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Double folding model calculations to obtain the bare nucleus-nucleus potential have been carried out with
the Reid and Paris M3Y effective nucleon-nucleon(NN) interactions. The exchange part of the interaction was
taken to be of finite range and the density dependence of theNN interaction was accounted for. The calculated
fusion barrier energies are generally lower than those expected taking into account potential renormalization
due to coupling to collective states at high excitation energies. Fitting the potentials at the barrier radii with a
Woods-Saxon form results in effective potential diffuseness of,0.65–0.70 fm, smaller than the values of
,1 fm generally found from fitting fusion cross sections at above-barrier energies. These discrepancies raise
questions about both the determination of the bare nucleus-nucleus potential with the folding model, and the
boundary of the effect of friction on the fusion process.
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I. INTRODUCTION

Many nuclear reaction processes are described using the
nucleus-nucleus potential, which is often one of the most
important ingredients. In particular in the simplest picture of
nuclear fusion, the single-barrier penetration model(SBPM),
the fusion barrier alone determines the fusion process, and its
height, radius, and thickness are determined by the nuclear
and Coulomb potentials. Since the latter can be exactly de-
fined, the only uncertainty is in the nuclear potential.

This simple picture is modified when the couplings to
vibrational, rotational, and nucleon transfer degrees of free-
dom are taken into account. As a result of the couplings, the
single barrier can be thought of as splitting into a distribution
of barriers with different energies and radii[1]. The results of
approximate or exact coupled-channels(CC) calculations
which model these effects show enhancement of fusion cross
sections below the uncoupled single barrier, resulting from
the distribution of barrier energies[2]. In the CC model, the
nuclear potential still plays a vital role, not only affecting
each barrier shape as in the SBPM, but also affecting the
coupling strengths, which to first approximation depend on
the derivative of the bare(uncoupled) potential. Determina-
tion of the bare potential is thus vital in the coupled-channels
interpretation of fusion cross sections.

The nuclear potential is often described by a Woods-
Saxon form:

UnWSsRd = VWS„1 + exphfR− rWSsAP
1/3 + AT

1/3dg/aWSj…−1.

s1d

HereR denotes the distance between the centers of mass of
the projectile nucleus of mass numberAP and the target
nucleus of mass numberAT. The Woods-Saxon potential
sWSPd is defined by three parameters: the depthVWS, the

radius parameterrWS, and the diffusenessaWS. Different sets
of VWSandrWScan give very similar nuclear potential values
at a given point in its tail, however the slope of the potential
in the tail is determined predominantly by the diffuseness
aWS. Since the fusion barrier occurs in the tail of the nuclear
potential, one might hope thataWS sbut not bothVWS and
rWSd could in principle be determined from fusion cross sec-
tion data after accounting for channel coupling effects. An
effective nuclear potentialsbut not the bare potentiald was
mapped out by Bassf3g from a classical analysis of above-
barrier fusion cross sections from a wide range of reactions.

In different bombarding energy regimes, the fusion cross
sections have a different sensitivity to the diffuseness of the
nuclear potential. The lowest energies correspond to the deep
sub-barrier region, below the energy of the lowest barrier. In
this energy region the fusion cross sections calculated ac-
cording to the well-known formula of Ref.[4] depend expo-
nentially onaWSthrough the barrier curvature. Measurements
at such energies are, however, difficult to perform because
the cross sections are very low. Also it can be difficult to be
certain that the energies are below that of the lowest fusion
barrier. The second energy region spans the barrier. Here the
shape of the barrier distribution is sensitive toaWS, but it is
also sensitive to the couplings, which are not yet sufficiently
well known to allow determination ofaWS. The third energy
region is at above-barrier energies. Up to energies where the
pocket in the potential disappears for the highest angular
momenta, fusion cross sections can be well described by the
classical expression

ssEc.m.d = pRE
2s1 − B/Ec.m.d, s2d

even in the presence of couplings which increase the cross
sections at sub-barrier energies. HereB represents the energy
of the average fusion barrier corresponding to zero orbital
angular momentum. The effect of angular momentum on the
fusion barrier radius is included through the energy depen-
dence of the barrier radiusRE. It was shownf5g that for an
exponential form of the nuclear potential,RE is reduced from
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the zero angular momentum radiusR0 according to the ap-
proximate formula

RE . R0 − aWS lnfs2Ec.m./Bd − 1g. s3d

This shows thatRE depends logarithmically on the ratio of
the bombarding energy to the barrier energy, but linearly on
the diffusenessaWS of the potential.

Thus instead of a linear increase ofssEc.m.d with 1/Ec.m.,
which would occur ifRE=R0, the increase ofssEc.m.d with
decreasing 1/Ec.m. becomes less steep, depending on the
value ofaWS. Fitting of ssEc.m.d in the above-barrier region
using the SBPM has been carried out for many reactions
(see, e.g., Ref.[6]) to determine an empirical value ofaWS.
This diffuseness has then been used in the coupled-channels
calculations. With the recent development of reliable system-
atics, resulting from the good empirical fits which have been
obtained to precise fusion cross sections for a large number
of reactions, evidence has built up that the value ofaWS
extracted by this method is considerably larger than the value
of .0.63 fm commonly accepted as a typical value that de-
scribes elastic scattering[6]. This situation is illustrated by
Fig. 1. Here the measured and calculated fusion cross sec-
tions are presented as a function of the dimensionless quan-
tity Ec.m./BZ, whereBZ=ZPZT/ sAP

1/3+AT
1/3dMeV. The data in

Fig. 1(a) are from Ref.[7], while those in Fig. 1(b) are from

Ref. [8] (solid circles) and our recent(unpublished) measure-
ments(open circles). The data clearly cannot be reproduced
with a diffuseness near 0.63 fm.

The elastic scattering data which are fitted withaWS
.0.63 fm [9] are sensitive to the nuclear potential at radii
larger than that of the fusion barrier. Thus the discrepancy
between the relatively small value ofaWS extracted from
elastic scattering data and the much larger value ofaWS re-
quired by the fusion data may reflect the fact that the true
nuclear potential shape does not follow the WS ansatz. The
latter is still commonly used because of its qualitative behav-
ior and mathematical simplicity. A different parametrization
has been suggested in Ref.[6], which in principle may re-
solve this discrepancy, if the nuclear potential were the only
relevant physical quantity. However, dissipative effects[10]
could be another possible reason for the apparent large value
of aWS, distorting the simple potential barrier passing picture.

