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Spatial correlations in the three-body continuum of Borromean(having no bound binary subsystems) three-
body systems are discussed. The hyperspherical harmonics method is used to investigate low-lying resonances
and the soft dipole mode in the two-neutron halo nucleus6He, which has only thea+n+n continuum for
excitation energies below 13 MeV. The spatial correlations reveal characteristic structures for true three-body
resonances, a moderate amplification in the interior region for above-barrier resonances and long-range corre-
lations in the cases of three-body 1− virtual and 0+ continuum states.
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I. INTRODUCTION

In this article we continue our explorations of spectra of
Borromean halo nuclei, those having no bound binary sub-
systems. Within the hyperspherical harmonics(HH) method
[1–3] we investigate spatial correlations in the three-body
continuum. Our aim is to elucidate the physical nature and
characteristic structures of true three-body resonances, and to
identify long-range correlations in specific three-body states
such as the soft dipole and monopole modes. We will exam-
ine three-body scattering amplitudes and the internal parts of
calculated three-body continuum wave functions and graphi-
cally present their three-body correlations.

A variety of few-body methods have been used forbound
states of Borromean nuclei, in acore+n+n cluster decom-
position fully including three-body dynamics, but few are
suitable forcontinuumanalysis. The methods that have been
applied to the 6He continuum include, besides the HH
method[1,2,4], the adiabatic hyperspherical method[5], the
Gamow states(complex energy) method[6,5], the coordinate
complex rotation method[7,8], algebraic version of the reso-
nating group method[9], the harmonic oscillator representa-
tion of scattering equations[10], and analytic continuation in
the coupling constant[11]. These methods show some com-
mon features such as compression of continuum spectra in
comparison with shell-model-type expectations[2], and can-
didates for 22

+, 1+, and 0+ resonances in the energy interval
1–5 MeV, although these states have not yet been distin-
guished experimentally.

Progress in exclusive experimental studies of the structure
of the 6He continua has recently been made, and also theo-
retically by considering the different aspects of the three-

body problem and its solution[2] based on the Schrödinger
equation and the coordinate-space HH method. The relevant
wave function(WF) is that for 3→3 scattering, which, al-
though not directly measurable, has a role as final state of
any reaction leading to the6He (or any Borromean) con-
tinuum. For example it was used for charge-exchange reac-
tions and inelastic scattering in four-body distorted-wave
Born approximation theory[12] and in electromagnetic dis-
sociation[2]. Such reaction models are necessary for the full
analysis of kinematically complete breakup of6He on heavy
and light targets, as measured at GSI[13]. The experimental
advances are discussed in recent reviews of experiments
[14–16].

II. CORRELATIONS IN THE THREE-BODY CONTINUUM

A. Continuum structures

When two halo neutrons are interacting with a core at
positive energies, three-body scattering theory is needed. The
appendix describes briefly the normalized Jacobi spatial
hx ,yj and momentumhkx,kyj coordinates used to describe
three-body dynamics, and defines plane waves and scattering
waves in the three-body continuum. The free plane wave is
defined to include the effect of antisymmetrization between
the halo neutrons, henceforth referred to as the antisymme-
trized plane wave(APW).

Generally the spatial structure of a scattering wave may
have two distinct kinds of deviations of its internal part from
that of the APW. The benchmark behavior is the case of a
narrow three-body resonance, characterized by a strong am-
plification of the interior part of the WF in a compact region
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of mutual interaction. These resonances are often generated
by a pocket in some of the diagonal HH potentials, which are
hyperangular averaged sums of all the partial binary interac-
tions plus corresponding three-body centrifugal barriers.
Note that these barriers exist even if all binary angular mo-
menta are equal to zero, in contrast to a two-body problem.
Due to the large spatial overlap with the ground state in the
region of resonant amplification, inelastic transitions to these
resonances are very strong.

Another type of specific states are continuum structures
arising from long-range effective interactions in the three-
body system, having a range of the order of the sum of the
scattering lengths in the binary subsystems. There is a physi-
cal analogy with the bound state Efimov effect[17], where a
number of bound states and their spatial extension in a three-
body system without binary bound states depends on ratio of
the binary scattering length to the interaction radius. We will
classify such structures as Efimov-like states. In general, this
reflects the possibility of a third particle to “feel” the inter-
action of the two other particles at a distance up to the scat-
tering length. When we deal with a Borromean two-neutron
halo, the neutron-neutrons-wave interaction with scattering
length ,16 fm is decisive for this effect, which resembles
“continuum pairing” in the shell model and is responsible for
the compression of continuum spectra near three-body
threshold, as in the6He case[2].

