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Existing data on near-barrier fusion excitation functions for 48 medium and heavy nucleus-nucleus systems
have been analyzed using a simple “diffused-barrier formula” derived assuming the Gaussian shape of the
barrier height distributions. The obtained mean values of the barrier height have been used then for determi-
nation of the parameters of the empirical nucleus-nucleus potential, assumed to have Woods-Saxon shape. The
mean barrier heights calculated with this potential are reproduced with an accuracy of about 1 MeV, while
other frequently used potentials, i.e., the proximity potential and the Akyüz-Winther potential, considerably
overpredict the experimental values, especially for heavy systems. In order to predict fusion excitation func-
tions with the diffused-barrier formula, we propose a simple method of theoretical prediction of the second
parameter of the barrier distribution, its width. The proposed formula accounts for the quantum effect of
sub-barrier tunneling, static quadrupole deformations, and collective surface vibrations of the colliding nuclei.
With the theoretical knowledge of the mean height and width of the barrier distributions, one can predict cross
sections for overcoming the barrier(“sticking” or “capture”) in reactions of very heavy systems used to
produce superheavy nuclei.
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I. INTRODUCTION

Nucleus-nucleus fusion reactions have been studied for
many years with the aim to learn essential features of the
fusion mechanism and to establish optimum conditions for
synthesis of particular compound nuclei, for example, exotic
nuclei far fromb stability or new superheavy elements. In
recent years special attention was paid to very precise mea-
surements of fusion excitation functions at near- and sub-
barrier energies. These precisely measured fusion excitation
functions have been used to study the coupled-channel ef-
fects involving rotational, vibrational, and neutron-transfer
channels influencing the fusion probabilities[1,2]. A numer-
ous and very valuable set of precisely measured fusion exci-
tation functions has been collected so far[2–19].

In the present work we analyze the collected set of fusion
excitation functions within a simple model that allows us to
determine the mean value of the fusion barrier and the width
of the barrier distribution individually for each reaction. The
deduced barrier heights are used then for determination of a
semiempirical nucleus-nucleus potential in peripheral region
of relative nucleus-nucleus distances.

II. FUSION BARRIER DISTRIBUTIONS

It is well known that fusion excitation functions cannot be
satisfactorily explained assuming simply the penetration
through a well-defined barrier in one-dimensional potential
of a colliding nucleus-nucleus system. In order to reproduce
shapes of experimentally observed fusion excitation func-
tions, especially at low, near-threshold energies, it is neces-
sary to assume adistributionof the fusion barrier height, the
effect that results from the coupling to other than relative

distance degrees of freedom. This is naturally achieved in
coupled-channel calculations, involving the coupling to the
lowest collective states in both colliding nuclei.

As demonstrated by Rowley, Satchler, and Stelson[1], the
fusion barrier distribution can be deduced from a precisely
measured fusion excitation function by taking the second
derivative of the product of the cross section multiplied by
energy,

PsEd =
d2ssEd

dE2 . s1d

Figure 1 shows examples of experimentally measured fusion
excitation functionsstopd and deducedf20g fusion barrier
distributionssbottomd for two selected reactions:40Ca+96Zr
f12g and 34S+168Er f18g. The double differentiation of the
dependence ofsE on E requires very high precision of the
measured cross sections. A typical approach used in most
of published papers consists in using so-called “point dif-
ference formula”ssee, e.g., a review paper by Dasguptaet
al. [2]):

d2sEsd
dE2 = 2S sEsd3 − sEsd2

E3 − E2
−

sEsd2 − sEsd1

E2 − E1
DS 1

E3 − E1
D ,

s2d

wheresEsdi are calculated at three close energiesEi, and the
value of d2sEsd /dE2 is assigned to an energysE1+2E2

+E3d /4. Results of this procedure depend very much on the
energy distance between points 1 and 3. As the barrier dis-
tribution is naturally smeared out due to quantum tunneling
by its finite width FWHM =2–3 MeVssee Sec. VI and Ref.
f1gd, the experimentally deduced barrier distribution
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should be smoothed over a similar range. Therefore the
energy distanceDE=E3−E1<2sE2−E1d is usually chosen
to be 4–6 MeV.