As part of the investigation of the above discrepancy, we
present here semimicroscopic calculations of nucleus-
nucleus potentials. The calculated fusion barrier energies are
compared with measured values. By fitting a Woods-Saxon
form to these potentials at the fusion barrier radii, the equiva-
lent WS diffuseness parameters have been extracted. These
are compared with the corresponding experimental quantities
determined from fitting above-barrier fusion cross sections
for a wide range of fusion reactions.

The double folding model(DFM) was applied to calculate
the nucleus-nucleus potential. This model has been widely
used in the last 20 years to calculate the first-order term of
the real part of the microscopic optical potential for elastic
and inelastic scattering ofa particles and heavy ions[9,11].
In practice, the strength of the DFM potential is often renor-
malized by a factor(expected to be greater than unity) to
give the best fit to experimental scattering data. This factor is
attributed to the higher-order terms[9] which cannot be cal-
culated with the DFM. This point is further discussed in Sec.
IV A. In Refs. [9,11], the interacting nuclei generally had
ground state matter distributions that were spherically sym-
metric. In the present paper we restrict ourselves to fusion
reactions involving spherical target nuclei. For the reactions
we consider, the density overlap at the fusion barrier radius is
typically about 1/4 of the central density. Since the M3Y
nucleon-nucleon interaction which we use in our calculations
is most appropriate for a nuclear density overlap of about 1/3
[9], in this respect the DFM calculations should be suitable.
Furthermore, the relatively low density overlap may make
the frozen density approximation, implicit in the DFM, at
least reasonable.

Although detailed descriptions of the DFM can be found
in many papers(see, e.g., Refs.[12,13]), in order to make
this paper self-contained we present in Sec. II a short de-
scription of the main formulas used. In Sec. III several re-
sults from our DFM calculations are compared with those
available in the literature, in order to prove the reliability of
our newly developed computer code. In Sec. IV we make a
comparison of the calculations with the values of the average
fusion barrierB and the WS potential diffusenessaWS ex-
tracted from the experimental data, and investigate the influ-
ence of different options and parameters of the DFP on the
calculated quantities. The conclusions are given in Sec. V.

FIG. 1. Measured fusion cross sections compared with those
calculated[7] with the coupled-channels codeCCMOD, as a function
of center-of-mass energy divided byBZ=ZPZT/ sAP

1/3+AT
1/3d. The

data for the16O+208Pb reaction are from Ref.[7], while those for
the 28Si+208Pb reaction are from Ref.[8] and our recent unpub-
lished results(open circles). The experimental data clearly cannot
be reproduced with values ofaWS close to 0.63 fm.
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II. THE DOUBLE FOLDING MODEL

A. The formalism

The interaction potential between two nuclei is written as

UsRd = UCsRd + UnsRd + UrotsRd, s4d

whereUC is due to the electrostaticsCoulombd interaction,
Un is the strongsnucleard interaction, andUrot is the rota-
tional term. This last term has a very simple structure, and
since our purpose here is the calculation of fusion barriers for
zero angular momentum, it will not be used here.

The Coulomb energy for two spherical nuclei can be writ-
ten as

UCsRd =E dr PE dr TrPchsr PdvCssdrTchsr Td. s5d

HererPch andrTch are the charge densities of the projectile
sPd and targetsTd nuclei, andvC is the Coulomb interaction.
The vectors=R+r T−r P corresponds to the distance between
two specified interacting points of the projectile and target,
whose radius vectors arer P and r T, respectively.R denotes
the vector joining the centers of mass of the two nuclei. This
geometry is illustrated in Fig. 2.

The nuclear part of the potential,Un, consists of two
terms, the directUnD term and the exchangeUnE term, which
are in general energy dependent. The direct part of the inter-
action between two colliding nuclei has a similar form to the
equation describing the Coulomb interaction:

UnDsR,EPd = gsEPd E dr PE dr TrPAsr PdvDssdrTAsr Td.

s6d

Here rPA and rTA are the nucleon densities of the colliding
nuclei,vD is the direct part of the nuclear interaction between
two nucleonssNN interactiond, andgsEPd is a multiplier that
depends upon the energy per nucleonEP=Elab/AP. The ex-

change part involves nondiagonal elements of the density
matrix ssee, e.g., Ref.f12g which we closely follow hered:

UnEsR,EPd = gsEPd E dr PE dr TrPAsr P;r P + sd

3vEssdrTAsr T;r T − sdexpsik rels/Aredd. s7d

The wave numberkrel associated with the relative motion of
the colliding nuclei is given by

krel
2 sRd = 2mnAredfEc.m.− UsRdg/"2, s8d

where the reduced mass numberAred=APAT/ sAP+ATd, and
mn is the bare nucleon mass.

Two parametrizations of the nucleon-nucleon interaction
in the literature are based, respectively, on the Reid[14] and
Paris [15] interactions. These comprise a sum of Yukawa-
type terms, known as M3Y effective nucleon-nucleon inter-
actions, comprising both directvD and exchangevEf terms:

vDssd = o
i=1

3

GDifexps− s/rvidg/ss/rvid, s9d

vEfssd = o
i=1

3

GEfifexps− s/rvidg/ss/rvid. s10d

Here subscriptD refers to the direct part ofNN interaction
and the subscriptEf refers to the finite-range exchange part
of NN interaction. Each term is determined by the radius
parametersrvi and the coefficientsGDi andGEfi. Instead of a
finite-range exchangeNN interaction, one of zero range was
used in early worksf9g: vEdssd=GEddssd.

The functiongsEPd which defines the energy dependence
of the nucleus-nucleus potential in Eqs.(6) and (7) reads
[16,17]

gsEPd = 1 −kEP. s11d

The values of all the coefficients, namelyrvi, GDi, GEfi, GEd,
and k, are collected in Table I. Unless specified otherwise
these values are used throughout this paper. The choice of all

TABLE I. The coefficients of the Reid and Paris M3Y interac-
tions.

Coefficient Reid Paris

GD1 (MeV) 7999 11062

GD2 (MeV) −2134 −2537.5

GD3 (MeV) 0 0

GEf1 (MeV) 4631.4 −1524.25

GEf2 (MeV) −1787.1 −518.75

GEf3 (MeV) −7.847 −7.847

rv1 (fm) 0.25 0.25

rv2 (fm) 0.40 0.40

rv3 (fm) 1.414 1.414

GEd sMeV fm3d −276 −592

ksMeV−1d 0.002 0.003
FIG. 2. The coordinate system used in the double folding model.

The vector between the centers of the projectilesPd and targetsTd
nuclei is denoted byR, while r P, r T are the radius vectors of points
separated bys in the nucleon distributions of the projectile and
target nuclei.
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the coefficients above is beyond the scope of the present
work; we simply follow the prescriptions available in the
literature and trace the impact of the values of the coeffi-
cients onto the fusion barriers and the value of the equivalent
potential diffuseness.

