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Double folding nucleus-nucleus potential applied to heavy-ion fusion reactions
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Double folding model calculations to obtain the bare nucleus-nucleus potential have been carried out with
the Reid and Paris M3Y effective nucleon-nuclgbiN) interactions. The exchange part of the interaction was
taken to be of finite range and the density dependence dfithimteraction was accounted for. The calculated
fusion barrier energies are generally lower than those expected taking into account potential renormalization
due to coupling to collective states at high excitation energies. Fitting the potentials at the barrier radii with a
Woods-Saxon form results in effective potential diffuseness-6f65—0.70 fm, smaller than the values of
~1 fm generally found from fitting fusion cross sections at above-barrier energies. These discrepancies raise
guestions about both the determination of the bare nucleus-nucleus potential with the folding model, and the
boundary of the effect of friction on the fusion process.
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I. INTRODUCTION radius parameter,s and the diffuseness, g Different sets
. . . of Vyysandrygcan give very similar nuclear potential values
Many nuclear reaction processes are described using t}% a given point in its tail, however the slope of the potential

nucleltjs-r;gcleug_ pottenltlal, V;’.h'clh IS (t):en_onle Otf t.h? mosfn the tail is determined predominantly by the diffuseness
Important ingrecients. in particular in the simpiest picture aws Since the fusion barrier occurs in the tail of the nuclear

FhUCLear fus;on,. thelsmglg-?arn_er petr;]etrfatlpn ma&BPM), di otential, one might hope that,s (but not bothV,ys and
€ lusion barrier ajone determines the fusion process, and | Y"S) could in principle be determined from fusion cross sec-

height, radius, and th|ckne§s are determined by the nUCIe"'l’ion data after accounting for channel coupling effects. An
a_md Coulomb potentlal_s. S.'m.:e the latter can be gxactly OIeéffective nuclear potentialbut not the bare potentjalvas
fmed,_ the_ only “Uce”a”.“y IS 1n ;he nuclear potent|al_. mapped out by Bags3] from a classical analysis of above-

. Th'.s simple picture Is modified when the couplings to barrier fusion cross sections from a wide range of reactions.
vibrational, rotational, and nucleon transfer degrees of free- In different bombarding energy regimes, the fusion cross
dom are taken into account. As a result of the couplings, th%ections have a different sensitivity to the diffuseness of the

S'fngle _barrle_rtﬁa(ljr_\ﬁbe th;)ught O.f as sgllttlng |_r|1tho a d'Stl:'bu]E'onnuclear potential. The lowest energies correspond to the deep
of barriers with different energies and raflli. The results o sub-barrier region, below the energy of the lowest barrier. In

approximate or exact coupled-channgSC) calculat_|ons this energy region the fusion cross sections calculated ac-

Scc’ording to the well-known formula of Ref4] depend expo-
entially onaysthrough the barrier curvature. Measurements
at such energies are, however, difficult to perform because

the cross sections are very low. Also it can be difficult to be
Eertain that the energies are below that of the lowest fusion
"barrier. The second energy region spans the barrier. Here the
shape of the barrier distribution is sensitiveagg but it is

Slso sensitive to the couplings, which are not yet sufficiently
well known to allow determination cdyys The third energy
region is at above-barrier energies. Up to energies where the
pocket in the potential disappears for the highest angular
momenta, fusion cross sections can be well described by the
classical expression

sections below the uncoupled single barrier, resulting fro
the distribution of barrier energig¢g]. In the CC model, the
nuclear potential still plays a vital role, not only affecting
each barrier shape as in the SBPM, but also affecting th
coupling strengths, which to first approximation depend o
the derivative of the bar@uncoupled potential. Determina-
tion of the bare potential is thus vital in the coupled-channel
interpretation of fusion cross sections.

The nuclear potential is often described by a Woods
Saxon form:

UnwdR) = Vind1 + exp[R— ry AR + AYS)J/ay,d) 2.
1)

HereR denotes the distance between the centers of mass of
the projectile nucleus of mass numbAg and the target
nucleus of mass numbek;. The Woods-Saxon potential
(WSB is defined by three parameters: the depths the

o(Egm) = TRE(1 = B/Ec ), (2)

even in the presence of couplings which increase the cross

sections at sub-barrier energies. HBreepresents the energy

of the average fusion barrier corresponding to zero orbital

angular momentum. The effect of angular momentum on the

fusion barrier radius is included through the energy depen-
*Permanent Address: Omsk State Transport University, pr. Marxalence of the barrier radiugz. It was shown5] that for an

35, Omsk RU-644046, Russia. exponential form of the nuclear potenti&; is reduced from
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1200 © Ref.[8] (solid circleg and our recenfunpublishegimeasure-
ments(open circles The data clearly cannot be reproduced
1000 with a diffuseness near 0.63 fm.
The elastic scattering data which are fitted wilys
800 =0.63 fm [9] are sensitive to the nuclear potential at radii
600 larger than that of the fusion barrier. Thus the discrepancy
between the relatively small value @fyg extracted from
400 elastic scattering data and the much larger valuefre-
quired by the fusion data may reflect the fact that the true
. 200 nuclear potential shape does not follow the WS ansatz. The
£ latter is still commonly used because of its qualitative behav-
-~ 0 ior and mathematical simplicity. A different parametrization
e 1000 has bee_n spggested in_ R@6], which in prinpiple may re-
solve this discrepancy, if the nuclear potential were the only
800 relevant physical quar!tity. However, dissipative effddiS]
could be another possible reason for the apparent large value
600 of ayg distorting the simple potential barrier passing picture.
As part of the investigation of the above discrepancy, we
400 present here semimicroscopic calculations of nucleus-
nucleus potentials. The calculated fusion barrier energies are
200 compared with measured values. By fitting a Woods-Saxon
form to these potentials at the fusion barrier radii, the equiva-
00.8 1.0 1.2 1.4 lent WS diffuseness parameters have been extracted. These
E B are compared with the corresponding experimental quantities
om-Z determined from fitting above-barrier fusion cross sections