There is then a large correlation distance due to long-
living resonances or virtual(antibound) states in two-body
subsystems propagating to large distances, and there may be
no pronounced concentration of the wave function inside the
region of interaction of all three particles, but rather a long-
range spreading of correlations.

These features should be visible in specific details of
three- and many-body “observables,” especially in the spatial
correlated densities to be shown. Such spatial densities
proved to be very useful for the ground state representation
of 6He [3], and are in this paper generalized to continuum
states.

Before presenting detailed correlation densities, we ex-
pand a little further on the general characteristics of reso-
nances and other structures that may be expected in the
three-body continuum.

In the two-body case the centrifugal and/or Coulomb bar-
riers combined with an attractive internal part of potential
can generate characteristic “narrow”(sub-barrier) and broad
(above-barrier) resonances with significant peaks in the elas-
tic cross section. Furthermore, a purely repulsive potential
can also generate what are called barrier-top resonances, well
known in nuclear quasimolecules[18]. The characteristic
feature of a barrier-top resonance is a small resonance peak
in the elastic cross section, while the interior norm exhibits a
sharp resonant behavior[19], which can be seen in transi-
tions.

In the three-body case, the coupled-channels problem
sometimes has no explicit analogies with potential scattering,
but after diagonalization of the potential and centrifugal ma-
trices the lowest adiabatic terms give a rather similar physi-
cal picture(especially in the strong coupling case). For dis-
cussion in the momentum representation, see also Ref.[20].

Physically, in a three-body system there may exist long-
living states of three types.

(I) The “true” narrow three-body resonance having an am-
plitude with the analytic form[21]

A ,
c

E − sE0 − iG0/2d
, s1d

where E0 and G0 are position and width of the resonance,
respectivelyffor simplicity we omit the dependence ofA on
V5

r and V5
k indicated in Eq.sA7dg. The most important fea-

ture of a true three-body resonance is that it is strongly
present in lowest-K shypermomentd configurations, and cor-
responds to three particles interacting close to each other. As
a consequence, the hyperradial WF of Eq.sA5d has main
components, which in the interaction region, have a charac-
teristic resonance amplification whose energy dependence
coincides with the asymptotic behavior of the WF expressed
by the scattering amplitude Eq.s1d, as familiar from two-
body scattering. This spatial behavior can be represented by
a factorized form

cKg;K8g8sr;Ed , CKg;K8g8sEdcKg
R srd s2d

with

uCKg;K8g8sEdu2 =
dKg;K8g8

sE − E0d2 + G0
2/4

, s3d

wherecKg
R srd is the energy-independent form of the internal

part of the scattering WF. In the two-body case, a coinci-
dence of the resonant features of the scattering amplitude and
the internal part of the WF is clear from the Lippman-
Schwinger equation. It connects the scattering amplitude
with the overlap of the scattering WF with the potential,
which is concentrated in the region of interaction of the par-
ticles sinternal part of scattering WFd. In the three-body case
the same connection follows qualitatively from a finite ma-
trix analog of the Lippman-Schwinger equation, as was seen
explicitly f22g in the case of the well-known 21

+ resonance in
6He. The results of a transition amplitude calculation,
comparing a quasibound resonance WF with the strict
continuum WF, show rather good agreementf22g.

Because of the concentration of a resonant WF in the
three-body interaction region, the resonant WFs have large
radial overlaps with the bound state, and the energy behavior
of the transition amplitude(determined by short distances)
therefore will be very close to that of the scattering ampli-
tude (derived from the asymptotics i.e., large distances).

This conclusion also follows from a simple semirigorous
argument from two-body scattering[23]. The time delay for
a resonance is 2"dd /dE, where d is the phase shift. The
interaction region stores probability accumulated over this
time, given by the probability current multiplied by the time
delay,

J2"
dd

dE
=

1

4

"k

m
2"

dd

dE
.

