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We study the decay of close to the spinodal metastable states through isobaric processes. One usually studies
these processes by considering a Landau expansion of the free energy around the critical point, which may lie
far away from the region of phase space where the dynamics are relevant, both in temperature and pressure. By
relying on the critical nature of the spinodal points, apparent from the divergence of the compressibility and the
presence of scaling in their vicinity, we propose an alternate view. By using, as a toy model, an analytical
equation of state which describes a system that can exist in a liquid or vapor phase, we construct a generalized
Gibbs-Landau free energy expansion around any spinodal point, which includes the critical point as a special
case. This expansion is then used to study the dynamics of nucleation of the stable phase out of the metastable
region.
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I. INTRODUCTION

First-order phase transitions are ubiquitous in nature.
They appear in connection with a large number of physical
phenomena, from superconductivity and superfluidity to
magnetic ordering and surface structures, to name but a few.
A simple and elegant theory, arising directly from first prin-
ciples, allows for an equilibrium description of these transi-
tions [1]. The behavior of actual physical systems undergo-
ing first-order phase transitions may feature, however,
complex dynamical phenomena, outside the scope of an
equilibrium framework. These phenomena are associated
with metastable states and their decay, as well as with the
growth of phase domains, and are still the objects of active
research.

In nuclear physics, experimental data involving the emis-
sion of intermediate mass fragments(IMF), such as in mul-
tifragmentation processes following heavy-ion collisions,
have led to conjectures about the presence of a liquid-gas
phase transition[2]. The distribution of these IMF would be
one of the signals left by this transition, or, more properly, by
its remnants for a finite size system[3–5]. This signature has
been identified, for example, in the yield of IMF produced in
p+Xe and p+Kr reactions[6], which show a power law
distribution, such as predicted by the Fisher model[7] and is
typical of critical systems[8]. The study of the caloric curve,
or the dependence of temperature on the excitation energy
per particle in heavy-ion collisions, which allows the deter-
mination of the specific heat and shows in some cases a
plateau characteristic of first-order transitions, has also
served as support for the claim of the presence of this tran-
sition [9]. Theoretical calculations of asymmetric nuclear
matter have predicted a phase separation between a neutron-
rich gas and neutron-deficient liquid matter[10]. These re-
sults were enriched by the addition of Coulomb interaction
and surface terms[11], resulting in a moderation of isospin
fractionization. All these claims may be well pictured by a
description of nuclear systems in terms of a fluid that under-
goes first-order and continuous transitions.

In an equilibrium description of a thermodynamic system,
long-lived metastable states may appear as local extrema of

some free energy. For such systems, the equilibrium iso-
therms below the critical temperature show metastable
branches, corresponding to those extrema, whose end points
are called spinodal points. The validity of an analytic con-
tinuation of the free energy beyond the stable points, and
within the phase coexistence region of the phase diagram for
these physical systems, in the region where those local ex-
trema may appear, is still a matter of debate. If such a con-
tinuation can be justified, the above characterization of meta-
stability will hold. Although these are clearly nonequilibrium
states, it has been suggested that their long lives may allow
for locally ergodic behavior. For this reason, the construction
of a quasiequilibrium Landau-Ginzburg functional consistent
with a postulated equation of state can be justified[1].

These considerations are particularly appealing when one
faces a mean-field equation of state. It is well known that
mean-field models can provide at best a qualitative under-
standing of equilibrium processes, for all but a few physical
systems. Nevertheless, they are still a powerful element of
the tool box of a theoretician, in particular, when dealing
with problems for which no microscopic theory stands up as
either plausible or solvable. The description of the nonequi-
librium dynamics of metastable states is one such problem,
and mean-field theories are, so far, the only ones that can
address these dynamics with some internal consistency. It is
to be noted that the mean-field model of van der Waals for
the fluid-gas phase transition was the first to suggest the
above mentioned description of metastability. In this and
similar models, metastable branches appear as sections of
isotherms which are mechanically stable, but beyond the co-
existence points derived by the Maxwell construction. These
branches end at spinodal points, which are the milestones at
the beginning of the mechanically unstable regions.

