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Spinodal expansions in the study of the decay of deeply quenched metastable states
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We study the decay of close to the spinodal metastable states through isobaric processes. One usually studies
these processes by considering a Landau expansion of the free energy around the critical point, which may lie
far away from the region of phase space where the dynamics are relevant, both in temperature and pressure. By
relying on the critical nature of the spinodal points, apparent from the divergence of the compressibility and the
presence of scaling in their vicinity, we propose an alternate view. By using, as a toy model, an analytical
equation of state which describes a system that can exist in a liquid or vapor phase, we construct a generalized
Gibbs-Landau free energy expansion around any spinodal point, which includes the critical point as a special
case. This expansion is then used to study the dynamics of nucleation of the stable phase out of the metastable
region.
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I. INTRODUCTION some free energy. For such systems, the equilibrium iso-
therms below the critical temperature show metastable

First-order phase transitions are ubiquitous in nature . .
They appear in connection with a large number of physicaPfanches, corresponding to those extrema, whose end points
are called spinodal points. The validity of an analytic con-

phenomena, from superconductivity and superfluidity to!

magnetic ordering and surface structures, to name but a fefjuation of the free energy beyond the stable points, and
A simple and elegant theory, arising directly from first prin- within the phase coexistence region of the phase diagram for

ciples, allows for an equilibrium description of these transi-tN€se physical systems, in the region where those local ex-

tions [1]. The behavior of actual physical systems undergo-:.rem?. may a%pegr,t!? Sdt'”ﬂ? ngtter oLdebe;te: If t.SUCh fa cotn-
ing first-order phase transitions may feature, however.1ation can be justiied, thé above characterization ot meta-

: . tability will hold. Although these are clearly nonequilibrium
complex dynamical phenomena, outside the scope of a%ates, it has been suggested that their long lives may allow

equmbnum framework. These _phenomena are associate r locally ergodic behavior. For this reason, the construction
with metastable states and their decgy, as W?” as with .th f a quasiequilibrium Landau-Ginzburg functional consistent
growth of phase domains, and are still the objects of activgi, 5 postulated equation of state can be justifigd
research. , _ _ , . These considerations are particularly appealing when one
In nuclear physics, experimental data involving the emisfaces a mean-field equation of state. It is well known that
sion of intermediate mass fragmenits!F), such as in mul-  mean-field models can provide at best a qualitative under-
tifragmentation processes following heavy-ion collisions,standing of equilibrium processes, for all but a few physical
have led to conjectures about the presence of a liquid-gasystems. Nevertheless, they are still a powerful element of
phase transitiofi2]. The distribution of these IMF would be the tool box of a theoretician, in particular, when dealing
one of the signals left by this transition, or, more properly, bywith problems for which no microscopic theory stands up as
its remnants for a finite size systg@5]. This signature has either plausible or solvable. The description of the nonequi-
been identified, for example, in the yield of IMF produced inlibrium dynamics of metastable states is one such problem,
p+Xe and p+Kr reactions[6], which show a power law and mean-field theories are, so far, the only ones that can
distribution, such as predicted by the Fisher mddéland is  address these dynamics with some internal consistency. It is
typical of critical system$8]. The study of the caloric curve, to be noted that the mean-field model of van der Waals for
or the dependence of temperature on the excitation energhe fluid-gas phase transition was the first to suggest the
per particle in heavy-ion collisions, which allows the deter-above mentioned description of metastability. In this and
mination of the specific heat and shows in some cases similar models, metastable branches appear as sections of
plateau characteristic of first-order transitions, has alsdsotherms which are mechanically stable, but beyond the co-
served as support for the claim of the presence of this trarexistence points derived by the Maxwell construction. These
sition [9]. Theoretical calculations of asymmetric nuclearbranches end at spinodal points, which are the milestones at
matter have predicted a phase separation between a neutrdhe beginning of the mechanically unstable regions.
rich gas and neutron-deficient liquid mat{di0]. These re- These are the guidelines with which we approach, in this
sults were enriched by the addition of Coulomb interactionpaper, the dynamical problem of the decay of metastable
and surface termgl1], resulting in a moderation of isospin states, within the framework of a particular mean-field model
fractionization. All these claims may be well pictured by afor nuclear matter. These guidelines have already been used
description of nuclear systems in terms of a fluid that underbefore for a similar problem in, e.g., Regfl2]. There, an
goes first-order and continuous transitions. analytic continuation was constructed for the Gibbs free en-
In an equilibrium description of a thermodynamic system,ergy with an expansion around the critical point. The diffi-
long-lived metastable states may appear as local extrema ofilties with such an expansion arise from two perspectives.
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FIG. 1. Isotherms in the vs p/ pg plane forT=Tg, the flash temperaturé&,< T, andT=T,, the critical isotherm. On the latter, the critical
point is identified. For the isotherm &< T, pointsA,B, andC lie on the Maxwell construction and identify the range of densities where,
at that temperature, liquid and gas phases may coexist. iatsl E are the two spinodal points at temperatlitdbounding the unstable
region. Point=(G) is at the equilibrium density and at the same pressure as the spinodaE(@jntf the system is quenched in a metastable
state lying betweei andD (E andB) its isobaric decay will lead to a stable density on the bra®eb (F-A) after having overcome the
free energy barrier corresponding to a point in the brabe@ (C-E). The density is expressed as a dimensionless quantity in units of the
density at saturation foF=0, and the pressure is in units of MeV T