It was widely known that the original density-independent
M3Y interaction failed to saturate cold nuclear matter. In
order to obtain the correct value of the central nucleon den-
sity and nucleon binding energy several versions of a
density-dependent M3Y interaction have been proposed(see,
e.g., Refs.[16,18]). We use in our study a generalized den-
sity dependence of the M3Y interaction introduced in Ref.
[18]. It enters as a multiplierFsrFAd for the density-
independentNN interaction. The functionF is given by

FsrFAd = Ch1 + a exps− brFAd − grFAj. s12d

The nucleon densityrFA will be specified in the following
section. If the M3Y-ParisNN interaction is used, this density
dependence results in the correct saturation binding energy
of about 16 MeV/nucleon and anuclear density of
0.17 fm−3, for several sets of coefficients that are pre-
sented in Table II. The different parameter sets in Table II
result in different values of nuclear matter incompressibil-
ity, ranging from 176 MeV for the DDM3Y1 interaction
up to 270 MeV for the BDM3Y1 interaction. The original
density-independent M3YNN forces correspond to param-
eter set DD0 in this table. The use of density-dependent
forces means that the bare M3Y direct and exchangeNN
interactions,vDssd andvEfssd, in Eqs.s6d and s7d should be
replaced by

wDsEfdss,rFAd = FsrFAdvDsEfdssd. s13d

B. Evaluating the double folding integrals

If a zero-range exchange interaction is used, the integral
in Eq. (7) is reduced to that in Eq.(6) and can be easily
evaluated. However when finite-range exchange forces are
applied, there are two major difficulties in calculating the
exchange part of the nuclear potential. First, Eq.(7) with the
krel defined by Eq.(8) results in a self-consistency problem.
It is overcome by applying an iterative procedure, which

works quite well. Typically from two to ten iterations are
needed in order to reach a relative accuracy of 10−5 for UsRd.

The second obstacle is much more complicated. In order
to compute the integral in Eq.(7) one has to calculate the
density matrix which depends on two spatial points. The cal-
culation is performed using the density matrix expansion
method of Refs.[19,20] which makes the following approxi-
mation:

rAsr ;r + sd . rAsr + s/2d ĵ1skef fsr + s/2d ·sd. s14d

HererA stands for eitherrPA or rTA and

ĵ1sxd = 3fsinsxd − x cossxdg/x3. s15d

The simplest way to find the magnitude of the effective
Fermi momentumkef f is to apply the Slater approximation
wherekef fsrd is simply equal to the local Fermi momentum
f3/2p2rAsrdg1/3. A more sophisticated method, used here, is
to calculatekef f using the extended Thomas-Fermi approach
[20]:

kef f
2 srd = S3p2rAsrd

2
D2/3

+
5Cs

3
S=rAsrd

rAsrd
D2

+
5DrAsrd
36rAsrd

.

s16d

The only parameter that needs to be specified here isCs,
which defines the strength of the Weizsäcker correction term
to the kinetic energy density. In Ref.[17] Cs was taken to be
equal to 1/36 whereas in Ref.[12] much larger value of 1/4
was used. Recently in Ref.[11] it was shown that the value
of 1/36 provides the best approximation for the exact nondi-
agonal terms of the density matrix. These terms were ob-
tained in the harmonic oscillator approximation for elastic
scattering in thea+ 12C reaction. Following the prescription
of Ref. [11] we useCS=1/36 when comparing our results
with the data.

A further step has to be taken before any calculations of
the double folding potential with a density-dependentNN
interaction can be performed. The nucleon densityrFA ap-
pearing in Eqs.(12) and(13) has to be specified. In Eq.(12)
for the direct forces,rFA is taken to be equal torPAsrPd
+rTAsrTd (see, e.g., Ref.[21]). This choice is dictated more
by the numerical convenience than by physical arguments. In
Eq. (13), describing the exchange forces,rFA=rPAsr P

+s/2d+rTAsr T−s/2d [12,17,18]. This corresponds to the den-
sity at the midpoint between two interacting nucleons and is
not merely numerically convenient but also seems to have
some physical justification.

In practice when evaluating the double folding integrals
(5)–(7) we used the momentum-space representation, closely
following Ref. [12]. This dramatically reduces computer
time.

C. Charge and nucleon density distributions

Finally, the charge and nucleon density distributions must
be specified. In these calculations for simplicity we take the
nucleon density to be proportional to the proton density:

TABLE II. The coefficients of the density-dependent M3YNN
interaction of Eq.(12), compiled from Ref.[18].

DD label Interaction C a bsfm−3d gsfm−3d

0 D independent 1 0.0 0.0 0.0

1 DDM3Y1 0.2963 3.7231 3.7384 0.0

2 CDM3Y1 0.3429 3.0232 3.5512 0.5

3 CDM3Y2 0.3346 3.0357 3.0685 1.0

4 CDM3Y3 0.2985 3.4528 2.6388 1.5

5 CDM3Y4 0.3052 3.2998 2.3180 2.0

6 CDM3Y5 0.2728 3.7367 1.8294 3.0

7 CDM3Y6 0.2658 3.8033 1.4099 4.0

8 BDM3Y1 1.2521 0.0 0.0 1.7452
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rPsTdA=rPsTdZA/Z. For the proton density distributionsrPsTdZ,
two-parameter Fermi(2pF) profiles were used for both pro-
jectile and target nuclei:

rPsTdZsrd = r0PsTdh1 + expfsr − RPsTdd/aPsTdgj−1. s17d

The parametersRPsTd and aPsTd were defined using the data
on the charge density from Table I of Ref.f22g; these were
obtained experimentally from electron elastic scattering.
These parameters were used directly to calculateUCsRd.
Electron scattering experiments give information on the
charge density distribution of the scattering nucleus whereas
to calculateUnsRd in the DFM, the point nucleon density
distributions are needed. Therefore the radius parameters for
the nucleon density were taken to be equal to those for the
charge density whereas the diffuseness parameters were cor-
rected for the finite width of the charge distribution of a
single proton. In order to make this correction we used the
relation between the average square radii of the proton and
charge distributionsssee Eq.s17d of Ref. f9gd and the equa-
tions relating the average square radius of a 2pF profile with
its radius and diffuseness parametersssee Ref.f23gd.

For those nuclei where the data were not available in
Table I of Ref.[22], the radius parameter was obtained by
scaling the parameters of the closest nuclei. The diffuseness
of the charge density was taken to be equal to that of the
closest nucleus for which it was available. The influence on
our results of the diffuseness of the nucleon(proton) density
distribution is further discussed in Sec. IV.

