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Empirical nucleus-nucleus potential deduced from fusion excitation functions
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Existing data on near-barrier fusion excitation functions for 48 medium and heavy nucleus-nucleus systems
have been analyzed using a simple “diffused-barrier formula” derived assuming the Gaussian shape of the
barrier height distributions. The obtained mean values of the barrier height have been used then for determi-
nation of the parameters of the empirical nucleus-nucleus potential, assumed to have Woods-Saxon shape. The
mean barrier heights calculated with this potential are reproduced with an accuracy of about 1 MeV, while
other frequently used potentials, i.e., the proximity potential and the Akyuz-Winther potential, considerably
overpredict the experimental values, especially for heavy systems. In order to predict fusion excitation func-
tions with the diffused-barrier formula, we propose a simple method of theoretical prediction of the second
parameter of the barrier distribution, its width. The proposed formula accounts for the quantum effect of
sub-barrier tunneling, static quadrupole deformations, and collective surface vibrations of the colliding nuclei.
With the theoretical knowledge of the mean height and width of the barrier distributions, one can predict cross
sections for overcoming the barrig¢fsticking” or “capture” in reactions of very heavy systems used to
produce superheavy nuclei.
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[. INTRODUCTION distance degrees of freedom. This is naturally achieved in
. . . coupled-channel calculations, involving the coupling to the
e e et et cllcie sttes i o coliing nuce

vy As demonstrated by Rowley, Satchler, and Ste[dgnthe

fusion mechanls_m and to establish optimum conditions fc.)?usion barrier distribution can be deduced from a precisely
synthesis of particular compound nuclei, for example, exotic

) . measured fusion excitation function by taking the second
nuclei far from B stability or new superheavy elements. In

' . : . derivative of the product of the cross section multiplied by
recent years special attention was paid to very precise mea-

surements of fusion excitation functions at near- and sub- nergy.

barrier energies. These precisely measured fusion excitation d?(cE)
functions have been used to study the coupled-channel ef- P(E) = dE2
fects involving rotational, vibrational, and neutron-transfer

channels influencing the fusion probabilitiisZ]. A numer-  gigyre 1 shows examples of experimentally measured fusion
ous and very valuable set of precisely measured fusion exCisycitation functions(top) and deduced20] fusion barrier
tation functions has been collected so far19. __distributions(bottom) for two selected reaction§Ca+%6Zr

In the present work we analyze the collected set of fusion 2] and 345 +16%r [18]. The double differentiation of the
excitation functions within a simple model that allows us t0 gependence ofE on E requires very high precision of the
determine the mean value of the fusion barrier and the widtheasured cross sections. A typical approach used in most
of the barrier distribution individually for each reaction. The ot pyplished papers consists in using so-called “point dif-
deduced barrier heights are used then for determination of gyrence formula’(see, e.g., a review paper by Dasgugta
semiempirical nucleus-nucleus potential in peripheral regiony| [2y):
of relative nucleus-nucleus distances.

1)

d*(Eo) _ 2<(Eo)3— (Eo), (Eo)p- (Ea)l)( 1 )
= Es-E, E,-E; E;-E,/’

Il. FUSION BARRIER DISTRIBUTIONS 2

It is well known that fusion excitation functions cannot be

satisfactorily explained assuming simply the penetrationvhere(Eo); are calculated at three close enerdigsand the
through a well-defined barrier in one-dimensional potentiavalue of d*(Es)/dE? is assigned to an energfE; +2E,
of a colliding nucleus-nucleus system. In order to reproducerE3)/4. Results of this procedure depend very much on the
shapes of experimentally observed fusion excitation funcenergy distance between points 1 and 3. As the barrier dis-
tions, especially at low, near-threshold energies, it is necedribution is naturally smeared out due to quantum tunneling
sary to assume distribution of the fusion barrier height, the by its finite width FWHM =2-3 MeV(see Sec. VI and Ref.
effect that results from the coupling to other than relative[1]), the experimentally deduced barrier distribution
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FIG. 2. The barrier distributiond®(Eot,s)/dE? determined with
FIG. 1. Fusion excitation functiorigop) and the deduced barrier the standard “point difference methogfull circles) and the “poly-
distributions (bottom) for the *°Ca+%Zr [12] and 3*S+1%%r [18]  nomial fit method”(open circles for fusion reactions o0 ions
reactions. The barrier distributions determined with the standargyith 144Sm, 154Sm, 184W, and2%%Pb target nuclei(Data taken from
“point difference method” and the “polynomial fit method” are Refs.[10,14.) The Gaussian-barrier distributions obtained by fit-