If we want to study the decay of a nuclear system after asition in ap versusT phase diagram, ending up at a critical
deep quench inside the metastable region, such as is conjgeeint, where the transition is continuous. The temperalydre
tured to happen after a high-energy collision of heavy ionsassociated with this critical point is an upper bound for the
the point of departure of the process is, in general, not closgange of temperatures in which the two phases coexist. Many
to the critical point; and usually proceeds through nearlyother models for nuclear matter have been stufii€gi all of
isobaric processes, which are not well described by the exthem exhibiting EOS with analogous van der Waals fluidlike
pansion. behavior.

We present an alternate perspective, namely, an expansion Mean-field phase diagrams can be valuable, even below
of the free energy around a spinodal point. For deepghe upper critical dimension of a model, to explore its re-
quenches, the spinodal will lie closer in parameter space tgions of metastability. As is well known from the study of
the initial point of the nucleation process in the phase diafluids, a physical system can get trapped in a local minimum
gram, and the nonequilibrium process that follows is mos®f its free energy, from which it escapes only after a finite
likely controlled by the critical characteristics of the spin- time. In a mean-field approach, the positions of these local
odal. On the other hand, a spinodal expansion can be madginima are bounded in a phase diagram by the spinodal

around the spinodal point at the same pressure, allowing fgdurves, which lie inside the region of phase coexistence. One
an analysis of the isobaric process. usually considers the isothermic, for quenches through pro-

cesses at constant temperature, and adiabatic spinodals,
which can be formally determined by the solutions of
Il. THE MODEL dp/dp=0, keeping constant the appropriate thermodynamic
) ) _ _ variable. The processes of fragmentation and superheating
Let us start with a simple equation of staie0S derived 41 associated with the regiosis/ dp <0 anddp/dp=>0, re-
from a Skyrme-type interactiof.2]. Such an interaction is = gpectively.
short ranged and typically used in nuclear physics. Without ' Note that the Maxwell construction, with end poims
any loss of generality in our study, it is very well suited for 5ndB of Fig. 1, which singles out the true equilibrium states
our purpose of an analytical analysis of scaling properties, corresponding to global minima of the free energy, does not
— a2 3 include these regions. However, to treat fluctuations in the
P= 80"+ 280p"+ pkeT. @ liquid-gas coexistence region we have to extend the validity
This equation has an explicit cubic dependence on thef the mean-field equation of state beyond the equilibrium
density p, in much the same way as in the van der Waalsstates. This will be done through the Gibbs-Landau free en-
fluid. This form for the EOS is typical of a system that canergy expansion. This free energy is usually written as an
exist in a liquid or vapor phase, and suggests the existence, akpansion around the critical poifit2], in which, even in
low density, of a line of first-order liquid-vapor phase tran-the thermodynamic limit, fluctuations of all wavelengths are
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important. Away from the critical point, finite systems such K(M) 1 8agksT 8agksT