In the three-body coupled-channels case we may use
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the resonant eigenphasedres ssee, for example, Ref.f2g for
6Hed of the symmetric complexS matrix, which can be
diagonalized via an unitary transformSdiag=U−1SU to Sdiag
which has unit-modulus elementse2idl. The resonant
eigenphasedres contains joint information about the effect
of the resonance in each coupled channel, in the same way
as in two-body problem. The change of probability in the
interior region due to the mutual interactions can be esti-
mated as the difference between the probabilities with and
without interactions,

o
Kg
E

0

R

sucKg,K8g8sr;Edu2 − ufKgskrdu2ddr <
1

4

"k

m
2"

ddres

dE
,

wherefKgskrd is the plane wave radial wave function in Eq.
sA4d. The maximum inddres/dE has to correspond to a
maximum in eucu2dr, which is the internal norm already
used in the analysis of resonances in the three-body con-
tinuum f2g.

(II ) There may be a trace of a two-body resonance or
virtual state in the three-body system, even in absence of a
true three-body resonance[21]. Here, however, there may be
no rigorous analytic structure such as for(I). A rather general
expression, in case of a long-living resonant state in a binary
subsystem, which interacts only weakly with the third par-
ticle, is

A ,
cgsEd

e − sẽ − iG̃/2d
. s4d

Heree is the part of the total energyE shared by the resonant

subsystem andẽ− iG̃ /2=e0+De− isG̃0/2+DG /2d with e0 and
G0 being the position and width of the binary resonance,
respectivelyswithout the presence of the third particled. The
terms inDe andDG /2 are the shift and additional width due
to the coupling with the third particle, whilecgsEd is some
smooth function of the total energyE. Physically this corre-
sponds to a large correlation distance when the two particles
in the binary resonancesbeing close to each otherd are mov-
ing at a significant distance relative to the third.

(III ) A third type of resonance can be created by distrib-
uted coupling between the hyperradial channels in absence
of deep diagonal potentials, and is characterized by overall
properties of the system such as the ratio of couplings, the
diagonal potentials, and the number of channels. Physically,
such a resonance could be interpreted as a parametric reso-
nance arising from the quantum diffusion type transitions

with complex coefficients in channel space[24]. In any case,
in coupled-channel problems, so-called “CC resonances”
(see Ref.[25] illustrating the phenomenon in a two channels
system) may be caused by large off-diagonal potential com-
ponents, even if the diagonal potentials are small.

In this kind of resonance there could also be large scale
spatial correlations because of virtual transitions to and from
many strongly coupled channels with different internal angu-
lar momentalx, ly. In such a case, none of these channels
dominate, in contrast to resonance conditions(I) and(II ), and
transitions to channels with higherlx, ly correspond to
spreading of correlations to larger distances.

B. Correlated spatial densities

A measure of spatial distribution in the three-body case is
the correlated density in the relative coordinatessr i j ,r si j dkd,
which are distances between any two particles and between
their center of mass and the third one. They are collinear
with the normalized Jacobi coordinatessxk,ykd. For a bound
state the correlated density gives the probability of two par-
ticles to be at distancer i j , while their center of mass is at a
distancer si j dk from the third particle. Calculations for the6He
ground state[26,3] revealed, in the clusterT basis, specific
correlations such as “dineutron” and “cigar” configurations
of the halo neutrons which are due to Pauli principle exclu-
sion of the lowests-motion and called Pauli focusing in Ref.
[27].

In the continuum, for three-body states with definiteJT
and energyE="2k2/2m, we use the differential probability
obtained from the full scattering WF of Eq.(A5) in the pres-
ence of the interactions,

dPJskx,ky,x,yd = o
M

uCkJM
T sx,y,kx,kydu2dxdy dkxdky.

s5d

We now average this probability density over the spatial

sx̂ , ŷd and momentumsk̂x, k̂yd directions, and also over total
spinSand hyperangleak swhich is a measure of distribution
of the total energyE between the particlesd. Since

dxdy = aijkr ij
2drij r si j dk

2 drsi j dkdx̂dŷ s6d

and

dkxdky = k5 dkdV5
k = m/"2k4dEdV5

k, s7d

we obtain after integration overx̂ , ŷ, andV5
k, the correlated

density

pJsE,r ij ,r si j dkd =
dPJsE,r ij ,r si j dkd

drijdrsi j dkdE
= aijksm/"2dr ij

2r si j dk
2 k−1r−5 o

KLSlxly

o
L8S8lx8ly8

o
K9,K8

cK8g8,Kg
J sr;EdcK9g8,Kg

J sr;Ed*

3 NK8
lx8ly8ssin adlx8scosadly8PsK8−lx8−ly8d/2

lx8+1/2,ly8+1/2scos 2adNK9
lx8ly8ssin adlx8scosadly8PsK9−lx8−ly8d/2

lx8+1/2,ly8+1/2scos 2ad. s8d
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In these expressions,g refers to the sethLSlxlyj, aijk

=fAiAjAk/ sAi +Aj +Akdg3/2, andAi is the mass number of con-
stituenti. To calculate spatial densities in another coordinate
systemsfor example in theY system, going from the initial
T systemd, we just transform the coordinate parts of the WFs
via Raynal-Revai coefficientsf28g, which rotate the hyper-
angular part of the WF, conserving the total angular moment
L and hypermomentK. After this rotation we calculate spa-
tial densities with new hyperradial WFs, which are superpo-
sitions of those calculated in the initialsusuallyTd system.