FIG. 1. Measured fusion cross sections compared with thOS(t,‘or a wide range O_f fusion reactions. )
calculated 7] with the coupled-channels codemob, as a function The double folding mOdE(DFM) ‘_Nas applied to calculat.e
of center-of-mass energy divided t8,=Z5Z;/(AY3+AY3). The the nucleus-nucleus potential. This model has been widely

data for the'®0+2%ph reaction are from Ref7], while those for ~ Used in the last 20 years to calculate the first-order term of
the 285i+2%8Pp reaction are from Ref8] and our recent unpub- the real part of the microscopic optical potential for elastic

lished resultgopen circley The experimental data clearly cannot and inelastic scattering af particles and heavy ion®,11].
be reproduced with values afysclose to 0.63 fm. In practice, the strength of the DFM potential is often renor-

malized by a factorexpected to be greater than unity
give the best fit to experimental scattering data. This factor is
attributed to the higher-order termi8] which cannot be cal-
culated with the DFM. This point is further discussed in Sec.
IV A. In Refs. [9,1]], the interacting nuclei generally had
Re = Ro — awsIn[(2Ec /B) - 1]. 3 ground state matter distributions that were spherically sym-
) o ) metric. In the present paper we restrict ourselves to fusion
This shows thaRe depends logarithmically on the ratio of reactions involving spherical target nuclei. For the reactions
the bombarding energy to the barrier energy, but linearly ofye consider, the density overlap at the fusion barrier radius is
the diffusenessyys of the potential. _ typically about 1/4 of the central density. Since the M3Y
Thus instead of a linear increase @, m) With 1/Ecm,  nucleon-nucleon interaction which we use in our calculations
which would occur ifRe=Ry, the increase otr(E.,) With s most appropriate for a nuclear density overlap of about 1/3
decreasing 1., becomes less steep, depending on thg9], in this respect the DFM calculations should be suitable.
value ofaysg Fitting of o(E. ) in the above-barrier region Furthermore, the relatively low density overlap may make
using the SBPM has been carried out for many reactionshe frozen density approximation, implicit in the DFM, at
(see, e.g., Refl6]) to determine an empirical value afyg least reasonable.
This diffuseness has then been used in the coupled-channels Although detailed descriptions of the DFM can be found
calculations. With the recent development of reliable systemin many papergsee, e.g., Refd12,13), in order to make
atics, resulting from the good empirical fits which have beerthis paper self-contained we present in Sec. Il a short de-
obtained to precise fusion cross sections for a large numbecription of the main formulas used. In Sec. Ill several re-
of reactions, evidence has built up that the valueagk  sults from our DFM calculations are compared with those
extracted by this method is considerably larger than the valuavailable in the literature, in order to prove the reliability of
of =0.63 fm commonly accepted as a typical value that deour newly developed computer code. In Sec. IV we make a
scribes elastic scatterin@]. This situation is illustrated by comparison of the calculations with the values of the average
Fig. 1. Here the measured and calculated fusion cross sefusion barrierB and the WS potential diffuseness,g ex-
tions are presented as a function of the dimensionless quatracted from the experimental data, and investigate the influ-
tity E¢ /By, WhereB,=ZpZ:/(AL3+AY3)MeV. The data in  ence of different options and parameters of the DFP on the
Fig. 1(a) are from Ref[7], while those in Fig. (b) are from  calculated quantities. The conclusions are given in Sec. V.

the zero angular momentum radiRg according to the ap-
proximate formula
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TABLE |. The coefficients of the Reid and Paris M3Y interac-

tions.

Coefficient Reid Paris
Gp1 (MeV) 7999 11062
Gp> (MeV) -2134 -2537.5
Gps (MeV) 0 0
Ge1 (MeV) 4631.4 -1524.25
Gero (MeV) -1787.1 -518.75
Gerz (MeV) —-7.847 —-7.847
ry1 (fm) 0.25 0.25
ryo (fm) 0.40 0.40
ry3 (fm) 1.414 1.414
Ggs (MeV fm3) -276 -592

FIG. 2. The coordinate system used in the double folding model. 1
The vector between the centers of the projedtite and targetT) k(MeVv™) 0.002 0.003
nuclei is denoted bR, while rp, r1 are the radius vectors of points

separated bys in the nucleon distributions of the projectile and ) ) )
target nuclei. change part involves nondiagonal elements of the density

matrix (see, e.g., Ref.12] which we closely follow herg

Il. THE DOUBLE FOLDING MODEL
. UnE(R,EP):g(EP)fdrpfdrTPPA(rP;fp*'S)
A. The formalism

The interaction potential between two nuclei is written as Xve(S)pralrrir 1 — explik e dAeg) . (7)

U(R) =Uc(R) + U, (R) + U,(R), (4) The wave numbek,, associated with the relative motion of

) _ ) ) the colliding nuclei is given by
whereU¢ is due to the electrostaticCoulomb interaction,

U, is the strong(nucleaj interaction, andJ,, is the rota- K2,(R) = 2mpAred Ec.m.— U(R /72, (8)
tional term. This last term has a very simple structure, an

. . 7 . . = +
since our purpose here is the calculation of fusion barriers fqu/here the reduced mass numbgg=ApAr/ (Ap+Ar), and

zero angular momentum, it will not be used here. mn'lliv:)h?)abrzrgent?i;z%nn?gﬁhe nucleon-nucleon interaction
The Coulomb energy for twi herical nuclei can be writ-. . . ) .
e Coulomb energy for two spherical nuclei can be in the literature are based, respectively, on the R&#j and

ten as Paris[15] interactions. These comprise a sum of Yukawa-
type terms, known as M3Y effective nucleon-nucleon inter-
Uc(R) :f drpf drrppen(r p)vc(S)pren(r 1) (5  actions, comprising both direct, and exchangeg; terms:
3
Here ppcn, @and prqn, are the charge densities of the projectile _ _
(P) and targetT) nuclei, andvc is the Coulomb interaction. vp(s) = §1 Gpilexp(= sir,)1/(slr ), 9
The vectors=R +r{—rp corresponds to the distance between
two specified interacting points of the projectile and target, 3
whose radius vectors are andr, respectivelyR denotes ve(s) = > Gerlexp(— S, ) (Sr,). (10)
the vector joining the centers of mass of the two nuclei. This i-1

geometry is illustrated in Fig. 2.

The nuclear part of the potential),, consists of two
terms, the direct,,p term and the exchandé, e term, which
are in general energy dependent. The direct part of the inte
action between two colliding nuclei has a similar form to the
equation describing the Coulomb interaction:

Here subscripD refers to the direct part diIN interaction
and the subscripEf refers to the finite-range exchange part
pf NN interaction. Each term is determined by the radius
parameters,; and the coefficient&p; and Ggy;. Instead of a
finite-range exchangBlN interaction, one of zero range was
used in early work$9]: vegs(s)=GgsA(s).

