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A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian con-
tains a scalarSand a vectorV quadratic potentials in the radial coordinate, as well as a tensor potentialU linear
in r. Setting either or both combinationsS=S+V andD=V−S to zero, analytical solutions for bound states of
the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particu-
lar cases are discussed, devoting a special attention to the nonrelativistic limit and the caseS=0, for which
pseudospin symmetry is exact. We also show that the caseU=D=0 is the most natural generalization of the
nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combi-
nations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot
be described in the framework of the relativistic harmonic oscillator in the pseudospin limit.
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I. INTRODUCTION

The harmonic-oscillator potential for relativistic spin 1/2
particles has received considerable attention by many
groups. The subject is of broad interest since the relativistic
harmonic oscillator plays a role in several areas, namely, in
nuclear and particle physics. In particular, it is the central
potential of the nuclear shell model, and it has also been used
as the binding(and confining) two-body potential for quarks,
with applications in meson and baryon spectroscopy.

A special type of harmonic-oscillator potential is achieved
by replacing the linear momentum operatorp in the Dirac
equation byp− i bmvr, whereb is the usual Dirac matrix.
This replacement results in a second order differential equa-
tion for the upper and lower components of the Dirac spinor
containing a quadratic potential in the radial coordinater.
Besides the quadratic potential, that second order differential
equation contains a constant spin-orbit term, meaning that, in
the nonrelativistic limit, in which only the upper component
survives, the degeneracy of the energy levels is different
from the one found in the nonrelativistic harmonic oscillator.
As explained in the following section, that potential may
arise from a Lorentz tensor interaction in spinor space. In
Ref. [1] we give a list of references where this kind of po-
tential was initially studied. Moshinsky and Szczepaniak[2]
christened itDirac oscillator and renewed to a great extent
the interest in the topic. The Dirac oscillator has been applied
to quark confinement and supersymmetry[3] and hadron
spectroscopy[4]. Its group symmetries have been studied in
Ref. [5], its solutions in 2+1 dimensions and coupling to
magnetic field were worked out in Ref.[6], and finally its
wave packets and thermodynamical properties in 1+1 di-
mensions were studied in Ref.[7].

Another possibility to introduce a harmonic potential in
the Dirac equation is by mixing vector and scalar harmonic

potentials with equal magnitude and sign, aiming at obtain-
ing a quadratic potential in the Schrödinger-like second order
differential equation for each spinor component[8]. Kukulin
et al. [9] generalized the problem by considering a vector-
scalar harmonic potential plus the Dirac oscillator. More re-
cently, there has been a wide interest in relativistic potentials
involving mixtures of vector and scalar potentials with op-
posite signs. The interest lies on attempts to explain the pseu-
dospin symmetry in nuclear physics. Chenget al. [10], using
a Dirac Hamiltonian with scalarS and vectorV potentials
quadratic in space coordinates, found a harmonic-oscillator-
like second order equation which can be solved analytically
for D=V−S=0, as considered before by Kukulin[9], and
also forS=S+V=0. Very recently, Ginocchio solved the tri-
axial, axial, and spherical harmonic oscillators for the case
D=0 and applied it to the study of antinucleons embedded in
nuclei [11]. The caseS=0 is particularly relevant in nuclear
physics, since it is usually pointed out as a necessary condi-
tion for occurrence of pseudospin symmetry in nuclei
[12,13].

In this work we shall consider a Dirac Hamiltonian that
generalizes the previous ones by simultaneously introducing
radial quadratic potentials forD, S and a linear radial poten-
tial for U, the tensor potential defined in the following sec-
tion. We will study the cases withD=0 andS=0, for which
analytical bound solutions do exist, including also, as par-
ticular cases, the Kukulin potential and the original Dirac
oscillator. The eigenenergies and eigenfunctions are obtained
analytically in the general case. Next we shall analyze par-
ticular cases and pay a special attention to the nonrelativistic
limits and to the caseU=S=0, for which pseudospin sym-
metry is exact and there are still bound states, as opposed to
what happens with nuclear mean fields. From our analysis
we also show that the caseU=D=0 is a more natural way to
introduce a harmonic oscillator in the Dirac equation than the
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usual way withUÞ0 andS=D=0. The eigenenergies have
the usual degeneracy of the nonrelativistic case and the upper
component a form similar to the nonrelativistic wave func-
tion. Actually, by letting the harmonic-oscillator frequency to
become small compared with the mass, we obtain exactly the
eigenvalues and wave functions of the nonrelativistic har-
monic oscillator.

We also present the node structure of the radial wave
functions, motivated by a study carried on in Ref.[14] for V
and S radial potentials vanishing asr →`. In order to find
reasons for the unusual radial node structures in some par-
ticular cases, we obtain the relations between the radial
nodes of the upper and lower components of the Dirac
spinors by inspection of their analytical forms, and illustrate
those relations by plots of several of those components. We
draw conclusions regarding the impossibility to describe the
so-called intruder states by harmonic-oscillator potentials
with exact pseudospin symmetry.

This paper is organized as follows. In Sec. II we present
the general Dirac equation with scalar and vector potentials
with harmonic-oscillator form, proportional tor2, and a ten-
sor potential, linear inr. We then obtain and discuss the
solutions of this equation forD=0 andS=0, respectively.
The Dirac oscillator is presented in Sec. III A. In Sec. III B
and III C we look into the particular casesD=0 andS=0 in
the absence of the tensor potential. We analyze the nonrela-
tivistic limits, showing that such a limit does not exist in the
caseS=0, up to first order in the oscillator frequency divided
by the mass. This result is connected to the pseudospin sym-
metry, as discussed in more detail in Sec. IV. In the same
section we also present an analysis of the intruder states and
show the impossibility to describe them within the harmonic
oscillator in the case of exact pseudospin symmetry. Finally,
our conclusions are summarized in Sec. V.

