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Spatial correlations in the three-body continuum of Borrom@eaving no bound binary subsystentisree-
body systems are discussed. The hyperspherical harmonics method is used to investigate low-lying resonances
and the soft dipole mode in the two-neutron halo nucléide, which has only ther+n+n continuum for
excitation energies below 13 MeV. The spatial correlations reveal characteristic structures for true three-body
resonances, a moderate amplification in the interior region for above-barrier resonances and long-range corre-
lations in the cases of three-body \irtual and 0 continuum states.
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I. INTRODUCTION body problem and its solutiof2] based on the Schrddinger
In this article we continue our explorations of spectra oféduation and the coordinate-space HH method. The relevant

Borromean halo nuclei, those having no bound binary supwave function(WF) is that for 3—3 scattering, which, al-
Systems_ Within the hyperspherica] harmor(ib&{) method though not dlreCtly measurable, has a role as final state of
[1-3 we investigate spatial correlations in the three-body@ny reaction leading to théHe (or any Borromean con-
continuum. Our aim is to elucidate the physical nature andinuum. For example it was used for charge-exchange reac-
characteristic structures of true three-body resonances, and #@ns and inelastic scattering in four-body distorted-wave
identify long-range correlations in specific three-body state$30rn approximation theory12] and in electromagnetic dis-
such as the soft dipole and monopole modes. We will examsociation[2]. Such reaction models are necessary for the full
ine three-body scattering amplitudes and the internal parts ginalysis of kinematically complete breakup®fe on heavy
calculated three-body continuum wave functions and graphiand light targets, as measured at GE3]. The experimental
cally present their three-body correlations. advances are discussed in recent reviews of experiments
A variety of few-body methods have been useddound ~ [14-18.
states of Borromean nuclei, in@re+n+n cluster decom-
position fully including three-body dynamics, but few are Il. CORRELATIONS IN THE THREE-BODY CONTINUUM
suitable forcontinuumanalysis. The methods that have been
applied to the®He continuum include, besides the HH
method[1,2,4], the adiabatic hyperspherical methid], the When two halo neutrons are interacting with a core at
Gamow stategcomplex energymethod[6,5], the coordinate  positive energies, three-body scattering theory is needed. The
complex rotation methof7,8], algebraic version of the reso- appendix describes briefly the normalized Jacobi spatial
nating group metho@], the harmonic oscillator representa- {x,y} and momentun{k,,k,} coordinates used to describe
tion of scattering equatiorf40], and analytic continuation in three-body dynamics, and defines plane waves and scattering
the coupling constarjtll]. These methods show some com- waves in the three-body continuum. The free plane wave is
mon features such as compression of continuum spectra itefined to include the effect of antisymmetrization between
comparison with shell-model-type expectatig@g and can- the halo neutrons, henceforth referred to as the antisymme-
didates for 2, 1*, and 0 resonances in the energy interval trized plane wavéAPW).
1-5 MeV, although these states have not yet been distin- Generally the spatial structure of a scattering wave may
guished experimentally. have two distinct kinds of deviations of its internal part from
Progress in exclusive experimental studies of the structurthat of the APW. The benchmark behavior is the case of a
of the ®He continua has recently been made, and also theaarrow three-body resonance, characterized by a strong am-
retically by considering the different aspects of the three-lification of the interior part of the WF in a compact region

A. Continuum structures
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of mutual interaction. These resonances are often generated (1) The “true” narrow three-body resonance having an am-

by a pocket in some of the diagonal HH potentials, which areplitude with the analytic fornj21]

hyperangular averaged sums of all the partial binary interac-

tions plus corresponding three-body centrifugal barriers. c

Note that these barriers exist even if all binary angular mo- Ao,
. E - (EO - |F0/2)

menta are equal to zero, in contrast to a two-body problem.

Due to the large spatial overlap with the ground state in the " .
region of resonant amplification, inelastic transitions to thesg\lhere E, and T, are position and width of the resonance,