The functiong(Ep) which defines the energy dependence
UnD(R'EP):g(EF’)JdrPJderPA(rP)UD(S)pTA(rT)' of the nucleus-nucleus potential in Eq$) and (7) reads

6 11617

Here ppa and pr4 are the nucleon densities of the colliding 9(Ep) =1 ~kEp. (19
nuclei,vp is the direct part of the nuclear interaction betweenThe values of all the coefficients, namely, Gp;, Ggsi, Ges,

two nucleongdNN interaction), andg(Ep) is a multiplier that andk, are collected in Table I. Unless specified otherwise
depends upon the energy per nucl&srE,,,/Ap. The ex- these values are used throughout this paper. The choice of all
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TABLE II. The coefficients of the density-dependent MBW  works quite well. Typically from two to ten iterations are

interaction of Eq(12), compiled from Ref[18]. needed in order to reach a relative accuracy of i@ U(R).
_ The second obstacle is much more complicated. In order
DD label  Interaction c a  Bfm™®) Hfm™>)  to compute the integral in Eq7) one has to calculate the

D independent 1 00 00 00 dens!ty matrix which depe_nds on two spa‘ual points. The c_:al—
culation is performed using the density matrix expansion

DDM3Y1 02963 3.7231  3.7384 0.0 method of Refs[19,20 which makes the following approxi-
CDM3Y1l  0.3429 3.0232 3.5512 05  mation:

CDM3Y2 0.3346 3.0357 3.0685 1.0

CDM3Y3  0.2985 3.4528 26388 1.5 pa(T T +9) = par +52)]1(Kerfr +5/2) -9).  (14)
CDM3Y4  0.3052 3.2998 23180 2.0

CDM3Y5  0.2728 3.7367 1.8294 3.0 Herep, stands for eitheppp or pra and

CDM3Y6  0.2658 3.8033 1.4099 4.0 A

BDM3Y1  1.2521 0.0 0.0 17452 J1(¥) = 3sin(x) = x cogx) 1. (15

The simplest way to find the magnitude of the effective

. , Fermi momentunkgs; is to apply the Slater approximation
the coefficients above is beyond the scope of the prese'%herekeff(r) is simply equal to the local Fermi momentum

work; we simply follow the prescriptions available in the [3/272pA(r)]H3. A more sophisticated method, used here, is

literature and trace the impact of the values of the coeffi, calculatekq¢s using the extended Thomas-Fermi approach
cients onto the fusion barriers and the value of the equwalerttzo].

potential diffuseness.

It was widely known that the original density-independent 2/3 2
M3Y interaction failed to saturate cold nuclear matter. In  KkZ,(r) = (m) +5—CS<VPA(r)) + SApA(r)_
order to obtain the correct value of the central nucleon den- 2 3\ paln) 36pa(r)
sity and nucleon binding energy several versions of a (16)
density-dependent M3Y interaction have been propgsee,
e.g., Refs[16,18). We use in our study a generalized den-
sity dependence of the M3Y interaction introduced in Ref.
[18]. It enters as a multiplierF(pga) for the density-
independeniN interaction. The functior is given by

0 N ok~ WN PR O

The only parameter that needs to be specified he,is
which defines the strength of the Weizsécker correction term
to the kinetic energy density. In Refl7] C, was taken to be
equal to 1/36 whereas in Rdfl2] much larger value of 1/4
was used. Recently in Refl1] it was shown that the value
F(pep) = C{1 + a exp(— Bpea) = YPeal- (12)  of 1/36 provides the best approximation for the exact nondi-
) , e ) agonal terms of the density matrix. These terms were ob-
The nucleon densityg, will be specified in the following  (4ineq in the harmonic oscillator approximation for elastic
section. If the M3Y-Pari®NN interaction is used, this density scattering in thex+12C reaction. Following the prescription

dependence results in the correct saturation binding energy pet. [11] we useCq=1/36 when comparing our results

of about 16 MeV/nucleon and anuclear density of i the data s
_3 . . .

0.17 fmr*, for several sets of coefficients that are pre-  a frther step has to be taken before any calculations of

sented in Table Il. The different parameter sets in Table lkhe double folding potential with a density-dependét

result in different values of nuclear matter incompressibil-jiaraction can be performed. The nucleon dengity ap-

ity, ranging from 176 MeV for the DDM3Y1 interaction pearing in Eqs(12) and(13) has to be specified. In E¢L2)

up to_ 27.0 MeV for the BDM3Y1 interaction. The original ¢,; the direct forcespp, is taken to be equal tepa(Tp)

density-independent M3¥IN forces correspond to param- +pralfy) (see, e.g., Refi21]). This choice is dictated more

eter set DDO in this table. The use of density-depender% ; - ;
) y the numerical convenience than by physical arguments. In
forces means that the bare M3Y direct and exchaNge Eq. (13, describing the exchange forcegea=ppa(fp

'rr:;;icgg)g?’%(s) andvg(s), in Egs.(6) and(7) should be +5/2)+prart—s/2) [12,17,18. This corresponds to the den-
sity at the midpoint between two interacting nucleons and is
@pEn(S pra) = F(pea)vpEn(9)- (13) not merely.numeri.c_ally.convenient but also seems to have
some physical justification.

In practice when evaluating the double folding integrals
(5<7) we used the momentum-space representation, closely
following Ref. [12]. This dramatically reduces computer

If a zero-range exchange interaction is used, the integraime.
in Eq. (7) is reduced to that in Eq6) and can be easily
evaluated. However when finite-range exchange forces are
applied, there are two major difficulties in calculating the
exchange part of the nuclear potential. First, &j.with the Finally, the charge and nucleon density distributions must
k) defined by Eq(8) results in a self-consistency problem. be specified. In these calculations for simplicity we take the
It is overcome by applying an iterative procedure, whichnucleon density to be proportional to the proton density:

B. Evaluating the double folding integrals

C. Charge and nucleon density distributions
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pPpma=pPpmzA/ Z. For the proton density distributiongq)z, 0
two-parameter Fermi2pP profiles were used for both pro-
jectile and target nuclei: ~ o
» -100
prmz(1) = popm{l + exd(r = Rer)lapm ]} (17) =
[
The parameter&p 1, andapT, were defined using the data % -200
on the charge density from Table | of R¢22]; these were 8
obtained experimentally from electron elastic scattering. 5
These parameters were used directly to calculdtéR). 2 -300
Electron scattering experiments give information on the 2
charge density distribution of the scattering nucleus whereas . . . . . . . .

to calculateU,(R) in the DFM, the point nucleon density -400 0 1 2 3 4 5 & 7 8
distributions are needed. Therefore the radius parameters for
the nucleon density were taken to be equal to those for the
charge density whereas the diffuseness parameters were CO 16 3. The total nuclear potentiéll,) and its directU, ) and

re_zcted for the finite width of the _charge d_istribution of a exchange(U,g) components for the reactiof0+20 at Eiy,

S'ngl,e proton. In order to make this COI’I‘e“CtIOI’] we used the. 160 MeV. The curves represent the present M3Y-Reid calcula-

relation between the average square radii of the proton anghns see text while the open symbols show the values read from

charge distributiongsee Eq.(17) of Ref.[9]) and the equa- Fig. 5 of Ref.[12].

tions relating the average square radius of a 2pF profile with

its radius and d|ffus_eness parametesee Ref[23)). . . calculation was reported in Refl7]. The value of Cg
For those nuclei where the data were not available in” -

Table | of Ref.[22], the radius parameter was obtained by_ll36 and thevalues ofR, and a, were as given for the

scaling the pa.rame,ters of the closest nuclei. The diffuseneé)srevious case. The .deforr.ned target nucleSm was con-

of the charge density was taken to be equal to that of th gidered to be spherical witRy=5.939 fm,ar=0.522 fm. In

S . . ig. 5 the calculated ratiol, s /U,; corresponding to the
closest nucleus for which it was available. The influence OTM3VY-Paris interaction are compared with those from Table |
our results of the diffuseness of the nucléproton density b

C . . of Ref.[17]. The agreement of our calculations with those of
distribution is further discussed in Sec. IV. Ref. [17] is very good.