III. COMPARISON WITH PREVIOUS CALCULATIONS

It is desirable to check that our new DFM computer code
works correctly. This was accomplished by comparing our
results with those available in the literature.

We first performed calculations for the16O+16O system at
Elab=160 MeV. The DFM was applied to calculate the real
part of the optical potential for this system in Ref.[12] using
the finite-range density-dependent M3Y-Reid interaction
with Cs=1/4, and with the coefficients C=0.2845, a
=3.6391,b=2.9605 fm−3, and g=0 for the density depen-
dence of theNN interaction. The coefficientk in the energy
dependence[gsEPd in Eq. (11)] was 0.002 MeV−1. The pa-
rameters of the proton(nucleon) distribution were taken
from Ref.[24]: RPsTd=2.525 fm,aPsTd=0.450 fm. The results
of our calculations are compared with those of Ref.[12] in
Fig. 3. The dotted curve represents the direct part of the
nuclear potential, the dashed curve shows the exchange part,
and the solid curve indicates the total nuclear potential. The
agreement of our calculations with the results read from Fig.
5 of Ref. [12] (open symbols) is very good.

The second comparison presented in Fig. 4 is again for
the 16O+16O reaction but now atElab=250 MeV with k
=0.003 MeV−1, and with density-dependent Paris forces
DDM3Y1 and BDM3Y1(these correspond to parameter sets
DD1 and DD8 in Table II). All other parameters were as in
the previous case. Our calculations agree well with those of
Fig. 1 from Ref.[25].

The third comparison is for the16O+154Sm reaction. This

calculation was reported in Ref.[17]. The value of Cs
=1/36 and thevalues ofRP and aP were as given for the
previous case. The deformed target nucleus154Sm was con-
sidered to be spherical withRT=5.939 fm,aT=0.522 fm. In
Fig. 5 the calculated ratiosUnd /Unf corresponding to the
M3Y-Paris interaction are compared with those from Table I
of Ref. [17]. The agreement of our calculations with those of
Ref. [17] is very good.

IV. COMPARISON WITH EXPERIMENT

Having checked the validity of our code, the calculated
fusion barrier energies and the nuclear potential diffuseness
can now be compared with experimental results. Although
the primary aim of this work is to investigate the potential
diffuseness anomaly, first we show how the different options
for the nucleon-nucleon interaction affect the strength of the
nuclear potential, and thus the predicted fusion barrier ener-
gies. Initially we must consider the effects of channel cou-
plings before making such a comparison.

A. Coupled-channels effect on the fusion barrier energies

Coupling between the relative motion and intrinsic de-
grees of freedom not only results in a distribution of fusion
barrier energies, but can also reduce the average fusion bar-
rier energy, often referred to as potential renormalization
[26]. The effect of such potential renormalization should be
considered when comparing barrier energies calculated using
the DFM with those determined empirically from fitting
above-barrier fusion cross sections with a single-barrier
model. It has been shown[26] that such potential renormal-
ization can reduce the calculated fusion barrier energies by
several percent, so the effect is not insignificant.

In the microscopic optical model, the real potential is the
sum of the folded potential and the dynamic polarization
potential(DPP) resulting from couplings to excited states. At
energies above the barrier region, the DPP is closely related

FIG. 3. The total nuclear potentialsUnd and its directsUnDd and
exchangesUnEd components for the reaction16O+16O at Elab

=160 MeV. The curves represent the present M3Y-Reid calcula-
tions (see text) while the open symbols show the values read from
Fig. 5 of Ref.[12].
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to the potential renormalization that is found in the coupled-
channels calculations. For the fusion reactions considered
here, it acts to increase the attraction of the nuclear potential.

To illustrate the effect of potential renormalization, here
we show calculations for the16O+208Pb reaction using the
realistic coupled-channels codeCCFULL [27]. This is neces-
sary as simplified CC codes based onCCFUS [28], for ex-
ampleCCDEF andCCMOD [29], do not show potential renor-
malization because of the approximations used[26]. The
average fusion barrier energy for the16O+208Pb reaction is
74.5 MeV, determined empirically from a fit with a single-
barrier calculation to the above-barrier fusion cross sections.
When couplings to the 2.615 MeV 3− state, the 3.198 MeV
5− state, and the 3− ^ 3− multiplet (in the harmonic limit) in
208Pb are included in theCCFULL calculations, the high en-
ergy data can only be fitted using a less attractive nuclear
potential, which gives an uncoupled barrier at 75.4 MeV.

Thus the couplings to these collective states not only affect
the shape of the barrier distribution, but also shift the barrier
by −0.9 MeV. When coupling to the 3− state at 6.129 MeV
in 16O is included in the calculations(in addition to the cou-
plings in 208Pb), then the shape of the fusion barrier distri-
bution is not further changed, but the barrier centroid is
shifted to an even lower energy. To compensate for this shift,
an uncoupled barrier height of 78.3 MeV is required to ob-
tain a good description of the data. The inclusion of cou-
plings to these projectile and target states therefore effec-
tively reduces the uncoupled barrier height by 3.8 MeV in
total. In this calculation, a potential diffuseness of 1.1 fm
was used, which was required to fit the above-barrier cross
sections, for a potential depth of 300 MeV. The results are
illustrated in Fig. 6, where the dotted line shows the single-
barrier (uncoupled) calculation with B=78.3 MeV, the
dashed line shows the effect of including the couplings to
208Pb states, while the full line(with a total energy shift of
−3.8 MeV) includes both the couplings to states in208Pb and
that to the 3− state in16O. Additional couplings to other high

FIG. 4. The total nuclear potentialsUnd and its directsUnDd and
exchangesUnEd components, but for M3Y-Paris interaction includ-
ing finite-range exchange term, atElab=250 MeV for the 16O
+16O reaction. The present calculations(lines) are compared with
the values(symbols) read from Fig. 1 of Ref.[25] for two different
density dependencies(see Table II): DD1 (thick lines, squares) and
DD8 (thin lines, diamonds).

FIG. 5. Calculations for the reaction16O+154Sm at EP

=5.2 MeV. The ratio of the zero-range exchange interaction divided
by the finite-range interaction for the M3Y-Reid interaction with
Cs=1/36 isshown; the line corresponds to the present calculations,
while the symbols are from Table I of Ref.[17].

FIG. 6. Calculated and measured fusion excitation functions for
the 16O+208Pb reaction. The potential renormalization resulting
from coupling to high energy states in208Pb, and more significantly
in 16O, is shown(see text).
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energy states, although less strongly coupled than those ex-
plicitly included, would be expected to shift the barrier to
even lower energy.