resonances are very strong. repspectivil)_,{fo_r simpl_icity we omit the dependence Afon
Another type of specific states are continuum structure$2s and Qg indicated in Eq(A7)]. The most important fea-
arising from long-range effective interactions in the three-turé of a true three-body resonance is that it is strongly
body system, having a range of the order of the sum of th@resent in loweskk (hypermpmeﬁtC_Onflguratlons, and cor-
scattering lengths in the binary subsystems. There is a physqesponds to three particles interacting close to each other. As
cal analogy with the bound state Efimov eff¢t¥], where a & consequence, the hyperradial WF of E45) has main
number of bound states and their spatial extension in a thre€omponents, which in the interaction region, have a charac-
body system without binary bound states depends on ratio deristic resonance amplification whose energy dependence
the binary scattering length to the interaction radius. We willcoincides with the asymptotic behavior of the WF expressed
classify such structures as Efimov-like states. In general, thiby the scattering amplitude Eql), as familiar from two-
reflects the possibility of a third particle to “feel” the inter- body scattering. This spatial behavior can be represented by
action of the two other particles at a distance up to the scata factorized form
tering length. When we deal with a Borromean two-neutron
halo, the neutron-neutrogwave interaction with scattering s A0 E)~ Co s
length ~16 fm is decisive for this effect, which resembles thnwt (1) ~ ity EIHAP) @
“continuum pairing” in the shell model and is responsible forWith
the compression of continuum spectra near three-body
threshold, as in théHe casg?2]. q
There is then a large correlation distance due to long- ICrc /(E)|2:LK”/ (3)
living resonances or virtualantibound states in two-body KKy (E-Ep)?+T¥4’
subsystems propagating to large distances, and there may be
no pronounced concentration of the wave function inside tthherell);y(p) is the energy-independent form of the internal
region of inte(action of all three particles, but rather a long-part of the scattering WF. In the two-body case, a coinci-
range spreading of correlations. . . dence of the resonant features of the scattering amplitude and
These features should be visible in specific details ofhe internal part of the WF is clear from the Lippman-
three- and many-body “observables,” especially in the spatiag yyinger equation. It connects the scattering amplitude
correlated densities to be shown. Such spatial densitieg;y, the overlap of the scattering WF with the potential,
F’]Eog’:d tg be \éery ugefuk:.for the ground T_tatg representatio ;- js concentrated in the region of interaction of the par-
gtatese [3], and are in this paper generalized to Contlnuumticles(internal part of scattering WFIn the three-body case
Bef;)re presenting detailed correlation densities, we exghe same connection follows qualitatively from a finite ma-

pand a little further on the general characteristics of resol gn_alog of _the Lippman-Schwinger equa+t|on, as was seen
plicitly [22] in the case of the well-known;Zesonance in

nances and other structures that may be expected in t@( - ) .

three-body continuum. He. The results of a transition amplitude calculation,
In the two-body case the centrifugal and/or Coulomb bar£0MpParng a quaﬁlbounﬂ resonance WF with the strict

fiers combined with an attractive internal part of potentialontinuum WF, show rather good agreemg2a]. .

can generate characteristic “narroggub-barriey and broad Because of the concentration of a resonant WF in the

(above-barrierresonances with significant peaks in the elas-thre.(""bOdy intera_ction region, the resonant WFs have Iarge
radial overlaps with the bound state, and the energy behavior

tic cross section. Furthermore, a purely repulsive potential h - i X h :
can also generate what are called barrier-top resonances, w@fl e transition amplitudedetermined by short distanges

known in nuclear quasimoleculgd8]. The characteristic erefore will be very close to that of the scattering ampli-

feature of a barrier-top resonance is a small resonance pe&de (derived from the asymptotics i.e., large distances

in the elastic cross section, while the interior norm exhibits a _11iS conclusion also follows from a simple semirigorous

sharp resonant behavigt9], which can be seen in transi- 2rgument from two-body scattering3]. The time delay for

tions. a resonance |§ﬁ2d§/dE, where 5.|_s the phase shift. The .
In the three-body case, the coupled-channels probledfitéraction region stores probability accumulated over this

sometimes has no explicit analogies with potential scattering!Me: given by the probability current multiplied by the time

but after diagonalization of the potential and centrifugal ma-*€ ay,
trices the lowest adiabatic terms give a rather similar physi-

1)

cal picture(especially in the strong coupling cas€or dis- JZﬁE - lﬂzfid_‘s_
cussion in the momentum representation, see also[R@i. dE 4m dE
Physically, in a three-body system there may exist long-
living states of three types. In the three-body coupled-channels case we may use
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the resonant eigenphask, (see, for example, Ref2] for ~ with complex coefficients in channel spg@]. In any case,
SHe) of the symmetric comple)s matrix, which can be in coupled-channel problems, so-called “CC resonances”
diagonalized via an unitary transforf,;=U"'SUto Sy,,  (see Ref[25] illustrating the phenomenon in a two channels
which has unit-modulus elements?9. The resonant System may be caused by large off-diagonal potential com-
eigenphase,.s contains joint information about the effect ponents, even if the diagonal potentials are small.