R (fm)

ll. COMPARISON WITH PREVIOUS CALCULATIONS IV. COMPARISON WITH EXPERIMENT

It is desirable to check that our new DFM computer code  Haying checked the validity of our code, the calculated
works correctly. This was accomplished by comparing oufysjon barrier energies and the nuclear potential diffuseness
results with those available in the literature. can now be compared with experimental results. Although

We first performed calculations for tHé0+°0 system at  the primary aim of this work is to investigate the potential
Eiap=160 MeV. The DFM was applied to calculate the real yiffyseness anomaly, first we show how the different options
part of the optical potential for this system in REI2] using  for the nucleon-nucleon interaction affect the strength of the
the finite-range density-dependent M3Y-Reid interactionyclear potential, and thus the predicted fusion barrier ener-

with C,=1/4, and Wg‘ the coefficients C=0.2845, @  gies, Initially we must consider the effects of channel cou-
=3.6391,3=2.9605 fm*, and y=0 for the density depen- pjings before making such a comparison.
dence of theNN interaction. The coefficiert in the energy

dependencég(Ep) in Eq. (11)] was 0.002 MeV?. The pa- _ _ _
rameters of the protorinucleon distribution were taken A. Coupled-channels effect on the fusion barrier energies

from Ref.[24]: Rp(1)=2.525 fm,ap1)=0.450 fm. The results Coupling between the relative motion and intrinsic de-
of our calculations are compared with those of Ré&g] in grees of freedom not only results in a distribution of fusion
Fig. 3. The dotted curve represents the direct part of théarrier energies, but can also reduce the average fusion bar-
nuclear potential, the dashed curve shows the exchange parier energy, often referred to as potential renormalization
and the solid curve indicates the total nuclear potential. Thg¢26]. The effect of such potential renormalization should be
agreement of our calculations with the results read from Figconsidered when comparing barrier energies calculated using
5 of Ref.[12] (open symbolsis very good. the DFM with those determined empirically from fitting
The second comparison presented in Fig. 4 is again foabove-barrier fusion cross sections with a single-barrier
the %0 +1%0 reaction but now a€,,=250 MeV with k  model. It has been show26] that such potential renormal-
=0.003 MeV?, and with density-dependent Paris forcesization can reduce the calculated fusion barrier energies by
DDM3Y1 and BDM3Y1(these correspond to parameter setsseveral percent, so the effect is not insignificant.
DD1 and DD8 in Table . All other parameters were as in In the microscopic optical model, the real potential is the
the previous case. Our calculations agree well with those oum of the folded potential and the dynamic polarization
Fig. 1 from Ref.[25]. potential(DPP) resulting from couplings to excited states. At
The third comparison is for th#0 +1%4Sm reaction. This energies above the barrier region, the DPP is closely related
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300 - T T T T T T T
< 200
(0]
=3
G
= 100
0
. -200
>
[0}
=
W -400
o
-600
-100
%J -200
=3
DC
-300

_400 1 1 1 1 1
0
R (fm)

FIG. 4. The total nuclear potentidl,) and its direc{U,p) and
exchanggU,g) components, but for M3Y-Paris interaction includ-
ing finite-range exchange term, &,,=250 MeV for the 10
+160 reaction. The present calculatiofimes) are compared with
the valuegsymbolg read from Fig. 1 of Ref[25] for two different
density dependencigsee Table ll: DD1 (thick lines, squareésand
DD8 (thin lines, diamonds

PHYSICAL REVIEW (9, 024610(2004)

nEbIUnEf

u

0.4 1 1 1 1 1 1 1 1
0
R (fm)

FIG. 5. Calculations for the reactiof®0+%Sm at Ep
=5.2 MeV. The ratio of the zero-range exchange interaction divided
by the finite-range interaction for the M3Y-Reid interaction with
C,=1/36 isshown; the line corresponds to the present calculations,
while the symbols are from Table | of R4fL7].

Thus the couplings to these collective states not only affect
the shape of the barrier distribution, but also shift the barrier
by —0.9 MeV. When coupling to the™3tate at 6.129 MeV

in 180 is included in the calculatior@gn addition to the cou-
plings in 2°%b), then the shape of the fusion barrier distri-
bution is not further changed, but the barrier centroid is
shifted to an even lower energy. To compensate for this shift,
an uncoupled barrier height of 78.3 MeV is required to ob-
tain a good description of the data. The inclusion of cou-
plings to these projectile and target states therefore effec-
tively reduces the uncoupled barrier height by 3.8 MeV in
total. In this calculation, a potential diffuseness of 1.1 fm
was used, which was required to fit the above-barrier cross
sections, for a potential depth of 300 MeV. The results are
illustrated in Fig. 6, where the dotted line shows the single-
barrier (uncoupled calculation with B=78.3 MeV, the
dashed line shows the effect of including the couplings to
208pp states, while the full lingwith a total energy shift of
-3.8 MeV) includes both the couplings to states’#Pb and
that to the 3 state in*®0. Additional couplings to other high

to the potential renormalization that is found in the coupled-
channels calculations. For the fusion reactions considered
here, it acts to increase the attraction of the nuclear potential.
To illustrate the effect of potential renormalization, here
we show calculations for th&°0+2%%b reaction using the
realistic coupled-channels coderuLL [27]. This is neces-
sary as simplified CC codes based oorus [28], for ex-
ampleccbeF and ccMobD [29], do not show potential renor-
malization because of the approximations ug$26]. The
average fusion barrier energy for th%0 +2°%PDb reaction is
74.5 MeV, determined empirically from a fit with a single-
barrier calculation to the above-barrier fusion cross sections.
When couplings to the 2.615 MeV 3tate, the 3.198 MeV
57 state, and the 3» 3™ multiplet (in the harmonic limif in

800 . T T
160+208Pb
600 + ----- Bare potential
— - - -Pb states
Qo ——Pb and O states .
= Lo
2 400 | e
o .
200 | 1
0 a
70 75 80 85 90
E o, (MeV)

FIG. 6. Calculated and measured fusion excitation functions for

208ph are included in thecFuLL calculations, the high en- the %0+29%h reaction. The potential renormalization resulting
ergy data can only be fitted using a less attractive nucleafom coupling to high energy states #fPb, and more significantly
potential, which gives an uncoupled barrier at 75.4 MeV.in %0, is shown(see text
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62.0———— 1.4 ; — .
[ 16 144, B :
61.5f « Reid O+ Sm ]
experiment
__ e1.0f 1
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FIG. 7. Calculated fusion barrier energies for the react FA

+1#Sm for all types of calculation, namely zero-rang8 and FIG. 8. The dependence of the facfwhich scales the inter-
finite-range density-independe®) and density-dependenil—8  ,ction strength, see EqL6)] on the nucleon density. The eight
interactions. The experimentally determined average barrier energy;es correspond to the eight sets of coefficigste Table I

is indicated by the horizontal line. The open circles correspond t‘bensity-independent forces hafe 1 (full line). The dashed verti-
the M3Y-Paris interaction whereas the crossed circles stand for thga| line shows nuclear saturation dengify17 fni3).

