the rest massesof particles, spin projection thereof with respect tdk; as the
wherei=(a,A,a’,b,C), the laboratory kinetic energy, of  z-quantization axis. The bound state proton wave function
incident particlea, the laboratory kinetic energy,, of scat- ¢E33MJ(>?), labeled by single-particle quantum numbérsJ,
tered particlea’, the laboratory scattering anglég and 6,, andMj, is given by

UL O(L, M3 = S5, 5,5819, M) Y -5, (0 Xs, -
Wy '

PICEES)
ST X ({23 = L, My = 5,3,5819, M) Y3 m -5, (0 Xs,

S8
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where the brackets andY denote the usual Clebsch-Gordan - - N
coefficients and spherical harmonics, respectivelys i-%, ¢’LJMJ(K)' ¢L‘]MJ(_ ke) = f d°xe d’LJMJ(i)' (®)
and
0 1 where ke is the recoil three-momentum of the residual
XsB:—% - <1> and XsB:% - (0) 3) nucleus given by
ke=—K==(Ka + K~ k). 9

The upper- and lower-component radial wave functions

u(x) and w_y(x), respectively, are obtained via self- Equation(7) may be interpreted as the transition matrix ele-
consistent solution of the Dirac-Hartree field equations ofment for a two-body scattering process in which the initial
guantum hadrodynamid4.9]. proton is bound. Combining Eq&2) and (8) yields

F denotes the relativistidNN scattering matrix. In this - -
¢rom,(K) = dLam,(— ke

paper we will consider two different representationsFof
(see Sec. Il and, in particular, study the sensitivity of ex- ( 4ri Ly,_JMJ(ch,qSkc)u,_ (ko) )
clusive(p, 2p) polarization transfer observables to these rep- = 23141

resentations. In a previous paper we demonstrated the impor- sl Vas-Le1amy (ks D) Was- a(ke)
tance of including distorting optical potentials on the (10
incident and outgoing scattering wave functions for a correct .
description of(p, 2p) analyzing power$2]. However, in or- with

der to simplify the present analysis, we consider a relativistic o

plane wave model, whereby all distorting optical potentials uLy(ke) :J dx X j(keX)upy(X), (11
are set equal to zero in the Dirac equation. This approxima- 0

tion will allow us to uniquely focus on the effect of the

different representations employed f&. Second, plane W2J—LJ(kC)=J dx X joy_ (KeX)Wi 5(X), (12)
wave calculations always form a baseline against which full ’ 0

distorted wave calculations must be tested. With these cave-
ats in mind we now proceed to derive an expression for _ 1 )
. ) 0,¢) = L3, u—S,S|dwY, .-« (6, ’
Tiowm, based on the relativistic plane wave approximation. Vil 6.¢) 2,< 24~ S S L Sz( ¢)st
The scattering solutions to the free Dirac equation are >
given by 13

N N wherej X) denotes the usual spherical Bessel functions.
l,b(+)()_(),ka,sa):elka'XU(ka,Sa), JL(kC) p

R s = ek T lll. LORENTZ INVARIANT REPRESENTATIONS
YKk Sr) =€ U 820, OF THE NN INTERACTION

J—)(;, Eb, ) = e—an-zU(gb’ ) (4) The relativistic scattering.matriﬁ is one of 'ghe princ?pal
components in the calculation of the transition matrix ele-
where the Dirac spinor ment. Since we are assuming the impulse approximation to

X be valid, we employ the freBIN interaction forF. The pur-
m (Y4 § pose of this investigation is to study how sensitive the polar-
ok (5 ization transfer observablés be defined in Sec. IVare to

two different representations &% The first form ofF which
we will employ is known as the IA1 representation and is a
parametrization of the scattering matrix in terms of five com-