These are the guidelines with which we approach, in this
paper, the dynamical problem of the decay of metastable
states, within the framework of a particular mean-field model
for nuclear matter. These guidelines have already been used
before for a similar problem in, e.g., Ref.[12]. There, an
analytic continuation was constructed for the Gibbs free en-
ergy with an expansion around the critical point. The diffi-
culties with such an expansion arise from two perspectives.
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If we want to study the decay of a nuclear system after a
deep quench inside the metastable region, such as is conjec-
tured to happen after a high-energy collision of heavy ions,
the point of departure of the process is, in general, not close
to the critical point; and usually proceeds through nearly
isobaric processes, which are not well described by the ex-
pansion.

We present an alternate perspective, namely, an expansion
of the free energy around a spinodal point. For deep
quenches, the spinodal will lie closer in parameter space to
the initial point of the nucleation process in the phase dia-
gram, and the nonequilibrium process that follows is most
likely controlled by the critical characteristics of the spin-
odal. On the other hand, a spinodal expansion can be made
around the spinodal point at the same pressure, allowing for
an analysis of the isobaric process.

II. THE MODEL

Let us start with a simple equation of state(EOS) derived
from a Skyrme-type interaction[12]. Such an interaction is
short ranged and typically used in nuclear physics. Without
any loss of generality in our study, it is very well suited for
our purpose of an analytical analysis of scaling properties,

p = − a0r2 + 2a3r3 + rkBT. s1d

This equation has an explicit cubic dependence on the
density r, in much the same way as in the van der Waals
fluid. This form for the EOS is typical of a system that can
exist in a liquid or vapor phase, and suggests the existence, at
low density, of a line of first-order liquid-vapor phase tran-

sition in ap versusT phase diagram, ending up at a critical
point, where the transition is continuous. The temperatureTc
associated with this critical point is an upper bound for the
range of temperatures in which the two phases coexist. Many
other models for nuclear matter have been studied[13], all of
them exhibiting EOS with analogous van der Waals fluidlike
behavior.

Mean-field phase diagrams can be valuable, even below
the upper critical dimension of a model, to explore its re-
gions of metastability. As is well known from the study of
fluids, a physical system can get trapped in a local minimum
of its free energy, from which it escapes only after a finite
time. In a mean-field approach, the positions of these local
minima are bounded in a phase diagram by the spinodal
curves, which lie inside the region of phase coexistence. One
usually considers the isothermic, for quenches through pro-
cesses at constant temperature, and adiabatic spinodals,
which can be formally determined by the solutions of
]p/]r=0, keeping constant the appropriate thermodynamic
variable. The processes of fragmentation and superheating
are associated with the regions]p/]r,0 and]p/]r.0, re-
spectively.

Note that the Maxwell construction, with end pointsA
andB of Fig. 1, which singles out the true equilibrium states
corresponding to global minima of the free energy, does not
include these regions. However, to treat fluctuations in the
liquid-gas coexistence region we have to extend the validity
of the mean-field equation of state beyond the equilibrium
states. This will be done through the Gibbs-Landau free en-
ergy expansion. This free energy is usually written as an
expansion around the critical point[12], in which, even in
the thermodynamic limit, fluctuations of all wavelengths are

FIG. 1. Isotherms in thep vs r /r0 plane forT=TF, the flash temperature,T,Tc andT=Tc, the critical isotherm. On the latter, the critical
point is identified. For the isotherm atT,Tc, pointsA,B, andC lie on the Maxwell construction and identify the range of densities where,
at that temperature, liquid and gas phases may coexist. PointsD andE are the two spinodal points at temperatureT, bounding the unstable
region. PointFsGd is at the equilibrium density and at the same pressure as the spinodal pointEsDd. If the system is quenched in a metastable
state lying betweenA andD (E andB) its isobaric decay will lead to a stable density on the branchB-G sF-Ad after having overcome the
free energy barrier corresponding to a point in the branchD-C sC-Ed. The density is expressed as a dimensionless quantity in units of the
density at saturation forT=0, and the pressure is in units of MeV fm−3.