M3Y-Reid interaction.
from M3Y NN interaction is attractive in both the Reid and

energy states, although less strongly coupled than those eRaris potential§see Figs. 3 and)4Increasing the range of
plicitly included, would be expected to shift the barrier to this attraction from zero to any finite value should only make
even lower energy. the fusion barriers lower, which is the case in Fig. 7.

Since the effect of couplings is not taken into account in  Including the density dependence into 1Bl interaction
the DFM, the calculated fusion barriers should be considerbrings the fusion barrier energy further down in Fig. 7. In
ably higher in energy than the empirical experimental barri-order to understand why it happens, it is useful to show the
ers. In the case of®0+2%%Pb, the fusion barrier calculated dependence of the potential scaling fadfoon the nucleon
with the bare DFM potential should be at least 3.8 &%)  density, and the density overlap at the fusion barrier. The
above the experimental value. This is significant, since théormer is presented in Fig. 8, for all eight density depen-
contribution of the nuclear potential to the fusion barrier en-dence parameter sets in Table Il. The horizontal line corre-
ergy is typically less than 10%e.g., for?C+%Zritis 7%, sponds to density-independeNN interaction. The vertical
as shown in Fig. 1R For reactions of other nuclei, where dashed line indicates the average nuclear central density. The
collective strength may be fragmented over many states, armgeneralized density dependence of E2) reduces the
difficult or impossible to determine experimentally, the exactnucleon-nucleon interaction for large densiground and
shift cannot be calculated presently, and further work needabove nuclear densityFor lower values of the densitjess
to be carried out on this question. However, it is clear that onthan 0.11 fm®), the density dependence increases the
average, uncouplegare fusion barriers, such as those cal- nucleon-nucleon attraction sinée> 1.
culated with the DFM, should lie several percent above the Figure 9 shows that the typical minimum density in the
empirical fusion barrier energies, when potential renormaltegion of the density overlap at the barrier is not more than
ization (or DPB is not accounted for. 0.04 fm3 for the reactions considered in this work. In this
figure the barrier radii correspond to the M3Y-Reid zero-
range interaction. Accounting for the finite range as well as

Since there are several options in the DFM calculationsor the density dependence of the interaction makes the bar-
(M3Y-Reid and ParisNN interaction, zero- or finite-range rier radii 2—4% larger thus leading to smaller density over-
interaction, density-dependent and -independent intergctiodap. Consequently, the fusion barrier height would be ex-
we first show in Fig. 7 how this choice influences the fusionpected to decrease due to the density dependence dfNhe
barrier height. This figure presents barriers calculated for th@otential. This is really the case in Fig. 7: the strongest den-
160 +1445m reaction, without including potential renormal- sity dependencies labeled 1,2,3 in Table Il bring the fusion
ization due to couplings. These calculations have been peparrier down to its minimum value among all presented in
formed with the M3Y-Parigopen circley and Reid(crossed this figure. The somewhat weaker density dependencies
circles interactions with a zero-range) and with a finite-  DD4-DD8 result is slightly higher fusion barrier energies, as
range (f) exchange term for density-independent interacseen in Fig. 7.
tions, and for all eight versions of the density dependence Since the density-independeNN interaction was shown
from Table Il. The experimental fusion barrier is shown byto fail in reproducing the basic properties of nuclear matter,
the horizontal line. we have chosen the density-dependent RdNsinteraction

One sees that changing from zero to finite-range exchangeith finite-range exchange terg€DM3Y3) for the system-
interaction reduces the calculated barrier energies. Indeedfic comparison with the experimental data. Choosing an-
the exchange part of the nucleus-nucleus potential resultingther density dependence of tN&l interaction will not alter

B. Fusion barrier energies

024610-7



GONTCHAR, HINDE, DASGUPTA, AND NEWTON PHYSICAL REVIEW (9, 024610(2004)

0.20 T T T T T 140 T T T T T
180y 4+ 2%pyy (a) ] .
t —e— Experiment 3
120 . .
O Paris barriers
100k E
E 80 3
a 60F /o 3
E 40k ;
h 3 (a)
<
Q 20 t } t t +
4L o Paris ® ® 1
® Reid ®
o ® ®
2+ =) $® o @ 1
m
= o & o8, o
- @8 @
& 0 o O O—]
[a1] @ 00
m o) 8
21 o) o] o) i
=1 ge ™©
r (fm) 2
4f © (b) -
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density distributions at the fusion barrier radii calculated with the 20 40 60 80 100 120 140
M3Y-Reid zero-range interaction for the indicated reactions. B, (MeV)

the conclusions of this paper. With this aim the DFM calcu-  FIG. 10. (@) Fusion barrier energieB vs B,=ZpZr(Ag *+A7").
lations have been performed for the reactions listed in Tabl&? Filled circles show the experimentally determined barriers, open
VII, for which average fusion barrier energies have beerfircles show the calculated Paris CDM3Y3 barriers while the thick
determined experimentally, typically with an accuracy esti-”ne representsz B,. (b) Pgrcentage difference between the calcu-
mated to be better than 0.5%. In order to illustrate the degreldi€d M3Y-Paris (open circles and Reid zero-rangdcrossed

of agreement between calculated and experimental bam&lrcleg barriers, and the experimental fusion barrier energies.

energies, both are plotted in Fig. (8 versus Bz  for four points, lower than the experimental ones.

=ZpZl (AF*+AY®)MeV. The calculated barriers are shown  Figure 7 shows that the maximum barrier energies result
by open circles. Solid circles connected by thin lines reprefrom the density-independent M3Y-Reid interaction with
sent the experimental barriers. The thick solid line representsero-range exchange term. This neglects physical effects in-
B=B,. The agreement of the calculated barriers with expericluded in other options, and so can be considered less real-
ment appears to be good, even in detail. These barrier endstic, however for comparison we present in Table VII the
gies are also given in Table VII, where closer inspectionfusion barrier energies calculated using this latter parameter
shows that the calculated Paris CDM3Y3 barriers are, exceget too.