In addition to experimental points evaluated with the
point difference formula, Fig. 1 also shows equivalent points
obtained in an alternative way[20], in which the experimen-
tal values ofEs were locally fitted to the second-order poly-
nomial,

Es = a + bE+ cE2, s3d

by using the least-square method. In this approach, a value of
the coefficient c in the quadratic term determinesPsEd
=d2sEsd /dE2=2c. It is seen from Fig. 1 that both methods
yield comparable distributions, provided the energy spanDE
in both methods is the same.

In the present paper, we do not analyze and discuss spe-
cific structural effects that can be interpreted in terms of the
coupled-channels calculations.(In addition to almost struc-
tureless distributions shown in Fig. 1, we present in Fig. 2
the fusion barrier distributions determined in four reactions
[10,14] induced by16O ions on different target nuclei, show-
ing a more distinct structure.) The observed structures in the
barrier distributions result from tiny details in the measured
excitation functions and their interpretation is often ambigu-
ous. As mentioned above, the observed structure depends
strongly on the choice of the energy spanDE used in the
analysis of the fusion excitation functions. Moreover, the er-
ror bars resulting from the numerical double differentiation

of theEs values increase with energy, and practically elimi-
nate possibility to observe any meaningful structure on the
high-energy side of the barrier distribution.

In the following, we concentrate our analysis on theover-
all characteristics of the fusion barrier distributions, i.e., on
determination of the mean value of the barrier and the width
of its distribution. We are going to use the precise informa-
tion on the mean barrier heights, collected for many nuclear
systems, for determination of the parameters of the nucleus-
nucleus potential. Then, knowing the empirical nucleus-
nucleus potential deduced from experimentally determined
fusion barriers, we will be able to predict the fusion or cap-
ture cross sections for not yet studied reactions.

III. FORMULA FOR OVERCOMING THE
DIFFUSED BARRIER

In order to make a systematic overview of existing data
on fusion excitation functions, we propose to use a simple
formula for the cross section forovercomingthe potential-
energy barrier. In case of light and medium systems, the
overcoming the barrier automatically leads to fusion of the
colliding nuclei and formation of the compound nucleus. On
the contrary, very heavy systems only stick together after
overcoming the barrier and do not necessarily fuse, the effect
known as the “hindrance factor.” Therefore for those heavy
systems the overcoming the barrier is identified with the
“capture” cross section rather than fusion cross section.

Neglecting structure effects in the barrier distributions, we
assumethat these distributions have a Gaussian shape,

FIG. 1. Fusion excitation functions(top) and the deduced barrier
distributions(bottom) for the 40Ca+96Zr [12] and 34S+168Er [18]
reactions. The barrier distributions determined with the standard
“point difference method” and the “polynomial fit method” are
shown with full and open circles, respectively. The Gaussian-barrier
distributions obtained by fitting the “diffused-barrier formula,” Eq.
(6), to the fusion excitation functions are shown by solid lines. After
Ref. [20].

FIG. 2. The barrier distributionsd2sEs fusd /dE2 determined with
the standard “point difference method”(full circles) and the “poly-
nomial fit method”(open circles) for fusion reactions of16O ions
with 144Sm, 154Sm, 184W, and208Pb target nuclei.(Data taken from
Refs. [10,14].) The Gaussian-barrier distributions obtained by fit-
ting the “diffused-barrier formula,” Eq.(6), are shown by solid
lines. After Ref.[20].
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psBd =
1

wÎ2p
expF−

sB − B0d2

2w2 G , s4d

with two parameters, the mean barrierB0 and the distribution
width w, to be determined individually for each reaction. By
folding the barrier distribution, Eq.s4d, with the classical
expression for the fusion cross section

s fus= pRs
2S1 −

B

E
D , s5d

we obtainf21g the following formula for the energy depen-
dence of the fusion cross section:

s fus= pRs
2 w

EÎ2p
fXÎps1 + erf Xd + exp s− X2dg, s6d

where

X =
E − B0

Î2w
, s7d

and erfX is the Gaussian error integral of the argumentX.
By Rs we denote the relative distance corresponding ap-
proximately to the position of the barrier. Along withB0
and w, Rs is a parameter to be determined by fitting Eq.
s6d to a given fusion excitation function.

In derivation of formula(6), the quantum effect of sub-
barrier tunneling is not accounted for explicitly. However,
the influence of the tunneling on shape of a given fusion
excitation function is effectively included in the width pa-
rameterw. In Sec. VI we derive a simple formula for the
width w, explicitly containing the sub-barrier tunneling com-
ponent.