J. B. SILVA et al. PHYSICAL REVIEW C 69, 024606(2004)

024606-2



important. Away from the critical point, finite systems such
as nuclei will also present important fluctuations[12] and a
Gibbs-Landau free energy expansion around some other
point rather than the critical one may be of interest.

Here we present an expansion of the Gibbs-Landau free
energy around the spinodal pointsD or E of Fig. 1. We will
explore to our benefit the critical nature of points over the
spinodal line, as already pointed out by several authors
[14–17]. We will calculate the critical exponents associated
with the spinodal points. The question to be answered here is
whether such a study can provide an alternate and natural
dimension-dependent scale of temperatures, other than the
critical temperature. Again, it is worth mentioning at this
point that critical nature of spinodal points has been identi-
fied in the study of several mean-field versions of classical
models in condensed matter, such as the inconspicuous Ising
model [16].

III. CRITICAL AND FLASH POINTS

A particularly interesting region, still inside the coexist-
ence region, that stands up in the study of nuclear systems is
that in which a hydrostatic equilibriumsp=0d is still possible
and the nuclear matter incompressibility

KsTd = U ] p

] r
U

p=0
s2d

can be calculated. This region is bounded by 0,T,Tfl and
r f l ,r,ro, where the pointsr f l ,Tfld is obtained as the solu-
tion to p=]p/]r=0 and is known as the “flash” point. This
point has for coordinates the smallest density and the highest
temperature at which a self-bound system can exist in hydro-
static equilibrium, and belongs, by definition, to a spinodal.

Here we proceed with the discussion regarding the scaling
with critical and flash parameters by studying properties of
the simple analytical EOS given by Eq.(1). Although de-
rived for a three-dimensional(3D) system[18], a straightfor-
ward reproduction of that reasoning can be used to show that
it has the same functional form in every spatial dimension.
The relation between its coefficients and those of the inter-
action potential are dimension-dependent though. These co-
efficients have dimensionsfa0g=MD+1 andfa3g=M1−2D. The
density at saturation is obtained as the solution topsr0d=0,
leading tor0=a0/2a3. The incompressibility(at saturation)
is obtained to be

KsTd = U ] p

] r
U

p=0
s3d

which yields

KsTd =
a0

2

4a3
S1 +Î1 −

8a3kBT

a0
2 −

8a3kBT

a0
2 D . s4d

The limit of KsTd when T→0 is K0=a0
2/2a3. Rescaled by

this parameter, the incompressibility can be written as

KsTd
K0

=
1

2
S1 +Î1 −

8a3kBT

a0
2 −

8a3kBT

a0
2 D . s5d

We begin by deriving a law of corresponding states for
this EOS by rescaling the thermodynamical variables with
their critical values. The critical point in which the liquid-
vapor coexistence phase disappears and matter starts to be
described as a gas is obtained via

U ] p

] r
U

r=rc

= U ]2p

] r2U
r=rc

= 0 s6d

leading to

rc =
a0

6a3
, kBTc =

a0
2

6a3
, pc =

a0
3

108a3
2 s7d

with

a0 =
kBTc

rc
, a3 =

kBTc

6rc
2 . s8d

Substituting the values ofa0 anda3 into Eqs.(1) and(5),
one obtains

p8 = r83 − 3r82 + 3r8T8 s9d

and

KsTd
K0

=
1

2
S1 +Î1 −

4

3
T8 −

4

3
T8D , s10d

wherep8=p/pc, r8=r /rc, andT8=T/Tc.
In this particular case,pc/kBTcrc=1/3, close to the 3/8

value obtained for the van der Waals gas. Equation(9) is an
expression of a law of corresponding states valid across dif-
ferent spatial dimensions.