Most interesting are the correlated densities at resonance
energies, and at energies corresponding to peaks in response
functions. In the vicinity of narrow resonances, the WF in the
interior sr,r0d can be represented in the factorized form of
Eq. (2).

In case of wide resonances, where the interior part of the
WF is not so pronounced, and for specific states like the soft
modes, the spatial correlations(or anticorrelations) can be
filtered by subtracting the APW density(A4) from the full
correlated density using Eq.(8). The APW density is thus
used as a reference frame. We have seen in Sec. II A how the
integral of this difference gives a time delay which coincides
with the lifetime for narrow resonances, and is a measure of
the ability of interactions to accumulate probability in the
interior region.

We shall demonstrate different types of spatial correla-
tions in the6He three-body continuum, using both “cluster”
T-basissnnda and “quasi-shell-model”Y-basisnsnad Jacobi
coordinate representations.

III. RESULTS

All calculations for 6He continuum spatial densities are
performed with the modified SBBa−n interaction using soft
Pauli core ins wave and the realistic soft core GPTn−n
potential(see Ref.[2] for details).

A. Spatial densities for antisymmetrized plane waves

Since the productskrd is the argument of the hyperradial
Bessel functionsJK+2skrd in the expansion of the six-
dimensional APW in Eqs.(A1) and (A4), we can expect an
approximate peak position of the spatial density(from the
corresponding term) will grow linearly in K as kr0,sK
+2d. So in polarsr ,ad coordinates, the density behaves as
the square of a Bessel function of integer indexsK+2d in r,
modulated by Jacobi polynomials ina arcs. If we separate
the spin componentsS=0 andS=1, then correlations will be
more clear, bringing additional gaps ina arcs, because the
APW density would include only even(odd) angular mo-
menta between the halo neutrons.

The upper plots in Fig. 1 show the spatial densities of the
2+ partial component of the APW in both coordinate systems.

The densities were computed for the energyE=1.19 MeV,
corresponding to the 21

+ resonance position in6He calcula-
tions performed with a baren−a interaction withKmax=8. In
both plots one can see the expected oscillating behavior of
the APW densities with rather broad peaks close to origin,
looking similar in both coordinate representations. The dif-
ference in inclination angles for the trajectories of the
maxima of APW “waves”(p /4 for bothT andY systems in
hyperradius and hyperangle coordinates) is due to the differ-
ence in the ratio of reduced masses ofsi j d and si j dk sub-
systems, namely, tanb=s1+Acd /ÎAcs2+Acd for Y basis(b
is counted fromrc−n axis) and tanb=Î2+Ac/2ÎAc for T (b
is counted fromrn−n axis). In case of a heavy core and two
nucleons we get an angle of atans1/2d for the T basis and
p /4 for Y. In spite of the complex structure of the APW
density, which is a square modulus of a coherent sum ofK
terms with alternating signs of Bessel functions
os−1dintsK/2dJK+2skrdfKlxly

sad weighted with the hyperangu-
lar partfKlxly

sad of YKLML

lxly sV5
rd, see Eq.(A2), and incoherent

in S, lx, ly (as a result of summation and integration), the
asymptotic structure reveals pronounced minima in hyperra-
dial arcs,sin2skr0d /r (elliptic in r ij and r si j d−k coordinates)
which are mostly due to the destructive interference in theK
summation.

The plots show that the positions of the first maxima are
situated at ran,r sandn,25 fm and rnn,30 fm and r snnda

,20 fm. Note that the shifted position of the wideT peak is
due to more mass “asymmetry” for this system, but that the
more stretched shape is because it consists of a sum of three
dominating HH with sKLSlxlyd=s22002d, (22020), (21111)
having the different maxima positions in hyperangle, while
in theT basis the peak is sharper due to a unique dominating
structure sKLSlxlyd=s21111d (corresponding to thep-shell
structure of a 2+ state). The spatial densities for the 1− and 0+

partial components of the APW have similar structure, but
with first peak closer to the origin(at the same energy) be-
cause of lower index of the Bessel functions.

