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Within the framework of the relativistic plane wave impulse approximation, we study the observable con-
sequences of employing a complete Lorentz invariant representation of the nucleon-nucleon(NN) scattering
matrix in terms of 44 independent amplitudes, as opposed to the previously employed, but ambiguous, five-
term Lorentz invariant parametrization of theNN scattering matrix, for the prediction of complete sets of
exclusivespW ,2pWd polarization transfer observables. Two kinematic conditions are considered, namely, proton
knockout from the 3s1/2 state of 208Pb at an incident energy of 202 MeV for coplanar scattering angles
s28.0° ,−54.6°d, as well as an incident energy of 392 MeV for the angle pairs32.5° ,−80.0°d. The results
indicate that certain spin observables are ideal for discriminating between the two representations.
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I. INTRODUCTION

The representation of the nucleon-nucleon(NN) scattering
matrix, within the context of an appropriate dynamical
framework is crucial for the description of nuclear reactions
and nuclear structure.

Recently, we demonstrated that a model based on the rela-
tivistic distorted wave impulse approximation(DWIA ) pro-
vides an almost perfect description of exclusivespW ,2pd ana-
lyzing power data, whereas corresponding nonrelativistic
Schrödinger-equation-based predictions completely fail
[1–3]. For both dynamical models, however, the comparison
of theoretical predictions to unpolarized cross section data
yields similar spectroscopic factors which are also in good
agreement with those extracted fromse,e8pd studies. The
above results highlight the important role that spin observ-
ables(such as the analyzing power) play, as opposed to un-
polarized cross sections, in effectively discriminating be-
tween different dynamical effects and, at the same time, also
pointing to the Dirac equation as the preferred equation of
motion.

However, before claiming the latter statement with abso-
lute certainty, it is necessary to subject our relativistic DWIA
models to additional tests, such as comparing model predic-
tions to additional spin observable data, other than the com-
monly measured analyzing power. In particular, it is impor-
tant to eliminate obvious ambiguities associated with the
choice of representation for theNN scattering matrix. Essen-
tially, the problem is related to the direct application of the
free on-shellNN scattering matrix for the description of
nucleons scattering from nuclei: the external nucleons par-
taking in free on-shellNN scattering are represented by free
positive-energy Dirac spinors, whereas for scattering from
nuclei the scattering wave functions are linear combinations
of both positive- and negative-energy Dirac spinors(see Sec.
V). To date, all applications of Dirac relativity to describe
exclusivesp,2pd reactions have adopted the so-called IA1
parametrization, whereby the freeNN scattering matrix is
parametrized in terms of five Lorentz(scalar, pseudoscalar,
vector, axial-vector, and tensor) invariants which are consis-

tent with parity and time-reversal invariance as well as
charge symmetry. These invariant amplitudes are obtained by
fitting to free NN scattering data. There are, however, an
infinite number of five-term representations with the same
on-shell matrix elements for freeNN scattering, and which
also respect the above symmetries[4,5]. Hence, free on-shell
NN scattering data cannot distinguish between different five-
term representations. However, for applications to nuclear
reactions, different five-term representations result in drasti-
cally different observables, thereby clouding physical inter-
pretation of the data. In Refs.[6–8] we demonstrated the
limitations of the IA1 representation for applications to in-
clusive quasielastic proton-nucleus scattering: for example,
one type of five-term representation describesspW ,pW8d data,
whereas a different representation is required forspW ,nWd scat-
tering.

The ambiguities associated with the IA1 representation
can be eliminated by employing the more appropriate, but
more complicated, IA2 representation developed by Tjon and
Wallace [9–12], whereby theNN scattering matrix is ex-
panded in terms of a complete set of 44 independent invari-
ant amplitudes consistent with the above-mentioned symme-
tries. It follows therefore that IA1 neglects 39 additional
amplitudes that should appear on the grounds of very general
symmetry principles. The aim of this paper is to apply the
IA2 representation, for the first time, to exclusive proton
knockout reactions and to compare results to corresponding
IA1 predictions of complete sets of spin observables.