The “diffused-barrier formula,” Eq.(6), is a very conve-
nient parametrization of the cross section for a process of

overcoming the potential-energy barrier. Therefore it can be
successfully used for analysis and predictions of the fusion
excitation functions of light, medium, and moderately heavy
systems, especially in the range of near-barrier energies. For
very heavy systems, when the overcoming the barrier does
not guarantee fusion, predictions based on Eq.(6) give the
capture or “sticking” cross section.

IV. ANALYSIS OF FUSION EXCITATION FUNCTIONS

In Fig. 3 we show one example of a fit of Eq.(6) to
experimental data illustrating the quality of the fit and sensi-
tivity of the calculated fusion excitation function to variation
of the parameters. For this purpose we have chosen a very
precisely measured fusion excitation function for the40Ca
+ 96Zr reaction [12], the same that was used in Sec. II to
demonstrate the method of empirical derivation of the barrier
distribution. Formula(6) was fitted to the fusion excitation
function using the least-square method, with variation of all
three parameters:B0, w, andRs. Different points in the ex-
citation functions were equally weighted, i.e., the same rela-
tive error was assumed for all points, the assumption reflect-
ing the fact that the systematic error ofabsolute
determination of the fusion cross section plays the decisive
role. It is seen that the fusion excitation function can be
reproduced very accurately over the entire energy range,
though the cross section varies by four orders of magnitude.

From Figs. 1 and 2, we can see that the Gaussian curves
calculated withB0 and w determined from fitting Eq.(6)
(shown by solid lines) well agree with the barrier distribu-

FIG. 3. Fusion excitation function for the40Ca+96Zr reaction,
measured by Timmerset al. [12] (full circles), compared with the
least-square fit of the “diffused-barrier formula,” Eq.(6), shown by
solid line. Dashed lines illustrate sensitivity of the calculated curve
to the variation of the mean barrierB0 increased by 1% and the
width w increased by 10%.

FIG. 4. Fusion excitation functions measured for the16O
+144,154Sm [10], 16O+186W, and 16O+208Pb [14] reactions(full
circles) compared with predictions(solid lines) of the “diffused-
barrier formula,” Eq.(6), for values ofB0, w, andRs obtained with
the least-square method.
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tionsdirectly determined by the double differentiation ofEs.
It is clearly seen that the overall features of the barrier dis-
tributions, i.e., the position of the maximum and the width of
the distribution, are perfectly reproduced by the Gaussian
curves determined with Eq.(6). Therefore, as long as only
those overall characteristics of the barrier distributions are
concerned, one can use our easy method of analysis of ex-
perimental data with Eq.(6). An advantage of this simple
method is that information on the parameters of the barrier
distribution can be obtained in this way even from less pre-
cise experimental data—not accurate enough for reliable de-
termination of the second derivatived2sEsd /dE2.

It is very fortunate that the mean barrierB0 and the width
w are practically independent of the third parameter, the ra-
dius Rs that, as it is seen from Eq.(6), does not influence
shape of the excitation function and only scales the absolute
value of the cross section. Thus, the barrier distribution pa-
rametersB0 and w are precisely determined in the rapidly
rising part of the fusion excitation function in the sub-barrier
region, while a value of the third parameterRs depends on
absolutenormalization of the measured cross sections. In
most of experiments the absolute values of the cross section
are known not better than within ±20%. Consequently, the
parameterRs can be determined with an accuracy of about
±10%, but—as mentioned above—this large uncertainty in
Rs does not influence the accuracy of determination ofB0
andw.

In Figs. 4–6 we show fusion excitation functions pre-
cisely measured[8–12,14,19] at near-barrier energies for 12
reactions sampled from the collection of systems studied so
far experimentally. For each reaction, the diffused-barrier
formula, Eq.(6), was fitted to experimental points, and the

parametersB0, w, and Rs were determined by the least-
square method. It is seen from Figs. 4–6 that for all systems,
the measured fusion excitation functions can be very accu-
rately reproduced with formula(6) in the entire range of
energies, including the most critical sub-barrier region. As
discussed above, the radius parameterRs includes uncertain-
ties in the absolute normalization of the cross sections, but
this fact does not influence precision in determination of the
barrier distribution parametersB0 and w, which are un-
coupled fromRs.