TABLE Ill. Parameters of the fusion barriers and the WS potentials which provide the best approximation
to the DFP in the region of the calculated barrier. Calculations are performed for the M3Y-Paris potential,
with Cs=1/36, and for either zero-range or finite-range exchange f@itesf in the first column. The type
of density dependenc@D) is indicated in the second colum(® corresponds to the density-independent
interaction. TheRg andB are the position and the height of the calculated barigg r\,s andaysare the
depth, the radius parameter, and the diffuseness of the WSP which approximates the DFP with an accuracy
X& defined by Eq(18). The reaction is?C +92Zr, for which Bey,=32.3 MeV.

5l DD label Rs B Vivs rws aws X4
(fm) (MeV) (MeV) (fm) (fm)

5 10.12 31.81 -66.2 1.16 0.67 36l0°°
f 0 10.25 31.47 -171.8 1.08 0.67 A0
f 1 10.35 31.15 -88.2 1.16 0.67 59.0°°
f 3 10.36 31.13 -152.5 1.10 0.68 &40
f 5 10.34 31.17 -88.3 1.16 0.67 &N0°
f 8 10.32 31.24 -120.6 1.12 0.68 K30
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TABLE IV. The same as Table I, for the reactidfiSi+%?Zr, for which Bey,=70.9 MeV.

ol f DD label Rs B Vivs r'ws aws Xa
(fm) (MeV) (MeV) (fm) (fm)

) 10.58 70.97 -112.2 1.12 0.70 KA 05
f 0 10.73 70.17 -144.7 1.12 0.68 X30°
f 1 10.81 69.57 -157.3 1.11 0.71 X30°
f 3 10.81 69.57 -86.4 1.18 0.68 4605
f 5 10.80 69.62 -91.8 1.17 0.69 K40
f 8 10.79 69.73 -143.6 1.12 0.70 Xa0°

In Fig. 1Qb), the fractional differences between the ex- been showti31] that the nuclear attraction can be reduced by
perimental and calculated barriers are plotted, rather than thE0—15% in the surface region due to the effects of Pauli
barriers themselves. This figure shows that on average thaocking.
calculated Paris CDM3Y3 barrier energies are 2% lower In conclusion, the empirical potential renormalizations
than the measured ones. Since the height of the calculatdtbm both analysis of elastic scattering and from comparison
fusion barrier depends weakly upon the type of the exchangeith fusion barrier energies seem to be in agreement, but
interaction density dependenc¢see Fig. J this trend is a depend strongly on the particular nucleon-nucleon interac-
general one except for the unrealistic zero-range densitytion used. The more realistic interactions appear to give
independent M3Y-Reid interaction barriers shown in Fig.nuclear potentials with excessive strength, in view of the
10(b) by crossed circles. This interaction gives the highesexpectation that coupling to bound states results in a poten-
fusion barriers amongst all the interactions considered. Tdial renormalization that increases the nuclear attraction. This
reproduce the empirical fusion barriers for this interactionsuggests either that the double folding model is not appro-
would require a nuclear potential renormalization greatepriate for calculating the bare nucleus-nucleus potential with-
than unity. The same M3Y-Reid interaction was used in theout applying corrections due to Pauli blocking, and/or phe-
analysis of elastic scattering with the microscopic opticalnomena other than simple potential barrier penetration
model[9]. It is not surprising that this potential needed to beaccompanied by coupling to collective states are involved in
renormalized by a factor of typically 1.1, in qualitative the fusion process. If the latter were the case, energy dissi-
agreement with the conclusions from the fusion barrier enerpation would seem a likely candidate. Reproduction of both
gies. From the low fusion barrier energies shown in Fig.the experimental fusion barrier energies and the apparent po-
10(b) for the more realistic finite-range, density-dependentential diffuseness must be achieved in a complete model of
M3Y-Paris potential, it would seem reasonable that use ofuclear fusion.
this potential in elastic scattering analysis would require
renormalization factors less than unity. Such a factor is in
disagreement with expectations that the potential renormal-
ization due to couplings to high energy states should increase Despite the problems in reconciling the strength of realis-
the nuclear attraction, as shown in Sec. IV A. It has howevetic DFM nuclear potentials with experiments, the DFM dif-
been claimed that the potential can become significantly leskisenesses can be compared with those inferred from above-
attractive as a result of couplings to breakup chanf@l  barrier fusion excitation functions, since the DFM
in reactions of weakly bound nuclei. It would be interestingdiffuseness is rather insensitive to details of the nucleon-
to see whether this effect is significant for the reactions innucleon interaction, as seen from the results given in Tables
volving heavy, well-bound nuclei considered here. This ef-llI-VI. As will be illustrated later, the effective potential dif-
fect changes the potential renormalization, however a furthefuseness depends mainly on the diffuseness of the nuclear
mechanism exists that can change the bare potential. It hasatter distributions.

C. Empirical potential diffuseness

TABLE V. The same as Table IIl, for the reactidfO +9Zr, for which Beyx,=42.0 MeV.

ol f DD label Rs B Vivs r'ws aws Xa
(fm) (MeV) (MeV) (fm) (fm)

8 10.22 41.97 -66.6 1.17 0.66 3105
f 0 10.36 41.52 -72.4 1.18 0.65 %90°
f 1 10.45 41.13 -71.8 1.19 0.66 X705
f 3 10.45 41.11 -80.7 1.17 0.68 X405
f 5 10.44 41.15 -233.6 1.05 0.70 &710°
f 8 10.42 41.24 -120.2 1.12 0.69 X105
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TABLE VI. The same as Table Il for the reactidfiO +144Sm, for whichBeg,,=61.0 MeV.

ol f DD label Rs B Vivs rws aws Xa
(fm) (MeV) (MeV) (fm) (fm)

f 1 11.14 59.93 -86.2 1.17 0.69 X205
f 2 11.15 59.87 -105.2 1.15 0.70 X50°°
f 3 11.14 59.91 -78.2 1.18 0.69 KAOS
f 4 11.13 59.94 -72.7 1.19 0.68 &70°
f 5 11.13 59.96 -148.0 1.11 0.71 %30°
f 6 11.12 59.99 -162.1 1.10 0.71 4305
f 7 11.12 60.02 -137.2 1.12 0.70 KAO0S
f 8 11.12 60.07 -168.4 1.10 0.70 X307

When fitting above-barrier fusion cross sections, the em- Because of the relative insensitivity of the empirical dif-
pirical diffuseness required is not completely independent ofuseness to other variables in the fits, values\g§ from the
the WSP deptlior equivalently the radius parameteHow- literature will be compared directly with the equivalent dif-
ever over a wide range of WSP depths, the empirical diffusefuseness calculated with the DFM.
ness for a given reaction typically varies by only 0.1 fm. For
this reason, the values o&yg taken from literature
[6—8,30—-33 have been assigned an uncertainty of £0.1 fm.
They are shown in Fig. 11 as a function B, for 13 reac-
tions in which the heavy partner has no appreciable stati