II. GENERALIZED RELATIVISTIC HARMONIC
OSCILLATOR

The time-independent Dirac equation for a spin 1/2 fer-
mion with energyE, in the presence of a potential, reads

HDC = EC, s1d

where the Dirac Hamiltonian is

HD = a ·p + bm+ V. s2d

In this Hamiltonian,m is the fermion mass,p is the momen-
tum operator, anda andb are 434 matrices which, in the
usual representation, take the form

a = S0 s

s 0
D, b = S I 0

0 − I
D . s3d

Here s is a three-vector whose components are the Pauli
matrices, andI stands for the 232 identity matrix. The ma-
trix potential V in Eq. s2d may, in general, be written as a
linear combination of sixteen linearly independent matrices,
classified according to their properties under Lorentz trans-
formations: scalar, pseudoscalar, vector, pseudovector, and
tensor. In the following, we exclude the pseudoscalar and

pseudovector potentials, only considering spherically sym-
metric potentials, for which the total angular momentum of
the system is constant. In spite of being calledspherically
symmetric potentials, they do not necessarily depend only on
the radial coordinater = ur u, because of their matrix structure.
Indeed, the following potential:

Vsrd = Vsrd + bSsrd + iba · r̂Usrd s4d

is spherically symmetric in this sense, because it commutes
with the total angular momentumJ=L +S, whereL and S
are the orbital and spin angular momentum operators, respec-
tively. In the last term,r̂ =r / r, and the radial functions in Eq.
s4d are named after the properties their respective terms have
under Lorentz transformations:V corresponds to the time
component of a vector potential,S is a scalar potential, and
U is a tensor potential. It is important to point out that the
Dirac equation for the potential in Eq.s4d is invariant under
spatial inversion, hence the eigenstates have definite parity.

It is worth showing where the tensor character of the last
term in Eq.(4) comes from. The interaction Lagrangian for
the tensor coupling of a Dirac spinorC with an external field
is

f

4M
C̄smnCfmn, s5d

wherefmn=]mfn−]nfm, smn=si /2dfgm ,gng, and gn are the
Dirac matrices. Considering only the time component of the
vector potentialfm, f0, the corresponding term leads to the
following potential in the single-particlesDiracd Hamil-
tonian:

i
f

2M
ba · ¹ f0. s6d

For a static radial potentialf0, the tensor potentialUsrd in
Eq. s4d is Usrd= f / s2Mdsdf0/drd. This term can be used to
describe a particle with an anomalous magnetic moment. In-
deed, the anomalous magnetic interaction has the form
−imba ·¹wsrd, wherem is the anomalous magnetic moment,
in units of Bohr magnetons, andw is the electric potential,
i.e., the time component of the electromagnetic vector poten-
tial, Am. Therefore, the interaction −imvba ·r snotice thatb
and a are now written in reverse orderd, which defines the
“Dirac oscillator” mentioned above, could be conceived as
an anomalous magnetic interaction generated by an electro-
static harmonic potential.

In summary, for this type of potentials, the Hamiltonian,
the parity operator, and the total angular momentum form a
complete set of commuting observables. Accordingly, the
eigenstates can be classified by the paritys±d, by the total
angular momentumj , and its third componentm, quantum
numbers. Under these circumstances it is natural to use
spherical coordinates and the spinor, which is the solution of
the Dirac equation(1), can be generally written as
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C jm
± srd =1 i

gjl
± srd

r
Y jm

± sr̂d

f
jl̃

± srd

r
Y jm

7 sr̂d 2 . s7d

In this expression,Y jm are the so-called spinor spherical har-
monics. They result from the coupling of the two-
dimensional spinors to the eigenstates of orbital angular mo-
mentum and form a complete orthonormal set. The orbital

angular momentum quantum numbersl and l̃ refer to the
upper and lower components, respectively. The normaliza-
tion of the Dirac spinor in Eq.s7d implies the following
normalization condition on the upper and the lower radial
functions:

E
0

`

sugj l
± u2 + uf

jl̃

± u2ddr = 1, s8d

so thatgj l
± and f

jl̃

±
should be square-integrable functions.

Using the operatora ·p in the spherical-polar form, Eq.
(1) can be brought to the form

H− ia · r̂F ]

] r
+

1

r
s1 + b KdG + bfm+ Ssrdg + Vsrd

+ iba · r̂UsrdJC = EC, s9d

where we have introduced the operatorK=−bsS ·L +1d
whose eigenvalues arek= ± s j +1/2d. Here S refers to the
434 matrix whose block diagonal elements are the Pauli
matrices,s, and whose off-diagonal blocks are zero. More
explicitly, the spin-orbit coupling quantum numberk is re-
lated to the orbital angular momentum quantum number by

k =5
− sl + 1d=− s j + 1/2d, j = l + 1/2 sk , 0d

aligned spin

l= + s j + 1/2d, j = l − 1/2 sk . 0d
unaligned spin.

s10d

Actually, the quantum numberk completely determinesj , l,

l̃ and, thus, the paritys−1dl:

j = uku−
1

2
,

l = uku +
1

2
S k

uku
− 1D ,

l̃ = l −
k

uku
. s11d

Notice thatl̃ is given by the same formula asl, but with −k
instead ofk. Accordingly, the Dirac spinors in Eq.s7d can be
labeled just withk andm, i.e.,

Ckmsrd =1 i
gksrd

r
Ykmsr̂d

fksrd
r

Y−kmsr̂d 2 . s12d

Using the propertys ·r̂Ykm=−Y−km, the Dirac equation in Eq.
s1d may be reduced to a set of two coupled first order ordi-
nary differential equations for the radial upper and lower
componentsgk and fk, namely,

F d

dr
+

k

r
+ UsrdGgksrd = fE + m− Dsrdgfksrd, s13d

F d

dr
−

k

r
− UsrdG fksrd = − fE − m− Ssrdggksrd, s14d

where we have introduced the “sum” and the “difference”
potentials defined by

S = V + S and D = V − S. s15d

Using the expression forfk obtained from Eq.(13) and
inserting it in Eq.(14) we arrive at the following second
order differential equation forgk:

H d2

dr2 −
ksk + 1d

r2 +
D8

E + m− DsrdF d

dr
+

k

r
+ UsrdG

− 2k
Usrd

r
+ U8srd − U2srdJgksrd

= − fE − m− SsrdgfE + m− Dsrdggksrd, s16d

where the prime means derivative with respect tor. In a
similar fashion, i.e., using again both Eqs.s13d and s14d, a
second order differential equation for the lower component is
obtained:

H d2

dr2 −
ksk − 1d

r2 +
S8

E − m− SsrdF d

dr
−

k

r
− UsrdG

− 2k
Usrd

r
− U8srd − U2srdJ fksrd

= − fE − m− SsrdgfE + m− Dsrdgfksrd. s17d

In this paper we shall consider harmonic-oscillator poten-
tials, meaning that potentialsS andD are quadratic inr and
the potentialU linear in r. With all these potentials in place,
Eqs.(16) and(17) have to be solved numerically because of
the quartic potentials inr arising from the productfE−m
−SsrdgfE+m−Dsrdg and the terms with derivatives ofD and
S. However, either forD=0 or for S=0 the solutions are
analytical since, in the first case, there are only quadratic
potentials in the second order equation forgk [Eq. (16)], and,
in the second case, the same happens in Eq.(17) for fk. The
caseD=U=0 allows us to get, in the nonrelativistic limit, the
spectrum and wave functions of the central nonrelativistic
harmonic oscillator, i.e, Eq.(16) becomes the radial
Schrödinger equation for the three-dimensional harmonic os-
cillator. For U=0, both casesS=0 andD=0 correspond to
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SU(2) symmetries of the Dirac equation[15,16]. The case
S=0 is related to the pseudospin symmetry in nuclei.