We have already studied the observable consequences of
employing the IA2, rather than the IA1 representation, for
describing inclusive quasielastic proton-nucleus scattering
[13,14]. The aim of the latter paper was to identify spin
observables which are sensitive enough to extract informa-
tion regarding the modification of the properties of the strong
nuclear force by nuclear matter. In particular, we demon-
strated that the IA1 representation severely overestimates the
importance of nuclear medium modifications on theNN in-
teraction, whereas application of the IA2 representation sug-
gests that quasielastic spin observables are insensitive to
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these effects. This emphasizes the critical role played by the
representation of theNN scattering matrix in giving a correct
interpretation of the results.

Although we have already demonstrated that a quantita-
tive description ofspW ,2pWd spin observable data requires the
inclusion of nuclear medium effects on the scattering wave
functions [2], in this paper we consider a relativistic plane
wave approximation, thus neglecting the role of distorting
optical potentials on the scattering wave functions. This sim-
plification will allow us to uniquely focus on the effect of the

different representations employed forF̂. Two kinematic
conditions are considered, namely, proton knockout from the
3s1/2 state of 208Pb at an incident energy of 202 MeV for
coplanar scattering anglessua8 ,ubd=s28.0° ,−54.6°d, as well
as an incident energy of 392 MeV for coplanar scattering
anglessua8 ,ubd=s32.5° ,−80.0°d. The reaction kinematics at
202 MeV are chosen to correspond to recent measurements
by Nevelinget al. [1] at iThemba Laboratory for Accelerator
Based Sciences(Faure, South Africa), and the kinematics at
392 MeV correspond to present and future experimental pro-
grams at the Research Center for Nuclear Physics in Osaka,
Japan[15]. In addition, the above kinematics are also chosen
so as to minimize complications associated with the inclu-
sion of recoil corrections in the Dirac equation[16,17], while
still maintaining the validity of the impulse approximation.

In Sec. II, we present the formalism for the relativistic
plane wave impulse approximation. Thereafter, in Sec. III,
we derive expressions for the relativistic scattering matrix
element based on both IA1 and IA2 representations of the
NN interaction. The expressions for calculating complete sets
of spin observables are presented in Sec. IV. Results are
given in Sec. V, and we summarize and draw conclusions in
Sec. VI.

II. RELATIVISTIC PLANE WAVE IMPULSE
APPROXIMATION

Consider an exclusivesp,2pd reaction, written as
Asa,a8bdC for notational purposes and depicted schemati-
cally in Fig. 1, whereby an incident protona knocks out a
bound protonb from a specific orbital in the target nucleus
A, resulting in three particles in the final state, namely, the
recoil residual nucleusC and two outgoing protonsa8 andb
which are detected in coincidence at coplanar laboratory
scattering angles(on opposite sides of the incident beam) ua8
andub, respectively. All kinematic quantities are completely
determined by specifying the rest massesmi of particles,
where i =sa,A,a8 ,b,Cd, the laboratory kinetic energyTa of
incident particlea, the laboratory kinetic energyTa8 of scat-
tered particlea8, the laboratory scattering anglesua8 andub8,

and also the binding energy of the proton that is to be
knocked out of the target nucleusA. In this paper we employ
the conventions of Bjorken and Drell[18] and, unless other-
wise stated, all kinematic quantities are expressed in natural
units (i.e., "=c=1).

For a zero range approximation to theNN interaction, the
relativistic transition matrix element associated with Fig. 1 is
given by [2,3]

TLJMJ
ssa,sa8,sbd =E d3xWfc̄s−dsxW,kWa8,sa8d ^ c̄s−dsxW,kWb,sbdg

3F̂fcs+dsxW,kWa,sad ^ fLJMJ
sxWdg, s1d

where ^ denotes the Kronecker product. The four-

component scattering wave functionscsxW ,kW i ,sid are solutions

to the fixed-energy Dirac scattering equations:cs+dsxW ,kWa,sad
is the relativistic scattering wave function associated with the
incident particlea with outgoing boundary conditionsfindi-

cated by the superscripts+dg, wherekWa is the momentum of
particlea in the laboratory frame, andsa is the spin projec-

tion thereof with respect tokWa as the ẑ-quantization axis;

c̄s−dsxW ,kW j ,sjd is the adjoint relativistic scattering wave func-
tion for particlej f j =sa8 ,bdg with incoming boundary condi-

tions findicated by the superscripts−dg, wherekW j is the mo-
mentum of particlej in the laboratory frame, andsj is the

spin projection thereof with respect tokW j as the
ẑ-quantization axis. The bound state proton wave function
fLJMJ