shown with full and open circles, respectively. The Gaussian-barrieting the “diffused-barrier formula,” Eq(6), are shown by solid
distributions obtained by fitting the “diffused-barrier formula,” Eq. lines. After Ref.[20].

(6), to the fusion excitation functions are shown by solid lines. After

Ref. [20]. of the Eo values increase with energy, and practically elimi-

o nate possibility to observe any meaningful structure on the
should be smoothed over a similar range. Therefore th@igh-energy side of the barrier distribution.

energy distancAE=E;~E; ~2(E,~E,) is usually chosen In the following, we concentrate our analysis on ther-
to be 4-6 MeV. all characteristics of the fusion barrier distributions, i.e., on

In addition to experimental points evaluated with thedetermination of the mean value of the barrier and the width
point difference formula, Fig. 1 also shows equivalent pointsof jts distribution. We are going to use the precise informa-
obtained in an alternative wd0], in which the experimen-  tion on the mean barrier heights, collected for many nuclear
tal values ofEa were locally fitted to the second-order poly- systems, for determination of the parameters of the nucleus-
nomial, nucleus potential. Then, knowing the empirical nucleus-

Eo=a+bE+CE, 3) ?uqleus pqtential det_juced from expe(imentally.determined
usion barriers, we will be able to predict the fusion or cap-
by using the least-square method. In this approach, a value #fre cross sections for not yet studied reactions.
the coefficientc in the quadratic term determing3(E)
=d’(Eo)/dE?=2c. It is seen from Fig. 1 that both methods
yield comparable distributions, provided the energy sp&n
in both methods is the same.

In the present paper, we do not analyze and discuss spe- In order to make a systematic overview of existing data
cific structural effects that can be interpreted in terms of theon fusion excitation functions, we propose to use a simple
coupled-channels calculationdn addition to almost struc- formula for the cross section favercomingthe potential-
tureless distributions shown in Fig. 1, we present in Fig. 2energy barrier. In case of light and medium systems, the
the fusion barrier distributions determined in four reactionsovercoming the barrier automatically leads to fusion of the
[10,14 induced by®0 ions on different target nuclei, show- colliding nuclei and formation of the compound nucleus. On
ing a more distinct structureThe observed structures in the the contrary, very heavy systems only stick together after
barrier distributions result from tiny details in the measuredovercoming the barrier and do not necessarily fuse, the effect
excitation functions and their interpretation is often ambigu-known as the “hindrance factor.” Therefore for those heavy
ous. As mentioned above, the observed structure dependgstems the overcoming the barrier is identified with the
strongly on the choice of the energy spA& used in the “capture” cross section rather than fusion cross section.
analysis of the fusion excitation functions. Moreover, the er- Neglecting structure effects in the barrier distributions, we
ror bars resulting from the numerical double differentiationassumethat these distributions have a Gaussian shape,

IIl. FORMULA FOR OVERCOMING THE
DIFFUSED BARRIER
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FIG. 4. Fusion excitation functions measured for tH©O
1 (B-B,)? +144155m 110], %0+188%, and %0 +2%%pPh [14] reactions(full
p(B) = —=—exp [- —0], (4)  circley compared with predictiongsolid lines of the “diffused-
Wy 27 2w?

barrier formula,” Eq(6), for values ofBj, w, andR,, obtained with
with two parameters, the mean barrigyand the distribution the least-square method.

width w, to be determined individually for each reaction. By . . . )

folding the barrier distribution, Eq(4), with the classical OVercoming the potenUaI-ene_rgy barner._Therefore it can _be
expression for the fusion cross section successfully used for analysis and predictions of the fusion
excitation functions of light, medium, and moderately heavy
systems, especially in the range of near-barrier energies. For
very heavy systems, when the overcoming the barrier does

