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A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian con-
tains a scalaBand a vectoW quadratic potentials in the radial coordinate, as well as a tensor potdriiraar
in r. Setting either or both combinatiots=S+V andA=V-Sto zero, analytical solutions for bound states of
the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particu-
lar cases are discussed, devoting a special attention to the nonrelativistic limit and ti&=daster which
pseudospin symmetry is exact. We also show that the Oas&=0 is the most natural generalization of the
nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combi-
nations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot
be described in the framework of the relativistic harmonic oscillator in the pseudospin limit.
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[. INTRODUCTION potentials with equal magnitude and sign, aiming at obtain-

The harmonic-oscillator potential for relativistic spin 1/2 g & quadratic potential in the Schrodinger-like second order
particles has received considerable attention by mang'ﬁerent""‘I equation for each spinor compongit Kukulin

groups. The subject is of broad interest since the relativisti€t @- [9] generalized the problem by considering a vector-

harmonic oscillator plays a role in several areas, namely, ifca/ar harmonic potential plus the Dirac oscillator. More re-

nuclear and particle physics. In particular, it is the centraCeNtly, there has been a wide interest in relativistic potentials

potential of the nuclear shell model, and it has also been useg?°Ving Mixtures of vector and scalar potentials with op-
as the bindingand confining two-body potential for quarks posite signs. The interest lies on attempts to explain the pseu-

with applications in meson and baryon spectroscopy. dospin symmetry in nuclear physics. Cheetgal. [10], using

. . . 7 . a Dirac Hamiltonian with scala and vectorV potentials
A special type of harmonic-oscillator potential is achieved

. . X . guadratic in space coordinates, found a harmonic-oscillator-
by replacing the linear momentum operafpin the DiraC e second order equation which can be solved analytically
equation byp—i Smar, whereg is the usual Dirac matrix. ¢, A=V-S=0, as considered before by Kukul[®], and

This replacement results in a second order differential equagiso fors =S+V=0. Very recently, Ginocchio solved the tri-
tion for the upper and lower components of the Dirac spinorfaxjal, axial, and spherical harmonic oscillators for the case
containing a quadratic potential in the radial coordinate A=0 and applied it to the study of antinucleons embedded in
Besides the quadratic potential, that second order differentialuclei[11]. The case® =0 is particularly relevant in nuclear
equation contains a constant spin-orbit term, meaning that, iphysics, since it is usually pointed out as a necessary condi-
the nonrelativistic limit, in which only the upper component tion for occurrence of pseudospin symmetry in nuclei
survives, the degeneracy of the energy levels is differenf12,13.
from the one found in the nonrelativistic harmonic oscillator.  In this work we shall consider a Dirac Hamiltonian that
As explained in the following section, that potential may generalizes the previous ones by simultaneously introducing
arise from a Lorentz tensor interaction in spinor space. lrradial quadratic potentials fak, > and a linear radial poten-
Ref. [1] we give a list of references where this kind of po- tial for U, the tensor potential defined in the following sec-
tential was initially studied. Moshinsky and Szczeparizk tion. We will study the cases with=0 and2 =0, for which
christened itDirac oscillator and renewed to a great extent analytical bound solutions do exist, including also, as par-
the interest in the topic. The Dirac oscillator has been appliedicular cases, the Kukulin potential and the original Dirac
to quark confinement and supersymmefB} and hadron oscillator. The eigenenergies and eigenfunctions are obtained
spectroscopy4]. Its group symmetries have been studied inanalytically in the general case. Next we shall analyze par-
Ref. [5], its solutions in 2+1 dimensions and coupling to ticular cases and pay a special attention to the nonrelativistic
magnetic field were worked out in R€f6], and finally its  limits and to the cas& =% =0, for which pseudospin sym-
wave packets and thermodynamical properties in 1+1 dimetry is exact and there are still bound states, as opposed to
mensions were studied in Rgf]. what happens with nuclear mean fields. From our analysis
Another possibility to introduce a harmonic potential in we also show that the cate=A=0 is a more natural way to
the Dirac equation is by mixing vector and scalar harmonidntroduce a harmonic oscillator in the Dirac equation than the
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usual way withU # 0 andX=A=0. The eigenenergies have pseudovector potentials, only considering spherically sym-
the usual degeneracy of the nonrelativistic case and the upperetric potentials, for which the total angular momentum of
component a form similar to the nonrelativistic wave func-the system is constant. In spite of being callgzherically
tion. Actually, by letting the harmonic-oscillator frequency to symmetric potentiajgshey do not necessarily depend only on
become small compared with the mass, we obtain exactly ththe radial coordinate=|r|, because of their matrix structure.
eigenvalues and wave functions of the nonrelativistic harindeed, the following potential:
monic oscillator.

We also present the node structure of the radial wave _ . N
functions, motivated by a study carried on in R@f4] for V V) =V + B + e - TU(T) @)
and S radial potentials vanishing as—c. In order to find
reasons for the unusual radial node structures in some pais spherically symmetric in this sense, because it commutes
ticular cases, we obtain the relations between the radiavith the total angular momentud=L +S, whereL and S
nodes of the upper and lower components of the Dira@re the orbital and spin angular momentum operators, respec-
spinors by inspection of their analytical forms, and illustratetively. In the last term{=r/r, and the radial functions in Eq.
those relations by plots of several of those components. We#) are named after the properties their respective terms have
draw conclusions regarding the impossibility to describe theinder Lorentz transformationd/ corresponds to the time
so-called intruder states by harmonic-oscillator potentialgomponent of a vector potentid,is a scalar potential, and
with exact pseudospin symmetry. U is a tensor potential. It is important to point out that the

This paper is organized as follows. In Sec. Il we presenDirac equation for the potential in E¢4) is invariant under
the general Dirac equation with scalar and vector potentialspatial inversion, hence the eigenstates have definite parity.
with harmonic-oscillator form, proportional 1%, and a ten- It is worth showing where the tensor character of the last
sor potential, linear irr. We then obtain and discuss the term in Eq.(4) comes from. The interaction Lagrangian for
solutions of this equation foA=0 and3=0, respectively. the tensor coupling of a Dirac spind# with an external field
The Dirac oscillator is presented in Sec. lll A. In Sec. lll B is
and 11l C we look into the particular casés=0 and> =0 in
the absence of the tensor potential. We analyze the nonrela- -
tivistic limits, showing that such a limit does not exist in the —WVo""Ve,,, (5)
case> =0, up to first order in the oscillator frequency divided 4M
by the mass. This result is connected to the pseudospin sym-
metry, as discussed in more detail in Sec. IV. In the samavhere ¢,,=d,¢,—d,¢,, a*"=(i/2)[y*,y"], and y” are the
section we also present an analysis of the intruder states amdlrac matrices. Considering only the time component of the
show the impossibility to describe them within the harmonicvector potentiaky®, ¢, the corresponding term leads to the
oscillator in the case of exact pseudospin symmetry. Finallyfollowing potential in the single-particléDirac) Hamil-
our conclusions are summarized in Sec. V. tonian:

Il. GENERALIZED RELATIVISTIC HARMONIC

OSCILLATOR omPe Ve (6)