is normalized such that

- - lex amplitudeq20]:
U(k,$)U(k,)=1. (6) Plexampliudedz
T
Xs refers to the usual two-component Pauli spinors defined E= SFE (o) (14)
in Eg. (3), m, denotes the-rest mass of partidleand E; = '
=Vkl+n¥. Substitution of Eqs(4) and (5) into Eq. (1)  \ynere
results in the following expression for the transition ma-
trix element: A e {1y, Y4 P ye o) (15
T (Sa,SauSo):[U(ﬁ r,sar)®U(I2b,sb)]I5[U(I2 'Sy) The IAl representation oF has been used in relativistic
HM 2 ) 2 descriptions of elastif20-23 and inelastid 24—-26 scatter-
@ dLm.(K)] (7) ing, as well as inclusive quasielastié—8,27,28 proton-
’ nucleus scattering. This five-term representation is consistent
with with parity and time-reversal invariance as well as charge
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symmetry. However, other five-term representations whichand(16) one can now write down expressions fE;_rJMJ in
respect the above-mentioned symmetries are also possiblgq. (7) based on both IA1 and IA2 representations of the
For example, there are the Goldberger-Nambu-Oehm@|N scattering matrix. For the IA1 representation one obtains
(GNO) invariants[4] as well as the perturbative invariants
[5]. The invariant amplitudes in each of the representations - — . .
of F are connected via matrix relations given in Ri&f and Tiom,(SarSarsSp) = > FL [U(Kar,Sa) ® U(Ky,Sp)] (\-@ N)

are obtained by fitting to free scattering da&. Physical s
NN scattering data therefore completely determine the ampli- X[U(KarSs) ® diom (K], (18)
J

tudes in a five-term representation f A priori there is no

reason why one five-term representation should be choseand for the IA2 representation,

above another. The IA1 representation form is very conve-

nient since its amplitudes are free of kinematic singularities

at #=0 and 6= (6 is the center-of-mass scattering angle

and the one-meson exchange contributions are naturally writ- . R R

ten in terms of Fermi covarianfg9]. ® U(Kp,So)1 [A, (Ko, M) ® A, (K, m)]
However, five-term representations are ambiguous, since : °

the application of different parametrizations to describe

T

13

Teom(SaSa %) = 2 2 FIP [U(Ker,Sa0)

n=1 {p}

nucleons scattering from nuclei, as opposed to free on-shell XKn[A, (Iza,m) ® Apz(iz,m)]
NN scattering, gives different predictions for the same ob- . ? R
servables. Several authd@11,3Q have addressed the prob- X[U(ka S2) ® ¢ ym,(K)]. (19

lem of eliminating the ambiguities associated with the 1Al
representation by determining a general Lorentz invarianEmploying well-known identities for the energy projection

representation of. The formalism of Tjon and Wallacge- ~ OPeratord18] results in Eq(19) simplifying to

ferred to as the IA2 representation ef will be used in the 13

present study: this is a general and complete Lorentz invari- Tim (S0 Sar,S0) = > Frhpzt [U(;Za,,sa,)
ant representation, whereby theN scattering matrix is ex- ’ n=1 p,=t

panded in terms of a complete set of 44 independent invari- — -

ant amplitudes consistent with the above-mentioned ® U(kp, )] Kn[U(Ky,S)

symmetries. Five of the 44 amplitudes are determined from
free NN scattering data, and are therefore identical to the
amplitudes associated with IA1 representation. The remainRIote the presence of the energy projection operator acting on
ing 39 amplitudes are obtained via solution of the Bethe- S0 )
Salpeter equation employing a one-boson exchange modéiom,(K) in Eq. (20) as compared to the absence thereof in
for the NN interaction. Eq. (18). From Eq.(20) we see that only subclasses™**

The IA2 representation has the attractive feature that ignd FI"™*™ contribute to the calculation of the transition
reduces to the IA1 representation explicitly as a special cas&atrix element for the 1A2 representation. This simplifica-
This representation has been successfully applied to descrif@n occurs only because we are using plane wave Dirac
elastic [12,3] and inelastic proton-nucleufl3,14,31,3p  spinors for the projectile and ejectile nucleons. The bound
scattering. In the IA2 representation tN&l scattering matrix ~ State wave function is therefore the only remaining spinor

® A, (K.m) b (K)]. (20)

is given by[12] that has negative-energy contdsee Eq.(26)]. If we had
13 chosen distorted waves for the projectile and ejectile nucle-
F= > > Fiplpj_?PZPZ}[ Api(ﬁi;m) ons, then all 16 subclasses Bf would have contributed.