The aim of this paper is to study such analytical solutions
and, in particular, to draw conclusions on the required con-
ditions for the pseudospin symmetry to show up.

Let us first consider

Ssrd = 1
2mv1

2r2, Dsrd = 0, Usrd = mv2r , s18d

where v2 sa real numberd is the frequency related to the
tensor potentialU andv1 sa non-negative number1d the fre-
quency related to the “sum” potentialS. Actually, this case
was already considered by Kukulinet al. [9] for v2.0. The
possibility of Dirac bound states with a linear tensor poten-
tial, which can be unbounded from below, is due to the ap-
pearance ofU2 in Eqs.(16) and(17). It is noteworthy that the
different signs ofv2 give rise to different possibilities of
signs for the spin-orbit coupling. Equation(16) for the upper
component takes the form

H d2

dr2 −
ksk + 1d

r2 − F1

2
mv1

2sE + md + m2v2
2Gr2 − s2k − 1dmv2

+ sE2 − m2dJgksrd = 0. s19d

It is convenient to introduce the following new variable and
parameters:

y =ÎmsE + md
2

Vr2 = a2r2, s20d

V =Î 2m

E + m
v2

2 + v1
2, s21d

l =
s2k − 1dmv2 − sE2 − m2d

a2 , s22d

which allows us to write Eq.s19d in the simpler form

H4y
d2

dy2 + 2
d

dy
−

lsl + 1d
y

− y − lJgksyd = 0, s23d

since ksk+1d= lsl +1d. An asymptotic analysis suggests
searching for solutions of the type

gksyd = Ae−y/2ysl+1d/2Gsyd, s24d

whereGsyd is a function yet to be determined andA a nor-
malization constant determined by Eq.s8d. Inserting this ex-
pression back into Eq.s23d, the equation forGsyd reads

Fy
d2

dy2 + Sl +
3

2
− yD d

dy
−

1

2
Sl +

3

2
+

l

2
DGGsyd = 0.

s25d

The solutions of this equation, which guarantee that
limy→`gksyd=0, are the generalized Laguerre polynomials
of degreen, Ln

psyd, where

n = −
1

2
Sl +

3

2
+

l

2
D , s26d

p = l +
1

2
. s27d

From Eqs.s26d and s20d–s22d, we can get immediately the
eigenenergies, which are discrete sincen is an integer greater
than or equal to zero:

E2 − m2 − s2k − 1dmv2

= S2n + l +
3

2
DÎ2msE + mdv1

2 + 4m2v2
2. s28d

If we square Eq.s28d the resulting algebraic equation is quar-
tic in E. For particular values ofn and k sremember thatk
determines uniquelyld we can solve this equation with re-
spect toE and get the energy of the level with quantum
numberssn,kd or, using the standard spectroscopic notation,
the levelnlj. With the help of the programMATHEMATICA we
were able to get analytical expressions for those solutions. In
general, it can be shown that there are at most two real bound
state solutions of Eq.(28), one with a positive or zero bind-
ing energy and the other one with a negative binding energy.
As we will see later, it can happen that only positive binding
energy solutions exist. When both solutions exist, we con-
sider the one with positive binding energy, i.e., for which
E.m.

Figure 1 displays the energy for some levels, as a function
of v2, for a fixedv1 andm. From this figure we see that for
v2=0 the energy levels withsn=1,l =2d are degenerate with
the level with sn=2,l =0d and have no spin-orbit splitting.
This is a manifestation of thes2n+ ld degeneracy of the lev-

1In fact, this condition can be relaxed to demand thatv1 be just a
real number, since the results do not depend on the sign ofv1.

FIG. 1. Energy levels forD=0 with v1=2 andm=10 as a func-
tion of v2.
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els which can be inferred from Eq.(28) when v2 is set to
zero. We will further elaborate on this point in the following
section.

The spectrum for the first seven levels forv2=2 andv1
=1 is shown in Fig. 2, where we see that they are, in general,
nondegenerate.

This feature of the spectrum can be understood by looking
at Eq. (28), since when the tensor potential is presentsv2

Þ0d we have always ak-dependent term(a spin-orbit term)
that removes thes2n+ ld degeneracy, which is also character-
istic of the nonrelativistic harmonic-oscillator spectrum.

It is instructive to get the nonrelativistic limit of Eq.(28).
We obtain this limit by lettingv1/m andv2/m become very
small. In this limit, sE−md /m=E/m also becomes very
small, andE+m,2m, so that

E = S2n + l +
3

2
DÎv1

2 + v2
2 + Sk −

1

2
Dv2. s29d

The solution of Eq.(19), replacingy by a2 r2, is

gksrd = A expS−
1

2
a2r2Dsa2r2dsl+1d/2Ln

l+1/2sa2r2d. s30d

For the lower component, the first order differential equation
in Eq. s13d allows us to write

fksrd =
1

E + m
F d

dr
+

k

r
+ mv2rGgksrd. s31d

Using the recursion relations for the generalized Laguerre
polynomialsssee, for example, Ref.f17gd we get, fork,0,

fksrd =
Aa

E + m
expS−

1

2
a2r2Dsa2r2dsl+2d/2FSmv2

a2 + 1D
3Ln

l+1/2sa2r2d − 2 Ln
l+3/2sa2r2dG s32d

and, fork.0,

fksrd =
Aa

E + m
expS−

1

2
a2r2Dsa2r2d1/2FSn + l +

1

2
DS1 +

mv2

a2 D
3Ln

l−1/2sa2r2d + sn + 1dS1 −
mv2

a2 DLn+1
l−1/2sa2r2dG . s33d

Since the generalized Laguerre polynomials of degreen
have n distinct zeros[17] we may conclude thatgk has n
nodes, and the expression forfk suggests that it hasn nodes
for k,0 andn+1 for k.0,

nf = Hng, k , 0

ng + 1, k . 0.
s34d

This is indeed verified by the radial functions for the states
2s1/2, 1d3/2, and 1d5/2 plotted in Fig. 3.