B sxWd, labeled by single-particle quantum numbersL, J,
andMJ, is given by

fLJMJ
sxWd =

1

x
o
sB

S uLJsxdkL,MJ − sB, 1
2,sBuJ,MJlYL,MJ−sB

sx̂dxsB

iwLJsxdk2J − L,MJ − sB, 1
2,sBuJ,MJlY2J−L,MJ−sB

sx̂dxsB

D , s2d

FIG. 1. Schematic representation for the coplanarsp,2pd reac-
tion of interest.
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where the bracketskl andY denote the usual Clebsch-Gordan
coefficients and spherical harmonics, respectively,sB= ± 1

2,
and

xsB=−1
2

= S0

1
D and xsB=1

2
= S1

0
D . s3d

The upper- and lower-component radial wave functions
uLJsxd and wLJsxd, respectively, are obtained via self-
consistent solution of the Dirac-Hartree field equations of
quantum hadrodynamicsf19g.

F̂ denotes the relativisticNN scattering matrix. In this

paper we will consider two different representations ofF̂
(see Sec. III) and, in particular, study the sensitivity of ex-
clusivespW ,2pWd polarization transfer observables to these rep-
resentations. In a previous paper we demonstrated the impor-
tance of including distorting optical potentials on the
incident and outgoing scattering wave functions for a correct
description ofspW ,2pd analyzing powers[2]. However, in or-
der to simplify the present analysis, we consider a relativistic
plane wave model, whereby all distorting optical potentials
are set equal to zero in the Dirac equation. This approxima-
tion will allow us to uniquely focus on the effect of the

different representations employed forF̂. Second, plane
wave calculations always form a baseline against which full
distorted wave calculations must be tested. With these cave-
ats in mind we now proceed to derive an expression for
TLJMJ

based on the relativistic plane wave approximation.
The scattering solutions to the free Dirac equation are

given by

cs+dsxW,kWa,sad = eikWa·xWUskWa,sad,

c̄s−dsxW,kWa8,sa8d = e−ikWa8·xWŪskWa8,sa8d,

c̄s−dsxW,kWb,sbd = e−ikWb·xWŪskWb,sbd s4d

where the Dirac spinor

UskW i,sid = FEi + mi

2mi
G1/21 xsi

sW ·ki

Ei + mi
xsi
2 s5d

is normalized such that

ŪskW i,sidUskW i,sid = 1. s6d

xsi
refers to the usual two-component Pauli spinors defined

in Eq. s3d, mi denotes the-rest mass of particlei, and Ei

=ÎkW i
2+mi

2. Substitution of Eqs.s4d and s5d into Eq. s1d
results in the following expression for the transition ma-
trix element:

TLJMJ
ssa,sa8,sbd = fŪskWa8,sa8d ^ ŪskWb,sbdgF̂fUskWa,sad

^ fLJMJ
sKW dg s7d

with

fLJMJ
sKW d = fLJMJ

s− kWCd =E d3xWe−iKW ·xW fLJMJ
sxWd, s8d

where kWC is the recoil three-momentum of the residual
nucleus given by

kWC = − KW = − skWa8 + kWb − kWad. s9d

Equations7d may be interpreted as the transition matrix ele-
ment for a two-body scattering process in which the initial
proton is bound. Combining Eqs.s2d and s8d yields

fLJMJ
sKW d = fLJMJ

s− kWCd

= S 4piLYLJMJ
sukC

,fkC
duLJskCd

4pi2J−L+1Y2J−L+1,JMJ
sukC

,fkC
dw2J−L,JskCd D

s10d

with

uLJskCd =E
0

`

dx x jLskCxduLJsxd, s11d

w2J−L,JskCd =E
0

`

dx x j2J−LskCxdwLJsxd, s12d

YLJmsu,fd = o
sz8

kL, 1
2,m − sz8,sz8uJmlYL,m−sz8

su,fdxsz8
,

s13d

where jLskCxd denotes the usual spherical Bessel functions.