The time-independent Dirac equation for a spin 1/2 fer-
mion with energyé, in the presence of a potential, reads ~ For a static radial potentiap®, the tensor potentiali(r) in
Eq. (4) is U(r)=f/(2M)(d¢°/dr). This term can be used to

HpW =&v, ) describe a particle with an anomalous magnetic moment. In-
deed, the anomalous magnetic interaction has the form
-iuBa-V o(r), whereu is the anomalous magnetic moment,
Hp=a-p+pm+V. (2)  in units of Bohr magnetons, angd is the electric potential,
i.e., the time component of the electromagnetic vector poten-
tial, A*. Therefore, the interactionimwBa-r (notice thats
and a are now written in reverse ordemwhich defines the
“Dirac oscillator” mentioned above, could be conceived as
0 o | 0 an anomalous magnetic interaction generated by an electro-
a= (U 0 ) = (0 - ) (3)  static harmonic potential. . -

In summary, for this type of potentials, the Hamiltonian,

Here o is a three-vector whose components are the Paulihe parity operator, and the total angular momentum form a
matrices, and stands for the X 2 identity matrix. The ma- complete set of commuting observables. Accordingly, the
trix potential V in Eq. (2) may, in general, be written as a eigenstates can be classified by the pafity, by the total
linear combination of sixteen linearly independent matricesangular momentunj, and its third component, quantum
classified according to their properties under Lorentz transnumbers. Under these circumstances it is natural to use
formations: scalar, pseudoscalar, vector, pseudovector, argherical coordinates and the spinor, which is the solution of
tensor. In the following, we exclude the pseudoscalar andhe Dirac equatioril), can be generally written as

where the Dirac Hamiltonian is

In this Hamiltonianm is the fermion masg is the momen-
tum operator, andr and 8 are 4X 4 matrices which, in the
usual representation, take the form
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i%—(”yj*m(f) [ gkr(r) V()
r Ve = -~ |. (12
* = + . fK r ~
Fim(") fj‘|~ (r) ™ %y—Km(r)
)
ro) Using the property-tY,.,=—)_.m the Dirac equation in Eq.

hi . h lled spi herical h (1) may be reduced to a set of two coupled first order ordi-
In this expression), are the so-called spinor spherical har- o gifferential equations for the radial upper and lower
monics. They result from the coupling of the two- .,

. : : : _ ponentg, andf,, namely,
dimensional spinors to the eigenstates of orbital angular mo-

mentum and form a complete orthonormal set. The orbital [ d «

angular momentum quantum numbérand refer to the a+? +U(r)]gk(r) =[E+m=-AM]f(D), (19
upper and lower components, respectively. The normaliza-

tion of the Dirac spinor in Eq(7) implies the following d «
normalization condition on the upper and the lower radial [— - ——U(r)]fk(r) ==[E-m=-2(n]g.(r), (19
functions: dr r
o where we have introduced the “sum” and the “difference”
J (|g].i||2+ |fj*T|2)dr: 1, (8) potentials defined by
0
2=V+S and A=V-S (15

so thatg;’, and fj‘|~ should be square-integrable functions. Using the expression fof, obtained from Eq(13) and

Using the operator-p in the spherical-polar form, EQ. jnserting it in Eq.(14) we arrive at the following second

(1) can be brought to the form order differential equation fog,:
[ 2 @ K(k+1) A’ d «
—ia-f —+—(1+BK)}+,8[m+S(r)]+V(r) — -5 o
{ [&r r {drz r2 +z€+m—A(r) dr+r+U(r)
+iBa-fU(r) (W =£W, 9) —2Kw+u'(r)—uz(r)}gk(r)
r
where we have introduced the operatis=-8(3-L+1) =-[E-m=-3)][E+m=-AN)]g.(r), (16)

whose eigenvalues are=+(j+1/2). Here Y, refers to the

4x 4 matrix whose block diagonal elements are the Paulivhere the prime means derivative with respectrtdn a
matrices,o, and whose off-diagonal blocks are zero. Moresimilar fashion, i.e., using again both Eq43) and (14), a
explicitly, the spin-orbit coupling quantum numberis re-  second order differential equation for the lower component is
lated to the orbital angular momentum quantum number byobtained:

—(+D)=-(j+1/2), j=1+1/2 (x<0) LGt I [g_f_u(r)]
aligned spin 10 dr? r? E-m-X(r)Ldr r
I=+(j+1/2), j=1-1/2 (k>0) (10 5 u(r) U’ U2 b
unaligned spin. Ty ® () (£.d1)
Actually, the quantum number completely determineg I, =-[E-m-2()][E+m=A(N)]f.(r). (17)
~ i )
I and, thus, the parity-1)" In this paper we shall consider harmonic-oscillator poten-
1 tials, meaning that potentials andA are quadratic im and
j=|x-=, the potentiall linear inr. With all these potentials in place,
2 Egs.(16) and(17) have to be solved numerically because of
the quartic potentials im arising from the producfi&-m
1/ « =2(N][E+m-A(r)] and the terms with derivatives df and
I=[xd + 2 m -1/, 3. However, either forA=0 or for =0 the solutions are
analytical since, in the first case, there are only quadratic
potentials in the second order equationdQiEq. (16)], and,
T=1- X (11) in the second case, the same happens inEqf.for f,. The
|«| caseA=U=0 allows us to get, in the nonrelativistic limit, the

~ spectrum and wave functions of the central nonrelativistic
Notice thatl is given by the same formula &sbut with -« harmonic oscillator, i.e, Eq.(16) becomes the radial
instead ofk. Accordingly, the Dirac spinors in E7) can be  Schrédinger equation for the three-dimensional harmonic os-
labeled just withx andm, i.e., cillator. ForU=0, both case& =0 andA=0 correspond to
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SU(2) symmetries of the Dirac equatidi5,1§. The case
3 =0 is related to the pseudospin symmetry in nuclei.

The aim of this paper is to study such analytical solutions
and, in particular, to draw conclusions on the required con-

ditions for the pseudospin symmetry to show up.
Let us first consider
S(=2meir?, A()=0, Ur)=mwy, (18
where w, (a real numberis the frequency related to the
tensor potential and w; (a non-negative numbbrthe fre-

quency related to the “sum” potential Actually, this case
was already considered by Kukulgt al. [9] for w,>0. The

possibility of Dirac bound states with a linear tensor poten-

PHYSICAL REVIEW (59, 024319(2004)
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FIG. 1. Energy levels foA=0 with ;=2 andm=10 as a func-

tial, which can be unbounded from below, is due to the apsjgn of o,

pearance ob)? in Egs.(16) and(17). It is noteworthy that the
different signs ofw, give rise to different possibilities of
signs for the spin-orbit coupling. Equatioh6) for the upper
component takes the form

|

1
Emwi(ff +m) + m%% r’—(2x - 1)mw,

d_2 _ k(k+1) _ {
dr? r2

+(E2- mz)}gk(r) =0. (19

It is convenient to introduce the following new variable and

parameters:

m(E+m
\/—( 5 )Qr2:a2r2,

= (20)
2
Q= z +mmw§ w%, (21)
_ wo — (2= P
_ (2k=1)m 22 (&c—m ), (22)

a
which allows us to write Eq(19) in the simpler form

d2
Ay—
Va2t

since k(k+1)=I(I+1). An asymptotic analysis suggests
searching for solutions of the type

g _}+y_

2
dy vy

y- A}gk(y) =0, (23

g.(y) = A2y (y), (24

whereI'(y) is a function yet to be determined a#da nor-
malization constant determined by E). Inserting this ex-
pression back into Eq23), the equation fol'(y) reads

Un fact, this condition can be relaxed to demand thabe just a
real number, since the results do not depend on the sigs .of

1523l

3 A
+—+—| [I'(y)=0.
> 2)] (y)

(25
The solutions of this equation, which guarantee that
limy_...9.(y)=0, are the generalized Laguerre polynomials

of degreen, LP(y), where
3 x)
+—+—],
2 2

—I+}
p=i+s5.