of the resonance in each coupled channel, in the same way [N this kind of resonance there could also be large scale
as in two-body problem. The change of probability in the SPatial correlations because of virtual transitions to and from
interior region due to the mutual interactions can be estiinany strongly coupled channels with different internal angu-
mated as the difference between the probabilities with anéfr momental,,ly. In such a case, none of these channels

without interactions, dominate, in contrast to resonance conditidngnd(ll), and
transitions to channels with highel,l, correspond to
2 R(W ( 'E)|2 e )|2)d 1f’u<2ﬁd5reS spreading of correlations to larger distances.
Ky,K"y' P I PK)\KP p=_—ch— —,
Ky 70 4m dE B. Correlated spatial densities

wheregy,(kp) is the plane wave radial wave function in Eq. A measure of spatial distribution in the three-body case is
(A4). The maximum indé,.s/dE has to correspond to a the correlated density in the relative coordinatgs,r ),
maximum in [|¢{2dp, which is the internal norm already which are distances between any two particles and between
used in the analysis of resonances in the three-body cortheir center of mass and the third one. They are collinear
tinuum [2]. with the normalized Jacobi coordinateg,yy). For a bound

(I) There may be a trace of a two-body resonance ostate the correlated density gives the probability of two par-
virtual state in the three-body system, even in absence of #icles to be at distance;, while their center of mass is at a
true three-body resonang21]. Here, however, there may be distancer ;) from the third particle. Calculations for thele
no rigorous analytic structure such as br A rather general  ground statg26,3 revealed, in the clusteF basis, specific
expression, in case of a long-living resonant state in a binar¥orrelations such as “dineutron” and “cigar” configurations
subsystem, which interacts only weakly with the third par-of the halo neutrons which are due to Pauli principle exclu-

ticle, is sion of the lowess-motion and called Pauli focusing in Ref.
[27].
A~ —C& (4) In the continuum, for three-body states with definifé
e-(e-ill2) and energyE=#2%«?/2m, we use the differential probability

obtained from the full scattering WF of EQA5) in the pres-

Heree is the part of the total enerdy shared by the resonant ence of the interactions,

subsystem ané-il"'/2=¢ey+Ae—i(I'g/2+AI'/2) with ¢, and .
I', being the position and width of the binary resonance, dP’(KxKy,X,y) = 2 [W (XY, Ky ky)[Pdxdy dk,dk,.
respectively(without the presence of the third particl@he M
terms inAe andAI'/2 are the shift and additional width due (5)
to the coupling with the third particle, while,(E) is some
smooth function of the total enerdy. Physically this corre- ~ e
sponds to a large correlation distance when the two particle&t:¥) and momentuntk,k,) directions, and also over total
in the binary resonand@eing close to each otheare mov- spinSand hyperangle,. (which is a measure of distribution
ing at a significant distance relative to the third. of the total energ)E between the particlesSince

(111 A third type of resonance can be created by distrib- dxdy = aijkfﬁdfijfﬁj)kdr(ij)kd?dy (6)
uted coupling between the hyperradial channels in absence
of deep diagonal potentials, and is characterized by overatind
properties of the system such as the ratio of couplings, the _ 5 K _ 2 4 K
diagonal potentials, and the number of channels. Physically, dixdky = > dredd = VA" dEds, @)
such a resonance could be interpreted as a parametric resge obtain after integration ovex,y, and ()¢, the correlated
nance arising from the quantum diffusion type transitionsdensity

