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The neutron skin thickness of stable and unstable nuclei is studied in Skyrme Hartree-Fock(SHF) and
relativistic mean field(RMF) models to investigate the relation between the pressure and the equation of state
in neutron matter. We found a clear linear correlation between the neutron skin thickness in heavy nuclei132Sn
and 208Pb and the pressure of neutron matter in both SHF and RMF models, while the correlation is weak in
the unstable nuclei32Mg and 44Ar. Relations between the neutron skin thickness and other nuclear matter
properties such as the symmetry energy coefficients and the nuclear incompressibility are discussed.
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I. INTRODUCTION

The proton and neutron density distributions are some of
the most fundamental observables of nuclei. Charge radii of
nuclei are derived from charge density distributions which
can be determined to a high accuracy in experiments using
electromagnetic probes, for example, electron scattering ex-
periments[1]. The empirical information of proton radii is
then obtained from these charge radii. In contrast, it is much
more difficult to accurately determine the neutron density
distributions of nuclei by any experimental probe[2]. Sev-
eral attempts have been made to determine the neutron den-
sity distributions by using proton scattering and interaction
cross sections in heavy ion collisions at relativistic energies
[3]. So far, the accuracy of neutron radii determinations is
poor compared to that of proton radii. However, a promising
experiment to determine the neutron radius has been pro-
posed, namely, to measure the parity violation effect in po-
larized electron scattering[4].

Nuclei for which the neutron numberN is larger than the
proton numberZ are expected to have a neutron skin. Its
thickness depends on the balance between various aspects of
the nuclear force. The isospin asymmetry properties of the
nuclear force favor equal proton and neutron densities at
each spatial location, that is,rpsx,y,zd=rnsx,y,zd. However,
when NÞZ this condition cannot be fulfilled everywhere.
The actual proton and neutron density distributions are de-
termined by the balance between the isospin asymmetry and
the Coulomb force. Also for the caseN=Z these forces cause
slight deviations fromrpsx,y,zd=rnsx,y,zd. In mean-field
calculations, the skin thickness is related to the disparity in
the Fermi energies between protons and neutrons[5,6]. This
disparity is the main cause of the difference between the
neutron and the proton radii in unstable nuclei. On the other
hand, in stable nuclei where the neutron and the proton
Fermi energies are similar, the neutron skin thickness is cre-
ated by the pressure of the nuclear medium and is much
smaller than in unstable nuclei. Accordingly the size of the
neutron skin thickness will give an important constraint on

the pressure of the equation of state(EOS), which is an es-
sential ingredient for the calculation of the properties of neu-
tron stars[7]. It was pointed out that the neutron skin thick-
ness of208Pb is strongly correlated with the pressure(the first
derivative) of EOS at neutron densityrn=0.1 fm−3 in the
Skyrme Hartree-Fock(SHF) model[8] and in the relativistic
models [9]. The neutron skin thickness in208Pb was dis-
cussed also in the context of effective field theory in Ref.
[10]. A similar pressure-EOS correlation was found also in
138Ba and 132Sn. In this paper, we study the neutron skin
thickness of stable nuclei, and of several unstable nuclei by
use of SHF and relativistic mean field(RMF) models. The
aim of this paper is twofold. First, we extend the study of the
correlations between the neutron skin thickness and the pres-
sure of EOS to some light unstable nuclei, which can be
accessed in radioactive ion beam experiments. Second, we
study the relations between the neutron skin thickness and
other nuclear matter properties such as the volume and sur-
face symmetry energy coefficients and the nuclear incom-
pressibility. The mean field models are summarized in Sec.
II. Section III is devoted to studies of the relation between
the neutron skin thickness and the pressure of the EOS. Re-
lations between the neutron skin thickness and the volume
and surface symmetry energy coefficients are discussed in
Sec. IV. A summary is given in Sec. V. Detailed discussions
of symmetry energy coefficients are given in the Appendix.

II. MODEL

The SHF model for finite nuclei is implemented with a
density-dependent pairing force for BCS calculations. The
Skyrme forceVSky is an effective zero-range force with
density-dependent and momentum-dependent terms[11],

VSkysrW1,rW2d = t0s1 + x0PsddsrW1 − rW2d + 1
2t1s1 + x1PsdhkW82d

3srW1 − rW2d + dsrW1 − rW2dkW2j + t2s1 + x2PsdkW8 · d

3srW1 − rW2dkW + 1
6t3s1 + x3PsdrasrWddsrW1 − rW2d

+ iWssW 1 + sW 2d ·kW8 3 dsrW1 − rW2dkW , s1d

where kW =s¹W 1−¹W 2d / s2id acting on the right andkW8=−s¹Q 1*FAX: 81-3-3264-9429; Email address: sIyoshi@i.hosei.ac.jp
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−¹Q 2d / s2id acting on the left are the relative momentum op-
erators,Ps is the spin exchange operator,sW is the Pauli spin
matrix, andrW= 1

2srW1+rW2d. The interactions1d simulates theG

matrix for nuclear Hartree-Fock calculations. The Hamil-
tonian density for Skyrme Hartree-Fock calculation is
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"2

2m
stn + tpd +

1

4
t0s1 − x0dsrn

2 + rp
2d + t0S1 +

1

2
x0Drn rp +

1

12
t3 S1 +

1

2
x3Dra+2 −

1

12
t3 S1

2
+ x3Drasrn

2 + rp
2d

+
1

8
ft1s1 − x1d + 3 t2s1 + x2dgsrntn + rptpd +

1

4
Ft1S1 +

1

2
x1D + t2S1 +

1

2
x2DGsrntp + rptnd −

3

32
ft1s1 − x1d

− t2s1 + x2dgsrn¹
2rn + rp¹

2rpd −
1

16
F3 t1S1 +

1

2
x1D − t2S1 +

1

2
x2DGsrn¹

2rp + rp¹
2rnd −

1

2
Wsr¹W ·JW + rn¹W ·JWn

+ rp¹W ·JWpd + HCoul −
1

16
st1x1 + t2x2dJW2 +

1

16
st1 − t2dsJWn
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wherernsrpd is the density of neutronssprotonsd and r=rn