Now, let us show that a similar law can be obtained when
the variables are rescaled through their flash point values. At
this point,

U ] p

] r
U

r=rf

= psr fd = 0. s11d

Imposing the above conditions on Eq.s1d, we find

r f =
a0

4a3
, kBTf =

a0
2

8a3
, pf = 0 s12d

with

a0 =
2kBTf

r f
, a3 =

kBTf

2r f
2 , s13d

which when substituted back into Eqs.s1d and s5d leads to

p* = r*3 − 2r*2 + r*T* s14d

and

KsTd
K0

=
1

2
s1 +Î1 − T* − T*d, s15d

where
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p* = p/kBr fTf, r* = r/r f, T* = T/Tf . s16d

Here,p* does not scale with the flash parameterpf, which is
identically zero by construction, but withkBr fTf instead.

We can see in this case thatTc/Tf =
4
3. Equations(10) and

(15) are the incompressibility curves written in terms of
rescaled variables relating to different critical points. Our
findings indicate that the flash temperature can provide an
alternate natural dimension-dependent scale of temperature,
other than the critical temperature.

IV. SPINODAL LINE

Now we generalize the described properties of the flash
point to any point on the spinodal line. For this generaliza-
tion, the constraints of Eq.(11) have to be modified,

U ] p

] r
U

r=rs

= 0, psrsd = Ps, s17d

wherePs andrs refer to pointsD andE of Fig. 1 for a given
T=TsøTc isotherm. The application of the above conditions
to Eq. s1d leads to the determination of the coefficients,

a0 =
2kBrsTs − 3Ps

rs
2 , a3 = −

Ps

rs
3 +

kBTs

2rs
2 , s18d

which, when substituted into Eqs.s1d and s5d, lead to

p* = s1 − 2Asdr*3 + s3As − 2dr*2 + r*T* , s19d

where

p* = p/kBrsTs, r* = r/rs, T* = T/Ts s20d

and

As =
Ps

kBrsTs
. s21d

Equations(9) and(14) are limiting cases of Eq.(19) when
As→1/3 andAs→0, describing the critical and flash points,
respectively. The second derivative of Eq.(19), ]2p* /]r* 2

=2s1−3Asd shows the route from a spinodal to the critical
point.

For a given isothermT, rs is obtained analytically from
]p8 /]r8ur=rs

=r8sr8−2d+T8=0,

rs = rcs1 ± Î1 − T/Tcd. s22d

This spinodal density leads to the spinodal pressure,

Ps = Pc„1 ± ts2Ît + 3d…, s23d

wheret=1−T/Tc.
Let us now define the following reduced parameters:

h̄ =
r − rs

rs
, t̄ =

T − Ts

Ts
. s24d

The usual critical reduced parameters are recovered when
Ts→Tc andrs→rc, leading to

h =
r − rc

rc
, t =

Tc − T

Tc
. s25d

These reduced parameters are related,

h̄ =
rc

rs
sh + 1d − 1, t̄ =

Tc

Ts
s1 − td − 1. s26d

Let us point out thath plays the role of an order parameter
for the continuous transition at the critical point, in close
analogy to the van der Waals fluid. By analogy, we will call
h̄ the corresponding spinodal order parameter since its prop-
erties are similar to the proper and critical one. The critical
order parameters for the points indicated in Fig. 1 are

hA = − Îs3td, hC = 0, hD = − Îstd, hF = − 2Îstd
s27d

and

hB = − hA, hE = − hD, hG = − hF. s28d

In terms of the spinodal order parameters, Eq.(19) may
be rewritten as

p* = sAs + t̄d + t̄h̄ + s1 − 3Asdh̄2 + s1 − 2Asdh̄3. s29d

Again, this expression also contains the special critical case
in which As→1/3 leading us to

p8 = 1/3 +t + th + s1/3dh3, s30d

which is equal to that presented in Ref.f12g if we just relate
their reduced variables to ours.