as nuclei will also present important fluctuatigii®] and a K "3 1+\1-—%-——% | 5

Gibbs-Landau free energy expansion around some other 0 d o

point rather than the critical one may be of interest. We begin by deriving a law of corresponding states for
Here we present an expansion of the Gibbs-Landau freghis EOS by rescaling the thermodynamical variables with

energy around the spinodal poiridsor E of Fig. 1. We will  their critical values. The critical point in which the liquid-

explore to our benefit the critical nature of points over thevapor coexistence phase disappears and matter starts to be
spinodal line, as already pointed out by several authorgescribed as a gas is obtained via
[14-17. We will calculate the critical exponents associated

with the spinodal points. The question to be answered here is Ip - ﬁ -0 (6)
whether such a study can provide an alternate and natural ap P=pe apz p=p,
dimension-dependent scale of temperatures, other than the
critical temperature. Again, it is worth mentioning at this leading to
point that critical nature of spinodal points has been identi- 2 3
fied in the study of several mean-field versions of classical pe= ﬁ, kT, = E, P = % 5 (7)
models in condensed matter, such as the inconspicuous Ising 6ag 6ag 10833
model[16]. with
kBTc kBTc
Ill. CRITICAL AND FLASH POINTS QPp=——", adg= > - (8)
Pc 6pc
A particularly interesting region, still inside the coexist- Substituting the values af, andas into Eqs.(1) and(5)
ence region, that stands up in the study of nuclear systems (i)sne obtains 8 ' '
that in which a hydrostatic equilibriuttp=0) is still possible
and the nuclear matter incompressibility p'=p3-3p2+3p'T (9)

p and

KM= — (2
dp | p=0 —K(T):1<1+ \ll—é—lT’—L—lT'>, (10
Ko 2 3 3

can be calculated. This region is bounded by D< Ty and
pn < p< po, Where the pointpy, Ty) is obtained as the solu- Wherep’=p/p;, p’=p/pc, andT'=T/T..

tion to p=dp/dp=0 and is known as the “flash” point. This I this particular casep./kgTcpc=1/3, close to the 3/8
point has for coordinates the smallest density and the highe¥glue obtained for the van der Waals gas. Equat®nis an
temperature at which a self-bound system can exist in hydrg@XPression of a law of corresponding states valid across dif-
static equilibrium, and belongs, by definition, to a spinodal. ferent spatial dimensions. .

Here we proceed with the discussion regarding the scaling NOW let us show that a similar law can be obtained when
with critical and flash parameters by studying properties o _evar_lables are rescaled through their flash point values. At
the simple analytical EOS given by E(). Although de- this point,
rived for a three-dimension&BD) system[18], a straightfor- ap
ward reproduction of that reasoning can be used to show that — =p(ps) =0. (11
it has the same functional form in every spatial dimension. 9P| p=p
The relation between its coefficients and those of the inter : " .
action potential are dimension-dependent though. These C(I)r_nposmg the above conditions on Ed), we find

efficients have dimensiorigy]=MP*! and[az]=M*"®. The a a3
density at saturation is obtained as the solutiop(a,) =0, Pt = 4_83' keTs = 8_a3' pi=0 (12)
leading topg=ay/2az. The incompressibilityat saturation _
is obtained to be with
2kgT; ke T;
d =, a3=—>, (13
Km= 3 P
p=0
which when substituted back into Eq4) and(5) leads to
which yields v * o
y P =p2-2p2+pT (14)
2
[ 8agkgT 8agkgT and
K(T)=i<l+ 1_a3_2|3_a3_25)_ (4)
4ag ag a KT 1 —_—
—==(1+y1-T -T), (15)
Ko 2