(26)

(27)

From Egs.(26) and (20<22), we can get immediately the
eigenenergies, which are discrete sinds an integer greater
than or equal to zero:

E2-m? - (2k - 1)mw,

3
= <2n +1+ 5) \/Zm(5+ m)a)§+ 4m2w§. (28)

If we square Eq(28) the resulting algebraic equation is quar-
tic in £. For particular values of and « (remember thai
determines uniquely) we can solve this equation with re-
spect to€ and get the energy of the level with quantum
numbers(n, k) or, using the standard spectroscopic notation,
the levelnl;. With the help of the programATHEMATICA we
were able to get analytical expressions for those solutions. In
general, it can be shown that there are at most two real bound
state solutions of Eq28), one with a positive or zero bind-
ing energy and the other one with a negative binding energy.
As we will see later, it can happen that only positive binding
energy solutions exist. When both solutions exist, we con-
sider the one with positive binding energy, i.e., for which
E>m.

Figure 1 displays the energy for some levels, as a function
of w,, for a fixedw; andm. From this figure we see that for
w,=0 the energy levels wittn=1,1=2) are degenerate with
the level with(n=2,1=0) and have no spin-orbit splitting.
This is a manifestation of then+1) degeneracy of the lev-
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ok =70 | Since the generalized Laguerre polynomials of degree
—— n=1 haven distinct zeros[17] we may conclude thag, hasn
o g:% ________ nodes, and the expression figrsuggests that it has nodes
= T T for k<0 andn+1 for k>0,
Wl T i—e T T T - ng, «<0O
- __ -_—- Ng = 9 (34)
L — - ng+1, x>0.
15 ~TT — _ —_
—_ ] This is indeed verified by the radial functions for the states
oL - ) 2s1/5, 1d3j5, and I, plotted in Fig. 3.
Sl P P 4y dyy By f, Next, let us consider the other case
FIG. 2. Energy spectrum foA=0 with w;=2, w,=1, andm S(r)=0,A(r) = %mwfrz, U(r) = mo,r, (35)

=10.

) ) _ wherew, is again the frequency related to the tensor poten-
els which can be inferred from E¢28) when w, is set to  tjg| U, and w, is the frequency now related to the “differ-
zero. We will further elaborate on this pOInt in the fOllOWII’]g ence” potentialA_ We now start from the equation for the

section. _ lower component, Eq(17), and introduce the new variable
The spectrum for the first seven levels #05=2 andw;  and parameters defined by

=1 is shown in Fig. 2, where we see that they are, in general,

nondegenerate. mE-m)
This feature of the spectrum can be understood by looking R | —Qr2=3a%2, (36)
at Eqg.(28), since when the tensor potential is presén} 2

#0) we have always a-dependent terma spin-orbit term

that removes thé2n+1) degeneracy, which is also character- 5

istic of the nonrelativistic harmonic-oscillator spectrum. Q= _mwg + wi: (37)
It is instructive to get the nonrelativistic limit of E¢28). &-m

We obtain this limit by lettingw;/m and w,/ m become very

small. In this limit, (6-m)/m=E/m also becomes very

(2K + D)Moy, — (E2 - P

small, and€+m~ 2m, so that = = (38)

3\ ——— 1
E= <2n +l+ 5) Vol + w5+ (K - 5)‘02- (29 The resulting equation fdf, in these variables is formally
the same as E@23). Following the same steps as before, to
The solution of Eq(19), replacingy by a2 r?, is guarantee that,(r) vanishes whem — oo, we must have
1
gK(r) =A exr(— _a2r2> (azl'2)(I+1)/2L|n+1/2(a2r2). (30) _ 1(~ 3 X

2 n=-_— I+§+§ : (39

For the lower component, the first order differential equation

in Eq. (13 allows us to write wheren is an integer greater than or equal to zero sl
1 K given by Eq.(11). This last quantum number is called pseu-
cemlar T T e (940, (31 doorbital angular momentum quantum number in view of its
role in the pseudospin symmetry, which will be discussed in
Using the recursion relations for the generalized Laguerresec. 1IV. Similarly to Eq.(10) for x, we may definex in
polynomials(see, for example, Ref17]) we get, fork<0, terms ofl and3=1/2 (pseudospin quantum number

f(r)=

__Aa 150\ 22202 [ M@z - -
fK(r)‘g+meXp< zar>(a” 2 1 S+ D=-(j+1/2), j=T+12 (R<0)
_ aligned pseudospin(40)
141120 2.2\ _ o 1 14312 12,2 K=1- -
XLy @) =2 Ly (ar)} (32) =+(+12, j=T-1/2 (&>0)

and, fork>0 unaligned pseudospin.

Aa 1 1 m K=—Ki ibi i
f ()= exp(— Eazrz)(azrz)”ZKn i+ E) <1 + wg) In other wordsx=-« is a parameter describing the coupling

E+m a2 between the pseudo-orbital angular momentum and the pseu-
dospin.
XLIn—l/Z(aZrZ) +(n+ 1)(1 _ m_‘;’2>|_:;11/2(a2r2)]' (33) ergI;r.om Eq.(39) we get the following equation for the en-
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FIG. 3. Radial wave functions fak=0 of the
states(a) 2sy/,, (b) 1ds,,, and(c) 1ds;, with wq
=2, wp,=1, andm=10.

E= (Zﬁ +1+ g>|w2|— (7<

3
+ 5>~ Sigr(wz)(

- 1
A

1 ~ ~
>w2+—(2'ﬁ+l+§>{2ﬁ+l
am 2

w3, (42

Again, there are at most two real solutions of this equation s equation, valid fors=0 and w,#0, shows that the

For positivew, and for most cases when, <0, it can be

effect of the harmonic-oscillatak potential is only of sec-

shown that there is always a positive binding energy soluyng order in a nonrelativistic expansion. This important re-

tion. This is the solution we will take in the following ex-
amples. Some energy levels fof=2 andw, in a range from

0 to 1 are shown in Fig. 4. Fow,=0 there is a(ZR+)
degeneracy of what we might call a pseudoharmonic oscilla-
tor. For a nonvanishing, this degeneracy is removed as we
can also see in Fig. 5. In these figures we use the spectro-
scopic notatiorfil; , where states with=0,1,2,... are de-
noted bys,p,d,..., respectively. The ground state far;
=2 andw,=0 is the state §,, but we see from Fig. 4 that it
is replaced by the stat€p@, as the ground state whany,
=2 andw,=0.3.