Note that the amplitudes in subclag§*** are determined
by freeNN scattering data. The amplitudes for the other sub-
® Ay (P MIK[A, (B;m) @ A, (B;m)]  (16)  classes are determined from a dynamical m¢@8|34], but
they can only make a contribution if the spinor contains a
hegative-energy component.

p1pipopy L

for a general two-body scattering process with three mo

menta(p,,p,) and (p;,ps) in the initial and final channels,
respectively. Here we take;=m;,=m,=m,, =m, wherem s

the free nucleon mass. In E(L6), the invariant amplitudes IV. POLARIZATION TRANSFER OBSERVABLES

for eachp-spin sector are denoted lﬁzj} (n=1-13, where The spin observables of interest are denotedpy and
{pt={p1p1:p2p2}, andp==%; A,(,M) represents an energy are related to the probability that an incident beam of par-
projection operator defined as ticles a, with spin polarizationj, induces a spin polarization

i’ for the scattered beam of particles: the subscriptj

_p(Ey’-p-y+m

om (170  =(0,1,n,s) is used to specify the polarization of the incident

beama along any of the orthogonal directions,

A (B,m)

where E=\p?+n?, and theK,’s are kinematic covariants R R
constructed from the Dirac matric€$2]. Using Eqs.(14) l=2=k,,
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0.30
o pujacesanvennes
Ay 0.00 i [ ] i
-8 } FIG. 2. Analyzing powerA,, induced polar-
~0-3435'T36 0 145 10 16 %0 ization P, and spin transfer coefficienB;/; plot-
0.30 0.30 020 ted as a function of the laboratory kinetic energy
025} a25} 0.5 1 T, of the outgoing protora’, for proton knock-
Dp0Pbeznrrzanrzanrs] P 0O o oo Dy 0w} oae---m77 ] out from the 3, orbital of 2°%Pb for an incident
asl ot ] laboratory kinetic energy of 202 MeV and copla-
ol ] | N 00ttt nar scattering angle$6,=28.0° ,0,=-54.6°).
035 o W5 %0 5 %0 o8 o W %0 85 %0 5 10 45 B0 15 160 The solid line represents the 1Al calculation, the
020 015 0.0 dashed line the full IA2 calculation, and the dot-
o® / 0.1 \ 0.05 ] ted line the IA2 calculation employing only sub-
Dy @0 Dyy O08f-cmecommn Dy, 000 classF**** The data are from Refl].
005 E.masuwooswn: 000F . ..ooiiniiinnennaeees -0.05
O BEHoHs BB B0 OOho WS WoWs Bo B0 "0 T35 o W B0 B8 0
T (MeV) Ta (MeV) T (MeV)
ﬁzyzkax &a': V. RESULTS

R We now study the sensitivity of complete sets of polariza-
S=Xx=nxl, (21) tion transfer observables to both IA1 and IA2 representations
of the NN scattering matrix. For this particular study we
consider two kinematic conditions, namely, proton knockout
from the 3,, state of 2°%Pb at an incident energy of
202 MeV for coplanar scattering anglég,,, 6,)=(28.0°,

and the subscrigt =(0,1’,n’,s’) denotes the polarization of
the scattered beaai along any of the orthogonal directions,

I"'=2"=ka, -54.6°), as well as an incident energy of 392 MeV for co-
. planar scattering angle@,, 6,)=(32.5°,-80.09. In gen-
n=n=y, eral, for quantitative predictions, a spin observable can be

regarded as being sensitive to a particular model ingredient if
¥=%=nxl". (22) the inclusion thereof changes the observable by more than
] ) ) o ) the expected maximum experimental error of about +0.1.
With the above coordinate axes in the initial and final chan-oyr predictions for complete sets of polarization transfer ob-
nels, the spin observabl&x; are defined by servables at 202 and 392 MeV are displayed in Figs. 2 and 4,
respectively: the analyzing powéy, induced polarizatior®,