Next, let us consider the other case

Ssrd = 0,Dsrd = 1
2mv1

2r2, Usrd = mv2r , s35d

wherev2 is again the frequency related to the tensor poten-
tial U, and v1 is the frequency now related to the “differ-
ence” potential,D. We now start from the equation for the
lower component, Eq.s17d, and introduce the new variable
and parameters defined by

ỹ =ÎmsE − md
2

Ṽr2 = ã2r2, s36d

Ṽ =Î 2m

E − m
v2

2 + v1
2, s37d

l̃ =
s2k + 1dmv2 − sE2 − m2d

ã2 . s38d

The resulting equation forfk in these variables is formally
the same as Eq.(23). Following the same steps as before, to
guarantee thatfksrd vanishes whenr →`, we must have

ñ = −
1

2
S l̃ +

3

2
+

l̃

2
D , s39d

where ñ is an integer greater than or equal to zero andl̃ is
given by Eq.s11d. This last quantum number is called pseu-
doorbital angular momentum quantum number in view of its
role in the pseudospin symmetry, which will be discussed in
Sec. IV. Similarly to Eq.s10d for k, we may definek̃ in

terms of l̃ and s̃=1/2 spseudospin quantum numberd:

k̃ =5− sl̃ + 1d=− s j + 1/2d, j = l̃ + 1/2 sk̃ , 0d
aligned pseudospin

l̃= + s j + 1/2d, j = l̃ − 1/2 sk̃ . 0d
unaligned pseudospin.

s40d

In other words,k̃=−k is a parameter describing the coupling
between the pseudo-orbital angular momentum and the pseu-
dospin.

From Eq.(39) we get the following equation for the en-
ergy:

FIG. 2. Energy spectrum forD=0 with v1=2, v2=1, andm
=10.
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E2 − m2 + s2k̃ − 1dmv2

= S2ñ + l̃ +
3

2
DÎ2msE − mdv1

2 + 4m2v2
2. s41d

Again, there are at most two real solutions of this equation.
For positivev2 and for most cases whenv2,0, it can be
shown that there is always a positive binding energy solu-
tion. This is the solution we will take in the following ex-
amples. Some energy levels forv1=2 andv2 in a range from

0 to 1 are shown in Fig. 4. Forv2=0 there is as2ñ+ l̃d
degeneracy of what we might call a pseudoharmonic oscilla-
tor. For a nonvanishingv2 this degeneracy is removed as we
can also see in Fig. 5. In these figures we use the spectro-

scopic notationñl̃ j , where states withl̃ =0,1,2, . . . are de-

noted by s̃, p̃,d̃, . . ., respectively. The ground state forv1

=2 andv2=0 is the state 0˜s̃1/2, but we see from Fig. 4 that it

is replaced by the state 0˜p̃1/2 as the ground state whenv1
=2 andv2*0.3.

The nonrelativistic limit of the eigenvalue equation in Eq.
(41) is again reached by decreasingv1 and v2 such that
v1/m!1 andv2/m!1. If we solve the quartic eigenvalue
equation forE/m and expand it in powers ofv1/m andv2/m
we get, in lowest order of these expansion parameters,

E = S2ñ + l̃ +
3

2
Duv2u− Sk̃ −

1

2
Dv2 +

1

4m
S2ñ + l̃ +

3

2
DF2ñ + l̃

+
3

2
− signsv2dSk̃ −

1

2
DGv1

2. s42d

This equation, valid forS=0 and v2Þ0, shows that the
effect of the harmonic-oscillatorD potential is only of sec-
ond order in a nonrelativistic expansion. This important re-

FIG. 3. Radial wave functions forD=0 of the
states(a) 2s1/2, (b) 1d3/2, and (c) 1d5/2 with v1

=2, v2=1, andm=10.

FIG. 4. Energy levels forS=0 with v1=2 andm=10 as a func-
tion of v2.
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sult sheds light on the relativistic nature of the pseudospin
symmetry to be discussed later in this paper.

A comparison between Figs. 1 and 4 shows that the effect
of the tensor potential(seen by the variation ofv2), is bigger
for the caseS=0 than is forD=0. As a consequence, we still
see in Fig. 5 a quasidegeneracy for some levels, in particular,

those with the same value ofñ and that havel̃ = k̃ (aligned
spin). This can be explained by the energy dependence on
v1

2/m in Eq. (42) (for small values ofv1/m and v2/m), a
number smaller thanv2, meaning that in this case we are
near the usual Dirac oscillator(v1=0 andv2Þ0), where the
states with aligned spins j = l +1/2d and the samen are all
degenerate, as we will discuss in the following section.

The lower component radial wave function is

fksrd = B exps− 1
2ã2r2dsã2r2dsl̃+1d/2Lñ

l̃+1/2sã2r2d, s43d

whereB is again a normalization constant, determined by Eq.
s8d. As already commented, the degree of the generalized
Laguerre polynomial determines its number of zeros, so that
ñ gives the number of nodes infk.

The upper component for the set of potentials in Eq.(35)
is obtained from the first order differential equation in Eq.
(14), i.e.,

gksrd = −
1

E − m
F d

dr
+

k̃

r
− mv2rG fksrd, s44d

whose explicit form is given, using again the recursion rela-
tions of the Laguerre polynomials, fork̃,0, by

gksrd = −
Bã

E − m
expS−

1

2
ã2r2Dsã2r2dsl̃+2d/2FS1 −

mv2

ã2 D
3Lñ

l̃+1/2sã2r2d − 2 Lñ
l̃+3/2sã2r2dG , s45d

and, fork̃.0,

gksrd = −
Bã

E − m
expS−

1

2
ã2 r2Dsã2 r2dl̃/2FSñ + l̃ +

1

2
D

3S1 −
mv2

ã2 DLñ
l̃−1/2sã2r2d + sñ + 1d

3S1 +
mv2

ã2 DLñ+1
l̃−1/2sã2r2dG . s46d

These functions are analogous to thegk and fk functions
of the previous case, so from the above discussion we can
conclude that the number of nodes of the radial functions for
S=0 is such that(remember thatk̃=−k)

nf = Hng − 1, k , 0

ng, k . 0.
s47d

This is illustrated in the plots ofgk and fk in Fig. 6.
Adopting the definition ofñ as the number of nodes of the
lower component whenv2=0 andS=0, we see that we can

convert from the notationn lj to ñl̃ j for the same state by

setting n→ ñ=n, l → l̃ = l −1 when k.0 and n→ ñ=n−1,l

→ l̃ = l +1 whenk,0.
We have noticed, however, that the radial function node

structure depends on the ratiov1/v2. If v2 becomes signifi-
cantly larger thanv1, in the case ofD=0 the structure of the
nodes is the one of the normal Dirac oscillator, the same as in
Eq. (47), as it will be discussed in the following section.

III. PARTICULAR CASES

Now we will present some results for the three particular
casesv1=0, v2=0 (D=0 ando=0)

A. Casev1=0

As mentioned before, the expression “Dirac oscillator”
applies to this case whenv2.0 [2]. Here we also consider
the possibility thatv2 be negative. From Eq.(19) when v1
=0, it is straightforward to conclude that the equation for the
upper radial wave function of the Dirac oscillator is a
Schrödinger-like equation with a harmonic-oscillator poten-
tial and a spin-orbit coupling term.