The nonrelativistic limit of the eigenvalue equation in Eq.
(41) is again reached by decreasiag and w, such that
wi/m<1 andw,/m<1. If we solve the quartic eigenvalue
equation fore/mand expand it in powers @f;/mandw,/m
we get, in lowest order of these expansion parameters,
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= Ba 1 ~ ~ 1
-t - r=- exp(——"ézrz) a2 r3)2 (ﬁ+|+—>
sF |T2ES e 9N =-2" > @ r9 5
- n=2 ..
. §i=3 c— - mo-\ =
------ . X[ 1- 2 LY@ + i+ 1
00 uveen e T EE = ( '5.2 ) n (~ ) ( )
w == -
L —— o ___ — - ] M, \ -
— X (1 + ~—2>L'ﬁ+11’2(52r2)] (46)
_—— a
15 === oo —— ——- —
N These functions are analogous to theand f, functions
. - - i i F ¥ ] of the previous case, so from the above discussion we can
10— Pz P2 % o 2 m conclude that the number of nodes of the radial functions for
3,=0 is such thatremember thak=-«)
FIG. 5. Energy spectrum foE=0 with w;=2, w,=1, andm
=10. Ng— 1, k<0
n; (47
ng, «>0.

sult sheds light on the relativistic nature of the pseudospin
symmetry to be discussed later in this paper.

A comparison between Figs. 1 and 4 shows that the effe
of the tensor potentigkseen by the variation ab,), is bigger
for the case =0 than is forA=0. As a consequence, we stil -
see in Fig. 5 a quasidegeneracy for some levels, in particulagetting n—h=n,l —1=I-1 when x>0 andn—h=n-1|
those with the same value @fand that havé="% (aligned —1=1+1 whenx<0.
spin). This can be explained by the energy dependence on We have noticed, however, that the radial function node
wf/m in Eq. (42) (for small values ofw;/m and w,/m), a  Structure depends on the ratig/ w,. If », becomes signifi-
number smaller tham,, meaning that in this case we are cantly larger thanwy, in the case oA =0 the structure of the
near the usual Dirac oscillatéi; =0 andw, # 0), where the  nodes is the one of the normal Dirac oscillator, the same as in
states with aligned spifj=I+1/2) and the same are all  EQ.(47), as it will be discussed in the following section.
degenerate, as we will discuss in the following section.

The lower component radial wave function is IIl. PARTICULAR CASES

This is illustrated in the plots 0§, and f, in Fig. 6.
Adopting the definition ofi as the number of nodes of the
Sbwer component whem,=0 and =0, we see that we can

| convert from the notatiom I; to ﬁTj for the same state by

~ _ Now we will present some results for the three particular
f(r)=B exp(— %aer)(52r2)(l+1>/2|_|ﬁ+1/2(52r2), (43) casesw;=0, w,=0 (A=0 andX=0)

. . . . A. Casew,=0
whereB is again a normalization constant, determined by Eq.

(8). As already commented, the degree of the generalized AS mentioned before, the expression “Dirac oscillator”

Laguerre polynomial determines its number of zeros, so tha@PPlies to this case whem,>0 [2]. Here we also consider
7 gives the number of nodes . the possibility thatw, be negative. From Eq19) when w,

The upper component for the set of potentials in &%) =0, it is straightforward to conclude that the equation for the

is obtained from the first order differential equation in Eq.UPPer radial wave function of the Dirac oscillator is a
(14), i.e. Schradinger-like equation with a harmonic-oscillator poten-

tial and a spin-orbit coupling term.
The eigenenergies are readily obtained taking the limit

w,— 0 in Eq. (28), which yields

1 d &
g.(r)=- gjn{a T mwzr} f(r), (44)

E2=m?+ m|w2|[2(N + g) +sgn(w,)(2x - 1)], (48)

whose explicit form is given, using again the recursion rela

. ) = ‘where the quantum numbé&t=2n+| was introduced. There
tions of the Laguerre polynomials, far<0, by

are, in generalwhen the right-hand side of the equation is
positive) two symmetric real solutions for this equation. Here
we take the positive energy solution. Note that EB) re-

) sults from the equation for the upper component,We can

€ get the nonrelativistic energy by setting=0 in Eq. (29).

__Ba 1, 2) 2.2 (T+2)/2[( _ My
g,(r) = _mexp< 2ar (@a=r9) 1 =
~ ~ Therefore, in this limit we obtain for the ener@ythe quan-
XLy @22 - 2 L1ﬁ+3/2(é-2r2):|1 (45  tum mechanical resuliw,|/(N+3/2) plus the spin-orbit con-

tribution %(ZK—].)(UZ. This term removes the nonrelativistic
degeneracy related to levels with the salhé such a way

and, fork>0, that changing the sign ab, leads to a order reversal of the
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levels with the samén,|) andj=1+1/2 quantum numbers.
For w,>0, depending on whether the quantum numbés

positive or negative, the energy is given [see Eq(10)]

1.5
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FIG. 6. Radial wave functions fax =0 of the

states(a) TBya(2s170), (b) 1Paia(1dyy), and (c)
Of5/5(1ds/0) With ©;=2, w,=1, andm=10.

E2 =P + dmw,(R + 1),

k<0, (53

Of course, the eingenvalue equations in E§8) and(53)

should lead to the same energy values as Ef.and(50).

1
EZ:mZ+4mw2<n+l+§), k>0, (49)

one concludes that

E2=m?+4mw,n, «<0. (50)

Thus, for a given quantum numbey all states with aligned

spin j=1+1/2(k<0) and arbitrary orbital angular momen-
tum are degenerate. This degeneracy, as well agriihé)

degeneracy fo>0, is illustrated in Fig. 7, in which the
spectrum forw,=1 is presented.

On the other hand, the eigenenergies of the Dirac oscilla-

tor Hamiltonian may also be determined from Edl),
which was obtained from the second order equation for the
lower componenf,, very similar to Eq.(19). Again taking

the limit w;— 0 in Eg.(41) one obtains

E=mP+ m|w2|{2<N + g) + sgrw,)(2k + 1)] , (51

whereN=2n+l| is a new quantum number. The term<21
comes from the spin-orbit interaction for the lower compo-
nent. Depending on whether the quantum numbé& posi-
tive or negative, the energy, fas,>0, is given by

~ 3
52:mZ+4mw2<ﬁ+l+§>, k>0, (52)
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n

-1,
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Remembering that, fox <0, one has=1+1, and, fork>0,
I=1-1, from the comparison of those two sets of equations

k<0

k>0, (54)

since the quantum numbensandn are equal to the number
of nodes of the upper and lower radial functions, denoted by

—_ 4s

—_— 2s
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FIG. 7. Energy spectra for the normal Dirac oscillatar, =0)
with w,=1 andm=10.
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nodes in the upper component, and therefore, in the nonrel-
ativistic limit, when the lower component disappears, the
wave function has the same node structure as the nonrelativ-
istic harmonic-oscillator ground state wave function. Fur-
thermore, from Eq(51) we see that, forw,<0, the sign of
the spin-orbit interaction is inverted, such that states with
nonaligned spin«>0) have now lower energy than states
with the samel and aligned spin. This is the situation in
atomic physics, where, for example, the stafgs have
higher energy than the statpsg,,. The opposite happens in
nuclear physics, where states with aligned spin are lower in
'20‘ —s 1 —s energy than nonaligned spin states, which in the present case
r happens whem,> 0.