) . not guarantee fusion, predictions based on ®y.give the
we obtain[21] the following formula for the energy depen- capture or “sticking” cross section.

dence of the fusion cross section:

B
Ofys= 7TR§—<1 - E) ) (5

w — IV. ANALYSIS OF FUSION EXCITATION FUNCTIONS
Otus= TRE—=[X\m(1 + erf X) + exp(- X3,  (6)

Ev2m In Fig. 3 we show one example of a fit of E(p) to
experimental data illustrating the quality of the fit and sensi-
tivity of the calculated fusion excitation function to variation

E-Bg of the parameters. For this purpose we have chosen a very
' (7) precisely measured fusion excitation function for t€a
+%7r reaction[12], the same that was used in Sec. Il to
and erfX is the Gaussian error integral of the argumi&nt demonstrate the method of empirical derivation of the barrier
By R, we denote the relative distance corresponding apédistribution. Formula(6) was fitted to the fusion excitation
proximately to the position of the barrier. Along wisy,  function using the least-square method, with variation of all
andw, R, is a parameter to be determined by fitting Eq. three parameter8,, w, andR,. Different points in the ex-
(6) to a given fusion excitation function. citation functions were equally weighted, i.e., the same rela-
In derivation of formula(6), the quantum effect of sub- tive error was assumed for all points, the assumption reflect-
barrier tunneling is not accounted for explicitly. However, ing the fact that the systematic error adbsolute
the influence of the tunneling on shape of a given fusiordetermination of the fusion cross section plays the decisive
excitation function is effectively included in the width pa- role. It is seen that the fusion excitation function can be
rameterw. In Sec. VI we derive a simple formula for the reproduced very accurately over the entire energy range,
width w, explicitly containing the sub-barrier tunneling com- though the cross section varies by four orders of magnitude.
ponent. From Figs. 1 and 2, we can see that the Gaussian curves
The “diffused-barrier formula,” Eq(6), is a very conve- calculated withBy and w determined from fitting Eq(6)
nient parametrization of the cross section for a process afshown by solid lineswell agree with the barrier distribu-

where

X= =
V2w
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FIG. 6. Fusion excitation functions measured for tfi€a
+9096z7r 112], 40Ca+19%0s, and*°Ca+'%4Pt [11] reactions (full
circles compared with predictiongsolid lineg of the “diffused-
barrier formula,” Eq(6), for values ofBy, w andR,, obtained with
the least-square method.

FIG. 5. Fusion excitation functions measured for tfica
+40.48Ca [19], %8Ni+®Ni [8], and 26S+11%Pd [9] reactions(full
circles compared with predictiongsolid lineg of the “diffused-
barrier formula,” Eq(6), for values ofB,, w, andR,, obtained with
the least-square method.