Since the effect of couplings is not taken into account in
the DFM, the calculated fusion barriers should be consider-
ably higher in energy than the empirical experimental barri-
ers. In the case of16O+208Pb, the fusion barrier calculated
with the bare DFM potential should be at least 3.8 MeVs5%d
above the experimental value. This is significant, since the
contribution of the nuclear potential to the fusion barrier en-
ergy is typically less than 10%(e.g., for12C+92Zr it is 7%,
as shown in Fig. 12). For reactions of other nuclei, where
collective strength may be fragmented over many states, and
difficult or impossible to determine experimentally, the exact
shift cannot be calculated presently, and further work needs
to be carried out on this question. However, it is clear that on
average, uncoupled(bare) fusion barriers, such as those cal-
culated with the DFM, should lie several percent above the
empirical fusion barrier energies, when potential renormal-
ization (or DPP) is not accounted for.

B. Fusion barrier energies

Since there are several options in the DFM calculations
(M3Y-Reid and ParisNN interaction, zero- or finite-range
interaction, density-dependent and -independent interaction)
we first show in Fig. 7 how this choice influences the fusion
barrier height. This figure presents barriers calculated for the
16O+144Sm reaction, without including potential renormal-
ization due to couplings. These calculations have been per-
formed with the M3Y-Paris(open circles) and Reid(crossed
circles) interactions with a zero-rangesdd and with a finite-
range sfd exchange term for density-independent interac-
tions, and for all eight versions of the density dependence
from Table II. The experimental fusion barrier is shown by
the horizontal line.

One sees that changing from zero to finite-range exchange
interaction reduces the calculated barrier energies. Indeed,
the exchange part of the nucleus-nucleus potential resulting

from M3Y NN interaction is attractive in both the Reid and
Paris potentials(see Figs. 3 and 4). Increasing the range of
this attraction from zero to any finite value should only make
the fusion barriers lower, which is the case in Fig. 7.

Including the density dependence into theNN interaction
brings the fusion barrier energy further down in Fig. 7. In
order to understand why it happens, it is useful to show the
dependence of the potential scaling factorF on the nucleon
density, and the density overlap at the fusion barrier. The
former is presented in Fig. 8, for all eight density depen-
dence parameter sets in Table II. The horizontal line corre-
sponds to density-independentNN interaction. The vertical
dashed line indicates the average nuclear central density. The
generalized density dependence of Eq.(12) reduces the
nucleon-nucleon interaction for large density(around and
above nuclear density). For lower values of the density(less
than 0.11 fm−3), the density dependence increases the
nucleon-nucleon attraction sinceF.1.

Figure 9 shows that the typical minimum density in the
region of the density overlap at the barrier is not more than
0.04 fm−3 for the reactions considered in this work. In this
figure the barrier radii correspond to the M3Y-Reid zero-
range interaction. Accounting for the finite range as well as
for the density dependence of the interaction makes the bar-
rier radii 2–4% larger thus leading to smaller density over-
lap. Consequently, the fusion barrier height would be ex-
pected to decrease due to the density dependence of theNN
potential. This is really the case in Fig. 7: the strongest den-
sity dependencies labeled 1,2,3 in Table II bring the fusion
barrier down to its minimum value among all presented in
this figure. The somewhat weaker density dependencies
DD4-DD8 result is slightly higher fusion barrier energies, as
seen in Fig. 7.

Since the density-independentNN interaction was shown
to fail in reproducing the basic properties of nuclear matter,
we have chosen the density-dependent ParisNN interaction
with finite-range exchange term(CDM3Y3) for the system-
atic comparison with the experimental data. Choosing an-
other density dependence of theNN interaction will not alter

FIG. 7. Calculated fusion barrier energies for the reaction16O
+144Sm for all types of calculation, namely zero-rangesdd and
finite-range density-independent(0) and density-dependent(1–8)
interactions. The experimentally determined average barrier energy
is indicated by the horizontal line. The open circles correspond to
the M3Y-Paris interaction whereas the crossed circles stand for the
M3Y-Reid interaction.

FIG. 8. The dependence of the factorF [which scales the inter-
action strength, see Eq.(16)] on the nucleon density. The eight
curves correspond to the eight sets of coefficients(see Table II).
Density-independent forces haveF=1 (full line). The dashed verti-
cal line shows nuclear saturation densitys0.17 fm−3d.
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the conclusions of this paper. With this aim the DFM calcu-
lations have been performed for the reactions listed in Table
VII, for which average fusion barrier energies have been
determined experimentally, typically with an accuracy esti-
mated to be better than 0.5%. In order to illustrate the degree
of agreement between calculated and experimental barrier
energies, both are plotted in Fig. 10(a) versus BZ
=ZPZT/ sAP

1/3+AT
1/3dMeV. The calculated barriers are shown

by open circles. Solid circles connected by thin lines repre-
sent the experimental barriers. The thick solid line represents
B=BZ. The agreement of the calculated barriers with experi-
ment appears to be good, even in detail. These barrier ener-
gies are also given in Table VII, where closer inspection
shows that the calculated Paris CDM3Y3 barriers are, except

for four points, lower than the experimental ones.
Figure 7 shows that the maximum barrier energies result

from the density-independent M3Y-Reid interaction with
zero-range exchange term. This neglects physical effects in-
cluded in other options, and so can be considered less real-
istic, however for comparison we present in Table VII the
fusion barrier energies calculated using this latter parameter
set too.

TABLE III. Parameters of the fusion barriers and the WS potentials which provide the best approximation
to the DFP in the region of the calculated barrier. Calculations are performed for the M3Y-Paris potential,
with Cs=1/36, and for either zero-range or finite-range exchange forces(d or f in the first column). The type
of density dependence(DD) is indicated in the second column(0 corresponds to the density-independent
interaction). TheRB andB are the position and the height of the calculated barrier,VWS, rWS, andaWSare the
depth, the radius parameter, and the diffuseness of the WSP which approximates the DFP with an accuracy
xR

2, defined by Eq.(18). The reaction is12C+92Zr, for which Bexpt=32.3 MeV.

d / f DD label RB B VWS rWS aWS xR
2

(fm) (MeV) (MeV) (fm) (fm)

d 10.12 31.81 −66.2 1.16 0.67 3.6310−5

f 0 10.25 31.47 −171.8 1.08 0.67 8.2310−5

f 1 10.35 31.15 −88.2 1.16 0.67 5.9310−5

f 3 10.36 31.13 −152.5 1.10 0.68 6.4310−5

f 5 10.34 31.17 −88.3 1.16 0.67 4.1310−5

f 8 10.32 31.24 −120.6 1.12 0.68 1.3310−5

FIG. 9. Individual (thick lines) and total (thin lines) nucleon
density distributions at the fusion barrier radii calculated with the
M3Y-Reid zero-range interaction for the indicated reactions.