III. LORENTZ INVARIANT REPRESENTATIONS
OF THE NN INTERACTION

The relativistic scattering matrixF̂ is one of the principal
components in the calculation of the transition matrix ele-
ment. Since we are assuming the impulse approximation to

be valid, we employ the freeNN interaction forF̂. The pur-
pose of this investigation is to study how sensitive the polar-
ization transfer observables(to be defined in Sec. IV) are to

two different representations ofF̂. The first form ofF̂ which
we will employ is known as the IA1 representation and is a
parametrization of the scattering matrix in terms of five com-
plex amplitudes[20]:

F̂ = o
L=S

T

FL slL
^ lLd, s14d

where

lL P hI4,g
5,gm,g5gm,smnj. s15d

The IA1 representation ofF̂ has been used in relativistic
descriptions of elasticf20–23g and inelasticf24–26g scatter-
ing, as well as inclusive quasielasticf6–8,27,28g proton-
nucleus scattering. This five-term representation is consistent
with parity and time-reversal invariance as well as charge
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symmetry. However, other five-term representations which
respect the above-mentioned symmetries are also possible.
For example, there are the Goldberger-Nambu-Oehme
sGNOd invariantsf4g as well as the perturbative invariants
f5g. The invariant amplitudes in each of the representations

of F̂ are connected via matrix relations given in Ref.f5g and
are obtained by fitting to free scattering dataf9g. Physical
NN scattering data therefore completely determine the ampli-

tudes in a five-term representation ofF̂. A priori there is no
reason why one five-term representation should be chosen
above another. The IA1 representation form is very conve-
nient since its amplitudes are free of kinematic singularities
at u=0 andu=p su is the center-of-mass scattering angled
and the one-meson exchange contributions are naturally writ-
ten in terms of Fermi covariantsf29g.

However, five-term representations are ambiguous, since
the application of different parametrizations to describe
nucleons scattering from nuclei, as opposed to free on-shell
NN scattering, gives different predictions for the same ob-
servables. Several authors[9,11,30] have addressed the prob-
lem of eliminating the ambiguities associated with the IA1
representation by determining a general Lorentz invariant

representation ofF̂. The formalism of Tjon and Wallace(re-

ferred to as the IA2 representation ofF̂) will be used in the
present study: this is a general and complete Lorentz invari-
ant representation, whereby theNN scattering matrix is ex-
panded in terms of a complete set of 44 independent invari-
ant amplitudes consistent with the above-mentioned
symmetries. Five of the 44 amplitudes are determined from
free NN scattering data, and are therefore identical to the
amplitudes associated with IA1 representation. The remain-
ing 39 amplitudes are obtained via solution of the Bethe-
Salpeter equation employing a one-boson exchange model
for the NN interaction.

The IA2 representation has the attractive feature that it
reduces to the IA1 representation explicitly as a special case.
This representation has been successfully applied to describe
elastic [12,31] and inelastic proton-nucleus[13,14,31,32]
scattering. In the IA2 representation theNN scattering matrix
is given by[12]

F̂ = o
r1r18r2r28

o
n=1

13

Fn
hr1r18;r2r28jfLr18

spW18;md

^ Lr8spW28;mdgKnfLr1
spW1;md ^ Lr2

spW2;mdg s16d

for a general two-body scattering process with three mo-
mentaspW1,pW2d and spW18 ,pW28d in the initial and final channels,
respectively. Here we takem1=m18=m2=m28=m, wherem is
the free nucleon mass. In Eq.s16d, the invariant amplitudes
for eachr-spin sector are denoted byFn

hrj sn=1−13d, where
hrj;hr1r18 ;r2r28j, andr=±; LrspW ,Md represents an energy
projection operator defined as

LrspW ,md =
rsEg0 − pW · gW d + m

2m
, s17d

whereE=ÎpW2+m2, and theKn’s are kinematic covariants
constructed from the Dirac matricesf12g. Using Eqs.s14d

ands16d one can now write down expressions forTLJMJ
in

Eq. s7d based on both IA1 and IA2 representations of the
NN scattering matrix. For the IA1 representation one obtains