In the present work we analyzed more experimental data
than presented in Figs. 4–6. All the studied reactions are
listed in Table I. For the analysis we selected experimental
data [3–19] for 48 medium and moderately heavy nuclear
systems, for which we can presume that the fusion cross
section is nearly identical with the cross section for overcom-
ing the potential-energy barrier. Complete list of the deduced
values of the parametersB0, w, andRs is given in Table I.

V. NUCLEUS-NUCLEUS POTENTIAL DEDUCED
FROM B0 VALUES

Precise information on the mean values of the fusion bar-
rier B0 for a large number of reactions listed in Table I can be
used for determination of an effective nucleus-nucleus poten-
tial characterizing interaction of dinuclear systems in periph-
eral configurations. We will show that so determined
nucleus-nucleus potential can be used for reliable predictions
of the fusion barriers for not yet studied systems.

A. Nuclear potential

We assume that the nuclear part of the nucleus-nucleus
potential has the Woods-Saxon shape,

FIG. 5. Fusion excitation functions measured for the48Ca
+40,48Ca [19], 58Ni+ 60Ni [8], and 36S+110Pd [9] reactions(full
circles) compared with predictions(solid lines) of the “diffused-
barrier formula,” Eq.(6), for values ofB0, w, andRs obtained with
the least-square method.

FIG. 6. Fusion excitation functions measured for the40Ca
+90,96Zr [12], 40Ca+192Os, and 40Ca+194Pt [11] reactions (full
circles) compared with predictions(solid lines) of the “diffused-
barrier formula,” Eq.(6), for values ofB0, w andRs obtained with
the least-square method.
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TABLE I. Values of the mean barrier heightB0, width of the barrier height distributionw, and effective radiusRs, deduced from the
analysis of fusion excitation functions for 48 reactions, using the “diffused-barrier formula,” Eq.(6). The reactions are listed in order of the
increasing value of the parameterz=Z1Z2/ sA1

1/3+A2
1/3d. Theoretical values ofB0 andw are also shown(see text).

B0 w Rs B0 (theor) w (theor)

Reaction z Ref. (MeV) (MeV) (fm) (MeV) (MeV)

48Ca+48Ca 55.03 [19] 51.2 1.11 11.2 50.06 1.25
30Si+64Ni 55.16 [7] 51.4 1.38 9.6 50.85 1.39
30Si+62Ni 55.48 [7] 52.1 1.55 9.7 51.19 1.42
28Si+64Ni 55.71 [7] 50.4 1.12 7.6 51.29 1.43
28Si+62Ni 56.04 [7] 51.3 1.20 7.7 51.67 1.46
30Si+58Ni 56.18 [7] 52.8 1.59 8.8 51.84 1.36
40Ca+48Ca 56.70 [19] 51.8 1.78 11.5 51.97 1.31
28Si+58Ni 56.75 [7] 52.9 1.32 8.1 52.43 1.41
40Ca+44Ca 57.55 [5] 51.8 1.59 7.9 52.79 1.35
40Ca+40Ca 58.48 [5] 53.6 1.60 9.5 53.79 1.40
36S+64Ni 61.35 [7] 56.8 1.17 8.5 56.89 1.46
34S+64Ni 61.88 [7] 56.9 1.25 8.5 57.35 1.48
40Ca+50Ti 61.94 [13] 57.3 1.72 9.4 57.15 1.40
40Ca+48Ti 62.37 [13] 57.1 1.50 9.4 57.57 1.42
32S+64Ni 62.44 [7] 57.3 1.57 8.1 57.77 1.52
36S+58Ni 62.46 [7] 58.4 1.53 7.7 57.91 1.42
40Ca+46Ti 62.83 [13] 57.3 1.45 9.4 58.20 1.44
16O+154Sm 62.94 [10] 58.4 2.25 9.6 59.49 2.38
34S+58Ni 63.01 [7] 58.5 1.25 7.6 58.49 1.45
17O+144Sm 63.49 [10] 60.6 2.06 10.8 60.14 1.59
16O+148Sm 63.51 [10] 59.4 1.98 10.2 60.10 1.93
32S+58Ni 63.59 [7] 59.6 1.35 8.3 59.07 1.48
16O+144Sm 63.91 [10] 60.5 1.45 10.3 60.61 1.64
16O+186W 71.95 [10] 68.3 2.29 10.6 68.67 2.43
16O+208Pb 77.68 [14] 73.6 1.57 10.5 75.40 1.72
36S+96Zr 81.21 [16] 74.9 1.34 11.0 76.33 2.31
36S+90Zr 82.23 [16] 77.0 1.24 10.8 77.47 1.60
36S+110Pd 90.94 [9] 85.5 1.91 8.2 86.34 2.61
32S+110Pd 92.39 [9] 86.3 2.63 8.0 87.27 2.65
64Ni+ 64Ni 98.00 [4] 92.7 1.58 7.8 92.85 2.07
58Ni+ 64Ni 99.61 [4] 94.6 2.18 6.5 94.42 1.97
40Ca+96Zr 100.01 [12] 93.6 2.65 9.3 94.52 2.79
58Ni+ 60Ni 100.70 [8] 96.6 1.93 7.5 95.81 1.87
40Ca+90Zr 101.25 [12] 96.1 1.53 10.0 96.31 1.90
58Ni+ 58Ni 101.27 [3] 95.8 1.18 6.0 96.49 1.88
40Ar+ 122Sn 107.40 [6] 103.6 2.58 9.8 103.24 1.94
40Ar+ 116Sn 108.47 [6] 103.3 2.23 8.7 104.25 1.98
40Ar+ 112Sn 109.22 [6] 104.0 2.26 8.9 105.01 2.01
64Ni+ 74Ge 109.29 [4] 103.2 1.97 6.5 104.50 3.09
58Ni+ 74Ge 111.04 [4] 106.8 2.96 7.0 105.96 3.05
40Ca+124Sn 118.95 [15] 113.4 2.75 9.6 114.19 2.13
28Si+198Pt 123.18 [17] 120.9 3.41 9.8 120.48 2.94
34S+168Er 124.24 [18] 121.5 4.21 10.3 121.21 4.55
40Ar+ 154Sm 127.11 [6] 121.0 3.40 7.3 123.80 4.27
40Ar+ 148Sm 128.14 [6] 124.7 3.15 8.5 125.01 3.15
40Ar+ 144Sm 128.85 [6] 124.4 2.19 8.3 125.93 2.31
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Vnsrd =
− V0