D. Fitting the double folding potential by a
Woods-Saxon potential

To extract an equivalent diffuseness from the DFM
(r:luclear potential, a Woods-Saxon potential was fitted to it in

deformation. ' ' '
Before comparing the DFM predictions with the empiri- . o (@
cally determined diffuseness, the effects of channel cou- E 2L 26+ %7
plings on the empirical diffuseness must also be considered. <j
Calculations usingcFuULL, for the %0 +29%p reaction, show E 4l
that the change in empirical diffuseness due to inclusion of i
different couplings is smaller than the assigned uncertainty 2 L
of +0.1 fm. <
u
o -8t
2
T T T T T Z
14 4 -10 , : :
: : 041 (b) l“..". ]
L J % ‘!\‘Z‘. \
12 ot i 2 oz} : 1
experimenta N :
= 7 I I ] & S /A
E 1of T ] i 00 R S IR
g | < | T ] a
© [ | > ] 02t :
08| é@ i
 coo o° % fo o, ] 0ar ]
06 L calculated i 8 o 10 v 79
[ PP PR B B RSP R ] R (fm)
20 40 60 80 100 120 140
BZ (MeV) FIG. 12. (a) The nuclear potential calculated with the M3Y-Paris

interaction with the density dependence 8 for tf@+°2Zr reaction

FIG. 11. The equivalent diffuseness of the DFP calculated for(thick line) together with the fits obtained by minimizing the rela-
Paris finite-range CDM3Y 3 interaction as a functiorBfis shown  tive error(dotted ling and the absolute errgdashed ling The thin
by the open circles. Experimental values from fits to above-barriesolid line is obtained by minimizing the relative error but by fixing
fusion cross sections are indicated by the solid symbols, squargke diffusenessys to 1.00 fm. (b) The difference between the
from Ref.[6], circles from Ref[32], the triangle up from Ref.7], DFM potential and the Woods-Saxon fits. The middle vertical dot-
triangles down from Refl33], triangles left from Ref[34], triangle  ted line shows the barrier radius of the DFP, and the outer lines the
right from Ref.[35], and the diamond from Ref8]. boundaries of the fit region.
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TABLE VII. Fusion barrier energiesBe,,—determined experimentallgrs—calculated using the M3Y-
Reid interaction with zero-range exchange pBg;—calculated using the Paris CDM3Y3 interaction with
finite-range exchange part. The last four columns contain the radii and diffusenesses of the projectiles and
targets. These parameters were either taken or scaled from either three-parameter Fermi3p6files
two-parameter Fermi profile®pF from Table | of Ref.[22]. In the 3pF case the parameteiin Table | of
Ref. [22] was taken to be equal to zero, and the protoucleorn densities were renormalized #(A),

respectively.
Reaction Bexpt Brs Bps Rp ap Rr ar
(MeV) (MeV) (MeV) (fm) (fm) (fm) (fm)

12¢ +927¢ 32.3 32.03 31.15 2441 0456 4.913 0.53%
9Be +298pp 38.2 38.94 38.05 2.218  0.45¢ 6.631 0.505
160 +927¢ 42.0 42.26 41.14 2.608  0.46% 4913 0.533
12¢ 4.204ppy 57.6 58.61 57.30 2.4341  0.456 6.588 0.504
160 +1485m 59.8 61.19 59.61 2.668  0.465 5771 0.558
170 +1445m 60.6 61.10 59.53 2.661  0.466 5.719" 0.557"
160 +1445m 61.0 61.53 59.94 2.668  0.465 5.719" 0.557"
2854927y 70.9 71.46 69.59 3.140  o0.49f 4913 0.53%
160 +208pp) 74.5 77.08 75.40 2.668  0.465 6.63F 0.505
365 4967y 76.7 77.65 75.45 3509  0.560 4.922 0.53%
345 489y 76.9 77.55 75.42 3443  0.559 4.860 0.499
325 489y 77.8 78.21 76.04 3.374  0.558 4.860 0.499
365 +907y 78.0 78.26 76.01 3509  0.560 4878 0.53%
19F 41977 80.8 83.83 81.90 2580 0528 6.380 0.493
35C|+ 927y 82.9 83.57 81.15 3.4%6 0559 4.913 0.53%
19 4 208p| 83.0 85.26 83.25 2580 0.528 6.63F 0.505
40Ca +967¢ 94.6 97.01 94.32 3.766 0544 4.922 0.53%
40Ca +907¢ 96.9 97.78 95.01 3.766 0544 4.878 0.53%
28541445 104.0 104.37 101.72 3.140 0.491 5.71¢ 0.557"
40Ca +1245 113.1 117.89 114.96 3.766 0544 5.490 0.492
285 +208pp 128.1 130.90 128.08 3.140 0.491 6.63T 0.505

*Rp was scaled from 3pE*N, ap was taken to be the same as for 3¥N.

PRe was scaled from 2pR3Nb, ap was taken to be the same as for 25Rb.
‘Rp was scaled from 2pE°’Pb, ap was taken to be the same as for 249Pb.
“Taken from 3pF.

°Rp was scaled from 2pE%Pb, ap was taken to be the same as for 2{9Pb.
Taken from 2pF.

9Rp was scaled from 3pR%0, ap was taken to be the same as for 3PP.

"Rp was scaled from 2p#*3Sm, ap was taken to be the same as for 2{ffsm.
'Rp was scaled from 3pB°Cl, ap was taken to be the same as for 3BEI.

the region of the fusion barrier. In order to estimate the qualfolding potential atR=0. The WSP obtained using this
ity of the fit one can calculate a relative error method is denoted by WSR.
An alternative option is to minimize an absolute error

:_Ls (UDF@) —uwaRi)>2 s

- — N
" N \Uor(R) + UndR) 2= (UN)X [Upr(R) - U R)P (19
i=1

for distancedR; around the fusion barrier radilg, over the

range Rg—1 fIM<R <Rg+1 fm with a step of0.01 fm. varying the parameters of the WSP as above. The WSP ob-
The parameters of the WSP were allowed to vary withintained by this fit is denoted by WSA.

the following ranges, with steps as shown: In order to obtain the best WSP for a fixed diffuseness we
2|Upe(0)| >|Vyg >20 MeV, AVys=20 MeV; 1.2fm  performed a third fit. Here the error was estimated using Eq.
<rws<0.8fm, Arys=0.01fm; 0.5 fmKays<1l.2fm, (18) but the diffuseness was fixed to bgs=1.00 fm. The
Aay=0.01 fm. HereUpg(0) is the depth of the double WSP resulting from this constrained fit is called WSC.
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' ' ' ' @ E. Equivalent diffuseness of the DFM potential
L a) ]
T e The parameters of the WSP providing the bes{\WiSR)