We present in Fig. 9 the radial wave functions for the
states 2,5, 1dgj», and Hs;». From these plots we see that the
upper components for the spin-orbit partnéamen,|) are
equal[see Fig. #b) and 9c), since both are given by the

ng andny, respectively. Notice thaiy=1 for x<0. This can  same radial wave function, E¢55). For pairs with the same
also be inferred from the analytical form of the radial upper; (pseudospin partnershe lower components are the same
and lower functions for the Dirac oscillator. These compo- P pin p P '

nents are readily obtained from Eq®&0), (32), and (33), up to a constant factor. This can be seen from E§8 and
o _ (56), since the pseudospin partners have quantum numbers
noticing that, whenw,;=0, the square of the parametayr . .
defined in Eq.(22), is equal toma, (w,>0), giving (n,l) (k<0) and(n—1,I+2) (x>0). This particular behav-
e 212 ' ior could be related to a particular symmetry of the Dirac
g ) =A exp(— %azrz)(a2r2)('+1)/2LL+1’2(a2r2) (55) Hamiltonian in Eq.(2) with w1=_0, as is Fhe case with the
pseudospin symmetry, to be discussed in Sec. IV.

FIG. 8. Ground state radial wave functions for the normal Dirac
oscillator with the same parameters as in Fig. 7.

for the upper component, and

B. Casew,=0 and A=0
£ (H=— 2Aa 1,
()= E+ mex 2a ' In this subsection we set to zero bathandU potentials.
Then, Eq.(19) with »,=0 leads to the following second
x (@)L H@?)  (k<0),  (56)  order differential equation for the upper componénote
that k(k+1)=€(£+1), irrespective of the sign of]:
2Aa 1 1
f (r)= exp(——a2r2> a’r? l’2(n+l+—) d> I(1+1) mE+m
® E+m 2 @) 2 W_(rZ)_ (2 )wirz—(mZ—EZ) g.(r)=0.
XL Y4ar?) (k> 0) (57) (59)

for 1the lower componenfwe have used the relation The solutions of this equation are given by EGO),
Ly () =La()=—La_4(x) [17]]. wherea is given by Eqs(20)—(22) in which w, is set to zero.

As we have seen before, the degree of these Laguerrghe upper and lower radial functions for two levels corre-
polynomials is identified with the principal quantum numbersponding tox with opposite signs are plotted in Fig. 10.
of the upper and lower radial functions, and thus with theirFrom this figure we see that the node structure is the same as
number of nodes, so that the relations in E54) follow given in the preceding section Wha&gﬁo [Eq. (39)].
immediately. The energy eigenvalues are readily obtained from(E8).

In this case(w,>0) Eq. (54) implies a peculiar node py just taking the limitw,— 0, yielding
structure for the ground sta®g,, (k=-1). This state has a
node(n,=1) in the upper component, as we can see in Fig. 8, [E+m 3 _

Whereags the nonrelativistic ground state wave function is (£-m) W_wl(znﬂ +§) (n=0,1.2,..).
nodeless. (59)

If w,<<0, the infinite degeneracy referred to above occurs
for k>0, i.e., for nonaligned spins. In addition, the relation This equation for the energy, valid far=0, shows explicitly
between the values, andn; is modified:n;=ny+1 for k>0  that there is no spin-orbit term and that states wjth
andng=nq for k<0. It is worth noticing that the structure of =|+1/2 aredegenerate. We can prove that this equation has
the radial nodes fodw, positive(negative is exactly the same only one real solution, and it has to be such thatm. To
for the case> =0 (A=0) discussed in the preceding section. begin with, since the right-hand side is always positive, it is
This same node structure could again be inferred from thelear that any real solution must be greater thatherwise
form of the radial wave functions whewn, <0, which can be the left-hand side would be negative. We prove that there is
obtained once more from Eqg€30), (32), and(33), setting  only one of such solutions by squaring E§9) and using the
a’=-mw,. We note that now the ground stagg, has zero Descartes’ rule of signs. This rule states that the number of

024319-9



LISBOA, MALHEIRO, DE CASTRO, ALBERTO, AND FIOLHAIS

0.8

0.6

04

— 5 -1k -
- £D i
I 2k I I
1.5 0 0.5 1
r b) r
2
— 8"
1+ - £
0 N —==
AR
2c I 1
0 0.5 1 1.5
(©) r

1.5

024319-10

PHYSICAL REVIEW (59, 024319(2004)

FIG. 9. Radial wave functions for the normal
Dirac oscillator of the state&) 2S5, (b) 1ds,
and (c) 1ds,, with the same parameters as in

Fig. 7.

FIG. 10. Radial wave functions for the poten-
tial 3(r)=3mwir? with U=A=0 for the states
2S5, 1d3p, and Msp,, respectively, withw,=2

andm=10.
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section, except that we now find that it is the lower compo-

— 3, 2d,, 2d., 1g,, lg,, nent that satisfies the following second order differential

b 2, 20y, 1y, 1f, Ohy, Ohy,), equation:
— Iy, 1d,, ldy, Og,, Ogg, d? T(T +1) mE-m) 20 5 _

w | —— Ipy lpy, Of, Of, ﬁ_ r2 - 2 @af —(mZ—g) f(r)=0

16 —— ls,, 0dy, 0dy, (61)
— Oy Opyp [note thatK(K—1):}(}+1):?(?+1)]. The solution of this
—_ s equation is the functio43) settingw,=0 in Eq.(37).

12+ 2 These radial wave functions are represented in Fig. 12 for

the ,,,, 1d;5, and 2, states. Again, we see that the node
FIG. 11. Single particle energies for the caseU=0 with w; structure is the same as the one given b.y &q). For the
=2, w,=0, andm=10. states 8, and 1d5,,, which are pseudospin doublets as we
will see later, the lower components are equal. This is a
general feature of pseudospin symmetry, since when one acts
upon a given state with the pseudospin(8JUgenerators to
obtain its pseudospin partner, the radial lower component is
not changed because of the particular form of these genera-
tors, as was shown in Refgl6,18.
The eigenenergies faE=U=0 are obtained taking the

positive real roots of an algebraic equation with real coeffi-
cientsax¥+--- +a;x+a,=0 is never greater than the number
of changes of signs in the sequerge. .. ,a;,8; (not count-
ing the null coefficientsand, if less, then always by an even
number[26,27. Since we can write the square of E§9) as