FIG. 10. (a) Fusion barrier energiesB vs BZ=ZPZTsAP
1/3+AT

1/3d.
(a) Filled circles show the experimentally determined barriers, open
circles show the calculated Paris CDM3Y3 barriers while the thick
line representsB=BZ. (b) Percentage difference between the calcu-
lated M3Y-Paris (open circles) and Reid zero-range(crossed
circles) barriers, and the experimental fusion barrier energies.
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In Fig. 10(b), the fractional differences between the ex-
perimental and calculated barriers are plotted, rather than the
barriers themselves. This figure shows that on average the
calculated Paris CDM3Y3 barrier energies are 2% lower
than the measured ones. Since the height of the calculated
fusion barrier depends weakly upon the type of the exchange
interaction density dependence(see Fig. 7) this trend is a
general one except for the unrealistic zero-range density-
independent M3Y-Reid interaction barriers shown in Fig.
10(b) by crossed circles. This interaction gives the highest
fusion barriers amongst all the interactions considered. To
reproduce the empirical fusion barriers for this interaction
would require a nuclear potential renormalization greater
than unity. The same M3Y-Reid interaction was used in the
analysis of elastic scattering with the microscopic optical
model[9]. It is not surprising that this potential needed to be
renormalized by a factor of typically 1.1, in qualitative
agreement with the conclusions from the fusion barrier ener-
gies. From the low fusion barrier energies shown in Fig.
10(b) for the more realistic finite-range, density-dependent
M3Y-Paris potential, it would seem reasonable that use of
this potential in elastic scattering analysis would require
renormalization factors less than unity. Such a factor is in
disagreement with expectations that the potential renormal-
ization due to couplings to high energy states should increase
the nuclear attraction, as shown in Sec. IV A. It has however
been claimed that the potential can become significantly less
attractive as a result of couplings to breakup channels[30],
in reactions of weakly bound nuclei. It would be interesting
to see whether this effect is significant for the reactions in-
volving heavy, well-bound nuclei considered here. This ef-
fect changes the potential renormalization, however a further
mechanism exists that can change the bare potential. It has

been shown[31] that the nuclear attraction can be reduced by
10–15% in the surface region due to the effects of Pauli
blocking.

In conclusion, the empirical potential renormalizations
from both analysis of elastic scattering and from comparison
with fusion barrier energies seem to be in agreement, but
depend strongly on the particular nucleon-nucleon interac-
tion used. The more realistic interactions appear to give
nuclear potentials with excessive strength, in view of the
expectation that coupling to bound states results in a poten-
tial renormalization that increases the nuclear attraction. This
suggests either that the double folding model is not appro-
priate for calculating the bare nucleus-nucleus potential with-
out applying corrections due to Pauli blocking, and/or phe-
nomena other than simple potential barrier penetration
accompanied by coupling to collective states are involved in
the fusion process. If the latter were the case, energy dissi-
pation would seem a likely candidate. Reproduction of both
the experimental fusion barrier energies and the apparent po-
tential diffuseness must be achieved in a complete model of
nuclear fusion.

C. Empirical potential diffuseness

Despite the problems in reconciling the strength of realis-
tic DFM nuclear potentials with experiments, the DFM dif-
fusenesses can be compared with those inferred from above-
barrier fusion excitation functions, since the DFM
diffuseness is rather insensitive to details of the nucleon-
nucleon interaction, as seen from the results given in Tables
III–VI. As will be illustrated later, the effective potential dif-
fuseness depends mainly on the diffuseness of the nuclear
matter distributions.

TABLE IV. The same as Table III, for the reaction28Si+92Zr, for which Bexpt=70.9 MeV.

d / f DD label RB B VWS rWS aWS xR
2

(fm) (MeV) (MeV) (fm) (fm)

d 10.58 70.97 −112.2 1.12 0.70 4.4310−5

f 0 10.73 70.17 −144.7 1.12 0.68 2.3310−5

f 1 10.81 69.57 −157.3 1.11 0.71 3.5310−5

f 3 10.81 69.57 −86.4 1.18 0.68 4.6310−5

f 5 10.80 69.62 −91.8 1.17 0.69 7.4310−5

f 8 10.79 69.73 −143.6 1.12 0.70 2.0310−5

TABLE V. The same as Table III, for the reaction16O+92Zr, for which Bexpt=42.0 MeV.

d / f DD label RB B VWS rWS aWS xR
2

(fm) (MeV) (MeV) (fm) (fm)

d 10.22 41.97 −66.6 1.17 0.66 3.1310−5

f 0 10.36 41.52 −72.4 1.18 0.65 2.9310−5

f 1 10.45 41.13 −71.8 1.19 0.66 3.7310−5

f 3 10.45 41.11 −80.7 1.17 0.68 2.4310−5

f 5 10.44 41.15 −233.6 1.05 0.70 6.7310−5

f 8 10.42 41.24 −120.2 1.12 0.69 2.1310−5
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When fitting above-barrier fusion cross sections, the em-
pirical diffuseness required is not completely independent of
the WSP depth(or equivalently the radius parameter). How-
ever over a wide range of WSP depths, the empirical diffuse-
ness for a given reaction typically varies by only 0.1 fm. For
this reason, the values ofaWS taken from literature
[6–8,30–33] have been assigned an uncertainty of ±0.1 fm.
They are shown in Fig. 11 as a function ofBZ, for 13 reac-
tions in which the heavy partner has no appreciable static
deformation.

Before comparing the DFM predictions with the empiri-
cally determined diffuseness, the effects of channel cou-
plings on the empirical diffuseness must also be considered.
Calculations usingCCFULL, for the16O+208Pb reaction, show
that the change in empirical diffuseness due to inclusion of
different couplings is smaller than the assigned uncertainty
of ±0.1 fm.

Because of the relative insensitivity of the empirical dif-
fuseness to other variables in the fits, values ofaWS from the
literature will be compared directly with the equivalent dif-
fuseness calculated with the DFM.