V. CRITICAL EXPONENTS

The way in which systems approach the critical point in a
mean field theory is very well known. As one approaches the
critical point, the behaviors of thermodynamic functions are
mainly determined by their critical exponents. Since the
spinodal line also presents a critical nature, we will see how
some thermodynamic functions behave near a point on the
spinodal line. Let us start with our generalized scaled equa-
tion of state, given by Eq.(29).

From Eq.(29), the deviation of the pressure from its spin-
odal value DP=P−Ps is given by DP=kBrsTsst̄d+ t̄h̄+s1
−3Asdh̄2+s1−2Asdh̄3.

The limit t̄→0 leads to DP=kBrsTsfs1−3Asdh̄2+s1
−2Asdh̄3g. This gives us two possibilities. In the caseTs

=Tc, As→1/3 and only the last term ofDP survives, indi-
catingd=3 as the critical exponent. If, however,TsÞTc, DP
is governed bys1−3Asdh̄2⇒d=2 is the corresponding spin-
odal exponent.

The critical exponentb, also called the degree of the co-
existence curve, is usually extracted from the behavior of
srliq −rgasd /rc=Ccoext

b, whereCcoex is a constant, around the
critical point.hcoex=rliq −rgas=rB−rA is the order parameter
in this case. Proceeding by analogy, the spinodal exponentb
is obtained fromrE−rD=Cspinodt̄

b. Equations(27) and (28)
show thatb=1/2 for both critical and spinodal cases.

The isothermal compressibility is given byKT
−1
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=−rs]p/]rd. By using Eq. (29), KT
−1= t̄+2s1−3Asdh̄+3s1

−2Asdh̄2. In the caseTs=Tc, As→1/3 andKT
−1= t+h2. By

using the result already obtained forh around the critical
point, and assumingKT

−1=Ccompt
−g, we haveg=1. If, how-

ever, TsÞTc, KT
−1 is governed by 2s1−3Asdh̄, leading tog

=1/2.
The critical exponent for the heat capacity is calculated

from cp−cv=const3 t−a=sNT/r3ds]r /]pdKT
−1, giving us a

=0. The spinodal exponent is 1/2.
To summarize our results up to this point, we addressed

the critical nature of the spinodal line, as already pointed out
by several authors[14–17]. Indeed, several derivatives of the
free energy, such as the compressibility and susceptibility,
diverge at any spinodal point. It is important to stress that the
critical exponents at a spinodal point are not equal to their
values at the critical point itself. For example, for the case of
the mean-field model we are treating, the critical(spinodal)
exponentsa ,b ,g, and d are 0s1/2d ,1 /2s1/2d ,1s1/2d, and
3s2d, respectively. Let us notice that both sets of exponents
satisfy the Rushbrooke and Widom scaling relationships

a + 2b + g = 2, g = bsd − 1d. s31d

VI. GIBBS-LANDAU FREE ENERGY

The Gibbs-Landau free energyGsp̄, t̄ ,h̄d is constructed by
letting ]G/]h̄=0,

Gsp̄, t̄,h̄d = Go + NS− h̄h̄ +
1

2
t̄h̄2 +

1

3
s1 − 3Asdh̄3

+
1

4
s1 − 2Asdh̄4D , s32d

whereh̄= p̄−As− t̄ is defined in analogy with the usual exter-
nal field in ferromagnetic systems presenting phase transition
after quenching andN is the number of particles. The usual
Gibbs-Landau free energy in terms of the critical order pa-
rameter is obtained by takingTs→Tc andrs→rc, leading to

Gsp8,t,hd = Go +
TcN

3
S− h8h +

3

2
th2 +

1

4
h4D , s33d

where h8=p8−1−3t and the normalization was chosen to
match that of Ref.f12g. As is well known, from thef4-field
theory,Gsp8 ,t ,hd has the form of the standard double-well
potential. The Maxwell constructionspointsA andB of Fig.
1, with PA=PB andGA=GBd corresponds toh8=0, when the
wells become equal in depth. Asuh8u increases, one well
becomes shallower than the other. When we approach the
spinodal pointsD andE of Fig. 1, the shallow wells of which
they are minima disappear, and they become inflection
points. Now, the extrema ofGsp8 ,t ,hd occur at the pointsF
andG of the same figure. Note that the expansion around a
spinodal point brings up a new cubic term, absent from the
expansion around the critical point, distorting the double-
well depths. In principle, the presence of a cubic term in the
Landau free energy is a signal of the presence of a first order
transition f1,19g. Another feature of the general Gibbs-

Landau spinodal expansion is that, once we focus on the
analysis of a particular isothermsT=T1d, the spinodal expan-
sion itself can be done for any arbitrary value of temperature
in the rangeT1øTsøTc.