B. Correlated spatial densities for narrow resonances

To illustrate the correlated spatial density to be expected
for a narrow true three-body resonance, we have performed
HH calculations for the well-known narrow 21

+ resonance in
6He at 0.83 MeV above the three-body threshold. Since the
lowest components with hypermomentK=2 gives about
95% of the internal norm, the calculations usedKmax=8,
which results in a resonant energy of 1.19 MeV, but with
almost the same geometrical structure of the internal part of
the WF. The results are shown in the lower part of Fig. 1 for
both T andY Jacobi coordinate systems.

These densities are spatially focused(note the different
radial scales of upper and lower plots in Fig. 1) and have
properties similar to a bound state. The spatial densities are
uniquely characterized by having only one pronounced peak
with maximum (most probable position) at rnn,5 fm,
r snnda,3 fm, and ran, r sandn,3.5 fm, i.e., at short dis–
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tances, compared with the first prominent peak,25 fm cor-
responding to the APW. The 21

+ resonance has properties of a
quasistationary state with characteristic r.m.s. hyperradius of
about 11 fm, matter radiusrmat,4.8 fm, and r.m.s. distance
between valence neutrons and between a valence neutron and
core of,10 fm, calculated as a quasibound state with expo-
nentially decreasing asymptotics.

The magnitude of correlations inside the interaction re-
gion is three orders of magnitude larger than that of the
large-distance background(which is not visible on the scale
of the corresponding spatial densities in Fig. 1). Note that the
internal WF almost coincides with the quasibound state that
would be found by using a boundary condition of an expo-
nentially decreasing tail at the samepositiveenergy. This is
in correspondence with the general results for quasistationary
states[29].

C. Correlated spatial densities for broad resonances

Correlated spatial densities for broad three-body reso-
nances are essentially more complicated than for narrow
ones. To illustrate the effects which can be expected for
broad structures we studied the correlated spatial densities
for the second 2+ and first 1+ resonances in6He [2]. Corre-
lation plots for the 22

+ resonance at 3.6 MeV are presented in

the upper part of Fig. 2 for bothT and Y systems. They
exhibit structure characterized by absence of strong concen-
tration of density in the interaction region of all three par-
ticles. The characteristic features of these densities are two
pronounced peaks, one atrnn,5 fm, r snnda,3 fm, ran

, r sandn,3 fm in, respectively,T andY, which may corre-
spond to attraction in the region of joint interaction of all
three particles, and a second peak atrnn,r snnda, ran,r sandn
,12 fm, positioned almost at the first APW peak, calculated
at the same energy. To obtain additional information about
the real correlations we have subtracted the spatial density
for the APW from the calculated correlated density for the 22

+

resonance(upper part of Fig. 2). The results are shown in the
lower part of Fig. 2 again for bothT andY systems. In these
plots one can easily see that only the first peak survives after
the subtraction, which filters out the real resonant part of
corresponding density.

The remaining peak(lower part of Fig. 2) in bothT andY
is about five times larger than the residual “background” and
is situated, as is the first 2+ resonance, in the region where all
three particles are interacting. This situation is specific for
above-barrier resonances, where the WFs have only moder-
ate amplifications in the internal region. After subtraction the
background has regular structure around the first maximum,
followed by a wavelike sequence with minima at asymptotic

FIG. 1. (Color online) Spatial
correlations for the 2+ partial
component of an APW(upper
row) and the 21

+ resonance calcu-
lated at resonant energyE
=1.19 MeV in T and Y coordi-
nate systems.
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distances which are negative due to the significant phase
shift between the scattered and plane waves(see contour plot
on top of Fig. 2).

Results similar to that of the 22
+ resonance are found for

the 11
+ resonance, which can also be classified as an above-

barrier resonance.

Correlated spatial densities for three-body
virtual-like excitations

In spite of the presence[2] of a 1− soft dipole resonance-
like peak in both nuclear and electromagnetic response func-
tions at,1.5 MeV, the correlated spatial density plot, shown
in Fig. 3, shows lack of noticeable resonant behavior in the
interior region, but strongly peaked structures atrnn,r snnda
, ran,r sandn,15–20 fm.