The limit of K(T) when T—0 is Ko=a3/2a;. Rescaled by
this parameter, the incompressibility can be written as where
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P =plkepiTs, p =plpr, T =TIT;. (16)

Here,p" does not scale with the flash paramgpgrwhich is
identically zero by construction, but witkyp;T; instead.
We can see in this case thEUszg. Equationg10) and

(15) are the incompressibility curves written in terms of
rescaled variables relating to different critical points. Our
findings indicate that the flash temperature can provide a
alternate natural dimension-dependent scale of temperatur,

other than the critical temperature.

IV. SPINODAL LINE

Now we generalize the described properties of the flasl?
point to any point on the spinodal line. For this generaliza-

tion, the constraints of Eq11) have to be modified,

ap

(17)
9P| p=p,

=0, p(Ps) = Ps:

wherePg andpg refer to pointsD andE of Fig. 1 for a given
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- T.-T
77: p pC’ t— C (25)
Pc Te
These reduced parameters are related,
_ _ T
7= -1, TE=S(1-t)-1. (26)
Ps Ts

%et us point out thaty plays the role of an order parameter
or the continuous transition at the critical point, in close
analogy to the van der Waals fluid. By analogy, we will call
n the corresponding spinodal order parameter since its prop-
erties are similar to the proper and critical one. The critical
rder parameters for the points indicated in Fig. 1 are

NA=" \“"@, 7c=0, 7p=- \”6: =" 2\‘"6
(27)
and
MB="Na ME="MDs M= Tk (28)

In terms of the spinodal order parameters, B may

T=T¢=<T, isotherm. The application of the above conditionsbe rewritten as

to Eq. (1) leads to the determination of the coefficients,

2kgpTs— 3P Ps kgT.
8= BPs z s a3:__§ B s (18)
Ps Ps  2ps
which, when substituted into Eqggl) and (5), lead to
P =(1-2A)p" +(BA—2p2+p' T, (19
where
P =plkepsTs, p =plps, T =TIT, (20)
and
P
=— (21)
KgpsTs

Equationg9) and(14) are limiting cases of Eq19) when
A;—1/3 andA;— 0, describing the critical and flash points,
respectively. The second derivative of Hd49), #p"/dp*?
=2(1-3A,) shows the route from a spinodal to the critical
point.

For a given isothernT, pg is obtained analytically from
ap'19p’|y=p,=p' (p' = 2)+T'=0,

ps=p(1 V1 =T/Ty). (22

This spinodal density leads to the spinodal pressure,
P= Po(1 £t(2\1 + 3)), (23)

wheret=1-T/T..
Let us now define the following reduced parameters:

(24)

P =(A+)+tn+(1-3A)77+(1-2A)7.  (29)

Again, this expression also contains the special critical case
in which A;— 1/3 leading us to

p' =1/3+t+ty+(1/3)7°, (30)

which is equal to that presented in REE2Z] if we just relate
their reduced variables to ours.

V. CRITICAL EXPONENTS

The way in which systems approach the critical point in a
mean field theory is very well known. As one approaches the
critical point, the behaviors of thermodynamic functions are
mainly determined by their critical exponents. Since the
spinodal line also presents a critical nature, we will see how
some thermodynamic functions behave near a point on the
spinodal line. Let us start with our generalized scaled equa-
tion of state, given by Eq29).

From Eq.(29), the deviation of the pressure from its spin-
odal value AP=P-P, is given by AP=kgpsT4(t)+t7+(1
-3A)7P+(1-2A) 7°.