The eigenenergies are readily obtained taking the limit
v1→0 in Eq. (28), which yields

E2 = m2 + muv2uF2SN +
3

2
D + sgnsv2ds2k − 1dG , s48d

where the quantum numberN=2n+ l was introduced. There
are, in generalswhen the right-hand side of the equation is
positived two symmetric real solutions for this equation. Here
we take the positive energy solution. Note that Eq.s48d re-
sults from the equation for the upper component,gk. We can
get the nonrelativistic energy by settingv1=0 in Eq. s29d.
Therefore, in this limit we obtain for the energyE the quan-
tum mechanical resultuv2usN+3/2d plus the spin-orbit con-
tribution 1

2s2k−1dv2. This term removes the nonrelativistic
degeneracy related to levels with the sameN in such a way
that changing the sign ofv2 leads to a order reversal of the

FIG. 5. Energy spectrum forS=0 with v1=2, v2=1, andm
=10.
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levels with the samesn, ld and j = l ±1/2 quantum numbers.
For v2.0, depending on whether the quantum numberk is
positive or negative, the energy is given byfsee Eq.s10dg

E2 = m2 + 4mv2Sn + l +
1

2
D, k . 0, s49d

E2 = m2 + 4mv2n, k , 0. s50d

Thus, for a given quantum numbern, all states with aligned
spin j = l +1/2sk,0d and arbitrary orbital angular momen-
tum are degenerate. This degeneracy, as well as thesn+ ld
degeneracy fork.0, is illustrated in Fig. 7, in which the
spectrum forv2=1 is presented.

On the other hand, the eigenenergies of the Dirac oscilla-
tor Hamiltonian may also be determined from Eq.(41),
which was obtained from the second order equation for the
lower componentfk, very similar to Eq.(19). Again taking
the limit v1→0 in Eq. (41) one obtains

E2 = m2 + muv2uF2SÑ +
3

2
D + sgnsv2ds2k + 1dG , s51d

whereÑ=2ñ+ l̃ is a new quantum number. The term 2k+1
comes from the spin-orbit interaction for the lower compo-
nent. Depending on whether the quantum numberk is posi-
tive or negative, the energy, forv2.0, is given by

E2 = m2 + 4mv2Sñ + l̃ +
3

2
D, k . 0, s52d

E2 = m2 + 4mv2sñ + 1d, k , 0. s53d

Of course, the eingenvalue equations in Eqs.(52) and(53)
should lead to the same energy values as Eqs.(49) and(50).
Remembering that, fork,0, one hasl̃ = l +1, and, fork.0,

l̃ = l −1, from the comparison of those two sets of equations
one concludes that

nf = Hng − 1, k , 0

ng, k . 0,
s54d

since the quantum numbersn and ñ are equal to the number
of nodes of the upper and lower radial functions, denoted by

FIG. 6. Radial wave functions forS=0 of the

states(a) 1̃p̃1/2s2s1/2d, (b) 1̃p̃3/2s1d3/2d, and (c)

0̃f̃5/2s1d5/2d with v1=2, v2=1, andm=10.

FIG. 7. Energy spectra for the normal Dirac oscillatorsv1=0d
with v2=1 andm=10.
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ng andnf, respectively. Notice thatngù1 for k,0. This can
also be inferred from the analytical form of the radial upper
and lower functions for the Dirac oscillator. These compo-
nents are readily obtained from Eqs.s30d, s32d, and s33d,
noticing that, whenv1=0, the square of the parametera,
defined in Eq.s22d, is equal tomv2 sv2.0d, giving

gksrd = A exps− 1
2a2r2dsa2r2dsl+1d/2Ln

l+1/2sa2r2d s55d

for the upper component, and

fksrd = −
2Aa

E + m
expS−

1

2
a2r2D

3sa2r2dsl+2d/2Ln−1
l+3/2sa2r2d sk , 0d, s56d

fksrd =
2Aa

E + m
expS−

1

2
a2r2Dsa2r2d1/2Sn + l +

1

2
D

3Ln
l−1/2sa2r2d sk . 0d s57d

for the lower componentfwe have used the relation
Ln

a−1sxd−Ln
asxd=−Ln−1

a sxd f17gg.
As we have seen before, the degree of these Laguerre

polynomials is identified with the principal quantum number
of the upper and lower radial functions, and thus with their
number of nodes, so that the relations in Eq.(54) follow
immediately.

In this casesv2.0d Eq. (54) implies a peculiar node
structure for the ground states1/2 sk=−1d. This state has a
nodesng=1d in the upper component, as we can see in Fig. 8,
whereas the nonrelativistic ground state wave function is
nodeless.

If v2,0, the infinite degeneracy referred to above occurs
for k.0, i.e., for nonaligned spins. In addition, the relation
between the valuesng andnf is modified:nf =ng+1 for k.0
andnf =ng for k,0. It is worth noticing that the structure of
the radial nodes forv2 positive(negative) is exactly the same
for the caseS=0 sD=0d discussed in the preceding section.
This same node structure could again be inferred from the
form of the radial wave functions whenv2,0, which can be
obtained once more from Eqs.(30), (32), and (33), setting
a2=−mv2. We note that now the ground states1/2 has zero

nodes in the upper component, and therefore, in the nonrel-
ativistic limit, when the lower component disappears, the
wave function has the same node structure as the nonrelativ-
istic harmonic-oscillator ground state wave function. Fur-
thermore, from Eq.(51) we see that, forv2,0, the sign of
the spin-orbit interaction is inverted, such that states with
nonaligned spinsk.0d have now lower energy than states
with the samel and aligned spin. This is the situation in
atomic physics, where, for example, the statesp3/2 have
higher energy than the statesp1/2. The opposite happens in
nuclear physics, where states with aligned spin are lower in
energy than nonaligned spin states, which in the present case
happens whenv2.0.

We present in Fig. 9 the radial wave functions for the
states 2s1/2, 1d3/2, and 1d5/2. From these plots we see that the
upper components for the spin-orbit partners(samen, l) are
equal [see Fig. 9(b) and 9(c), since both are given by the
same radial wave function, Eq.(55). For pairs with the same

l̃ (pseudospin partners) the lower components are the same,
up to a constant factor. This can be seen from Eqs.(57) and
(56), since the pseudospin partners have quantum numbers
sn, ld sk,0d and sn−1,l +2d sk.0d. This particular behav-
ior could be related to a particular symmetry of the Dirac
Hamiltonian in Eq.(2) with v1=0, as is the case with the
pseudospin symmetry, to be discussed in Sec. IV.