TLJMJ
ssa,sa8,sbd = o

L=S

T

FL fŪskWa8,sa8d ^ ŪskWb,sbdg slL
^ lLd

3fUskWa,sad ^ fLJMJ
sKW dg, s18d

and for the IA2 representation,

TLJMJ
ssa,sa8,sbd = o

n=1

13

o
hrj

Fn
hrj fŪskWa8,sa8d

^ ŪskWb,sbdg fLra8
skWa8,Md ^ Lrb

skWb,mdg

3Kn fLra
skWa,md ^ Lr2

sKW ,mdg

3fUskWa,sad ^ fLJMJ
sKW dg. s19d

Employing well-known identities for the energy projection
operatorsf18g results in Eq.s19d simplifying to

TLJMJ
ssa,sa8,sbd = o

n=1

13

o
r2=±

Fn
++,r2+ fŪskWa8,sa8d

^ ŪskWb,sbdg KnfUskWa,sad

^ Lr2
sKW ,mdfLJMJ

sKW dg. s20d

Note the presence of the energy projection operator acting on

fLJMJ
sKW d in Eq. s20d as compared to the absence thereof in

Eq. s18d. From Eq.s20d we see that only subclassesFh++;++j

and Fh++;−+j contribute to the calculation of the transition
matrix element for the IA2 representation. This simplifica-
tion occurs only because we are using plane wave Dirac
spinors for the projectile and ejectile nucleons. The bound
state wave function is therefore the only remaining spinor
that has negative-energy contentfsee Eq.s26dg. If we had
chosen distorted waves for the projectile and ejectile nucle-

ons, then all 16 subclasses ofF̂ would have contributed.
Note that the amplitudes in subclassFh++;++j are determined
by freeNN scattering data. The amplitudes for the other sub-
classes are determined from a dynamical modelf33,34g, but
they can only make a contribution if the spinor contains a
negative-energy component.

IV. POLARIZATION TRANSFER OBSERVABLES

The spin observables of interest are denoted byDi8 j and
are related to the probability that an incident beam of par-
ticles a, with spin polarizationj , induces a spin polarization
i8 for the scattered beam of particlesa8: the subscriptj
=s0, l ,n,sd is used to specify the polarization of the incident
beama along any of the orthogonal directions,

l̂ = ẑ= k̂a,
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n̂ = ŷ = k̂a 3 k̂a8,

ŝ= x̂ = n̂ 3 l̂ , s21d

and the subscripti8=s0, l8 ,n8 ,s8d denotes the polarization of
the scattered beama8 along any of the orthogonal directions,

l̂8 = ẑ8 = k̂a8,

n̂8 = n̂ = ŷ,

ŝ8 = x̂8 = n̂ 3 l̂8. s22d

With the above coordinate axes in the initial and final chan-
nels, the spin observablesDi8 j are defined by

Di8 j =

o
MJ,sb

TrsTs jT
†si8d

o
MJ,sb

TrsTT†d
, s23d

whereDn0=P refers to the induced polarization,D0n=Ay de-
notes the analyzing power, and the polarization transfer ob-
servables of interest areDnn,Ds8s,Dl8l ,Ds8l, andDl8s. The set
of observableshP,Ay,Dnn,Ds8s,Dl8l ,Ds8l ,Dl8sj is often re-
ferred to as a complete set of polarization transfer observ-
ables. In Eq.s23d, the symbolssi8 and s j denote the usual
232 Pauli spin matrices, and the 232 matrix T is defined
as