Subtraction of the APW density leaves only a 25% differ-
ence in magnitude in the interior region,5 fm, and compa-
rable background until distances,50 fm. In comparison
with the 22

+ case there are irregular structures along the arcs
within distances,30 fm. These structures have different
character inT and Y systems and resemble the large scale
,25 fm spatial APW correlations. A small peak in the inte-
rior region (at about 4 fm) may look like an above-barrier
resonance(22

+ and 11
+ cases), but is hardly prominent enough

to justify classification as a resonant state taking into account
the comparable background.

In Ref. [2] we analyzed the soft dipole mode in6He,
which might be a barrier-top resonance because of the gen-
erally repulsive character of the averaged interaction be-
tween the three particles plus centrifugal barrier. We found

however no resonance but a virtual-state-like behavior of
eigenphases, along with a bump in the nuclear and EM di-
pole strength functions. It could be a coupled-channels type
resonance created by distributed coupling between the chan-
nels in absence of deep diagonal potentials. However, the
lowest term in the diagonalized potential matrix plus cen-
trifugal barrier shows repulsion, with a very small pocket not
deep enough to produce an above-barrier wide resonance[2].
The characteristic feature of a barrier-top resonance in the
two-body case is a small resonance peak in the elastic cross
section, while the interior norm exhibits sharp resonant be-
havior [19], and these features should be the same in the
three-body case. Here, however, for the 1− the calculated
interior norm has no resonant behavior[2], only a monotonic
increase with energy. The lesson from the spatial correlations
adds consistently to this picture.

Figure 4 presents the correlated density plot for the 0+

monopole continuum at the peak energyE=1.8 MeV of the
monopole response. Like in the 1− case there are strong
peaks at distances,25–30 fm and a remnant of the ground
state dineutron and cigar configurations[3] located close to
the origin. Subtraction of the APW density “kills” 50% of
their magnitude, but leave the irregular arc structure in this
region, which can be attributed with monopole continuum
correlations. Figure 4 demonstrates also a lack of resonant
behavior in the interior region. The large scale of continuum
correlations after subtraction of the APW density can be seen
from a comparison with the remnant of the halo ground-state
dineutron and cigar configurations.

The monopole response function(not shown) has a wide
bump covering the possible energy locations for both soft

FIG. 2. (Color online) Spatial correlations for
the 22

+ resonance(upper row) and with subtracted
nnAPW (lower row) at energy 3.6 MeV inT and
Y systems.
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FIG. 3. (Color online) Spatial correlations for
the energy peak position of the 1− soft dipole
mode (upper row) and after subtraction of the
APW density(lower row) in T andY systems.

FIG. 4. (Color online) Spatial correlations for
the energy peak position of the 0+ soft monopole
mode (upper row) and after subtraction of the
APW density(lower row) in T andY systems.
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monopole breathing and spin-flip modes[2]. With this moti-
vation we performed calculations at energiesE=0.8 MeV
and E=5.0 MeV, which are below and above than the ex-
pected peak position. The findings are quite similar to those
discussed above. There are only long-range correlations but
no resonance structure. Taking into account the predominant
s-wave decay of the 0+ state via a correlated pair of neutrons
at low energy, and thep-wave decay via5He resonance at
higher energies, as well as strong mixing of these modes, we
may conclude that these modes are unavoidably spread in the
three-body continuum.

We therefore need further analysis of this important mode,
which could give valuable information about the compres-
sion modulus of a dilute “neutron gas” which could be asso-
ciated with the halo neutrons, and, in principle, could be
extracted from the energy position of the monopole breathing
mode. Such perspectives are even more relevant for8He.

IV. DISCUSSION AND CONCLUSIONS

The developments of the hyperspherical harmonics
method have deepened and enriched the understanding of the
Borromean three-body continuum. Using the example of6He
as a testbench we have analyzed several interesting con-
tinuum structures using both the Jacobian clusterT basis and
the translationally invariant shell-modelY basis. The con-
tinuum information is derived from the spatial correlated
densities, which also previously proved to be very useful in
understanding the ground state of6He [3].

The 21
+ state of6He is a true three-body Borromean reso-

nance with characteristic features:(i) a narrow width and(ii )
a strong concentration of the WF in the internal region where
all three particles are interacting close to each other. As a
consequence, the hyperradial WF in the interaction region
has the characteristic resonance amplification, for 21

+ three
orders of magnitude larger than the antisymmetrized plane
wave amplitude, and with an energy dependence which co-
incides with the energy dependence of the three-body scat-
tering amplitude.