We now average this probability density over the spatial

dPY(E,rii,fiiw)
— RPN 2.2 1 J . J L
pJ(E,rij,r(ij)k) - d d d _aijk(rn/ﬁz)rijr(ij)kK 1p 5 2 2 2 l’bK”y’,K’y(p'E)lpK”y’,Ky(p’E)
rijdr i kdE KLSLly L) KK
M ! L #1/2) 0 +1/2 M ' P L+1/2) 0 +1/2
X NZY(sin a)'x(cos a)'yP(f(,_l;_yl;)/2 (cos 20)NYY(sin a)'x(cos a)'yP(f(,,_l;_y,;)/2 (cos ). (8)
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In these expressionsy refers to the set{LSLI}, a The densities were computed for the eneky1.19 MeV,
:[AiAjAk/(Ai+Aj+Ak)]3/2, andA is the mass number of con- corresponding to thej2resonance position ifiHe calcula-
stituenti. To calculate spatial densities in another coordinatdions performed with a bane- « interaction withK,,,,=8. In
system(for example in theY system, going from the initial both plots one can see the expected oscillating behavior of
T systen), we just transform the coordinate parts of the WFsthe APW densities with rather broad peaks close to origin,
via Raynal-Revai coefficientg28], which rotate the hyper- looking similar in both coordinate representations. The dif-
angular part of the WF, conserving the total angular momenterence in inclination angles for the trajectories of the
L and hypermomenk. After this rotation we calculate spa- maxima of APW “waves'{(w/4 for bothT andY systems in
tial densities with new hyperradial WFs, which are superpohyperradius and hyperangle coordinatiesdue to the differ-
sitions of those calculated in the initiisually T) system.  ence in the ratio of reduced masses(igy and (ij)k sub-
Most interesting are the correlated densities at resonancgy/stems, namely, ta8=(1+A.)/ JA(2+A,) for Y basis(B
energies, and at energies corresponding to peaks in resporisecounted fronr._, axis) and tang= \fﬂc/z\ﬁx for T (B
functions. In the vicinity of narrow resonances, the WF in theis counted fronr,_, axis). In case of a heavy core and two
interior (p<<pg) can be represented in the factorized form ofnucleons we get an angle of atan2) for the T basis and
Eq. (2). /4 for Y. In spite of the complex structure of the APW
In case of wide resonances, where the interior part of thelensity, which is a square modulus of a coherent sur of
WEF is not so pronounced, and for specific states like the sofierms with alternating signs of Bessel functions
modes, the spatial correlatiorier anticorrelations can be E(—l)im(K’z)JK+2(Kp)qbK,x, (a) weighted with the hyperangu-
filtered by subtracting the APW densitp4) from the full  |ar partey, | (a) of leXlLyMy (Q8), see Eq(A2), and incoherent
correlated density using E@8). The APW Fiensity is thus Sy ly (Xas a result Bf summation and integratiothe
used as a reference frame. We have seen in Sec. Il A how they, mntotic structure reveals pronounced minima in hyperra-

integral of this difference gives a time delay which coincidesgy;) arcs~sin(xpo)/p (elliptic in r;; andr g, coordinates
with the lifetime for narrow resonances, and is a measure

f[hte gblhty pf interactions to accumulate probability in the summation.
interior region. _ . The plots show that the positions of the first maxima are
We shall demonstrate different types of spatial correla-

. . . : ituated atr,,, ~25 fm dr,,~30f d
tions in the®He three-body continuum, using both “cluster iISOf S rt"”trr](“:)t“h Hif dan _;_“” fthm aa? r(“l:)f‘
T-basis(nn)a and “quasi-shell-modelY -basisn(n«) Jacobi m. Note tha » € shitte p,f)s' lon ot the widepeax 1S

. . due to more mass “asymmetry” for this system, but that the
coordinate representations.

more stretched shape is because it consists of a sum of three
dominating HH with (KLSLI,)=(22003, (22020, (21111
having the different maxima positions in hyperangle, while
Ill. RESULTS in the T basis the peak is sharper due to a unique dominating
structure (KLSLI,)=(21111 (corresponding to thep-shell
structure of a 2 statg. The spatial densities for the And O
partial components of the APW have similar structure, but
with first peak closer to the origifat the same energye-
cause of lower index of the Bessel functions.

hich are mostly due to the destructive interference inkhe

”

All calculations for®He continuum spatial densities are
performed with the modified SBB—n interaction using soft
Pauli core ins wave and the realistic soft core GRIFn
potential(see Ref[2] for details.

B. Correlated spatial densities for narrow resonances
A. Spatial densities for antisymmetrized plane waves
To illustrate the correlated spatial density to be expected

Since the productkp) is the argument of the hyperradial for a narrow true three-body resonance, we have performed
Bessel functionsJy.,(xp) in the expansion of the six- HH calculations for the well-known narrow; 2esonance in
Kk+2(Kp p 6 X
dimensional APW in Eq(A1) and (A4), we can expect an He at 0.83 MeV above the three-body threshold. Since the
approximate peak position of the spatial dengftpm the lowest components with hypermomeKt; 2 gives ai)out
) . . . 95% of the internal norm, the calculations uskg..=38,
corresponding terinwill grow linearly in K as xpy~ (K