.
> Tr(ToiT'oy) and spin transfer coefficienB;; are plotted as a function of

Dirj= My , (23 the laboratory kinetic energy, of the outgoing protora’.
> Tr(TTh The solid and dashed lines represent calculations based on
MaSo the IA1 and IA2 representations, respectively, whereas the

whereD,o=P refers to the induced polarizatioD,=A, de- ~ dotted line represents the 1A2 calculation employing only
notes the analyzing power, and the polarization transfer obsubclass="****. The deviation of the latter predictions from
servables of interest af@,,, Dys, D/, Dg, andD;.s. The set Fhe full IA2 result(dashed lingserves as an |nd|c§tlon of the
of observablesP,A,, D, Dy, Dy, Dgy, Dy is often re- importance of subcla_lsé{**"*} for describing spin observ-
ferred to as a complete set of polarization transfer obser/@Ples. At 202 MeV(Fig. 2), we see tha#,, Dy, Ds, and
ables. In Eq.(23), the symbolss;, and o; denote the usual D¢, all discriminate between the IA1 and IA2 representa-

2% 2 Pauli spin matrices, and thex22 matrix T is defined ~ tions. In contrastP, Dy, andD, s are virtually identical for
as both representations.

To understand these results we first expand the bound

TE:”/ZS’J":”’Z Tic}:_”zs&’:”/z) 24 state spinor in terms of a Dirac plane wave basis as follows:
T= e | 4
Tiﬁ_ﬂ/zsa,_ 112 TiaJ_ 125,=-1/2
wheres,=+3 ands, =+3 refer to the spin projections of ¢LJMJ(IZ) = a,U(K,m,s,= ) + apU(K,m;s,= - %)
particlesa anda’ along thez andZ' axes, defined in Egs. . . R .
(21) and (22), respectively; the matrix element§s™ are +agV(K,ms,=3) + a,V(K,m,s,= - 3),
related to the relativistidp,2p) transition matrix element (26)

TLom,(Sa:Sar 1 Sp), defined in Eq.(7), via

Tiajysa, = TLJMJ(SaISa'YSb) . (25) Where
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30 y T v — > -
L T al:U(K1msz:%)¢LJMJ(K)1
22 B ,' \\ 1
o 14f° M, = —1/2 “; aZZU(K!mISz:_%)(bLJMJ(K)’
6F ]

az= —‘(Iz,m,szz %)d)LJMJ(lZ)’