The 22
+ and 11

+ resonant states in6He are wide above-
barrier resonances, produced by the generally attractive av-
eraged interactions, but with no pronounced concentration of
density in the interior region even after filtering out the non-
resonant background coming from plane waves.

We also find some wide above-barrier resonance candi-
dates which are completely spread into the continuum. In the
0+ continuum of 6He, at least two states should exist, or-
thogonal to the ground state: the soft monopole breathing
and spin-flip modes[2]. Our previous analysis in Ref.[2]
showed nonresonant behavior, although the response func-
tion exhibits a wide peak at 1.8 MeV. The correlated spatial
density for 0+ at this energy has a peaked structure in the
region inside 30 fm, but after subtracting the density for
plane waves, only half the density remains, revealing long-
range correlations, but no concentration of density in the
internal region. Perhaps this is a characteristic feature of any
monopole three-body continuum, where there is a possibility
for s-wave decay via the virtuals-wave state of the two halo
neutrons.

There are also peaks in the response functions for soft
modes, which have tentatively been related to large induced
multipole moments. In Ref.[2] we analyzed the 1− soft di-
pole mode in6He, which could be a barrier-top resonance
because of the generally repulsive character of the averaged
interaction between three particles. We found however no
resonance but a virtual-state-like behavior of eigenphases,
along with a bump in dipole strength functions. The present
study of the corresponding 1− correlated spatial densities at
the peak position shows(after subtraction of the plane wave
density) that only a quarter of the dipole density remains,
along with long-range correlations(at about 30 fm) analo-
gous to the monopole continuum structure. A small peak in
the interior region(at about 4 fm) resembles the above-
barrier resonances(like in the 22

+ and 11
+ cases), but is not

enough pronounced to justify classification as a resonant
state. Neither it is a coupled-channels type resonance created
by distributed coupling between the channels in absence of
deep diagonal potentials. Since the lowest term in the diago-
nalized potential matrix shows repulsion, with a very small
pocket not deep enough to produce a wide above-barrier
resonance[2]. The characteristic feature of a barrier-top reso-
nance in the two-body case is a small resonance peak in the
elastic cross section, while the interior norm exhibits a sharp
resonant behavior[19], and these features should be the same
in three-body case. Here, however, the calculated interior
norm has no resonant behavior[2], only a monotonic in-
crease with energy.

The monopole and dipole continuum of6He illustrate spe-
cific states which may be classified as Efimov-like con-
tinuum structures near the three-body threshold. In physical
analogy with the bound state Efimov effect, the origin of
these states are the long-range effective three-body interac-
tions with a range of the order of the sum of the scattering
lengths in the binary subsystems. There is then a large cor-
relation distance, and no concentration of the WF inside the
region of interaction of all particles, only a long-range
spreading of correlations. However, we need further explo-
rations of these states in terms of energy correlations in
three-body continuum to distinguish between the decay
through resonances in two-body subsystems and Efimov-like
states; this is the subject of forthcoming publication.

The spatial correlations shown here depend on the analyti-
cal properties of wave functions and scattering amplitudes,
and enable as we have tried to demonstrate more reliable
conclusions about resonant or nonresonant nature of such
challenging cases as the soft dipole mode.
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APPENDIX: THREE-BODY COORDINATES
AND CONTINUUM

Normalized Jacobi coordinatessxk,ykd which are used in
construction of the HH basis[2,3] are colinear with natural
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coordinatessr i j ,r si j dkd corresponding to the distance between
any two particles and between their center of mass and a
third one. We use the designation for coordinate systems:
clusterT basis withx, rnn (with corresponding wave num-
ber kx) andy, r snnd−core (with correspondingky), and quasi-
shell-model Y basis with x, rcore−n and y, r score−nd−n

coordinates. Let us consider two nucleons of unit mass
outside a core of massA. We first transform from
Cartesian coordinatesuxu, uyu to polar coordinates—
hyperradius r=Îx2+y2=Î1

2rnn
2 +2A/ s2+Adr snnd−core

2

=ÎA/ s1+Adrcore−n
2 +s1+Ad / s2+Adr score−nd−n

2 and hyperangle
a=atansx/yd, joined into five rotational degrees of
freedom—the hyperanglea and the usual angles defined by
the directionsx̂ and ŷ. In the same way it is possible to

define hyperspherical coordinates in momentum space: trans-
form from Cartesian wave numbersukx u , ukyu to polar hyper-
momentumk=Îkx

2+ky
2=Î2mE/"2 and corresponding hyper-

angle ak=atanskx/kyd, combined with four rotational

degrees of freedom which are anglesk̂x and k̂y. In the ex-
pression fork, m is a scaling nucleon mass, andE is the total
energy calculated from three-body threshold.