+2) So | | dinates. the density beh which results in a resonant energy of 1.19 MeV, but with
)- So in polar(p,e) coordinates, the density behaves 4Salmost the same geometrical structure of the internal part of

the square of a Bessel function of integer index 2) in p,  the WF. The results are shown in the lower part of Fig. 1 for

modulated by Jacobi polynomials i arcs. If we separate poth T andY Jacobi coordinate systems.

the spin componentS=0 andS=1, then correlations will be These densities are spatially focus@mte the different

more clear, bringing additional gaps inarcs, because the radial scales of upper and lower plots in Fig. dnd have

APW density would include only eve(odd) angular mo-  properties similar to a bound state. The spatial densities are

menta between the halo neutrons. uniquely characterized by having only one pronounced peak
The upper plots in Fig. 1 show the spatial densities of thewith maximum (most probable positionat r,,~5 fm,

2" partial component of the APW in both coordinate systemsr n,~3 fm, and r,n~rnn~3.5 fm, i.e., at short dis—
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T-basis 2+ ae wave

A

Y-basis 2+ plane wave

FIG. 1. (Color online Spatial
correlations for the 2 partial
component of an APW(upper
row) and the 2 resonance calcu-
lated at resonant energyE
=1.19MeV inT and Y coordi-
nate systems.

= 25
20
{1(56“’ o 1§

tances, compared with the first prominent peak5 fm cor-  the upper part of Fig. 2 for boti andY systems. They
responding to the APW. The| 2esonance has properties of a exhibit structure characterized by absence of strong concen-
quasistationary state with characteristic r.m.s. hyperradius dfation of density in the interaction region of all three par-
about 11 fm, matter radius,,~ 4.8 fm, and r.m.s. distance ticles. The characteristic features of these densities are two
between valence neutrons and between a valence neutron ap@nounced peaks, one ah,~5 fm, rpn,~3fm, r,,
core of~10 fm, calculated as a quasibound state with expo=T(.nn~ 3 fm in, respectivelyT andY, which may corre-
nentially decreasing asymptotics. spond to attraction in the region of joint interaction of all
The magnitude of correlations inside the interaction rethree particles, and a second peakr @t " nnae ™~ an: (an)n
gion is three orders of magnitude larger than that of the~12 fm, positioned almost at the first APW peak, calculated
large-distance backgrour@hich is not visible on the scale at the same energy. To obtain additional information about
of the corresponding spatial densities in Fiy.Note that the the real correlations we have subtracted the spatial density
internal WF almost coincides with the quasibound state thafor the APW from the calculated correlated density for the 2
would be found by using a boundary condition of an expo-resonancgupper part of Fig. 2 The results are shown in the
nentially decreasing tail at the samesitiveenergy. This is lower part of Fig. 2 again for both andY systems. In these
in correspondence with the general results for quasistationafglots one can easily see that only the first peak survives after
states[29]. the subtraction, which filters out the real resonant part of
corresponding density.
The remaining pealkower part of Fig. 2in bothT andY
is about five times larger than the residual “background” and
Correlated spatial densities for broad three-body resois situated, as is the first 2esonance, in the region where all
nances are essentially more complicated than for narrowhree particles are interacting. This situation is specific for
ones. To illustrate the effects which can be expected fombove-barrier resonances, where the WFs have only moder-
broad structures we studied the correlated spatial densitieste amplifications in the internal region. After subtraction the
for the second 2and first I resonances ifiHe [2]. Corre-  background has regular structure around the first maximum,
lation plots for the 2 resonance at 3.6 MeV are presented infollowed by a wavelike sequence with minima at asymptotic

C. Correlated spatial densities for broad resonances
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T-basis 2+(2) resonance Y-basis 2+(2) resonance

0.06 {7
0.05 -
0.04 |
0.03 - “

0.02 -

0.01 - il

“%
1 - 4//;049&6\\
r(CI]—n) [f g 0 20 &\ i . .
& FIG. 2. (Color onling Spatial correlations for
the Z resonanceupper rovy and with subtracted
. nn APW (lower row) at energy 3.6 MeV il and
Y-basis 2+(2) subtracted Y systems.