tionsdirectly determined by the double differentiation®f.  parametersB,, w, and R, were determined by the least-
It is clearly seen that the overall features of the barrier dissquare method. It is seen from Figs. 4—6 that for all systems,
tributions, i.e., the position of the maximum and the width ofthe measured fusion excitation functions can be very accu-
the distribution, are perfectly reproduced by the Gaussiamately reproduced with formul@6) in the entire range of
curves determined with Eq6). Therefore, as long as only energies, including the most critical sub-barrier region. As
those overall characteristics of the barrier distributions areliscussed above, the radius param&gincludes uncertain-
concerned, one can use our easy method of analysis of ekes in the absolute normalization of the cross sections, but
perimental data with Eq(6). An advantage of this simple this fact does not influence precision in determination of the
method is that information on the parameters of the barriebarrier distribution parameter8, and w, which are un-
distribution can be obtained in this way even from less precoupled fromR,,.
cise experimental data—not accurate enough for reliable de- In the present work we analyzed more experimental data
termination of the second derivatia8(Eo)/dE. than presented in Figs. 4—6. All the studied reactions are
It is very fortunate that the mean barrigg and the width  listed in Table I. For the analysis we selected experimental
w are practically independent of the third parameter, the radata [3-19 for 48 medium and moderately heavy nuclear
dius R, that, as it is seen from Eq6), does not influence systems, for which we can presume that the fusion cross
shape of the excitation function and only scales the absolutgection is nearly identical with the cross section for overcom-
value of the cross section. Thus, the barrier distribution paing the potential-energy barrier. Complete list of the deduced
rametersB, and w are precisely determined in the rapidly values of the parameteB;, w, andR, is given in Table I.
rising part of the fusion excitation function in the sub-barrier
region, while a value of the third parametey depends on V. NUCLEUS-NUCLEUS POTENTIAL DEDUCED
absolutenormalization of the measured cross sections. In FROM Bo VALUES
most of experiments the absolute values of the cross section Precise information on the mean values of the fusion bar-
are known not better than within +20%. Consequently, therier B, for a large number of reactions listed in Table | can be
parametelR, can be determined with an accuracy of aboutused for determination of an effective nucleus-nucleus poten-
+10%, but—as mentioned above—this large uncertainty irtial characterizing interaction of dinuclear systems in periph-
R, does not influence the accuracy of determinatiorBgf eral configurations. We will show that so determined
andw. nucleus-nucleus potential can be used for reliable predictions
In Figs. 4-6 we show fusion excitation functions pre- of the fusion barriers for not yet studied systems.
cisely measure@8-12,14,19 at near-barrier energies for 12 )
reactions sampled from the collection of systems studied so A. Nuclear potential
far experimentally. For each reaction, the diffused-barrier We assume that the nuclear part of the nucleus-nucleus
formula, Eq.(6), was fitted to experimental points, and the potential has the Woods-Saxon shape,
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TABLE I. Values of the mean barrier heigBy, width of the barrier height distributiow, and effective radiu®,, deduced from the
analysis of fusion excitation functions for 48 reactions, using the “diffused-barrier formula(6Eq.he reactions are listed in order of the
increasing value of the paramet®r 2,7,/ (AY3+A}). Theoretical values B, andw are also showiisee texk