B. Casev2=0 and D=0

In this subsection we set to zero bothD andU potentials.
Then, Eq. (19) with v2=0 leads to the following second
order differential equation for the upper component[note
that ksk+1d=,s,+1d, irrespective of the sign ofk]:

F d2

dr2 −
lsl + 1d

r2 −
msE + md

2
v1

2r2 − sm2 − E2dGgksrd = 0.

s58d

The solutions of this equation are given by Eq.(30),
wherea is given by Eqs.(20)–(22) in which v2 is set to zero.
The upper and lower radial functions for two levels corre-
sponding tok with opposite signs are plotted in Fig. 10.
From this figure we see that the node structure is the same as
given in the preceding section whenv2Þ0 [Eq. (34)].

The energy eigenvalues are readily obtained from Eq.(28)
by just taking the limitv2→0, yielding

sE − mdÎE + m

2m
= v1S2n + l +

3

2
D sn = 0,1,2, . . .d.

s59d

This equation for the energy, valid forD=0, shows explicitly
that there is no spin-orbit term and that states withj
= l ±1/2 aredegenerate. We can prove that this equation has
only one real solution, and it has to be such thatE.m. To
begin with, since the right-hand side is always positive, it is
clear that any real solution must be greater thanm, otherwise
the left-hand side would be negative. We prove that there is
only one of such solutions by squaring Eq.s59d and using the
Descartes’ rule of signs. This rule states that the number of

FIG. 8. Ground state radial wave functions for the normal Dirac
oscillator with the same parameters as in Fig. 7.

PSEUDOSPIN SYMMETRY AND THE RELATIVISTIC… PHYSICAL REVIEW C 69, 024319(2004)

024319-9



FIG. 9. Radial wave functions for the normal
Dirac oscillator of the states(a) 2s1/2, (b) 1d3/2,
and (c) 1d5/2 with the same parameters as in
Fig. 7.

FIG. 10. Radial wave functions for the poten-
tial Ssrd= 1

2mv1
2r2, with U=D=0 for the states

2s1/2, 1d3/2, and 1d5/2, respectively, withv1=2
andm=10.
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positive real roots of an algebraic equation with real coeffi-
cientsakx

k+¯ +a1x+a0=0 is never greater than the number
of changes of signs in the sequenceak, . . . ,a1,a0 snot count-
ing the null coefficientsd and, if less, then always by an even
numberf26,27g. Since we can write the square of Eq.s59d as

x3 + 2x2 − a2 = 0, s60d

with x=sE−md /m and a=Î2v1s2n+ l +3/2d /m, then, by
Descartes’ rule of signs, only one solution withx.0, i.e.,
E.m, exists. Since by squaring Eq.s59d we may only
introduce a negativesx,0d spurious solution, this solu-
tion is the only positive solution of that equation, and the
proof is complete. Therefore, for given values ofv1, n and
l, i.e, only discrete, positivesgreater thanmd energies are
allowed.

The nonrelativistic limit is obtained by enforcingv2→0
in Eq. (29). The right-hand side becomes the expression for
the nonrelativistic energy eigenvalues of the harmonic oscil-
lator with no spin-orbit coupling. Similarly, Eq.(30) gives
the nonrelativistic harmonic-oscillator radial wave function,
with a2=mv1. Figure 11 shows the single particle spectrum
for D=0, m=10, andv1=2. For sufficiently smallv1 the
energy levels are essentially equidistant, a well-known fea-
ture of nonrelativistic harmonic-oscillator energy levels, and
we do not have spin-orbit interaction: states withj = l ±1/2
are degenerate. These results allow us to stress that theD
potential can be closely connected to the intrinsic relativistic
content of a theory with scalarsSd and vectorsVd potentials.
The nonrelativistic harmonic oscillator is in fact the limit of
the relativistic theory withD=V−S=0 and a potential well
S=S+V whenv1/m becomes very small.

Thus, an important conclusion of our study is that a Dirac
equation with scalar and vector harmonic-oscillator poten-
tials with the same sign and magnitudesD=0d, instead of a
linear tensor potentialU, seems to be the most natural way to
introduce the harmonic oscillator in relativistic quantum me-
chanics.

C. Casev2=0 and S=0

Now we consider that both the tensor potentialU and S
are zero. The situation is very similar to the preceding sub-

section, except that we now find that it is the lower compo-
nent that satisfies the following second order differential
equation:

F d2

dr2 −
l̃sl̃ + 1d

r2 −
msE − md

2
v1

2r2 − sm2 − E2dG fksrd = 0

s61d

fnote thatksk−1d= k̃sk̃+1d= ,̃s,̃+1dg. The solution of this
equation is the functions43d settingv2=0 in Eq. s37d.

These radial wave functions are represented in Fig. 12 for
the 2s1/2, 1d3/2, and 2d5/2 states. Again, we see that the node
structure is the same as the one given by Eq.(47). For the
states 2s1/2 and 1d3/2, which are pseudospin doublets as we
will see later, the lower components are equal. This is a
general feature of pseudospin symmetry, since when one acts
upon a given state with the pseudospin SUs2d generators to
obtain its pseudospin partner, the radial lower component is
not changed because of the particular form of these genera-
tors, as was shown in Refs.[16,18].

The eigenenergies forS=U=0 are obtained taking the
limit v2→0 in Eq. (41), which leads to

sE + mdÎE − m

2m
= v1S2ñ + l̃ +

3

2
D sñ = 0,1,2, . . .d.

s62d

Again, since the right-hand side of Eq.(62) is positive and
real, we see that the real solutions must have positive binding
energyE=E−m. Using similar arguments as with Eq.(59),
one can show that there can be just one of such solutions.