~230 135 140 145 150 155 160

30 a4:_‘(K1m:Sz:_%)¢LJMJ(K)a (29)
22 where the usual orthogonality conditions for the Dirac
spinors have been usgti8]. The effect of the energy projec-
Oti 14 tion operator on the Dirac spinor can now clearly be identi-
fied,
6 - -
DY v tiruttrmdtafusa ik i A (K o _JaU(3)+aU(=3) if p=+
350 135 140 145 150 155 160 MG IO=1 V(1) 4 av(=1) if p=-
azV(35) +ay 3) 1T p=
To (MeV)
(30)
FIG. 3. Expansion coefficients, (solid line), «, (dashed ling .
s (dash-dotted ling anda, (dotted ling of the ¢ 5 —-1/AK) (top where we employ the short-hand notation
pane) and ¢ 5 v :+1/2(R) (bottom panel for proton knockout from — (K
the 35,/, state in?9%b, for an incident laboratory kinetic energy of Uls) =U(K.M.s),
202 MeV and coplanar scattering angles =28.0° ,6,=-54.6°),
in terms of free Dirac plane wavésee Eq(26)]. V(s,) = V(IZ,I\/I,SZ). (31)
: - o For the IA1 representation, substitution of Eg6) into Eq.
a; — ai(L,J,I\/IJ,K) fOI’ 1= 1,2,3,4 (27) (18) yleldS
and the negative-energy Dirac spinor, denoted/pis given AL T — =
by Tiom,(SarSarsS) = 2 FL[Ug @ Ul N ® N ]| U,
L=S
2| 5K ®U<1)+ U ®U(—l>+ U
> E(K)+m X, 2) " 2a 2) e
VK,;s)=| — — EK+m “[. (29
2m 1 1
Xs, ®V(>+a4Ua®V<— ) . (32
2 2
The expansion coefficientsy) are determined from the re- On the other hand, for the 1A2 representation, substitution of
lations Eq. (26) into Eqg. (20), and employing Eq(30), leads to
0.20
ot
s——r—""/
Ay 00 F T
aosr FIG. 4. Analyzing powerA,, induced polar-
0.0855"270 290 310 330 350 ization P, and spin transfer coefficient;; plot-
075 - 020 050 = ted as a function of the laboratory kinetic energy
L - o L T, of the outgoing protora’, for proton knock-
Dy 085f . Pow| L Toe { Dyoso el out from the 3, orbital of 2°%b for an incident
0.80 Q oosf T 4 035 4 laboratory kinetic energy of 392 MeV and copla-
| IR~ | I nar scattering angle$6, =32.5°,6,=-80.0°).
oo oW wo TR O W w0 %070 20 30 30 0 The solid line represents the 1Al calculation, the
070 Mo o 20 dashed line the full IA2 calculation, and the dot-
aesy ot Q40p e L S ted line the 1A2 calculation employing only sub-
Dya®80f i D@38 Dp Q0 [~ T classFit*++,
assf 0t 030 i ass
°"5350270:“)31':(!!351:! 0'295027029031)330350 0'39.50270290313330350
Te (MeV) Te (MeV) Ty (MeV)
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6 TR UM Lo representation where the energy projection operators ensure
hS that positive-energy amplitudes only couple to positive-
4 M, = —-1/2 RN energy matrix element§****, The negative-energy matrix
2k ) elements only come into play in subcldg$™ " in Eq. (33).
o‘i ............ In order to understand why IA1 and IA2 predictions of
0 Frmsmmimimeeeine o, = some of the spin observables are virtually identical in Fig. 2,

we display in Fig. 3 the expansion coefficiends (solid
line), a, (dashed Iinﬁ a3 (dash-dotted ling and [z (dotted

line) of ¢ jm =—1/2(K) (top pane) and ¢ m —+1/2(K) (bottom
pane) for proton knockout from the §,, State in2%Pb at
202 MeV, in terms of free Dirac plane wavgsee Eq(26)].

It is clearly seen that one of the positive-energy expansion
coefficients(aq,a,) is dominant relative to both negative-
energy expansion coefficientas,a,). This implies that the
negative-energy components play a negligible role when the
spin observable displays little sensitivity to the two different

_a L L 1 L representations.
50 270 290 310 330 350 For exclusive proton knockout at 392 MeV the figures
Te (MeV) corresponding to Figs. 2 and 3 are Figs. 4 and 5, respectively.

At this higher incident energy we see in Fig. 4 that most
FIG. 5. Expansion coefficients, (solid line), a, (dashed ling  opservables clearly discriminate between IA1 and IA2 rep-
a3 (dash-dotted ling and oy (dotted ling of ¢ MJ——1/2(K) (top  resentations, with the induced polarizatiBrbeing the least
pane) and ¢ ju +1,2(K) (bottom panelfor proton knockout from  sensitive. However, all observables are sensitive to negative-
the 3, state in?%%Pb, for an incident laboratory kinetic energy of energy components as can be seen by comparing the dashed
392 MeV and coplanar scattering anglel =32.5°,6,=-80.0°),  and dotted lines. It follows that at higher energies, the role of

in terms of free Dirac plane wavgsee Eq(26)]. the additional subclasses present in A2 will increase in im-
portance.
5 L 1 As in the case of the 202 MeV predictions, in Fig. 5 we
T'waj(swsausb) :2 Fﬁ“;”}[ Uy ® Ub]Kn[alU ® U( ) see thqt one .of the pqsitive-energy exp_ansion coefficients
n=1 (aq,a5) is dominant relative to both negative-energy expan-