1 + expfsr − R1 − R2d/ag
, s8d

whereR1 and R2 are the radii of the two nuclei,r is their
relative distanceswell defined only forr .R1+R2d, anda is
the diffuseness parameter. For simplicity, we scale the radii
Ri using a single parameterr0=Ri /Ai

1/3. Equations8d repre-
sents a smooth and realistic interpolation of the nuclear po-
tential energy of a given dinuclear system between the initial
configuration of two noninteracting nucleisof the ground-
state massesM1 andM2 at the infinite distancer =`d and the
final configuration atr =0 corresponding to the fused system,
i.e., the compound nucleus of the ground-state massMcn. In
order to single out nuclear interaction, we need to subtract
from the total energy of the two initial nuclei and the final
compound nucleus their intrinsic Coulomb energies,C1, C2
andCcn, respectively. Thus the depth of the nuclear part of
the potential for the fusion process is

V08 = sM1 + M2 − Mcndc2 + Ccn − C1 − C2, s9d

where

Ccn − C1 − C2 = C0

= 0.7054F sZ1 + Z2d2

sA1 + A2d1/3 −
Z1

2

A1
1/3 −

Z2
2

A2
1/3GMeV.

s10d

Here, the Coulomb energy constant is taken from the stan-
dard liquid-drop-model fit to nuclear massesf22g. To calcu-
late V0 in Eq. s8d we correct the depthV08 of Eq. s9d by
subtracting from the ground-state energy of the compound
nucleus the shell correction energyScn because it produces
only a verylocal dip snear the equilibrium shaped in the flat
landscape of the nuclear potential energy described by the
inner part of the Woods-Saxon potential. Thus

V0 = V08 + Scn = Qfus+ C0 + Scn, s11d

where byQfus we denote the ground-stateQ value for fusion,
Qfus=sM1+M2−Mcndc2, and C0 is given by Eq.s10d. The
inclusion of the shell correction energy in Eq.s11d is almost
insignificant for the potential in the peripheral region. The
only role of Scn in Eq. s11d is to consistently describe the
totalmacroscopicpotential energy for mononuclear shapes at
small values ofr, as it is seen by the fusing system. In our
calculations we usedScn values from the mass tables of Ref.
f23g.