Bo w R, By (theon w (theon
Reaction z Ref. (MeV) (MeV) (fm) (MeV) (MeV)
48Ca+48Ca 55.03 [19] 51.2 1.11 11.2 50.06 1.25
305 +64Njj 55.16 [7] 51.4 1.38 9.6 50.85 1.39
305 +62jj 55.48 [7] 52.1 1.55 9.7 51.19 1.42
28gj+64Njj 55.71 [7] 50.4 1.12 7.6 51.29 1.43
283+ 62N 56.04 (7] 51.3 1.20 7.7 51.67 1.46
305 +-58j 56.18 (7] 52.8 1.59 8.8 51.84 1.36
“ca+*Ca 56.70 [19] 51.8 1.78 11.5 51.97 1.31
28Gj+58N)j 56.75 [7] 52.9 1.32 8.1 52.43 1.41
“ca+*Ca 57.55 [5] 51.8 1.59 7.9 52.79 1.35
“ca+*Ca 58.48 [5] 53.6 1.60 9.5 53.79 1.40
365 +64Nj 61.35 [7] 56.8 1.17 8.5 56.89 1.46
345 +64Nj 61.88 [71 56.9 1.25 8.5 57.35 1.48
40Ca +°0Ti 61.94 [13] 57.3 1.72 9.4 57.15 1.40
40Ca+48Ti 62.37 [13] 57.1 1.50 9.4 57.57 1.42
825 +64Nj 62.44 [7] 57.3 1.57 8.1 57.77 1.52
365 +58Nj 62.46 [7] 58.4 1.53 7.7 57.91 1.42
40Ca+46Ti 62.83 [13] 57.3 1.45 9.4 58.20 1.44
160 +1545m 62.94 [10] 58.4 2.25 9.6 59.49 2.38
345 +58Nj 63.01 [7] 58.5 1.25 7.6 58.49 1.45
170 +1445m 63.49 [10] 60.6 2.06 10.8 60.14 1.59
160 +1485m 63.51 [10] 59.4 1.98 10.2 60.10 1.93
325 +58)j 63.59 [7] 59.6 1.35 8.3 59.07 1.48
160 +1445m 63.91 [10] 60.5 1.45 10.3 60.61 1.64
160 + 186y 71.95 [10] 68.3 2.29 10.6 68.67 2.43
160 +208pp 77.68 [14] 73.6 1.57 10.5 75.40 1.72
365 +967¢ 81.21 [16] 74.9 1.34 11.0 76.33 2.31
365 49071 82.23 [16] 77.0 1.24 10.8 77.47 1.60
365 +110pg 90.94 [9] 85.5 1.91 8.2 86.34 2.61
325 +110pg 92.39 [9] 86.3 2.63 8.0 87.27 2.65
64N + 64Nij 98.00 [4] 92.7 1.58 7.8 92.85 2.07
S8Nj + 64Nj 99.61 [4] 94.6 2.18 6.5 94.42 1.97
40Ca+967r 100.01 [12] 93.6 2.65 9.3 94.52 2.79
58N+ 6ONj 100.70 [8] 96.6 1.93 7.5 95.81 1.87
40Ca+997r 101.25 [12] 96.1 1.53 10.0 96.31 1.90
58Nii+ 58N 101.27 [3] 95.8 1.18 6.0 96.49 1.88
4O0Ar+ 12250 107.40 [6] 103.6 2.58 9.8 103.24 1.94
40Ar + 11650 108.47 [6] 103.3 2.23 8.7 104.25 1.98
40Ar+ 11250 109.22 [6] 104.0 2.26 8.9 105.01 2.01
6Ni+ “Ge 109.29 [4] 103.2 1.97 6.5 104.50 3.09
58N+ “Ge 111.04 [4] 106.8 2.96 7.0 105.96 3.05
40Cca+1245n 118.95 [15] 113.4 2.75 9.6 114.19 2.13
28gj+198p¢ 123.18 [17] 120.9 3.41 9.8 120.48 2.94
34g 4168y 124.24 [18] 121.5 4.21 10.3 121.21 4.55
40Ar+ 1545m 127.11 (6] 121.0 3.40 7.3 123.80 4.27
401 + 148gm 128.14 [6] 124.7 3.15 8.5 125.01 3.15
40Ar + 1445m 128.85 (6] 124.4 2.19 8.3 125.93 2.31
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TABLE I. (Continued)

By w R, By (theon w (theon
Reaction z Ref. (MeV) (MeV) (fm) (MeV) (MeV)
4OCca+19%0s 165.42 [11] 167.9 5.46 10.7 164.80 4.18
40Ca +194pt 169.40 [11] 171.0 4.12 9.6 169.60 4.20
-V B. Nuclear plus Coulomb potential
Vi(r) = , 8 . o -
(") 1+exp[(r-R, - Ry/a] ® For typical applications, such as determination of the fu-

sion barrier, it is sufficient to consider the nucleus-nucleus
whereR; and R, are the radii of the two nucler, is their  potential only in the outer region>R; +R,. For that region,
relative distancéwell defined only forr >R;+R,), andais = we use the point-charge approximation for the Coulomb po-
the diffuseness parameter. For simplicity, we scale the radiiential, sufficiently accurate in the whole outer region of rela-
R, using a single paramete@s:Ri/Aim. Equation(8) repre- tive distances:
sents a smooth and realistic interpolation of the nuclear po-
tential energy of a given dinuclear system between the initial
configuration of two noninteracting nucléof the ground-
state masseldl; andM, at the infinite distance=c) and the

final configuration at =0 corresponding to the fused system, For the inner range of distanceswve put just the constant,
i.e., the compound nucleus of the ground-state mhdgs In  asymptotic value of the potential energy of the completely
order to single out nuclear interaction, we need to subtracfysed systentr=0):

from the total energy of the two initial nuclei and the final

compound nucleus their intrinsic Coulomb energiég, C, V(r)=Co—Vo=-Qss— Sy (forinner distances).
andC.,, respectively. Thus the depth of the nuclear part of (13)

the potential for the fusion process is

Z2,7,€°

V(r) =V, (r) + (for outer distances). (12)