T
107
oo 20 507
(c-np) [fm}o 4 50 10 (&
<

distances which are negative due to the significant phaskowever no resonance but a virtual-state-like behavior of
shift between the scattered and plane wages contour plot eigenphases, along with a bump in the nuclear and EM di-
on top of Fig. 2. pole strength functions. It could be a coupled-channels type
Results similar to that of the;2esonance are found for resonance created by distributed coupling between the chan-
the 1} resonance, which can also be classified as an abovéels in absence of deep diagonal potentials. However, the

barrier resonance. lowest term in the diagonalized potential matrix plus cen-
trifugal barrier shows repulsion, with a very small pocket not
Correlated spatial densities for three-body deep enough to produce an above-barrier wide resorj2hce
virtual-like excitations The characteristic feature of a barrier-top resonance in the

two-body case is a small resonance peak in the elastic cross

section, while the interior norm exhibits sharp resonant be-

Ii_ke peak in both nuclear and electrom_agnetic_ response funq‘iavior [19], and these features should be the same in the
tions at~1.5 MeV, the correlated spatial density plot, Show”three-body case. Here, however, for the the calculated

in Fi_g. 3, shows lack of noticeable resonant behavior in thgnterior norm has no resonant behavia, only a monotonic
interior region, but strongly peaked structuresrgt.rnna increase with energy. The lesson from the spatial correlations
~Tans T (@nn~15—20 fm. adds consistently to this picture.

Subtraction of the APW density leaves only a 25% differ-  Figure 4 presents the correlated density plot for the 0
ence in magnitude in the interior regien5 fm, and compa- monopole continuum at the peak eneigy 1.8 MeV of the
rable background until distances50 fm. In comparison monopole response. Like in the Tase there are strong
with the 2 case there are irregular structures along the arcpeaks at distances25—30 fm and a remnant of the ground
within distances~30 fm. These structures have different state dineutron and cigar configuratidid§ located close to
character inT andY systems and resemble the large scalethe origin. Subtraction of the APW density “kills” 50% of
~25 fm spatial APW correlations. A small peak in the inte- their magnitude, but leave the irregular arc structure in this
rior region (at about 4 fm may look like an above-barrier region, which can be attributed with monopole continuum
resonancé2; and I casey but is hardly prominent enough correlations. Figure 4 demonstrates also a lack of resonant
to justify classification as a resonant state taking into accourttehavior in the interior region. The large scale of continuum
the comparable background. correlations after subtraction of the APW density can be seen

In Ref. [2] we analyzed the soft dipole mode fide,  from a comparison with the remnant of the halo ground-state
which might be a barrier-top resonance because of the gemlineutron and cigar configurations.
erally repulsive character of the averaged interaction be- The monopole response functignot shown has a wide
tween the three particles plus centrifugal barrier. We foundump covering the possible energy locations for both soft

In spite of the presend®] of a 1" soft dipole resonance-
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T-basis 1- peak Y-basis 1- peak

210 0 FIG. 3. (Color onling Spatial correlations for
the energy peak position of the koft dipole
mode (upper row and after subtraction of the
APW density(lower row) in T andY systems.

S

"\&W
«‘”&W iy
|

b

FIG. 4. (Color onling Spatial correlations for
the energy peak position of thé 8oft monopole
mode (upper row and after subtraction of the
APW density(lower row) in T andY systems.
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monopole breathing and spin-flip modgg. With this moti- There are also peaks in the response functions for soft
vation we performed calculations at energies0.8 MeV ~ modes, which have tentatively been related to large induced
and E=5.0 MeV, which are below and above than the ex-multipole moments. In Refi2] we analyzed the 1soft di-
pected peak position. The findings are quite similar to thos@ole mode in®He, which could be a barrier-top resonance
discussed above. There are only long-range correlations bbecause of the generally repulsive character of the averaged
no resonance structure. Taking into account the predominaiteraction between three particles. We found however no
s-wave decay of the Ostate via a correlated pair of neutrons resonance but a virtual-state-like behavior of eigenphases,
at low energy, and th@-wave decay viaHe resonance at along with a bump in dipole strength functions. The present
higher energies, as well as strong mixing of these modes, wgtudy of the corresponding™ Torrelated spatial densities at
may conclude that these modes are unavoidably spread in tliee peak position show@fter subtraction of the plane wave
three-body continuum. density that only a quarter of the dipole density remains,
We therefore need further analysis of this important modealong with long-range correlation@t about 30 fm analo-
which could give valuable information about the compres-gous to the monopole continuum structure. A small peak in
sion modulus of a dilute “neutron gas” which could be assothe interior region(at about 4 fm resembles the above-
ciated with the halo neutrons, and, in principle, could bebarrier resonancedike in the Z and I casey but is not
extracted from the energy position of the monopole breathingnough pronounced to justify classification as a resonant
mode. Such perspectives are even more relevarft-er state. Neither it is a coupled-channels type resonance created
by distributed coupling between the channels in absence of
deep diagonal potentials. Since the lowest term in the diago-
IV. DISCUSSION AND CONCLUSIONS nalized potential matrix shows repulsion, with a very small