B. Nuclear plus Coulomb potential

For typical applications, such as determination of the fu-
sion barrier, it is sufficient to consider the nucleus-nucleus
potential only in the outer regionr .R1+R2. For that region,
we use the point-charge approximation for the Coulomb po-
tential, sufficiently accurate in the whole outer region of rela-
tive distances:

Vsrd = Vnsrd +
Z1Z2e

2

r
sfor outer distancesrd. s12d

For the inner range of distancesr we put just the constant,
asymptotic value of the potential energy of the completely
fused systemsr =0d:

Vsrd = C0 − V0 = − Qfus− Scn sfor inner distancesrd.

s13d

Equations12d is replaced by Eq.s13d below the crossing of
these two expressions at the smallest distance.

C. Parameters of the empirical fusion potential

Equation(12) gives the total potential energy of a given
nucleus-nucleus system as a function of the distance variable
r, thus determining the height of the fusion barrier. There are
only two free parameters in the expressions for the nucleus-
nucleus potential: the radius parameterr0 and the diffuseness
of the nuclear potentiala. We have determined these two
parameters by fitting the barrier heights calculated with Eq.
(12) to the set of theB0 values obtained in our analysis
described in the preceding section and listed in Table I. By
applying the least-square method we have determined the
best fitting parameters of the nuclear potential, Eqs.(8) and
(11), as r0=1.18 fm anda=0.675 fm. These values corre-
spond to location of the absolute minimum ofx2, see Fig. 7.
Viewing contours of a constant value ofx2, we can see that
there is a limited uncertainty in determination ofr0 and a
along a narrow valley given by the relation

a = 2.9r0
2 − 9.8r0 + 8.2 fm. s14d

It is important to note that separate analysis of light, me-
dium, and heavy systems shows that best combinations of
the parametersa and r0 for these separated groups of reac-
tions are always located along the locus of Eq.(14), but there
is a clear systematic trend: for heavier systems the optimum
combination ofa andr0 moves along the locus(14) towards
smallerr0 and largera values. Therefore we propose to limit
validity of the global-fit parametersr0=1.18 fm, a

TABLE I. (Continued.)

B0 w Rs B0 (theor) w (theor)

Reaction z Ref. (MeV) (MeV) (fm) (MeV) (MeV)

40Ca+192Os 165.42 [11] 167.9 5.46 10.7 164.80 4.18
40Ca+194Pt 169.40 [11] 171.0 4.12 9.6 169.60 4.20
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=0.675 fm only to medium systems characterized by a lim-
ited range of the Coulomb barrier parameterz=Z1Z2/ sA1

1/3

+A2
1/3d:

r0 = 1.18 fm, a = 0.675 fm for 70ø zø 130,

s15d

and to use different values of the parameters for light and
heavy systems:

r0 = 1.25 fm, a = 0.481 fm for z, 70, s16d

and

r0 = 1.11 fm, a = 0.895 fm for z. 130. s17d

The latter combination of parameters, Eq.s17d, is suitable for
predicting “sticking” or overcoming-the-barrier cross sec-
tions in reactions used to produce superheavy nuclei.

The barriers calculated for the nuclear potential witha
and r0 given by Eqs.(15)–(17) are listed in Table I. The
root-mean-square deviation from experimentalB0 values is
sdB0drms=1.05 MeV, while for a fit with the fixed combina-
tion of the parametersr0=1.18 fm anda=0.675 fm for all
systems issdB0drms=1.23 MeV.

In Fig. 8 we compare experimentalB0 values with barrier
heights calculated with three different nuclear potentials:(a)
the potential determined in this work,(b) the Akyüz-Winther
potential[24] frequently used in the coupled-channel calcu-
lations, and(c) the proximity potential recently modified by
Myers andŚwiątecki [25]. It is seen that predictions based
on our “empirical potential” agree quite well with experi-
mental values of the mean barrier heightB0 showing no sys-
tematic deviations. On the contrary, calculations with the
Akyüz-Winther potential systematically overestimate the fu-
sion barriers. The differenceBtheor−B0 increases with in-

creasing the Coulomb barrier parameterz=Z1Z2/ sA1
1/3

+A2
1/3d, and the largest discrepancy of about 5 MeV is ob-

served for the heaviest studied systems. Still larger discrep-
ancies, up to 8 MeV, are observed for fusion barriers calcu-
lated with the proximity potential[see Fig. 8(c)].