D. Fitting the double folding potential by a
Woods-Saxon potential

To extract an equivalent diffuseness from the DFM
nuclear potential, a Woods-Saxon potential was fitted to it in

TABLE VI. The same as Table III, for the reaction16O+144Sm, for whichBexpt=61.0 MeV.

d / f DD label RB B VWS rWS aWS xR
2

(fm) (MeV) (MeV) (fm) (fm)

f 1 11.14 59.93 −86.2 1.17 0.69 1.2310−5

f 2 11.15 59.87 −105.2 1.15 0.70 5.5310−5

f 3 11.14 59.91 −78.2 1.18 0.69 7.2310−5

f 4 11.13 59.94 −72.7 1.19 0.68 8.7310−5

f 5 11.13 59.96 −148.0 1.11 0.71 3.3310−5

f 6 11.12 59.99 −162.1 1.10 0.71 4.3310−5

f 7 11.12 60.02 −137.2 1.12 0.70 4.2310−5

f 8 11.12 60.07 −168.4 1.10 0.70 5.5310−5

FIG. 11. The equivalent diffuseness of the DFP calculated for
Paris finite-range CDM3Y3 interaction as a function ofBZ is shown
by the open circles. Experimental values from fits to above-barrier
fusion cross sections are indicated by the solid symbols, squares
from Ref. [6], circles from Ref.[32], the triangle up from Ref.[7],
triangles down from Ref.[33], triangles left from Ref.[34], triangle
right from Ref.[35], and the diamond from Ref.[8].

FIG. 12. (a) The nuclear potential calculated with the M3Y-Paris
interaction with the density dependence 8 for the12C+92Zr reaction
(thick line) together with the fits obtained by minimizing the rela-
tive error(dotted line) and the absolute error(dashed line). The thin
solid line is obtained by minimizing the relative error but by fixing
the diffusenessaWS to 1.00 fm. (b) The difference between the
DFM potential and the Woods-Saxon fits. The middle vertical dot-
ted line shows the barrier radius of the DFP, and the outer lines the
boundaries of the fit region.
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the region of the fusion barrier. In order to estimate the qual-
ity of the fit one can calculate a relative error

xR
2 =

1

N
o
i=1

N SUDFsRid − UWSsRid
UDFsRid + UWSsRid

D2

s18d

for distancesRi around the fusion barrier radiusRB, over the
range RB−1 fm,Ri ,RB+1 fm with a step of 0.01 fm.
The parameters of the WSP were allowed to vary within
the following ranges, with steps as shown:
2uUDFs0d u . uVWSu .20 MeV, DVWS=20 MeV; 1.2 fm
, rWS,0.8 fm, DrWS=0.01 fm; 0.5 fm,aWS,1.2 fm,
DaWS=0.01 fm. HereUDFs0d is the depth of the double

folding potential atR=0. The WSP obtained using this
method is denoted by WSR.

An alternative option is to minimize an absolute error

xA
2 = s1/Ndo

i=1

N

fUDFsRid − UWSsRidg2 s19d

varying the parameters of the WSP as above. The WSP ob-
tained by this fit is denoted by WSA.

In order to obtain the best WSP for a fixed diffuseness we
performed a third fit. Here the error was estimated using Eq.
(18) but the diffuseness was fixed to beaWS=1.00 fm. The
WSP resulting from this constrained fit is called WSC.

TABLE VII. Fusion barrier energies:Bexpt—determined experimentally,BRd—calculated using the M3Y-
Reid interaction with zero-range exchange part,BPf—calculated using the Paris CDM3Y3 interaction with
finite-range exchange part. The last four columns contain the radii and diffusenesses of the projectiles and
targets. These parameters were either taken or scaled from either three-parameter Fermi profiles(3pF) or
two-parameter Fermi profiles(2pF) from Table I of Ref.[22]. In the 3pF case the parameterw in Table I of
Ref. [22] was taken to be equal to zero, and the proton(nucleon) densities were renormalized toZsAd,
respectively.

Reaction Bexpt BRd BPf RP aP RT aT

(MeV) (MeV) (MeV) (fm) (fm) (fm) (fm)

12C+92Zr 32.3 32.03 31.15 2.441a 0.456a 4.913b 0.533b

9Be+208Pb 38.2 38.94 38.05 2.218a 0.458a 6.631c 0.505c

16O+92Zr 42.0 42.26 41.14 2.608d 0.465d 4.913b 0.533b

12C+204Pb 57.6 58.61 57.30 2.441a 0.456a 6.588e 0.504e

16O+148Sm 59.8 61.19 59.61 2.608d 0.465d 5.771f 0.558f

17O+144Sm 60.6 61.10 59.53 2.661g 0.466g 5.719h 0.557h

16O+144Sm 61.0 61.53 59.94 2.608d 0.465d 5.719h 0.557h

28Si+92Zr 70.9 71.46 69.59 3.140f 0.491f 4.913b 0.533b

16O+208Pb 74.5 77.08 75.40 2.608d 0.465d 6.631c 0.505c

36S+96Zr 76.7 77.65 75.45 3.509i 0.560i 4.922b 0.533b

34S+89Y 76.9 77.55 75.42 3.443i 0.559i 4.860f 0.499f

32S+89Y 77.8 78.21 76.04 3.374i 0.558i 4.860f 0.499f

36S+90Zr 78.0 78.26 76.01 3.509i 0.560i 4.878b 0.532b

19F+197Au 80.8 83.83 81.90 2.580f 0.525f 6.380f 0.493f

35Cl+ 92Zr 82.9 83.57 81.15 3.476d 0.559d 4.913b 0.533b

19F+208Pb 83.0 85.26 83.25 2.580f 0.525f 6.631c 0.505c

40Ca+96Zr 94.6 97.01 94.32 3.766d 0.544d 4.922b 0.533b

40Ca+90Zr 96.9 97.78 95.01 3.766d 0.544d 4.878b 0.532b

28Si+144Sm 104.0 104.37 101.72 3.140f 0.491f 5.719h 0.557h

40Ca+124Sn 113.1 117.89 114.96 3.766d 0.544d 5.490f 0.492f

28Si+208Pb 128.1 130.90 128.08 3.140f 0.491f 6.631c 0.505c

aRP was scaled from 3pF14N, aP was taken to be the same as for 3pF14N.
bRP was scaled from 2pF93Nb, aP was taken to be the same as for 2pF93Nb.
cRP was scaled from 2pF207Pb,aP was taken to be the same as for 2pF207Pb.
dTaken from 3pF.
eRP was scaled from 2pF206Pb,aP was taken to be the same as for 2pF206Pb.
fTaken from 2pF.
gRP was scaled from 3pF16O, aP was taken to be the same as for 3pF16O.
hRP was scaled from 2pF148Sm, aP was taken to be the same as for 2pF148Sm.
iRP was scaled from 3pF35Cl, aP was taken to be the same as for 3pF35Cl.
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The quality of these three WSP fits to the DFM potential
is shown in Fig. 12, for the12C+92Zr reaction. In the upper
panel the nuclear potentials are shown. The relative error fit
(WSR) with aWS=0.74 fm, VWS=−179.4 MeV, rWS
=1.07 fm is shown by the dotted line, while that for the
absolute error(WSA) is shown by the dashed line, having
the parameters aWS=0.75 fm, VWS=−119.4 MeV, rWS
=1.11 fm. They both provide a very good approximation to
the DFP (thick full line), WSA in particular being hardly
distinguishable from the DFP. The thin solid line corresponds
to the constrained fit WSC withaWS=1.00 fm (not varied),
VWS=−258.1 MeV,rWS=0.80 fm. It coincides with the DFP
at the barrier radius(middle vertical dotted line) but deviates
significantly from the DFP in the region of fit, the latter
indicated by the outer vertical dotted lines.