Equation(12) is replaced by Eq(13) below the crossing of

r— 2 _ _ K .
Vo=(My+Mz = Mcp)c+ Cep = Cy = Cp, ©) these two expressions at the smallest distance.
wher
ere C. Parameters of the empirical fusion potential
Cin—Ci—-Cy,=Cy Equation(12) gives the total potential energy of a given
(Zy+2,)? 22 22 nucleus-nucleus system as a function of the distance variable
= 0_7054{1—21/3 - ﬁ - ng] MeV. r, thus determining the height of the fusion barrier. There are
(A +Ay) AT A only two free parameters in the expressions for the nucleus-

(10) nucleus potential: the radius paramatgand the diffuseness
of the nuclear potentiah. We have determined these two

Here, the Coulomb energy constant is taken from the starRarameters by fitting the barrier heights calculated with Eq.
dard liquid-drop-model fit to nuclear masg@2]. To calcu- (12) to the set of theB, values obtained in our analysis
late V, in Eq. (8) we correct the deptlvy of Eq. (9) by descr_lbed in the preceding section and listed in Tab]e I. By
subtracting from the ground-state energy of the compoun@PPlying the least-square method we have determined the
nucleus the shell correction ener§y, because it produces best fitting parameters of the nuclear potential, Eggand
only a verylocal dip (near the equilibrium shapén the flat (11, @sro=1.18 fm anda=0.675 fm. These values corre-

landscape of the nuclear potential energy described by thgPond to location of the absolute minimum g see Fig. 7.
inner part of the Woods-Saxon potential. Thus Viewing contours of a constant value gf, we can see that

there is a limited uncertainty in determination gf and a

/ along a narrow valley given by the relation
Vo=V§+ Sin= Quus* Co+ Sn (12) g y given by

— 2
where byQ;,s we denote the ground-staevalue for fusion, a=2.95-9.8p+8.2fm. (14
Qrus=(M+M,—Mc)c?, and Cy is given by Eq.(10). The It is important to note that separate analysis of light, me-
inclusion of the shell correction energy in E41) is almost  dium, and heavy systems shows that best combinations of
insignificant for the potential in the peripheral region. Thethe parametera andr, for these separated groups of reac-
only role of §,, in Eq. (11) is to consistently describe the tions are always located along the locus of 8df), but there
total macroscopi@otential energy for mononuclear shapes atis a clear systematic trend: for heavier systems the optimum
small values ofr, as it is seen by the fusing system. In our combination ofa andr, moves along the locud 4) towards
calculations we use8., values from the mass tables of Ref. smallerry and largera values. Therefore we propose to limit
[23]. validity of the global-fit parametersry=1.18 fm, a
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=0.675 fm only to medium systems characterized by a lim

, : ‘creasing the Coulomb barrier parametesz,Z,/(AM?
ited range of the Coulomb barrier parametsiZ,Z,/ (A}® 3n9 . ler p 122/ (Ay

+AL) +A}3), and the largest discrepancy of about 5 MeV is ob-
2/ served for the heaviest studied systems. Still larger discrep-
ro=1.18 fm, a=0.675fm for 70<z< 130, ancies, up to 8 MeV, are observed for fusion barriers calcu-
(15) lated with the proximity potentiglsee Fig. &)].
and to use different values of the parameters for light and
heavy systems: VI. THEORETICAL ESTIMATES OF THE WIDTH  w
ro=1.25fm, a=0.481fm for z<70, (16) As it is seen from Table |, the widthe of the barrier
distributions deduced from experimental data are very diver-
and sified and show a strong dependence on individual properties

ro=1.11fm, a=0895fm for z>130. (17) of both _fusing nuclei. In the following we derive a simple
expression forw that accounts for the quantum effect of

The latter combination of parameters, [E4j7), is suitable for ~ sub-barrier tunneling, as well as for static quadrupole defor-
predicting “sticking” or overcoming-the-barrier cross sec-mations and collective surface vibrations of the colliding
tions in reactions used to produce superheavy nuclei. nuclei.