The plane wave is the continuum reference state, by com-
parison with which we introduce the phase shifts, as a mea-
sure of the scattering ability of the interaction potentials. In
the two-body case the phase shift is defined for radial motion
and the plane wave is expanded in spherical harmonics. The
three-body plane wave allows equivalent representation in
the HH basis. For spinless particles the six-dimensional
plane wave in any Jacobi system is

s2pd−3exp fiskx ·x + ky ·ydg = skrd−2 o
KLMLlxly

iKJK+2skrdYKLML

lxly sV5
rdfYKLML

lxly sV5
kdg*

= skrd−5/2 o
KLlxly

CKlxly
L skrdYKLML

lxly sV5
rdfYKLML

lxly sV5
kdg* , sA1d

which we use to defineCKlxly
L skrd in terms of Bessel func-

tions JK+2 of integer index. The five-dimensional angular
function YKLML

lxly sV5
rd is expressed in terms of spherical func-

tionsYlm in x̂, ŷ and Jacobi polynomialsPK−lx−ly/2
lx+1/2,ly+1/2scos 2ad

carrying hyperangular momentumK, and with the explicit
form

YKLM
lxly sV5d = NK

lxlyssin adlxscosadlyPK−lx−ly/2
lx+1/2,ly+1/2scos 2adfYlx

sx̂d

^ Yly
sŷdgLM . sA2d

For Borromean halo nuclei we have to take into account
spins of valence neutrons and the antisymmetrization of the
wave function under exchange of valence neutrons. The sim-
plest way to treat antisymmetrization between halo neutrons
is constructing the channels in theT-basis set withx, rnn.
Thus the antisymmetrization can then be included by impos-
ing hlx+S+T=oddj, wherelx is the relative orbital angular
momentum between the two neutrons,S and T=1 are the
total spin and isospin of the two-neutron subsystem. This
means that the evenlx are combined withS=0, while odd
lx are combined withS=1 only. Effective antisymmetriza-
tion between halo neutron and the core is realized on a
dynamical level by including a Pauli repulsive core in
those partial components of theN-core interaction, where
correspondingN-core states are forbidden by the Pauli
principle, or by excluding those states dynamically from
the three-body solutionsf4g.

We seek our bound state and continuum wave functions in
the form of an expansion on generalized angle-spin basis
keeping antisymmetrization between halo neutrons

YJM
KgsV5d = ÂnnfYKL

lxlysV5d ^ XSgJM, sA3d

whereÂnn is antisymmetrizer, and theg index refers to the
quantum number sethLSlxlyj. The corresponding plane wave
sA1d has to include also the fermionic nature of the halo
nucleons for isospinT, and can be represented as a sum over
total momentaJM componentsYJM

KgsV5d,

FkJM
T sx,y,k̂x,k̂y,akd = skrd−5/2o

Kg

CKlxly
L skrdYJM

KgsV5
rd

3 o
MLMS

kLMLSMSuJMlYKLML

lxly sV5
kdXT

sA4d

with CKlxly
L defined above.

For continuum states in the presence of interaction poten-
tials, the general solution of the coupled-channel problem for
given JM is the wave function

CkJM
T sx,y,k̂x,k̂y,akd

= skrd−5/2 o
Kg,K8g8

cKg,K8g8
J skrdYJM

KgsV5
rd

3 o
ML8MS8

kL8ML8S8MS8uJMlY
K8L8ML8
lx8ly8 sV5

kdXT. sA5d

Hyperradial functions in Eqs.(A4) and(A5) for eachJM
are normalized in the same way
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E Ck8
*

Ckr5dr = k−5dsk8 − kd. sA6d

After separation of angle-spin parts in the Schrödinger
equation, the three-body problem is reduced to a system of
hyperradial equations treating on equal footing both for the
bound state and three-body continuum. Asymptotically, the
continuum wave function has a form(familiar from two-
body scattering)

o
JM

CkJM
T sx,y,k̂x,k̂y,akd,r→`Fexpfiskx ·x + ky ·ydg

+ AsE,V5
r,V5

kd
expsikrd
skrd5/2 GXSXT,

sA7d

whereskrd−5/2eikr is now the outgoing three-body spherical
wave with 3→3 scattering amplitudeAsE,V5

r ,V5
kd.
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