FIG. 2. Gibbs-Landau free energy, in dimensionless units and
referred to its value at the critical point, forT=0.91Tc and different
pressures, as a function of the reduced dimensionless densityh. The
full curves are the spinodal expansion, taken around pointD of Fig.
1, and the dashed curves show the expansion around the critical
point. In either expansion, these curves show the same qualitative
behavior. At the pressure that corresponds to the Maxwell construc-
tion it has a symmetric double-well shape, and the barrier height—
the difference between the local minimum and the neighboring local
maximum—is maximum. As the pressure increases toward that of
the spinodal pointD an asymmetry builds up and the barrier de-
creases, until it reaches zero at the spinodal point itself: it is the
classical limit of metastability and has zero lifetime.

FIG. 3. Height of the barrier to be overcome in the decaying
process, in MeV, as a function of the dimensionless pressurex
=p/pD. The full curve shows this height calculated via the spinodal
expansion and the dashed one relies on the critical point expansion.
Although qualitatively similar, the spinodal expansion predicts
larger barriers and consequently larger lifetimes for the metastable
states.
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VII. APPLICATIONS AND FINAL REMARKS

As an application of this methodology, we may calculate
the mean lifetime of a metastable state by interpreting the
free energy differenceDG between its value at the local
minimum and its maximum at the spinodal point as a poten-
tial barrier to be overcome. The mean lifetime for nucleation
processes occurring at constant pressure will then be propor-
tional to exps−DG/kTd. We consider isobaric nucleation pro-
cesses occurring atp=xpD where x=1,0.98,0.95,0.93.
These different pressures lie betweenpD and pA. The iso-
therm chosen isT=0.91Tc. For comparison, Fig. 2 shows the
Gibbs-Landau free energies expanded around the critical
point together with those expanded around the spinodal point
D of Fig. 1. Notice that forx=pA/pD the isobaric process
coincides with the Maxwell construction and therefore,GA
andGB present symmetric extrema aroundh̄=0 for the spin-
odal point expansion andh=0 for the critical point expan-
sion. Asx increases, the distortion of the double-well depth
takes place. In the particular casex=1, the global minimum
of the free-energy corresponds to the pointG of Fig. 1. The
function h̄shd is given in Eq.(26).

In Fig. 3 we show a plot of the barriers as a function of
the pressure, compared with what would be obtained via an
expansion around the critical point. One can see that this last
expansion underestimates the height of the barrier, leading to
shorter lives for metastable states. We claim that our method
should better correspond to the real situation as the pressure

gets farther away from its critical value. It allows the expan-
sion center to lie closer to the region in phase space where
the physical processes are actually happening, both in tem-
perature and pressure; the expansion parameters used have
smaller values and truncation errors are correspondingly
smaller.

To summarize, we presented in this paper an alternate
perspective for the analysis of the decay of metastable states,
namely, an expansion of the free energy around a spinodal
point. For deep quenches, the spinodal will lie closer in pa-
rameter space to the initial point of the nucleation process in
the phase diagram, and the nonequilibrium process that fol-
lows is most likely controlled by the critical characteristics
of the spinodal. On the other hand, an expansion of this kind
can be made around the spinodal point at the same pressure,
allowing for an analysis of isobaric processes. Such a de-
scription may also find applications in the study of multifrag-
mentation, where the critical signature of the power law
yield of IMF may well be due to the vicinity of a spinodal
point, rather than to a continuous transition.
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