The limit t—0 leads to AP=KkgpTJ(1-3A)77+(1
-2A)7°]. This gives us two possibilities. In the ca3g
=T,, A;—1/3 and only the last term &P survives, indi-
cating 6=3 as the critical exponent. If, howevli,# T, AP
is governed by(1-3A,) 770 §=2 is the corresponding spin-
odal exponent.

The critical exponeng, also called the degree of the co-
existence curve, is usually extracted from the behavior of
(Piig—Pgad! Pc=Ceoet?, WhereCeqexis a constant, around the
critical point. 7coex=Piiq ~ Pgas= P~ Pa IS the order parameter
in this case. Proceeding by analogy, the spinodal expgient
is obtained frompE—pD:CSpmoot_B. Equations(27) and (28)

The usual critical reduced parameters are recovered wheshow thatB=1/2 for both critical and spinodal cases.

T,— T, and ps— p., leading to

The isothermal compressibility is given b)K}l
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=-p(dp/dp). By using Eq.(29), K;'=t+2(1-3A)7+3(1 0.0 '

-2A)77. In the caseT,=T,, A,—1/3 andK;*=t+72. By T=091T¢

using the result already obtained fgraround the critical |

point, and assuming#:Ccompt‘V, we havey=1. If, how- 0.04 _

ever, Ty# T, K;* is governed by @1-3A)7, leading toy
=1/2.

The critical exponent for the heat capacity is calculated';
from c,—c,=constx = (NT/p%)(dp/ dp)K;*, giving us a
=0. The spinodal exponent is 1/2.

To summarize our results up to this point, we addressec
the critical nature of the spinodal line, as already pointed out
by several authorgl4-17. Indeed, several derivatives of the
free energy, such as the compressibility and susceptibility,
diverge at any spinodal point. It is important to stress that the
critical exponents at a spinodal point are not equal to their  -0.02 : ‘
values at the critical point itself. For example, for the case of
the mean-field model we are treating, the criticgdinoda)
exponentsa, 3,7y, and 6 are 01/2),1/2(1/2),1(1/2), and FIG. 2. Gibbs-Landau free energy, in dimensionless units and
3(2), respectively. Let us notice that both sets of exponentseferred to its value at the critical point, f&=0.91T, and different
satisfy the Rushbrooke and Widom scaling relationships  pressures, as a function of the reduced dimensionless denditye

full curves are the spinodal expansion, taken around [iot Fig.
a+2B+vy=2, y=p(5-1). (31) 1, and the dashed curves show the expansion around the critical
point. In either expansion, these curves show the same qualitative
behavior. At the pressure that corresponds to the Maxwell construc-
VI. GIBBS-LANDAU FREE ENERGY tion it has a symmetric double-well shape, and the barrier height—
the difference between the local minimum and the neighboring local

The Gibbs-Landau free ener@(p,t, 7) is constructed by ~maximum—is maximum. As the pressure increases toward that of
letting 9G/d5=0, the spinodal poinD an asymmetry builds up and the barrier de-
creases, until it reaches zero at the spinodal point itself: it is the
classical limit of metastability and has zero lifetime.

0.02

(GG,

. — 1_ 1
G(p,t,7) =G, + N(— hy+ §t772+ 5(1 -30)7°

1 — Landau spinodal expansion is that, once we focus on the
+ Z(l —2AJ7" ), (32 analysis of a particular isother(=T,), the spinodal expan-
. sion itself can be done for any arbitrary value of temperature
whereh=p-A,-t is defined in analogy with the usual exter- in the rangeT; <T;<T,.
nal field in ferromagnetic systems presenting phase transition
after quenching andtll is the number of particles. The usual
Gibbs-Landau free energy in terms of the critical order pa-
rameter is obtained by takinf,— T, and p;— p., leading to T=0.91T¢