T = STLJ
sa=+1/2,sa8=+1/2 TLJ

sa=−1/2,sa8=+1/2

TLJ
sa=+1/2,sa8=−1/2 TLJ

sa=−1/2,sa8=−1/2D , s24d

where sa= ± 1
2 and sa8= ± 1

2 refer to the spin projections of
particlesa and a8 along theẑ and ẑ8 axes, defined in Eqs.
s21d and s22d, respectively; the matrix elementsTLJ

sa,sa8 are
related to the relativisticsp,2pd transition matrix element
TLJMJ

ssa,sa8 ,sbd, defined in Eq.s7d, via

TLJ
sa,sa8 = TLJMJ

ssa,sa8,sbd. s25d

V. RESULTS

We now study the sensitivity of complete sets of polariza-
tion transfer observables to both IA1 and IA2 representations
of the NN scattering matrix. For this particular study we
consider two kinematic conditions, namely, proton knockout
from the 3s1/2 state of 208Pb at an incident energy of
202 MeV for coplanar scattering anglessua8 ,ubd=s28.0° ,
−54.6°d, as well as an incident energy of 392 MeV for co-
planar scattering anglessua8 ,ubd=s32.5° ,−80.0°d. In gen-
eral, for quantitative predictions, a spin observable can be
regarded as being sensitive to a particular model ingredient if
the inclusion thereof changes the observable by more than
the expected maximum experimental error of about ±0.1.
Our predictions for complete sets of polarization transfer ob-
servables at 202 and 392 MeV are displayed in Figs. 2 and 4,
respectively: the analyzing powerAy, induced polarizationP,
and spin transfer coefficientsDi8 j are plotted as a function of
the laboratory kinetic energyTa8 of the outgoing protona8.
The solid and dashed lines represent calculations based on
the IA1 and IA2 representations, respectively, whereas the
dotted line represents the IA2 calculation employing only
subclassFh++;++j. The deviation of the latter predictions from
the full IA2 result(dashed line) serves as an indication of the
importance of subclassFh++;−+j for describing spin observ-
ables. At 202 MeV(Fig. 2), we see thatAy, Dl8l, Ds8s, and
Ds8l all discriminate between the IA1 and IA2 representa-
tions. In contrast,P, Dnn, andDl8s are virtually identical for
both representations.

To understand these results we first expand the bound
state spinor in terms of a Dirac plane wave basis as follows:

fLJMJ
sKW d = a1UsKW ,m,sz = 1

2d + a2UsKW ,m,sz = − 1
2d

+ a3VsKW ,m,sz = 1
2d + a4VsKW ,m,sz = − 1

2d,

s26d

where

FIG. 2. Analyzing powerAy, induced polar-
ization P, and spin transfer coefficientsDi8 j plot-
ted as a function of the laboratory kinetic energy
Ta8 of the outgoing protona8, for proton knock-
out from the 3s1/2 orbital of 208Pb for an incident
laboratory kinetic energy of 202 MeV and copla-
nar scattering anglessua8=28.0° ,ub=−54.6°d.
The solid line represents the IA1 calculation, the
dashed line the full IA2 calculation, and the dot-
ted line the IA2 calculation employing only sub-
classFh++;++j. The data are from Ref.[1].
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ai = aisL,J,MJ,KW d for i = 1,2,3,4 s27d

and the negative-energy Dirac spinor, denoted byV, is given
by

VsKW ,szd = FEsKW d + m

2m
G1/2 1 sW ·KW

EsKW d + m
xsz

xsz

2 . s28d

The expansion coefficientssad are determined from the re-
lations

a1 = ŪsKW ,m,sz = 1
2dfLJMJ

sKW d,

a2 = ŪsKW ,m,sz = − 1
2dfLJMJ

sKW d,

a3 = − V̄sKW ,m,sz = 1
2dfLJMJ

sKW d,

a4 = − V̄sKW ,m,sz = − 1
2dfLJMJ

sKW d, s29d

where the usual orthogonality conditions for the Dirac
spinors have been usedf18g. The effect of the energy projec-
tion operator on the Dirac spinor can now clearly be identi-
fied,

LrsKW ,MdfLJMJ
sKW d =Ha1Us 1

2d + a2Us− 1
2d if r = +

a3Vs 1
2d + a4Vs− 1

2d if r = −
,

s30d

where we employ the short-hand notation

Usszd = UsKW ,M,szd,

Vsszd = VsKW ,M,szd. s31d

For the IA1 representation, substitution of Eq.s26d into Eq.
s18d yields

TLJMJ

IA1 ssa,sa8,sbd = o
L=S

T

FL fŪa8 ^ Ūbg flL
^ lLg Fa1Ua

^ US1

2
D + a2Ua ^ US−

1

2
D+a3Ua

^ VS1

2
D + a4Ua ^ VS−

1

2
DG . s32d

On the other hand, for the IA2 representation, substitution of
Eq. s26d into Eq. s20d, and employing Eq.s30d, leads to