The nonrelativistic limit in this case is obtained by setting
v2=0 in Eq. (42). As remarked above, the resulting expres-
sion is of second order inv1/m, meaning that the energy is
zero up to first order inv1/m. We can interpret this fact by
saying that, up to this order, there is no nonrelativistic limit
for S=U=0 and therefore the theory is intrinsically relativ-
istic and so is the pseudospin symmetry. In this case, the

second order equation in Eq.(61), which only depends onl̃,
and also the eigenenergies in Eq.(62), show that there is no
pseudospin-orbit coupling and therefore the states with same

sñ, l̃d, but with j = l̃ +1/2 andj = l̃ −1/2, aredegenerate. Thus,
whenD is a harmonic-oscillator potential andS=U=0, there
are only positive-energy bound states and exact pseudospin
symmetry, i.e.,D acts as a binding potential. This is an in-
teresting result in view of the fact that the pseudospin sym-
metry obtained in the limitSsrd→0 cannot be realized for
nuclear vector and scalar mean fields which go to zero asr
→`, since in that caseS acts as a binding negative central
potential well and therefore no bound states may exist when
S=0 [12,13]. The spectrum of single particle states for the
caseS=0 andm=10 is shown in Fig. 13(a) using the quan-
tum numbers of the upper component, which can be seen as
the analog of the nonrelativistic quantum numbers. In Fig.
13(b) we classify the same energy levels by the quantum
numbers of the lower componentsfk. The comparison be-
tween these two figures manifests the pseudospin symmetry
and its quantum numbers. For example, the doubletsf1s1/2

FIG. 11. Single particle energies for the caseD=U=0 with v1

=2, v2=0, andm=10.
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−0d3/2g and f1p3/2−0f5/2g, which have the same pseudo an-

gular momentuml̃ and the sameñ, are, in the new notation,

f0̃p̃1/2−0̃p̃3/2g andf0̃d̃3/2−0̃d̃5/2g, respectively. Therefore, the
harmonic oscillator withS=U=0 andD= 1

2mv1
2r2 provides

an example of exact pseudospin symmetry. The fact that for
this case we do not have a nonrelativistic limit, already
shows the relativistic nature of the pseudospin symmetry.

Figure 13(a) shows thes2ñ+ l̃d degeneracy, which means that

not only states with sameñ, l̃ are degenerate(pseudospin

partners) but also, for example,sñ−1,l̃ +2d or sñ+1,l̃ −2d
have the same energy.

The singlet statessl̃ =0d are the statesnp1/2 with l =1 in-
side the small dashed squares in Fig. 3. It is interesting to
point out that the ground state level for this case is the state
0p1/2 with l =1. This is an unusual behavior coming from the
relativistic nature of this particular case.

IV. THE PSEUDOSPIN SYMMETRY
AND THE INTRUDER LEVELS

The concept of pseudospin symmetry appeared in nuclear
physics more than 20 years ago[19,20]. It was introduced to
account for the observation, in heavy nuclei, of the quaside-
generacy of orbitals with quantum numbers(for fixed n and
l)

sn,l, j = l + 1
2d and sn − 1,l + 2,j = l + 3

2d . s63d

Such pairs of single particle states are known as pseudospin
partners.

FIG. 12. Radial wave functions for the poten-

tial S=0 of the states(a) 1̃p̃1/2s2s1/2d, (b)

1̃p̃3/2s1d3/2d, and (c) 0̃f̃5/2s1d5/2d with the same
parameters as in Fig. 11.

FIG. 13. Single particle energies for the caseS=0 with the

quantum numbers(a) sn l jd and (b) sñl̃ j̃ = jd. The parameters are
v1=2, v2=0, andm=10.
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The doublet structure in the spectrum is better expressed
in terms of the pseudo-orbital angular moment and pseu-

dospin quantum numberl̃ = l +1 ands̃=s=1/2, respectively.
The former, as noted by Ginocchio[12], is just the orbital
angular momentum of the lower component of the Dirac
spinor, introduced in Sec. II. The pseudospin partners have

the samel̃. For example, for the partnersfns1/2,sn−1dd3/2g,
l̃ =1, and for fnp3/2,sn−1df5/2g one hasl̃ =2. Yet, the total
angular momentum quantum number is still given byj

= l̃ ± s̃, where the aligneds+d and unaligneds−d cases are
determined by the sign ofk̃ [see Eq.(40)]. Pseudospin part-
ners havek̃ with opposite signs(the states withn andn−1
radial quantum numbers have, respectively,k̃.0 andk̃,0)
and thus pseudospin and pseudo-orbital angular momentum

have opposite alignments. The fact thatl̃ is a good quantum
number can then be related to the disappearance of the term
with S8 in Eq. (17), which can be interpreted as pseudospin-
orbit interaction term[21]. From that equation it is also clear
that this happens only whenU=0, that is, the tensor interac-
tion breaks pseudospin symmetry.

The existence of pseudospin partners is connected to a
SU(2) symmetry of the Dirac equation with only scalar and
vector potentials whenD=0 or S=0, rather than to the par-
ticular shapes of these potentials. Back in 1975, Bell and
Ruegg[15] obtained the pseudospin generators for that sym-
metry. In that pioneering work only the caseD=0 was stud-
ied with the possible application to meson spectra exhibiting
a tiny spin-orbit splitting. More recently, Ginocchio consid-
ered the other case,S=0, to explain the quasidegeneracy of
pseudospin doublets in nuclei. The generators of the symme-
try for radial potentials were worked out in Ref.[16].

It is interesting to discuss how the pseudospin symmetry
gets broken. The SUs2d generators of the pseudospin sym-
metry are given by[8,15,16]

Si = si
1

2
s1 − bd +

a ·psi a ·p

p2

1

2
s1 + bd = Ss̃i 0

0 si
D , s64d

where

s̃i =
s ·p

p
si

s ·p

p
=

2s ·p

p2 pi − si , s65d

and si =si /2 si =1,2,3d. The commutator of this operator
with the Hamiltonian in Eq.s1d with U=0 is

fHD,Sig = SfS,s̃ig 0

0 0
D . s66d

Thus, the pseudospin symmetry breaking can be related to
the commutatorfS , s̃ig f22g. This commutator is zero when
S=0, but for radial potentials it is enough thatS8srd=0 f21g.
The quasidegeneracy of some pseudospin partners can be
seen in a Dirac Hamiltonian with scalar and vector potentials
of Woods-Saxon typef13g. As explained before, one cannot
set S=0 for those kind of potentials, so we cannot get the
full degeneracy of all pseudospin partners. In fact, the
nuclear pseudospin symmetry in nuclei has a dynamical
character coming from a cancellation among different terms

that contribute to the energy as discussed in several works
f13,23–25g.

We have seen in the previous sections that the relation
between the nodes of radial functions depends on whether
one hasD=0 or S=0 in Dirac Hamiltonian with harmonic-
oscillator potentials. Leviatan and Ginocchio have shown
[14] that, in the limit of pseudospin symmetry, the lower
radial functions of the pseudospin partners have the same
number of nodes. Using this information, they were able to
show [18] that, for scalar and vector potentials which go to
zero at infinity, like Woods-Saxon potentials, the number of
nodes is related by

nf = Hng, k , 0

ng + 1, k . 0.
s67d

This is the behavior we have found before for scalar and
vector oscillator harmonic potentials withD=0, Eq. (34),
precisely the case for which we have the nonrelativistic
harmonic-oscillator limit.