X3+ 22 —-a2=0, (60) limit w,— 0 in Eg. (41), which leads to
with x=(E-m)/m and a=\2w,(2n+1+3/2)/m, then, by (E+m) ﬂ:wl(ﬁ+T+§) M=0,1,2,..).
Descartes’ rule of signs, only one solution witk-0, i.e., 2m 2
E>m, exists. Since by squaring E459) we may only (62)

introduce a negativéx<0) spurious solution, this solu- o _ . . -
tion is the only positive solution of that equation, and the ~Again, since the right-hand side of E§2) is positive and
proof is complete. Therefore, for given valuesaf n and real, we see that the real solutions must have positive binding
|, i.e, only discrete, positivégreater thanm) energies are €nergy&=£-m. Using similar arguments as with E(59),
allowed. one can show that there can be just one of such solutions.
The nonrelativistic limit is obtained by enforcing, — 0 The nonrelativistic limit in this case is obtained by setting
in Eq. (29). The right-hand side becomes the expression for?2=0 in Eq.(42). As remarked above, the resulting expres-
the nonrelativistic energy eigenvalues of the harmonic oscilSion is of second order iw,/m, meaning that the energy is
lator with no spin-orbit coupling. Similarly, Eq30) gives  Z€ro up to first order ino,/m. We can interpret this fact by
the nonrelativistic harmonic-oscillator radial wave function, Saying that, up to this order, there is no nonrelativistic limit
with a2=mw,. Figure 11 shows the single particle spectrumfor 2 =U=0 and therefore the theory is intrinsically relativ-
for A=0, m=10, andw,=2. For sufficiently smallw, the istic and so is the pseudospin symmetry. In this case, the
energy levels are essentially equidistant, a well-known feasecond order equation in E¢1), which only depends oh
ture of nonrelativistic harmonic-oscillator energy levels, andand also the eigenenergies in E62), show that there is no
we do not have spin-orbit interaction: states wjthl+1/2  pseudospin-orbit coupling and therefore the states with same
are degenerate. These results allow us to stress thak the (7 1), put withj=1+1/2 andj=I-1/2, aredegenerate. Thus,

potential can be closely connected to the intrinsic relativistiGynhenA is a harmonic-oscillator potential aft=U =0, there
content of a theory with scald6) and vector(V) potentials.  4re only positive-energy bound states and exact pseudospin
The nonrelativistic harmonic oscillator is in fact the limit of symmetry, i.e. A acts as a binding potential. This is an in-
the relativistic theory withtA=V-S=0 and a potential well teresting result in view of the fact that the pseudospin sym-
3 =5+V whenw;/m becomes very small. _ ~metry obtained in the limi&(r)— 0 cannot be realized for

Thus, an important conclusion of our study is that a Diracyclear vector and scalar mean fields which go to zero as
equation with scalar and vector harmonic-oscillator poten-_, o since in that cas® acts as a binding negative central
tials with the same sign and magnitude=0), instead of a  potential well and therefore no bound states may exist when
linear tensor potentidl, seems to be the most natural way 03 =0 [12,13. The spectrum of single particle states for the
introduce the harmonic oscillator in relativistic quantum me-case> =0 andm=10 is shown in Fig. 1@) using the quan-
chanics. tum numbers of the upper component, which can be seen as
the analog of the nonrelativistic quantum numbers. In Fig.
13(b) we classify the same energy levels by the quantum
numbers of the lower components. The comparison be-

Now we consider that both the tensor potentiehnd3 ~ tween these two figures manifests the pseudospin symmetry
are zero. The situation is very similar to the preceding suband its quantum numbers. For example, the douljlids,

C. Casew,=0 and % =0

024319-11
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—0ds,] and[1ps;»—0fs,], which have the same pseudo an-
gular momentunt and the sam@, are, in the new notation,
—— D3Py, 3y, 2y, 26, lho, b 0j., [0p1/,—0pP3/»] and[0ds,—0ds,], respectively. Therefore, the
161 1 . . e o —1 22 i
harmonic oscillator with%=U=0 andA=;mw7r* provides
— 35, 2d, 24, lg, [1g,, 0i . 2 L
i _f‘_’z_l L m an example of exact pseudospin symmetry. The fact that for
U — 121} 20y, 16y, 16, Ohg, this case we do not have a nonrelativistic limit, already
shows the relativistic nature of the pseudospin symmetry.
P 25, 1d;, 14, Og,, ) ~ .
" o T, of Figure 13a) shows thg2n+1) degeneracy, which means that
= tin) e 512 . ~ .
| ];l'n"(,dm not only states with sama,| are degeneratepseutiospln
— Top} partner$ but also, for example(h—-1,1+2) or (n+1,l-2)
op e have the same energy.
() The singlet statef =0) are the stateap,,, with =1 in-
side the small dashed squares in Fig. 3. It is interesting to
SV s Tn Ta 6T OF point out that the ground state level for this case is the state
16k N1 %e 2 T8n e Plun Ve 0py/, With 1=1. This is an unusual behavior coming from the
| —— 3, %,, If, If, |Oh,, oh,, relativistic nature of this particular case.
uf —— 13,114, T4, 03, 0, IV. THE PSEUDOSPIN SYMMETRY
i T, i, O, O, AND THE INTRUDER LEVELS
L ﬁgl'n'igam od,, The concept of pseudospin symmetry appeared in nuclear
. 05 physics more than 20 years afi®,2Q. It was introduced to
{(:)gl—’z—: * account for the observation, in heavy nuclei, of the quaside-
10} Lozl generacy of orbitals with quantum numbéfsr fixed n and
1)
)

. 1 _ - 3
FIG. 13. Single particle energies for the ca%e0 with the (n’I’J =1+ 2) and (n Li+2,j=1+ 2)' (63)

quantum numberga) (n | j) and (b) (lj=j). The parameters are Such pairs of single particle states are known as pseudospin
w1=2, w,=0, andm=10. partners.
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The doublet structure in the spectrum is better expressetthat contribute to the energy as discussed in several works
in terms of the pseudo-orbital angular moment and pseur13,23-25.
dospin quantum numbér|+1 and$=s=1/2, respectively. We have seen in the previous sections that the relation
The former, as noted by Ginocch[d2], is just the orbital ~between the nodes of radial functions depends on whether
angular momentum of the lower component of the Diracon€ hasA=0 or>=0 in Dirac Hamiltonian with harmonic-
spinor, introduced in Sec. Il. The pseudospin partners hav@scillator potentials. Leviatan and Ginocchio have shown

T _ [14] that, in the limit of pseudospin symmetry, the lower
the samd. For example, for the partnefas; , (n-1)d radial functions of the pseudospin partners have the same

I=1, and for[nps;,(n=1)fs,] one hasl=2. Yet, the total  nymper of nodes. Using this information, they were able to
angular momentum quantum number is still given py show[18] that, for scalar and vector potentials which go to
=1+S, where the aligned+) and unaligned(-) cases are zero at infinity, like Woods-Saxon potentials, the number of
determined by the sign 6t [see Eq(40)]. Pseudospin part- nodes is related by

ners havex with opposite signgthe states wittm andn-1

radial quantum numbers have, respectively; 0 andk <0) _Jng, k<O
and thus pseudospin and pseudo-orbital angular momentum N = ng+1, x>0.

have opposite alignments. The fact thas a good quantum L .
number can then be related to the disappearance of the term This is t_he behavior we have fqund b_efore for scalar and
with 3’ in Eq. (17), which can be interpreted as pseudospin—veCt(_)r oscillator harmonic _potentlals with=0, Eq. (34,
orbit interaction ternj21]. From that equation it is also clear preusely the.case .f°F which we have the nonrelativistic
that this happens only whdui=0, that is, the tensor interac- harmomc-oscnlat.or limit, .
tion breaks pseudospin symmetry. Let us now discuss t_he levels withy=n;=0. From Eq.