0.8

g
»
T

TN 3 1
G(p',t,7) =Gy + L(— h'p+ St + —774>, (33)
3 2 4
whereh’=p’-1-3t and the normalization was chosen to
match that of Ref[12]. As is well known, from thep*-field
theory, G(p’,t, ) has the form of the standard double-well

barrier height (MeV)
o
~

potential. The Maxwell constructiofpoints A andB of Fig. 02 i
1, with P,=Pg andG,=Gg) corresponds t&’' =0, when the

wells become equal in depth. Ag’| increases, one well

becomes shallower than the other. When we approach thr ‘ ‘ S~
spinodal point® andE of Fig. 1, the shallow wells of which 0.92 0.94 0.96 0.98 1
they are minima disappear, and they become inflection X

points. Now, the extrema @(p’,t, ) occur at th? points FIG. 3. Height of the barrier to be overcome in the decaying
angG of th? same figure. Note that.the expansion around grocess, in MeV, as a function of the dimensionless pressure
spinodal point brings up a new cubic term, absent from the-p/p,. The full curve shows this height calculated via the spinodal
expansion around the critical point, distorting the double-expansion and the dashed one relies on the critical point expansion.
well depths. In principle, the presence of a cubic term in thealthough qualitatively similar, the spinodal expansion predicts
Landau free energy is a signal of the presence of a first ordgarger barriers and consequently larger lifetimes for the metastable
transition [1,19]. Another feature of the general Gibbs- states.
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VII. APPLICATIONS AND FINAL REMARKS gets farther away from its critical value. It allows the expan-

As an application of this methodology, we may calculateSion center to lie closer to the region in pha_se space where
the mean lifetime of a metastable state by interpreting théhe physical processes are actually happening, both in tem-
free energy difference\G between its value at the local Perature and pressure; the expansion parameters used have
minimum and its maximum at the spinodal point as a potensmaller values and truncation errors are correspondingly
tial barrier to be overcome. The mean lifetime for nucleationsmaller. _ o
processes occurring at constant pressure will then be propor- 10 Summarize, we presented in this paper an alternate
tional to exg—AG/KT). We consider isobaric nucleation pro- Perspective for the gnalyas of the decay of metastable states,
cesses occurting ap=xp, where x=1,0.98,0.95,0.93. namely, an expansion of the freel energy 'ar(')und a splnodal
These different pressures lie betwegg and pa. The iso- point. For deep quen(_:h_e_s, thg spinodal will I|e_ closer in pa-
therm chosen i§=0.91T,. For comparison, Fig. 2 shows the rameter space to the initial point of th_e r!ucleatlon process in
Gibbs-Landau free energies expanded around the criticdl'® Phase diagram, and the nonequilibrium process that fol-

point together with those expanded around the spinodal poiﬂ?WS is most likely controlled by the critical characteristics
D of Fig. 1. Notice that fox=pa/pp the isobaric process ©f the spinodal. On the other hand, an expansion of this kind

coincides with the Maxwell construction and therefo@, ~ ¢an be made around the spinodal point at the same pressure,
andGg present symmetric extrema aroune 0 for the spin- aIIo_Wl_ng for an anz_slly5|s of_ |sqbar|<_: processes. Such_ a de-
odal point expansion ang=0 for the critical point expan- scription may also find ap_p_llcatlo_ns in the study of multifrag-
sion. Asx increases, the distortion of the double-well depthMentation, where the critical signature of the power law
takes place. In the particular case1, the global minimum Yiéld of IMF may well be due to the vicinity of a spinodal
of the free-energy corresponds to the pdbf Fig. 1. The ~ Point, rather than to a continuous transition.
function 7(%) is given in Eq.(26).

In Fig. 3 we show a plo_t of the barriers as a fgnction of ACKNOWLEDGMENTS
the pressure, compared with what would be obtained via an
expansion around the critical point. One can see that this last The authors acknowledge partial financial support from
expansion underestimates the height of the barrier, leading the Brazilian agency Conselho Nacional de Desenvolvi-
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