13 sion coefficientg as,a4). However, contrary to the 202 MeV
+ U, ® U(— }ﬂ + > Fl case, we see that percentagewise the latter coefficients for
n=1 392 MeV are less negligible compared to the corresponding
1 coefficients at 202 MeV, that is, the ratio of positive- to
X[Uy ® Ub]Kn|: aU, ® V(—) + a,U, negative-energy expansion coefficients.
2 To conclude this section we comment on the difference
1 between using IAXLsolid line) and IA2, but including only
® V(‘ ‘)] (33 subclass!! (dotted ling in Figs. 2 and 4. For 202 MeV it is

only D, and Dy that display a significant difference be-
Note that in Eq.(33) the first sum is only over five ampli- tween the two calculations. At 392 MeV this difference is
tudes, that isn=1-5 in |:{++ 1 the eight remaining ampli- more pronounced and visible in all the spin observables.

tudes(n=6-13 are |dent|cally zero in this subclass. The Comparison of Eqs(32) and(33) shows that

five nonzero amplitudes are identical to the amplitudes of

the 1A1 represer?tation, ie., P T:ﬁ}\,lj(sa,sa,,so) :T:_’jz,\;,il(sa,sa,,so) A, (35)
5 T whereT'L/}ﬁ,l“(sa,sa,,so) means the inclusion of only sub-
DR K = 2 F A e (34  classF!! and

n=1 L=S

T
For freeNN scatteringi\where the boundstate wave function A= E F [Ua, ® Ub] {%U ® V( l) faU,® V(— }>]
PLam, (K) in Eq. (7) is replaced by a free positive-energy L=S 2 2

Dirac spinol, the 1A1 and IA2 representations give identical (36)
results for all spin observables. Comparison of Eg8) and

(33) brings to light a very important difference between ap-The only difference between these two calculations therefore
plications of the IA1 and IA2 representations to exclusivelies in the coupling of positive- to negative-energy spinors.
proton knockout reactions. For the IA1 representation we se&he quantityA depends on the spin orientation of the inci-
that the negative-energy matrix elemefitsird and fourth ~ dent and outgoing particles. However, since the spin observ-
terms in Eq.(32)] are multiplied by positive-energy ampli- ables are complicated combinationsTfy, it is very diffi-
tudes[F, in Eq. (32)]. This is in direct contrast to the IA2 cult to predict beforehand the degree of sensitivity to the
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difference between using IA1 and IA2 with only subclasscident energy of 392 MeV for coplanar scattering angles

'Ell. Even though we have shown in Flgs 3 and 5 th@t (Gar,ﬁb):(325° ,_8003 It |S seen that bOth IA1- and 1A2-
and a, are in general small compared t9 and «,, it based predictions give virtually identical results for some
follows from Eq. (36) that the amplitudes together with Spin observables at 202 MeV, whereas most predictions at

the matrix elements combine constructively to enhance th892 MeV clearly discriminate between both representations.
effect of A to T jy.. The fact that even at the plane wave level, different repre-
J

sentations predict different observables, suggests that one

can also expect differences for the more realistic case where
VI. SUMMARY AND CONCLUSIONS plane waves are replaced by distorted waves. Consequently,
since current relativistic distorted wave models are based on
She ambiguous IA1 parametrization, one needs to reinterpret
all exclusive(p,2p) data within the framework of the rela-
tivistic distorted wave impulse approximation based on the
Na2 representation of theNN scattering matrix. This will
gorm the subject of a future paper.

In this paper, we have studied the sensitivity of complet
sets of exclusivép, 2p) polarization transfer observables to
different Lorentz invariant representations of ti scatter-
ing matrix, namely, an ambiguous five-term parametrizatio
(called the 1Al representatiprand an unambiguous and
complete representation in terms of 44 invariant amplitude
(referred to as the 1A2 representatjoifo avoid complica- ACKNOWLEDGMENTS
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