The developments of the hyperspherical harmonicgocket not deep enough to produce a wide above-barrier
method have deepened and enriched the understanding of tfRsonancé2]. The characteristic feature of a barrier-top reso-
Borromean three-body continuum. Using the exampléHsf ~ hance in the two-body case is a small resonance peak in the
as a testbench we have analyzed several interesting coflastic cross section, while the interior norm exhibits a sharp
tinuum structures using both the Jacobian cluSteasis and  resonant behavidi 9], and these features should be the same
the translationally invariant shell-mod# basis. The con- in three-body case. Here, however, the calculated interior
tinuum information is derived from the spatial correlatednorm has no resonant behavif], only a monotonic in-
densities, which also previously proved to be very useful ircrease with energy.
understanding the ground state %fe [3]. The monopole and dipole continuum%e illustrate spe-

The Z state of°He is a true three-body Borromean reso- cific states which may be classified as Efimov-like con-
nance with characteristic featurg: a narrow width andii) ~ tinuum structures near the three-body threshold. In physical
a strong concentration of the WF in the internal region whereédnalogy with the bound state Efimov effect, the origin of
all three particles are interacting close to each other. As #hese states are the long-range effective three-body interac-
consequence, the hyperradial WF in the interaction regioons with a range of the order of the sum of the scattering
has the characteristic resonance amplification, fottzee  lengths in the binary subsystems. There is then a large cor-
orders of magnitude larger than the antisymmetrized plangelation distance, and no concentration of the WF inside the
wave amplitude, and with an energy dependence which cd€gion of interaction of all particles, only a long-range
incides with the energy dependence of the three-body scagPreading of correlations. However, we need further explo-
tering amplitude. rations of these states in terms of energy correlations in

The 2 and I resonant states ifiHe are wide above- three-body continuum to distinguish between the decay
barrier resonances, produced by the generally attractive afirough resonances in two-body subsystems and Efimov-like
eraged interactions, but with no pronounced concentration c¥tates; this is the subject of forthcoming publication. .
density in the interior region even after filtering out the non- ~ The spatial correlations shown here depend on the analyti-
resonant background coming from plane waves. cal properties of wave functions and scattering amplitudes,

We also find some wide above-barrier resonance cand@nd enable as we have tried to demonstrate more reliable
dates which are completely spread into the continuum. In th€onclusions about resonant or nonresonant nature of such
0" continuum of®He, at least two states should exist, or- challenging cases as the soft dipole mode.
thogonal to the ground state: the soft monopole breathing
and spin-flip modeg2]. Our previous analysis in Ref2] ACKNOWLEDGMENTS
showed nonresonant behavior, although the response func-
tion exhibits a wide peak at 1.8 MeV. '?he correla?ed spatia]_B-V.D- acknowledges support from RFBR Grant Nos. 02-

density for 0 at this energy has a peaked structure in theoz'16174 and 00-15-96590, and I.J.T., B.V.D. from EPSRC

region inside 30 fm, but after subtracting the density forGrant Nos. GR/R/2§514 an_d G/M/82141._F|nanC|aI support
plane waves, only half the density remains, revealing Ionglcrom Bergen and Goteborg is also appreciated.

range correlations, but no concentration of density in the

internal region. Perhaps this is a characteristic feature of any APPENDIX: THREE-BODY COORDINATES