The existence of pseudospin partners is connected to &0, we see that th|§ can only happen whgwl
SU(2) symmetry of the Dirac equation with only scalar and *1/2 (k<0) but never withj=1-1/2 («>0). If we recall
vector potentials whed =0 or 3 =0, rather than to the par- that the pseudospin doublets have the samen this case
ticular shapes of these potentials. Back in 1975, Bell andli=0; States such assf), 0psj, 0ds)z, etc., have no pseu-
Ruegg[15] obtained the pseudospin generators for that symdOSPIn partners. These states are knowrinasider states.
metry. In that pioneering work only the cade=0 was stud- | € Moy State, for example, is an intruder and what would
ied with the possible application to meson spectra exhibitind?® itS Pseudospin partner — the statg; @ (x=6)—does not
a tiny spin-orbit splitting. More recently, Ginocchio consid- €Xist because;=n;—1 would be negative fon;=0. This is
ered the other cas&,=0, to explain the quasidegeneracy of What we observe in the nuclear spectra. ,
pseudospin doublets in nuclei. The generators of the symme- !N the case of exact pseudospin symmefy=0) with a
try for radial potentials were worked out in Ré16]. _harmonlc—osullator potential fak, which we haye d!scussed

It is interesting to discuss how the pseudospin symmetry Sec. Il C, the structure of the nodes it is quite different. In
gets broken. The S(@) generators of the pseudospin sym- accordance with Eq47),
metry are given by8,15,14

(67)

ng—1, k<0 68
k>0.

n

_.1 a-psa-pl (5 0 ,
S—sz(l B)+—p2 2(1+B)—<0 a)’ (64) g

Thus the intruder levels that hamg=n;=0 may only ex-

where ist in the exact pseudospin limit whgmrl-1/2(«x>0), as
PEp— 2. we see from Eq(68) and, in that sense, they are not the
5= P, P_ pri -5, (65) intruder levels seen in nuclei, whejel+1/2(k<0).

p P p In a recent paper the intruder levels have been discussed
and s=0,/2 (i=1,2,3. The commutator of this operator !n the context of the relativisti_c harmonic oscillgt[GJO] a_nd_
with the Hamiltonian in Eq(1) with U=0 is it was suggested that they will have partners in the limit of
the exact pseudospin symmet®y=0). However, in that pa-
[25] O per, the pseudospin partners have been classified considering
o o/ (66) only the radial quantum number of the lower component
(sameny). In that classification, levels with the same=0
Thus, the pseudospin symmetry breaking can be related t@ay have partners according to £§8). However, it seems
the commutatof2,,5] [22]. This commutator is zero when that the relation between the number of nodes of the upper
3,=0, but for radial potentials it is enough that(r)=0[21]. and lower components was considered to be given by Eq.
The quasidegeneracy of some pseudospin partners can &) instead of the correct one given by EG8). If we take
seen in a Dirac Hamiltonian with scalar and vector potentialgnto account that the nuclear intruder levels hajel
of Woods-Saxon typgl3]. As explained before, one cannot +1/2(«x<<0) then, by Eq(68), we see that states with nega-
set3 =0 for those kind of potentials, so we cannot get thetive « that have zero nodes in the lower component will have
full degeneracy of all pseudospin partners. In fact, thea node in the upper componemk,=1. This disagrees with
nuclear pseudospin symmetry in nuclei has a dynamicahuclear spectroscopy, since the intruder states should have
character coming from a cancellation among different terms,=0. This is shown in Fig. 1&) where we show inside the

[Hp,S] :(
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solid square the stategd;, with n=1 and its partneriQ,,  dospin symmetry is exact, i.e., pseudospin doub(states

that in the(n,l) classification in Fig. 1®) are the pseu- with samel) are degenerate. In this case we can have bound
dospin doublefOhg;,— 0Ny ). states due to the positive harmonic-oscillator potenfal

We can summarize this discussion and conclude that evehN€sSe states can be regarded as intrinsically relativistic, in
though the harmonic oscillator with=0 has an exact pseu- the sense that tha potential has no analog in the nonrela-

dospin symmetry that could explain the almost degeneracy iHV(;S_tif Iirr(;it. In fact, they ShOtW ?hvery petl:utl_ia_r tgtrt;cture of
~ . . . radial nodes in comparison to the nonrelativistic harmonic-
| observed in nuclei for the doublets wiflrl+1/2(k<0), P

1-1/2(x>0) radial and orbital b | doscillator radial wave function: the states wjthl +1/2 have
j=1-1/2(x>0), radial and orbital quantum numbers related 3¢ o4t one nodén=1) in the upper component and can
as shown in Eq(63),

. it cannot explain the origin of the 1,56 ;60 nodes only in the lower one. As a consequence, the
intruder levels. Furthermore, the harmonic oscillator presents . der levels on the nuclear spectigolated levels with

a much higher degeneracy in the energy levels besides the. 4 5n4j=1+1/2) do not exist in the harmonic oscillator in
simple degeneracl, as we have shown, which implies that the limit of nuclear pseudospin symmet(¥=0). In this

the nuclear potential cannot be approximated by a harmonigmit the states with zero nodes in the upper component have
oscillator and must be more complicated in order to removg=|-1/2. Moreover, the relativistic harmonic oscillator in
this extra degeneracy. The asymptotic properties of the cefhe casdJ=3=0 has a much higher energy degeneracy than
tral mean-field potential also seem to play a crucial role inthe approximate pseudospin symmetry seen in the nuclear

defining the node structure of the single particle levels. spectradoublets with sam@ 1). This is not surprising since
the meson exchange theory of nuclear forces produces
V. CONCLUSIONS nuclear potentials that vanish wher-«, a completely dif-

We have presented a generalized harmonic oscillator fofe€nt asymptotic behavior from the harmonic-oscillator po-
spin 1/2 particles that includes not only the usual linear teniential discussed here. One possible way to break this extra
sor potential obtained by a redefinition of the momenta, buf!€generacy of the harmonic oscillator is to add a Woods-
also a vectorV) and scalar potentialS) that appear in the Saxon-like potential as it has been done in Re€)].

Dirac Hamiltonian in the specific combinations 112 )V, Another important conclusion from our work is that a

in which V is a harmonic-oscillator radial potential. A special Dirac equation with scala_r and vector _harmonlc_:-oscnlator
attention was paid to the 1{2-8)V combination, i.e., when potent@ls with the same sign ‘?”d magnitéde=0), instead
Iof the linear tensor potentidl, is the most natural way to
introduce the harmonic oscillator in relativistic quantum me-
hanics, since one gets the correct nonrelativistic limit, so
that the energy levels and the upper component of the wave

pseudospin symmetry.