© ® for the calculated DFP, as well as the corresponding values
0 © of Xﬁ, are presented in Tables llI-VI for a number of the
reactions. Neither with zero-range nor with finite-range ex-
® change forces does the DFM give the large values of the
o O equivalent diffuseness of about 1 fm, as obtained by analysis
O  Paris o @ of the high energy experimental fusion cross sections. In
2L o @ ] almost all cases, the equivalent diffuseness is between 0.65
© and 0.70 fm.
To provide a general picture of the equivalent diffuseness
(b) of the DFM nuclear potential, the fitted diffuseness values as
a function ofB, are compared with empirical values in Fig.
< -025f . 11. Calculations were performed here for all 21 systems of
o Table VII, using finite-range Paris forces with the CDM3Y3
& © density dependence. The experimental results lie well above
' 0.30] o o ° © 1 the calculated values.

o o The effect of changes in the diffuseness of the nucleon
® o ® ® @ density distributions must be investigated,aasanda; were

often scaled from neighboring measurements. With this aim,

calculations were made with zero-range M3Y-Paris and Reid
interactions for the"®0 +144Sm reaction. Results of this cal-
culation are shown as a function af in Fig. 13. The dif-
fuseness of the projectile prot@nucleon distribution was

_ FIG. 13. (&) The difference between the calculated barrier enery, e from 0.40 fm up to 0.58 fm; the value available in the
gies and experiment for th0+144Sm reaction, as a function of

the diffuseness of th&%0 nucleon distribution. The difference be- literature is 0.45 fm(Ref. [24]). In Fig. 133) the difference

tween the equivalent fitted WSP diffuseness and experiment argetween these calculated barriers and experintefiBe is

shown in(b). The experimental barrier energy and empirical dif- plotted. In Fig. 18) the _dlfference bet\/\_/een the diffuseness
fuseness cannot be simultaneously reproduced. of WSR and the experimental value is shown. Only very

small values ofap can make the calculated barrier signifi-
cantly higher than the experimental one. However the experi-
The quality of these three WSP fits to the DFM potentialmentally determined diffuseness cannot be reproduced even
is shown in Fig. 12, for thé’C +9Zr reaction. In the upper with very large values of thas.
panel the nuclear potentials are shown. The relative error fit |n summary, it is impossible to simultaneously reproduce
(WSR) with aws=0.74 fm, Vys=-179.4 MeV, ryws the expected barrier energy and the experimentally deter-
=1.07 fm is shown by the dotted line, while that for the mined potential diffuseness through variation of the diffuse-
absolute erro(WSA) is shown by the dashed line, having ness of the nucleon density distributions. As might be ex-
the parametersays=0.75fm, V\s=-119.4 MeV, rys pected, the use of different forms of nucleon-nucleon
=1.11 fm. They both provide a very good approximation toeffective interactiofM3Y-Reid or Paris, zero range or finite
the DFP(thick full line), WSA in particular being hardly range, density independent or depengiéwardly affects the
distinguishable from the DFP. The thin solid line correspondsjiffuseness required to reproduce the DFM potential.
to the constrained fit WSC withs=1.00 fm (not varied,
Viws=—-258.1 MeV,rys=0.80 fm. It coincides with the DFP
at the barrier radiugmiddle vertical dotted lingbut deviates V- CONCLUSIONS
significantly from the DFP in the region of fit, the latter  This paper has addressed the following questions: what
indicated by the outer vertical dotted lines. are the predictions of a semimicroscopic double folding
Figure 12b) shows the difference between the DFP andmodel for fusion barrier energies and the nuclear potential
the Woods-Saxon fits described above. The quality of fit withdiffusenesses? Can these show whether the DFM potential is
WSR is very good, the maximum deviation being only appropriate to be used as the bare potential in coupled-
0.2 MeV. WSA approximates the DFP even better near thehannels calculations? To answer these questions, a com-
left border of the region of the fit. puter code was developed that calculates the double folding
It is concluded that DFM potentials can be very well de-nuclear and Coulomb potentials for two spherical colliding
scribed by a Woods-Saxon potential form, from nuclear sepaquclei. The code uses the M3Y nucleon-nucleon interaction
rations 1 fm inside the fusion barrier radius, up to large sepawith a finite-range density-dependent exchange part and the
rations. Thus the discrepancy between diffusenesses obtainestended Thomas-Fermi approximation for the effective
from fitting elastic scattering data and from above-barrier=ermi momentum in the density matrix expansion. Calcula-
fusion data is not due to the WS potential being inadequatéions were performed for 21 reactions for which accurate
to describe the semimicroscopic DFM potential. The discrepexperimental fusion barriers are available.
ancy must arise from more fundamental reasons. The M3Y-Paris density-dependeNiN interaction which

m)
®

aWS exp

-0.35 L ] ' '
040 045 050 055  0.60

a, (fm)
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reproduces the basic properties of nuclear matter results ihe second possibility is energy dissipation. This could
fusion barrier energies that are systematically lower than theause the higher average fusion barrier energies through ki-
measured barrierg\ priori an opposite result was expected, netic energy loss to dissipation, and the apparent large poten-
since the experimental barriers are reduced, typically by sewial diffuseness through the larger energy dissipation that
eral percent, due to coupling to collective states at high exwould be expected for high angular momentum, where the
citation energy which renormalize the potential barriers.parrier peak occurs at smaller separation and thus larger
Only the M3Y-Reid interaction with zero-range exchangepclear overlap.

term results in barrier energies that are larger than the experi- o comprehensive model which includes dissipative ef-
me_ntal values. However this.p.arameter.set of the M3Y interiacts and channel couplings, which to our knowledge does
action has been shown to fail in saturating cold nuclear mat, . yet exist, is likely to give insight into the possible role of

ter. B f - .
. . i ._energy dissipation in fusion reactions near the barrier.
The diffuseness of the equivalent Woods-Saxon potenUa? The present work indicates that potential renormalization

fitted to the DFP in the fusion barrier region is typically from coupling to high energy collective states can be so large

0.65-0.70 fm, and this reproduces the shape of the DFP very . : )
: . that the nuclear potentials calculated with the double folding
well. The DFP cannot be reproduced by a WSP with a dlf'model using realistic M3Y interactions are much too attrac-

fuseness of-1.0 fm, which is required empirically to fit the tive, unless substantial dissipation of kinetic energy is in-

above-barrier fusion cross-section excitation functions for . . S
) o . . -voked before the fusion barrier radius is reached. Further
many of the reactions. The semimicroscopic calculations i

eneral predict bare fusion barriers and nuclear potential dirrl_heoretical and experimental studies on these questions are
9 P p necessary to resolve this discrepancy.

fusenesses which are lower than those deduced from experi-
mental fusion cross sections.

At the moment we see two possible causes for this dis-
agreement. The first is that the DFM with the M3Y interac- ACKNOWLEDGMENTS
tions does not correctly predict the bare nucleus-nucleus po- We are grateful to Dao T. Khoa for valuable remarks, and
tential at the fusion barrier radius, which may be related tao K. Hagino, A. Mukherjee, C.R. Morton, and R.D. Butt for
the frozen density approximation. This conclusion, if correct fruitful discussions. I.1.G. acknowledges the warm hospital-
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