monopole three-body continuum, where there is a possibility AND CONTINUUM

for sswave decay via the virtuatwave state of the two halo Normalized Jacobi coordinatés,,y,) which are used in
neutrons. construction of the HH basig,3] are colinear with natural
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coordinategr;,r ) corresponding to the distance betweendefine hyperspherical coordinates in momentum space: trans-
any two particles and between their center of mass and #rm from Cartesian wave numbelis,|,|k,| to polar hyper-
third one. We use the designation for coordinate systemgnomentums=1k%+k3=y2mE/#%2 and corresponding hyper-
clusterT basis withx~r,, (with corresponding wave num- angle «.=atan(k,/k,), combined with four rotational
berk,) andy ~r ny-core (With corresponding,), and quasi-  degrees of freedom which are anglesandk,. In the ex-
shell-model Y basis with X~T¢oen and y~rcore-ny-n pression fork, mis a scaling nucleon mass, agds the total
coordinates. Let us consider two nucleons of unit mas§nergy calculated from three-body threshold.
outside a core of mash. We first transform from The plane wave is the continuum reference state, by com-
Cartesian coordinatesx|, |y| to polar coordinates— parlsorf1 t"f‘}"th Wht'tCh, we 'Eﬁr_‘t)d“ﬁhth? r;)has?' Sh'ftS;[ ast'al m?a-
: [ 1.2 2 sure of the scattering ability of the interaction potentials. In
hyperradius 5 pENXHYT= \/zzr”“+2A/(2 AN {n)-core the two-body case the phase shift is defined for radial motion
= VA (LA e o+ (L+A) (2+A) ey @Nd hyperangle  ang the plane wave is expanded in spherical harmonics. The
a=atar{x/y), joined into five rotational degrees of three-body plane wave allows equivalent representation in
freedom—the hyperangle and the usual angles defined by the HH basis. For spinless particles the six-dimensional
the directionsk and y. In the same way it is possible to plane wave in any Jacobi system is

(2m) Sexp[iky - x+ky Y= (kp) 2 X I “Iwalkp) Vi (QB[ Vit (05T

KLM Iy
= (kp) 2 2 Wig ) (xp) Vit (D[ Vi, (9], (A1)
NAN
I
. . L . _ ~
which we use to deflnd’K|x|y(Kp) in terms of Bessel func YX(Qs) = An I Qs) © Xl (A3)

tions Jk,o Of integer index. The five-dimensional angular

function My, (Q2) is expressed in terms of spherical func- -~ ) ) )
L W 1210102 05 ) whereA,, is antisymmetrizer, and the index refers to the

22?;1;’3 Igy);e{::;ju‘::f?:;ggz?jg I:'fg‘\l\xﬁ%zth quantum number s¢tSkl,}. The corresponding plane wave
form (A1) has to !ncluo_le also the fermionic nature of the halo

nucleons for isospiff, and can be represented as a sum over
total momenta]M componentsY {1 (Qs),

e explicit

Vet (Qs) = Ng(sin @)'(cos ) YP 55 (cos LY, (%)

® Y1 ()]m- (A2) PLn(xY KKy, @) = (kp) 52 ‘I’klxly(Kp)YJK,\%(Qg)
Ky

For Borromean halo nuclei we have to take into account
spins of valence neutrons and the antisymmetrization of the
wave function under exchange of valence neutrons. The sim-
plest way to treat antisymmetrization between halo neutrons (A4)
is constructing the channels in tAebasis set withx~r,..
Thus the antisymmetrization can then be included by imposwith W}, | defined above.
ing {I,+S+T=0dd, wherel, is the relative orbital angular  For continuum states in the presence of interaction poten-
momentum between the two neutroisand T=1 are the tials, the general solution of the coupled-channel problem for
total spin and isospin of the two-neutron subsystem. Thigjiven JM is the wave function
means that the evelp are combined witl5=0, while odd
I, are combined witt8=1 only. Effective antisymmetriza- T .~ A
tion between halo neutron and the core is realized on a W am(X.Y KKy, )
dynamical level by including a Pauli repulsive core in _ -5/2 J K
those partial components of thécore interaction, where = (kp) E/ , Yicyr (1) i1 5)
correspondingN-core states are forbidden by the Pauli Knly
principle, or by excluding those states dynamically from NI
the three-body solutiongt]. X 2 (L'MSMYIM)

We seek our bound state and continuum wave functions in
the form of an expansion on generalized angle-spin basis Hyperradial functions in EqQ3A4) and(A5) for eachJM
keeping antisymmetrization between halo neutrons are normalized in the same way

X 2 (LM SMJIM)Vgy (Q8)Xr
M Mg

I K

! ’
M Mg
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f ‘I’Z,‘I’Kp5dp = k28K - K). (AB)

After separation of angle-spin parts in the Schrodinger
equation, the three-body problem is reduced to a system of

PHYSICAL REVIEW C69, 024609(2004)

% ’\I}-;EJM(X7y1|2X1I2y1 aK)Npﬂw[exdi(kX X + ky ) y)]

+A(E'ngﬂg)%]xsxn

hyperradial equations treating on equal footing both for the

bound state and three-body continuum. Asymptotically, the

continuum wave function has a forifiamiliar from two-
body scattering

(A7)

where (kp)>%€** is now the outgoing three-body spherical

wave with 3— 3 scattering amplitudé&(E, Qf, )5).
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