Figure 12(b) shows the difference between the DFP and
the Woods-Saxon fits described above. The quality of fit with
WSR is very good, the maximum deviation being only
0.2 MeV. WSA approximates the DFP even better near the
left border of the region of the fit.

It is concluded that DFM potentials can be very well de-
scribed by a Woods-Saxon potential form, from nuclear sepa-
rations 1 fm inside the fusion barrier radius, up to large sepa-
rations. Thus the discrepancy between diffusenesses obtained
from fitting elastic scattering data and from above-barrier
fusion data is not due to the WS potential being inadequate
to describe the semimicroscopic DFM potential. The discrep-
ancy must arise from more fundamental reasons.

E. Equivalent diffuseness of the DFM potential

The parameters of the WSP providing the best fit(WSR)
for the calculated DFP, as well as the corresponding values
of xR

2, are presented in Tables III–VI for a number of the
reactions. Neither with zero-range nor with finite-range ex-
change forces does the DFM give the large values of the
equivalent diffuseness of about 1 fm, as obtained by analysis
of the high energy experimental fusion cross sections. In
almost all cases, the equivalent diffuseness is between 0.65
and 0.70 fm.

To provide a general picture of the equivalent diffuseness
of the DFM nuclear potential, the fitted diffuseness values as
a function ofBZ are compared with empirical values in Fig.
11. Calculations were performed here for all 21 systems of
Table VII, using finite-range Paris forces with the CDM3Y3
density dependence. The experimental results lie well above
the calculated values.

The effect of changes in the diffuseness of the nucleon
density distributions must be investigated, asaP andaT were
often scaled from neighboring measurements. With this aim,
calculations were made with zero-range M3Y-Paris and Reid
interactions for the16O+144Sm reaction. Results of this cal-
culation are shown as a function ofaP in Fig. 13. The dif-
fuseness of the projectile proton(nucleon) distribution was
varied from 0.40 fm up to 0.58 fm; the value available in the
literature is 0.45 fm(Ref. [24]). In Fig. 13(a) the difference
between these calculated barriers and experiment,B−Bexpt, is
plotted. In Fig. 13(b) the difference between the diffuseness
of WSR and the experimental value is shown. Only very
small values ofaP can make the calculated barrier signifi-
cantly higher than the experimental one. However the experi-
mentally determined diffuseness cannot be reproduced even
with very large values of theaP.

In summary, it is impossible to simultaneously reproduce
the expected barrier energy and the experimentally deter-
mined potential diffuseness through variation of the diffuse-
ness of the nucleon density distributions. As might be ex-
pected, the use of different forms of nucleon-nucleon
effective interaction(M3Y-Reid or Paris, zero range or finite
range, density independent or dependent) hardly affects the
diffuseness required to reproduce the DFM potential.

V. CONCLUSIONS

This paper has addressed the following questions: what
are the predictions of a semimicroscopic double folding
model for fusion barrier energies and the nuclear potential
diffusenesses? Can these show whether the DFM potential is
appropriate to be used as the bare potential in coupled-
channels calculations? To answer these questions, a com-
puter code was developed that calculates the double folding
nuclear and Coulomb potentials for two spherical colliding
nuclei. The code uses the M3Y nucleon-nucleon interaction
with a finite-range density-dependent exchange part and the
extended Thomas-Fermi approximation for the effective
Fermi momentum in the density matrix expansion. Calcula-
tions were performed for 21 reactions for which accurate
experimental fusion barriers are available.

The M3Y-Paris density-dependentNN interaction which

FIG. 13. (a) The difference between the calculated barrier ener-
gies and experiment for the16O+144Sm reaction, as a function of
the diffuseness of the16O nucleon distribution. The difference be-
tween the equivalent fitted WSP diffuseness and experiment are
shown in (b). The experimental barrier energy and empirical dif-
fuseness cannot be simultaneously reproduced.
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reproduces the basic properties of nuclear matter results in
fusion barrier energies that are systematically lower than the
measured barriers.A priori an opposite result was expected,
since the experimental barriers are reduced, typically by sev-
eral percent, due to coupling to collective states at high ex-
citation energy which renormalize the potential barriers.
Only the M3Y-Reid interaction with zero-range exchange
term results in barrier energies that are larger than the experi-
mental values. However this parameter set of the M3Y inter-
action has been shown to fail in saturating cold nuclear mat-
ter.

The diffuseness of the equivalent Woods-Saxon potential
fitted to the DFP in the fusion barrier region is typically
0.65–0.70 fm, and this reproduces the shape of the DFP very
well. The DFP cannot be reproduced by a WSP with a dif-
fuseness of,1.0 fm, which is required empirically to fit the
above-barrier fusion cross-section excitation functions for
many of the reactions. The semimicroscopic calculations in
general predict bare fusion barriers and nuclear potential dif-
fusenesses which are lower than those deduced from experi-
mental fusion cross sections.

At the moment we see two possible causes for this dis-
agreement. The first is that the DFM with the M3Y interac-
tions does not correctly predict the bare nucleus-nucleus po-
tential at the fusion barrier radius, which may be related to
the frozen density approximation. This conclusion, if correct,
would have implications for other uses of these calculated
nuclear potentials in interpretation of heavy-ion collisions.

The second possibility is energy dissipation. This could
cause the higher average fusion barrier energies through ki-
netic energy loss to dissipation, and the apparent large poten-
tial diffuseness through the larger energy dissipation that
would be expected for high angular momentum, where the
barrier peak occurs at smaller separation and thus larger
nuclear overlap.

A comprehensive model which includes dissipative ef-
fects and channel couplings, which to our knowledge does
not yet exist, is likely to give insight into the possible role of
energy dissipation in fusion reactions near the barrier.

The present work indicates that potential renormalization
from coupling to high energy collective states can be so large
that the nuclear potentials calculated with the double folding
model using realistic M3Y interactions are much too attrac-
tive, unless substantial dissipation of kinetic energy is in-
voked before the fusion barrier radius is reached. Further
theoretical and experimental studies on these questions are
necessary to resolve this discrepancy.
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