FIG. 3. Expansion coefficientsa1 (solid line), a2 (dashed line),

a3 (dash-dotted line), anda4 (dotted line) of thefLJ,MJ=−1/2sKW d (top

panel) andfLJ,MJ=+1/2sKW d (bottom panel) for proton knockout from
the 3s1/2 state in208Pb, for an incident laboratory kinetic energy of
202 MeV and coplanar scattering anglessua8=28.0° ,ub=−54.6°d,
in terms of free Dirac plane waves[see Eq.(26)].

FIG. 4. Analyzing powerAy, induced polar-
ization P, and spin transfer coefficientsDi8 j plot-
ted as a function of the laboratory kinetic energy
Ta8 of the outgoing protona8, for proton knock-
out from the 3s1/2 orbital of 208Pb for an incident
laboratory kinetic energy of 392 MeV and copla-
nar scattering anglessua8=32.5° ,ub=−80.0°d.
The solid line represents the IA1 calculation, the
dashed line the full IA2 calculation, and the dot-
ted line the IA2 calculation employing only sub-
classFh++;++j.
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TLJMJ

IA2 ssa,sa8,sbd = o
n=1

5

Fn
h++;++jf Ūa8 ^ ŪbgKnFa1Ua ^ US1

2
D

+ a2Ua ^ US−
1

2
DG + o

n=1

13

Fn
h++;−+j

3fŪa8 ^ ŪbgKnFa3Ua ^ VS1

2
D + a4Ua

^ VS−
1

2
DG . s33d

Note that in Eq.s33d the first sum is only over five ampli-
tudes, that is,n=1–5 in Fn

h++;++j: the eight remaining ampli-
tudessn=6–13d are identically zero in this subclass. The
five nonzero amplitudes are identical to the amplitudes of
the IA1 representation, i.e.,

o
n=1

5

Fn
h++;++j Kn ; o

L=S

T

FL lL
^ lL. s34d

For freeNN scatteringfwhere the boundstate wave function

fLJMJ
sKW d in Eq. s7d is replaced by a free positive-energy

Dirac spinorg, the IA1 and IA2 representations give identical
results for all spin observables. Comparison of Eqs.s32d and
s33d brings to light a very important difference between ap-
plications of the IA1 and IA2 representations to exclusive
proton knockout reactions. For the IA1 representation we see
that the negative-energy matrix elementsfthird and fourth
terms in Eq.s32dg are multiplied by positive-energy ampli-
tudesfFL in Eq. s32dg. This is in direct contrast to the IA2

representation where the energy projection operators ensure
that positive-energy amplitudes only couple to positive-
energy matrix elements,Fh++;++j. The negative-energy matrix
elements only come into play in subclassFh++;−+j in Eq. s33d.

In order to understand why IA1 and IA2 predictions of
some of the spin observables are virtually identical in Fig. 2,
we display in Fig. 3 the expansion coefficientsa1 (solid
line), a2 (dashed line), a3 (dash-dotted line), anda4 (dotted

line) of fLJ,MJ=−1/2sKW d (top panel) andfLJ,Mz=+1/2sKW d (bottom
panel) for proton knockout from the 3s1/2 state in208Pb at
202 MeV, in terms of free Dirac plane waves[see Eq.(26)].

It is clearly seen that one of the positive-energy expansion
coefficients(a1,a2) is dominant relative to both negative-
energy expansion coefficients(a3,a4). This implies that the
negative-energy components play a negligible role when the
spin observable displays little sensitivity to the two different
representations.

For exclusive proton knockout at 392 MeV the figures
corresponding to Figs. 2 and 3 are Figs. 4 and 5, respectively.
At this higher incident energy we see in Fig. 4 that most
observables clearly discriminate between IA1 and IA2 rep-
resentations, with the induced polarizationP being the least
sensitive. However, all observables are sensitive to negative-
energy components as can be seen by comparing the dashed
and dotted lines. It follows that at higher energies, the role of
the additional subclasses present in IA2 will increase in im-
portance.