The barriers calculated for the nuclear potential wath
and r, given by EQs.(15—17) are listed in Table I. The _ _
root-mean-square deviation from experimerBglvalues is A. Sub-barrier tunneling
(6Bg)rms=1.05 MeV, while for a fit with the fixed combina- The effect of sub-barrier tunneling is accounted for in the
tion of the parameters,=1.18 fm anda=0.675 fm for all  analytic formula derived by Won26]:
systems i 6Bg);ms=1.23 MeV. ,

In Fig. 8 we compare experimenta), values with barrier oong= hoR In[l + exp@} _
heights calculated with three different nuclear potentigls: 2E h
the potential determined in this worlg) the Akylz-Winther
potential[24] frequently used in the coupled-channel calcu-
lations, and(c) the proximity potential recently modified by
Myers andSwiatecki [25]. It is seen that predictions based
on our “empirical potential” agree quite well with experi-
mental values of the mean barrier heiffatshowing no sys- #2 d?V(r)
tematic deviations. On the contrary, calculations with the fiw= . ar
Akyuz-Winther potential systematically overestimate the fu- ®
sion barriers. The differenc8y,.,,— B, increases with in- whereu is the reduced mass of the fusing system.

(18

This formula predicts the cross section for overcoming the
potential energy barriedB at an energy, assuming the para-
bolic shape of the barrier with the curvatuie determined

by second derivative of the potential at the top of the barrier:

, (19
r=R
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Rowley, Satchler, and Stels¢fh] used the Wong formula

(18) to determine the effective width of the barrier distribu-

tion associated with the sub-barrier tunneling:

1 dXEofi™ 27 €&
_— = = 2
mR?  dE? Sty fiw (1 +e9?’ (20

where x=2m(E-B)/(hw). Thus the width of the function
G(x) represents the width caused by the tunneling efféwat.
the absence of tunnelin@(x) would be just thes function,]

One can readily check that the root-mean-square width of the

distributione*/ (1 +e92 is =/ V3 and hence the width caused
by the tunneling effect is

hw

—= 21
2V (21)

Wiunnel=
By calculatingfw in Eq. (19) assuming purely exponential
dependence of the nuclear potenfiaf], we obtain

2,Z,6°h? (
12uR?

1 2

2)

a R

(Wiynned? = (22)

wherea is a parameter in the exponent describing the nuclear

potentialV,(r) ~exp(-r/a).

B. Static deformations

PHYSICAL REVIEW C 69, 024611(2004

-~
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£ L
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3 Ypies
2 .

w theoretical, (MeV)

FIG. 9. Comparison of experimental values of the widttof
the fusion barrier distributions, deduced for 48 reactigiith col-
umn in Table } with those calculated with Eq27).

C. Calculations of the total width

In addition to the rotational smearing of the barrier height,
Egs. (26), we assume also a possible contribution from vi-
brational degrees of freedom. However, we treat this contri-
bution in an extremely simplified way assuming the same

F0||owing Ref.[28], we propose a simp|e expression to relative amplitude OfibEh-e yibration for aII nuclaj\Ne_put a
estimate the contribution of nuclear static deformations tefonstant value ofg;™ (i) into respective expressions for

the magnitude of the widtlwv. Assuming all possible orien-
tations of a nucleus with a static deformatiorB,(i), one
obtains the variation of the effective radili) with the
standard deviation,

4z R

AR = (23)

The distribution of the resulting surface-surface distaifice

W,in(i), analog to Eq(26).] Thus, in fact,85™"
ing parameter of the model.
Summing up quadratically all components, the total width
w is given by the expression
\'/Wtzunnel"' Wgtat(l) + Wgtat(z) + Wiibr(l) + Wﬁibr(z)'
(27

which contains only one free parameyﬁj‘br. From besty?