VI. THEORETICAL ESTIMATES OF THE WIDTH w

As it is seen from Table I, the widthsw of the barrier
distributions deduced from experimental data are very diver-
sified and show a strong dependence on individual properties
of both fusing nuclei. In the following we derive a simple
expression forw that accounts for the quantum effect of
sub-barrier tunneling, as well as for static quadrupole defor-
mations and collective surface vibrations of the colliding
nuclei.

A. Sub-barrier tunneling

The effect of sub-barrier tunneling is accounted for in the
analytic formula derived by Wong[26]:

s fus
Wong=

"vR2

2E
lnF1 + exp

2psE − Bd
"v

G . s18d

This formula predicts the cross section for overcoming the
potential energy barrierB at an energyE, assuming the para-
bolic shape of the barrier with the curvature"v determined
by second derivative of the potential at the top of the barrier:

"v = UÎ"2

m

d2Vsrd
dr2 U

r=R
, s19d

wherem is the reduced mass of the fusing system.

FIG. 7. Contours of constant value ofx2 in the procedure of
fitting the complete set of experimental fusion barriersB0sexpd with
those calculated with the Woods-Saxon nuclear potential, Eqs.(8)
and (11). The best fit sxmin

2 d was found for r0=1.18 fm anda
=0.675 fm. The contours correspond tox2 increased by 10% and
50% relative toxmin

2 , respectively.

FIG. 8. Comparison of experimental barrier heightsB0 with the-
oretical predictions for the Akyüz-Winther potential[24], proximity
potential[25], and the “empirical potential,” Eqs.(8) and(11), with
parametersr0 anda given by Eq.(15).
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Rowley, Satchler, and Stelson[1] used the Wong formula
(18) to determine the effective width of the barrier distribu-
tion associated with the sub-barrier tunneling:

1

pR2

d2sEs fus
Wongd

dE2 = Gsxd =
2p

"v

ex

s1 + exd2 , s20d

where x=2psE−Bd / s"vd. Thus the width of the function
Gsxd represents the width caused by the tunneling effect.fIn
the absence of tunneling,Gsxd would be just thed function.g
One can readily check that the root-mean-square width of the
distributionex/ s1+exd2 is p /Î3 and hence the width caused
by the tunneling effect is

wtunnel=
"v

2Î3
. s21d

By calculating"v in Eq. s19d assuming purely exponential
dependence of the nuclear potentialf27g, we obtain

swtunneld2 =
Z1Z2e

2"2

12mR2 S1

a
−

2

R
D , s22d

wherea is a parameter in the exponent describing the nuclear
potentialVnsrd,exps−r /ad.

B. Static deformations

Following Ref. [28], we propose a simple expression to
estimate the contribution of nuclear static deformations to
the magnitude of the widthw. Assuming all possible orien-
tations of a nucleusi with a static deformationb2sid, one
obtains the variation of the effective radiusRsid with the
standard deviation,

DRi =
b2sid
Î4p

Ri . s23d

The distribution of the resulting surface-surface distancesfor
a fixed distance between centers of mass of the two nucleid
leads to a distribution of the barrier height with the standard
deviation,

wstatsid = DRi
] Vl=2sid

] r
=

b2sid
Î4p

RiF−
dVn

dr
+

3Z1Z2e
2

5

Ri

r3G
r=R

,

s24d

where the expression for the derivative]Vl=2sid /]r for quad-
rupole deformations follows Refs.f28,29g. Since at distances
in vicinity of the barrier

UdVn

dr
U

r=R
<

Z1Z2e
2

R2 , s25d

we obtain

wstatsid =
Z1Z2e

2

R

b2sid
Î4p

S3

5

Ri
2

R2 −
Ri

R
D . s26d

As thestatic deformations we have takentheoreticalvalues
of b2 from Ref. f23g, however for all light nuclei ofAø30
we have putb2=0.

C. Calculations of the total width

In addition to the rotational smearing of the barrier height,
Eqs. (26), we assume also a possible contribution from vi-
brational degrees of freedom. However, we treat this contri-
bution in an extremely simplified way assuming the same
relative amplitude of the vibration for all nuclei.[We put a
constant value ofb2

vibrsid into respective expressions for
wvibrsid, analog to Eq.(26).] Thus, in fact,b2

vibr is an adjust-
ing parameter of the model.