We have derived the energy eigenvalue equations an
shown explicitly the wave functions. The nonrelativistic lim- . o A
its for all cases have been discussed. The analytical expregu-ncuonS are very similar to the nonrelativistic ones.

sion for the upper and lower components of the Dirac spinor Finally, our analysis of the relativistic harmonic oscillator
for U=0, when3=0 (or A=0), has been found shows, in a very simple and analytical way, that the nuclear

We have discussed the structure of the solutions of th squospin symmetrig. =0) QOes not have a nonrelativistic .
eigenvalue equations and presented explicitly the positiv mit, in the sense that the eigenvalues are of second order in

energy solutions. We have concluded that only when the terft w/m expansion. So we conclude that the relativistic har-

sor potential is turned on we have the negative bound stat@onic o_scillatc_)r Is an excellent example to shgw gxplicit!y
solutions and in this case, when =0, the two bound state what Ginocchio had already emphasized in his pioneering

solutions are symmetric. When the tensor potential is abse or:k: gfops_egdgspéln symmetrty mfth? E'rat? HaTlltonlan
we have also shown that the special conditions between tH¥/"€n2=0) is indeed a symmetry of relativistic nature.
scalar and vector potentigs=V or S=-V) needed to have
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tentials exclude the negative bound state solutions from the
spectra. We acknowledge financial support from CNPq, FAPESP,

The structure of the radial nodes for the Dirac spinor hasand FCT(POCTI) scientific program. R.L. and M.M. ac-
also been presented and compared to the case when the gmowledge, in particular, the CNPq support and A.S.C. was
tentials vanish for large distances. We discussed in detail thalso supported by FAPESP. P.A. and M.F. were supported in
case of the harmonic oscillator with==2,=0 for which pseu- part by FCT(Lisbon), Project No. POCTI/FIS/451/1994.

[1] D. It6, K. Mori, and E. Carriere, Nuovo Cimento A1, 1119 550(1974; H. Ui and G. Takeda, Prog. Theor. Phy&, 266
(1967; N. V. V. J. Swamy, Phys. Revi80 1225(1969; P. A. (1984); 72, 813(1984; A. B. Balantekin, Ann. Phys(N.Y.)
Cook, Lett. Nuovo Cimentdl0, 419 (197)); E. F. Chaffin, J. 164, 277(1985; J. N. Gnocchio, irSymmetries in Science Il
Math. Phys.14, 977(1973; Y. M. Cho, Nuovo Cimento A23, edited by B. Gruber and R. LenczewgRlenum, New York,

024319-14



PSEUDOSPIN SYMMETRY AND THE RELATIVISTIC.. PHYSICAL REVIEW C 69, 024319(2004)

1986, p. 75; R. J. Hughes, V. A. Kostelecky, and M. M. Nieto, Chin. Phys.11, 757 (2002.

Phys. Rev. D34, 1100(1986. [9] V. I. Kukulin, G. Loyola, and M. Moshinsky, Phys. Lett. A
[2] M. Moshinsky and A. Szczepaniak, J. Phys. 22, L817 158 19 (1997).

(1989. [10] T.-S. Chen, H.-F. L, J. Meng, S.-Q. Zhang, and S.-G. Zhou,
[3] M. Moreno and A. Zentella, J. Phys. &2, L821 (1989); J. Chin. Phys. Lett.20, 358 (2003.

Benitez, R. P. Martinez y Romero, H. N. Nufiez-Yépez, and A.
L. Salas-Brito, Phys. Rev. Lett.64, 1643 (1990; F.
Dominguez-Adame and M. A. Gonzélez, Europhys. L&,
193 (1990; M. Moreno, R. Martinez, and A. Zentella, Mod.
Phys. Lett. A5, 949(1990; M. Moshinsky, G. Loyola, and C.
Villegas, J. Math. Phys32 373 (199); C. Quesne, Int. J.
Mod. Phys. A6, 1567(1991); O. Castafios, A. Frank, R. L6-

[11] J. N. Ginocchio(private communication to appear in Phys.
Rev. C.

[12] J. N. Ginocchio, Phys. Rev. Let#8, 436(1997); Phys. Rep.
315 231(1999.

[13] P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino, and M. Chi-
apparini, Phys. Rev. Lett86, 5015(200D; Phys. Rev. C65,

pez, and L. F. Urrutia, Phys. Rev. B3, 544(1991). 034307(2002. _
[4] M. Moshinsky, G. Loyola, and A. Szczepanidihe Two-Body [14] J. N. Ginocchio and A. Leviatan, Phys. Rev. L&tZ, 072502
Dirac Oscillator (World Scientific, Singapore, 1990 M. (2001).

Moshinsky, G. Loyola, A. Szczepaniak, C. Villegas, and N. [19] J. S. Bell and H. Ruegg, Nucl. PhyB98, 151 (1975.
Aquino, in Proceedings of the International Workshop on [16] J. N. Ginocchio and A. Leviatan, Phys. Lett. BI5 1(1998.
Relativistic Aspects of Nuclear Physics, Rio de Janeiro, Brazil[17] Handbook of Mathematical Functionsedited by M.

199Q edited by T. Kodamat al. (World Scientific, Singapore, Abramowitz and |. StegurfDover Publications, New York,
1990, pp. 271-303. 1972.

[5] C. Quesne and M. Moshinsky, J. Phys.28, 2263(1990); O. [18] A. Leviatan and J. N. Ginocchio, Phys. Lett. B18 214
L. de Lange,bid. 24, 667 (199)); R. P. Martinez y Romero, (2001).

H. N. Nufiez-Yépez, and A. L. Salas-Brito, Eur. J. Ph{s§, [19] K. T. Hecht and A. Adler, Nucl. PhysA137, 129(1969.
135(1999; M. Moshinsky, C. Quesne, and Y. F. Smirnov, J. [20] A. Arima, M. Harvey, and K. Shimizu, Phys. LetB30, 517

Phys. A 28, 6447(1995. (1969.
[6] V. M. Villalba, Phys. Rev. A49, 586(1994); P. Rozmej and R.  [21] J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A.
Arvieu, J. Phys. A32, 5367(1999; V. M. Villalba and A. A. Arima, Phys. Rev. C58, R628(1998).
R. Maggiolo, Eur. Phys. J. B2, 31 (200J. [22] J. Dudek, P. Casoli, N. Schunck, D. Valet, and Z. tojewski,
[7] Y. Nogami and F. M. Toyama, Can. J. Phy&l, 114(1996); F. Acta Phys. Pol. B30, 771(1999.
Toyama, Y. Nogami, and F. A. B. Coutinho, J. Phys.38, [23] R. Lisboa, M. Malheiro, and P. Alberto, Phys. Rev. &7,
2585(1997; F. M. Toyama and Y. Nogami, Phys. Rev. 39, 054305(2003.
1056 (1999; P. Rozmej and R. Arvieu, J. Phys. 82, 5367  [24] S. Marcos, L. N. Savushkin, M. Lopez-Quelle, and P. Ring,
(1999; V. M. Villalba and A. A. R. Maggiolo, Eur. Phys. J. B Phys. Rev. C62, 054309(2000.
22, 31 (2001); M. H. Pacheco, R. Landim, and C. A. S. [25] S. Marcos, M. Lépez-Quelle, R. Niembro, L. N. Savushkin,
Almeida, Phys. Lett. A311, 93 (2003. and P. Bernardos, Phys. Lett. B13 30 (2001).
[8] B. Smith and L. J. Tassie, Ann. Phy8l.Y.) 65, 352(1971); F. [26] M. G. SalvadoriNumerical Methods in Engineerin@rentice-
Ravndal, Phys. Lett113B, 57 (1982; R. Tegen, Ann. Phys. Hall, New York, 19532.
(N.Y.) 197, 439(1990; M. Centelles, X. Vifias, M. Barranco, [27]|. S. Berezin and N. P. ZhidkovGomputing Methods¢Perga-
and P. Schuck, Nucl. PhysA519, 73c (1990; Q. W.-Chao, mon, Oxford, 1965 Vol. II.

024319-15