As in the case of the 202 MeV predictions, in Fig. 5 we
see that one of the positive-energy expansion coefficients
(a1,a2) is dominant relative to both negative-energy expan-
sion coefficients(a3,a4). However, contrary to the 202 MeV
case, we see that percentagewise the latter coefficients for
392 MeV are less negligible compared to the corresponding
coefficients at 202 MeV, that is, the ratio of positive- to
negative-energy expansion coefficients.

To conclude this section we comment on the difference
between using IA1(solid line) and IA2, but including only

subclassF̂11 (dotted line) in Figs. 2 and 4. For 202 MeV it is
only Dl8l and Ds8s that display a significant difference be-
tween the two calculations. At 392 MeV this difference is
more pronounced and visible in all the spin observables.
Comparison of Eqs.(32) and (33) shows that

TLJMJ

IA1 ssa,sa8,sbd = TLJMJ

IA2,11ssa,sa8,sbd + D, s35d

where TLJMJ

IA2,11ssa,sa8 ,sbd means the inclusion of only sub-

classF̂11 and

D = o
L=S

T

FL fŪa8 ^ Ūbg Fa3Ua ^ VS1

2
D + a4Ua ^ VS−

1

2
DG .

s36d

The only difference between these two calculations therefore
lies in the coupling of positive- to negative-energy spinors.
The quantityD depends on the spin orientation of the inci-
dent and outgoing particles. However, since the spin observ-
ables are complicated combinations ofTLJMJ

it is very diffi-
cult to predict beforehand the degree of sensitivity to the

FIG. 5. Expansion coefficientsa1 (solid line), a2 (dashed line),

a3 (dash-dotted line), and a4 (dotted line) of fLJ,MJ=−1/2sKW d (top

panel) andfLJ,MJ=+1/2sKW d (bottom panel) for proton knockout from
the 3s1/2 state in208Pb, for an incident laboratory kinetic energy of
392 MeV and coplanar scattering anglessua8=32.5° ,ub=−80.0°d,
in terms of free Dirac plane waves[see Eq.(26)].
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difference between using IA1 and IA2 with only subclass

F̂11. Even though we have shown in Figs. 3 and 5 thata3
and a4 are in general small compared toa1 and a2, it
follows from Eq. s36d that the amplitudes together with
the matrix elements combine constructively to enhance the
effect of D to TLJMJ

.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied the sensitivity of complete
sets of exclusivespW ,2pWd polarization transfer observables to
different Lorentz invariant representations of theNN scatter-
ing matrix, namely, an ambiguous five-term parametrization
(called the IA1 representation) and an unambiguous and
complete representation in terms of 44 invariant amplitudes
(referred to as the IA2 representation). To avoid complica-
tions associated with the distortion of the scattering wave
functions by the nuclear medium, the scattering process is
described within the framework of the relativistic plane wave
impulse approximation, where the effect of the nuclear me-
dium on the scattering wave functions is neglected.

For this particular study, we have considered two kine-
matic conditions, namely, proton knockout from the 3s1/2
state of208Pb at an incident energy of 202 MeV for coplanar
scattering anglessua8 ,ubd=s28.0° ,−54.6°d, as well as an in-

cident energy of 392 MeV for coplanar scattering angles
sua8 ,ubd=s32.5° ,−80.0°d. It is seen that both IA1- and IA2-
based predictions give virtually identical results for some
spin observables at 202 MeV, whereas most predictions at
392 MeV clearly discriminate between both representations.
The fact that even at the plane wave level, different repre-
sentations predict different observables, suggests that one
can also expect differences for the more realistic case where
plane waves are replaced by distorted waves. Consequently,
since current relativistic distorted wave models are based on
the ambiguous IA1 parametrization, one needs to reinterpret
all exclusivespW ,2pWd data within the framework of the rela-
tivistic distorted wave impulse approximation based on the
IA2 representation of theNN scattering matrix. This will
form the subject of a future paper.
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