is an adjust-

W=

a fixed distance between centers of mass of the two nuclefit of expression(27) to our set of empirical values oV (see
leads to a distribution of the barrier height with the standardlable I), we obtainedﬁg'b’:o.lz Values of the widthw

deviation,

Vi) _ B [ dv, 3zlzze25]
Wstat(')_ARi Jr - \'ZTRi|: dr + 5 r3 r:R,

(24)

where the expression for the derivatidé, —,(i)/ dr for quad-
rupole deformations follows Reff28,29. Since at distances
in vicinity of the barrier

dv|  ZiZ€
dr |,..x R2 ' @9
we obtain
. zlzzezﬂz<i><§5? B 5)
Wstaf(i) = R \"ZT 5R2 R/ (26)

As the static deformations we have takeheoreticalvalues
of B, from Ref.[23], however for all light nuclei ofA<30
we have putB,=0.

calculated with Eq(27) are shown in the last column of
Table I, and their correlation with experimental values is
shown in Fig. 9. The accuracy of predictions of the for-
mula (27) is Aw/w= +20%.

VII. PREDICTIONS OF FUSION CROSS SECTIONS
AND SUMMARY

Results of our analysis presented in previous sections
open the way to predict fusion excitation functions for not
yet studied nuclear systemtrictly speaking, we can pre-
dict only the “overcoming-the-barrier” cross sections
which—as discussed in Sec. V—are not identical with fusion
cross sections in the case of very heavy systgifs calcu-
late the overcoming-the-barrier cross section for a given
projectile-target combination one can use Eg). applying
theoretical values of the parametdg and w. The barrier
heightB, can be readily calculated with the nuclear potential,
Egs. (8) and (11), using values off, and a as determined
empirically, Egs.(15—17). The widthw can be predicted
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with a reasonable accuracy by using E2{). We propose to  small relative distances at the energy of the fused system.
take the third parameter used in formg& R, as The only two free parameteesandr,, Egs.(15—17), have
been determined from the best fit By values for 48 differ-
RU:rU(A%B“LA%/a) fm, (28) ent nuclear systems. The mean Bl:?arrier heights calculated
where the coefficient,=1.16 fm is theaverage value of, ~ With this potential are reproduced with an accuracy of about
for the whole set of systems listed in Table I. As discussed MeV. We demonstrated that other frequently used poten-
in Sec. 1V, systematic errors resulting from uncertaintiestials, the proximity potential25] and the Akyuiz-Winther po-
of absolute normalization of the cross sections cause thdential [24], considerably overpredict the barrier heights, es-
the values of r, are quite widely scattered(r, pecially, for heavy systems.
=1.16+0.19 fm. However, the average value obtained We propose a simple method of theoretical estimation of
from results of many independent experiments is expecteH‘e width of the barrier distribution. The proposed fo_rmula,
to be determined more accurately. Eq._ (27), acpounts for the quantum _effect of sub-barr]er tun-
In summary, we have studied an ample set of precisely”ehngg static quadrupole_ d_eformatlc_ms, and collective sur-
measured fusion excitation functions with the aim to learnf@ce vibrations of the colliding nuclei.
about conditions of overcoming the potential energy barrier Theoretical knowledge of both, the mean barigrand
in nucleus-nucleus collisions. We attempted to obtain syswidth w enables us to use the diffused-barrier formula, Eq.
tematic information on the essential characteristics of the po®). and to predict cross sections for overcoming the barrier
tential interaction between two nuclei, the mean barriedn collisions of very heavy systems used to produce super-
heightB, and widthw of its distribution. For the analysis of Neavy nuclei. In such a way we are able to predict the energy
experimental data we used the simple diffused-barrier fordeépendence of the cross section for capture or sticking in
mula, Eq.(6), derived under assumption of the Gaussianthese_ reactions, one of three basic mgr(_adlents in the st_lcklng-
shape of the barrier distribution. By using E6) for typical  diffusion-survival mode[21] for calculating the production
excitation functions, measured with high precision requirect0ss sections of superheavy nuclei.
to determine the Rowley’s derivativi#(Eo)/dE?, the mean
values of the barrieB, have been deduced with an accuracy
significantly better than +1 MeV. ACKNOWLEDGMENTS
We have used the obtained set of precisely determidyed
values to establish an effective nucleus-nucleus potential in We would like to thank W. JSwiatecki for many inspir-
order to use it then for predicting the barrier heights andng discussions and his constant interest in this study. We
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