Let us now discuss the levels withng=nf =0. From Eq.
(67), we see that this can only happen whenj = l
+1/2 sk,0d but never with j = l −1/2 sk.0d. If we recall
that the pseudospin doublets have the samenf, in this case
nf =0, states such as 0s1/2,0p3/2,0d5/2, etc., have no pseu-
dospin partners. These states are known asintruder states.
The 0g9/2 state, for example, is an intruder and what would
be its pseudospin partner — the state 0i11/2 sk=6d—does not
exist becauseng=nf −1 would be negative fornf =0. This is
what we observe in the nuclear spectra.

In the case of exact pseudospin symmetrysS=0d with a
harmonic-oscillator potential forD, which we have discussed
in Sec. III C, the structure of the nodes it is quite different. In
accordance with Eq.(47),

nf = Hng − 1, k , 0

ng, k . 0.
s68d

Thus the intruder levels that haveng=nf =0 may only ex-
ist in the exact pseudospin limit whenj = l −1/2sk.0d, as
we see from Eq.(68) and, in that sense, they are not the
intruder levels seen in nuclei, wherej = l +1/2sk,0d.

In a recent paper the intruder levels have been discussed
in the context of the relativistic harmonic oscillator[10] and
it was suggested that they will have partners in the limit of
the exact pseudospin symmetrysS=0d. However, in that pa-
per, the pseudospin partners have been classified considering
only the radial quantum number of the lower component
(samenf). In that classification, levels with the samenf =0
may have partners according to Eq.(68). However, it seems
that the relation between the number of nodes of the upper
and lower components was considered to be given by Eq.
(67) instead of the correct one given by Eq.(68). If we take
into account that the nuclear intruder levels havej = l
+1/2sk,0d then, by Eq.(68), we see that states with nega-
tive k that have zero nodes in the lower component will have
a node in the upper component,ng=1. This disagrees with
nuclear spectroscopy, since the intruder states should have
ng=0. This is shown in Fig. 13(a) where we show inside the

PSEUDOSPIN SYMMETRY AND THE RELATIVISTIC… PHYSICAL REVIEW C 69, 024319(2004)

024319-13



solid square the state 1g9/2 with n=1 and its partner 0i11/2

that in the sñ, l̃d classification in Fig. 13(b) are the pseu-

dospin doubletf0̃h̃9/2−0̃h̃11/2g.
We can summarize this discussion and conclude that even

though the harmonic oscillator withS=0 has an exact pseu-
dospin symmetry that could explain the almost degeneracy in

l̃ observed in nuclei for the doublets withj = l +1/2sk,0d,
j = l −1/2sk.0d, radial and orbital quantum numbers related
as shown in Eq.(63), it cannot explain the origin of the
intruder levels. Furthermore, the harmonic oscillator presents
a much higher degeneracy in the energy levels besides the

simple degeneracyl̃, as we have shown, which implies that
the nuclear potential cannot be approximated by a harmonic
oscillator and must be more complicated in order to remove
this extra degeneracy. The asymptotic properties of the cen-
tral mean-field potential also seem to play a crucial role in
defining the node structure of the single particle levels.

V. CONCLUSIONS

We have presented a generalized harmonic oscillator for
spin 1/2 particles that includes not only the usual linear ten-
sor potential obtained by a redefinition of the momenta, but
also a vectorsVd and scalar potentialsSd that appear in the
Dirac Hamiltonian in the specific combinations 1/2s1±bdV,
in which V is a harmonic-oscillator radial potential. A special
attention was paid to the 1/2s1−bdV combination, i.e., when
S=−VsS=0d, which has been related recently to the nuclear
pseudospin symmetry.

We have derived the energy eigenvalue equations and
shown explicitly the wave functions. The nonrelativistic lim-
its for all cases have been discussed. The analytical expres-
sion for the upper and lower components of the Dirac spinor
for U=0, whenS=0 (or D=0), has been found.

We have discussed the structure of the solutions of the
eigenvalue equations and presented explicitly the positive
energy solutions. We have concluded that only when the ten-
sor potential is turned on we have the negative bound state
solutions and in this case, whenv1=0, the two bound state
solutions are symmetric. When the tensor potential is absent
we have also shown that the special conditions between the
scalar and vector potential(S=V or S=−V) needed to have
an harmonic-oscillator potential with scalar and vector po-
tentials exclude the negative bound state solutions from the
spectra.

The structure of the radial nodes for the Dirac spinor has
also been presented and compared to the case when the po-
tentials vanish for large distances. We discussed in detail the
case of the harmonic oscillator withU=S=0 for which pseu-

dospin symmetry is exact, i.e., pseudospin doublets(states

with samel̃) are degenerate. In this case we can have bound
states due to the positive harmonic-oscillator potentialD.
These states can be regarded as intrinsically relativistic, in
the sense that theD potential has no analog in the nonrela-
tivistic limit. In fact, they show a very peculiar structure of
radial nodes in comparison to the nonrelativistic harmonic-
oscillator radial wave function: the states withj = l +1/2 have
at least one nodesnù1d in the upper component and can
have zero nodes only in the lower one. As a consequence, the
intruder levels on the nuclear spectra(isolated levels with
n=0 andj = l +1/2) do not exist in the harmonic oscillator in
the limit of nuclear pseudospin symmetrysS=0d. In this
limit the states with zero nodes in the upper component have
j = l −1/2. Moreover, the relativistic harmonic oscillator in
the caseU=S=0 has a much higher energy degeneracy than
the approximate pseudospin symmetry seen in the nuclear

spectra(doublets with sameñ, l̃). This is not surprising since
the meson exchange theory of nuclear forces produces
nuclear potentials that vanish whenr →`, a completely dif-
ferent asymptotic behavior from the harmonic-oscillator po-
tential discussed here. One possible way to break this extra
degeneracy of the harmonic oscillator is to add a Woods-
Saxon-like potential as it has been done in Ref.[10].

Another important conclusion from our work is that a
Dirac equation with scalar and vector harmonic-oscillator
potentials with the same sign and magnitudesD=0d, instead
of the linear tensor potentialU, is the most natural way to
introduce the harmonic oscillator in relativistic quantum me-
chanics, since one gets the correct nonrelativistic limit, so
that the energy levels and the upper component of the wave
functions are very similar to the nonrelativistic ones.

Finally, our analysis of the relativistic harmonic oscillator
shows, in a very simple and analytical way, that the nuclear
pseudospin symmetrysS=0d does not have a nonrelativistic
limit, in the sense that the eigenvalues are of second order in
a v /m expansion. So we conclude that the relativistic har-
monic oscillator is an excellent example to show explicitly
what Ginocchio had already emphasized in his pioneering
work: the pseudospin symmetry in the Dirac Hamiltonian
(whenS=0) is indeed a symmetry of relativistic nature.
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