Summing up quadratically all components, the total width
w is given by the expression

w = Îwtunnel
2 + wstat

2 s1d + wstat
2 s2d + wvibr

2 s1d + wvibr
2 s2d,

s27d

which contains only one free parameterb2
vibr. From bestx2

fit of expressions27d to our set of empirical values ofw ssee
Table Id, we obtainedb2

vibr =0.12. Values of the widthw
calculated with Eq.s27d are shown in the last column of
Table I, and their correlation with experimental values is
shown in Fig. 9. The accuracy of predictions of the for-
mula s27d is Dw/w< ±20%.

VII. PREDICTIONS OF FUSION CROSS SECTIONS
AND SUMMARY

Results of our analysis presented in previous sections
open the way to predict fusion excitation functions for not
yet studied nuclear systems.(Strictly speaking, we can pre-
dict only the “overcoming-the-barrier” cross sections
which—as discussed in Sec. V—are not identical with fusion
cross sections in the case of very heavy systems.) To calcu-
late the overcoming-the-barrier cross section for a given
projectile-target combination one can use Eq.(6) applying
theoretical values of the parametersB0 and w. The barrier
heightB0 can be readily calculated with the nuclear potential,
Eqs. (8) and (11), using values ofr0 and a as determined
empirically, Eqs.(15)–(17). The width w can be predicted

FIG. 9. Comparison of experimental values of the widthw of
the fusion barrier distributions, deduced for 48 reactions(fifth col-
umn in Table I) with those calculated with Eq.(27).
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with a reasonable accuracy by using Eq.(27). We propose to
take the third parameter used in formula(6) Rs as

Rs = rssA1
1/3 + A2

1/3d fm, s28d

where the coefficientrs=1.16 fm is theaverage value ofrs

for the whole set of systems listed in Table I. As discussed
in Sec. IV, systematic errors resulting from uncertainties
of absolute normalization of the cross sections cause that
the values of rs are quite widely scatteredsrs

=1.16±0.19 fmd. However, the average value obtained
from results of many independent experiments is expected
to be determined more accurately.

In summary, we have studied an ample set of precisely
measured fusion excitation functions with the aim to learn
about conditions of overcoming the potential energy barrier
in nucleus-nucleus collisions. We attempted to obtain sys-
tematic information on the essential characteristics of the po-
tential interaction between two nuclei, the mean barrier
heightB0 and widthw of its distribution. For the analysis of
experimental data we used the simple diffused-barrier for-
mula, Eq. (6), derived under assumption of the Gaussian
shape of the barrier distribution. By using Eq.(6) for typical
excitation functions, measured with high precision required
to determine the Rowley’s derivatived2sEsd /dE2, the mean
values of the barrierB0 have been deduced with an accuracy
significantly better than ±1 MeV.

We have used the obtained set of precisely determinedB0
values to establish an effective nucleus-nucleus potential in
order to use it then for predicting the barrier heights and
fusion(or capture) cross sections for not yet studied systems.
It is assumed that the nuclear part of the proposed potential,
Eqs. (8) and (11), has Woods-Saxon shape, and aims for

small relative distances at the energy of the fused system.
The only two free parametersa andr0, Eqs.(15)–(17), have
been determined from the best fit toB0 values for 48 differ-
ent nuclear systems. The mean barrier heights calculated
with this potential are reproduced with an accuracy of about
1 MeV. We demonstrated that other frequently used poten-
tials, the proximity potential[25] and the Akyüz-Winther po-
tential [24], considerably overpredict the barrier heights, es-
pecially, for heavy systems.

We propose a simple method of theoretical estimation of
the width of the barrier distribution. The proposed formula,
Eq. (27), accounts for the quantum effect of sub-barrier tun-
neling, static quadrupole deformations, and collective sur-
face vibrations of the colliding nuclei.

Theoretical knowledge of both, the mean barrierB0 and
width w enables us to use the diffused-barrier formula, Eq.
(6), and to predict cross sections for overcoming the barrier
in collisions of very heavy systems used to produce super-
heavy nuclei. In such a way we are able to predict the energy
dependence of the cross section for capture or sticking in
these reactions, one of three basic ingredients in the sticking-
diffusion-survival model[21] for calculating the production
cross sections of superheavy nuclei.
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