+rp, while tnstpd and JWnsJWpd are the kinetic energy and the
spin-orbit densities of neutronssprotonsd, respectively. The
neutron skin thickness of stable and unstable heavy nuclei is
studied within the SHF model using 18 different parameter
sets sSI–SIV, Skya, Skyb, SkM, SkM*, SGI, SGII, SkI3,
SkI4, MSkA, SLy4, SLy10, SkXd taken from Refs.
f8,12–20g. The modified form of spin-orbit interaction
was adopted in the case of SkI3, SkI4, SLy10, MSkA, and
SkX. The spin-orbit density terms in Eq.s2d are omitted in
the HF calculations except for SLy10.

A density-dependent zero-range force is adopted as a pair-
ing interaction for SHF+BCS calculations,

Vpair =
V0

2
s1 − PsdS1 −

rsrW1d
rc

DdsrW1 − rW2d, s3d

where the critical densityrc is taken to be 0.16 fm−3 and the
strengthV0 is equal to −880 MeV fm3 for heavy nuclei and
−400 MeV fm3 for light nuclei. The strengthV0 is fixed to
be either −880 MeV fm3 or −400 MeV fm3 in all Skyrme
parameter sets, although this value might be determined
depending on the level density around the Fermi energy,
i.e., the effective mass of each Skyrme interactionf20g.
We investigatedV0=−1000 MeV fm3 for SLy4 in 133Ba.
The averaged gap energy then increases by 21%, whereas
the change indnp is less than0.6%.Since the main aim of
the present study is the valuednp, we choose to use a fixed
V0 value for all Skyrme interactions depending on the
mass of nucleus. In order to avoid divergences of the pair-
ing energy, an energy cutoff parameter is introduced in the
valence single-particle space above the Fermi level to
limit the active pairing space to one major shell. We use
the cutoff prescription of the model space in Ref.f21g.

Next, we summarize the formulation of the RMF model
with nonlinear meson couplings. The following relativistic
Lagrangian(density) L is adopted for the interacting many-

body system consisting of nucleons, scalars, and vectorv,
and chargedrW mesons, and photons[22–27],

L = c̄Sigm]m − M − gss − gvgmvm − grgmtWbWm

− egm1 − t3

2
AmDc +
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where Fmn;]mvn−]nvm, GW mn;]mbWn−]nbWm, Hmn;]mAn

−]nAm, ands ,vm, bWm, andAm are thes ,v, r mesons, and the
electromagnetic field, respectively. The quantitiesgs, gv,
and gr are the coupling constants between nucleons ands,
v, and r mesons, respectively, whilee2/4p=1/137 is the
fine structure constant. The quantitiesms ,mv ,mr, and M
are the masses ofs ,v, r mesons, and nucleons, respec-
tively. The quantityUssd is the nonlinear potential ofs
mesonsf28g,

Ussd = 1
3g1s3 + 1

4g2s4, s5d

whereg1 and g2 are parameters of the potential. The Dirac
equation for nucleons and the Klein-Gordon equations for
mesons are derived by the classical variational principle with
time-reversal symmetry and charge conservation,

F− iaW ·¹W + bM* + gvvsrWd + grt3bsrWd + e
1 − t3

2
AsrWdGcisrWd

= «icisrWd, s6d

s− ¹2 + ms
2dssrWd = − gsrssrWd − g1s2srWd − g2s3srWd,
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s− ¹2 + mv
2dvsrWd = gvrBsrWd,

s− ¹2 + mr
2dbsrWd = grr3srWd,

− ¹2AsrWd = erpsrWd, s7d

whereaW andb are defined by

aW = S0 sW

sW 0
D and b = S I 0

0 − I
D ,

wheresW is the Pauli matrix andI is the 232 unit matrix,
respectively. The baryon and the scalar densities are denoted
by rB andrs, respectively, whiler3=rn−rp is the isovector
density. The effective massM* is defined byM* =M +gss.
The RMF model is applied only to closed-shell nuclei with-
out a pairing interaction. Five different parameter setssNL1–
NL3, NLSH, and NLCd taken from Refs.f22,29–31g are
studied.

III. EQUATION OF STATE AND PRESSURE FOR
NEUTRON MATTER

The pressureP of neutron matter is defined as the first
derivative of Hamiltonian density with respect to the neutron
density,

P = rn
2 d

drn
SH

rn
D , s8d

where H is the Hamiltonian density of neutron matter
Hsrn,rp=0d. The Thomas-Fermi approximation of the
Hamiltonian density of the SHF model for infinite nuclear
matter is used and the derivative terms and the Coulomb
term are neglected. In the RMF calculations, the static
Hamiltonian density of nuclear matter can be obtained by
using Eqs.s6d and s7d f25g,

Hnm =
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s2pd3FE
0

kFp

+E
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wherekFn
and kFp

are the Fermi momenta for neutrons and
protons, respectively. Furthermore, the baryon densityrB is
given byrB=2kF

3 / s3p2d using the Thomas-Fermi approxima-
tion. The static Klein-Gordon equations for nuclear matter
become

ms
2s = − gsrs − g1s2 − g2s3,

mv
2v = gvrB,

mr
2b = grr3, s10d

where the scalar densityrs for the nuclear matter is given by

rs =
2

s2pd3FE
0
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+E
0

kFp G M*

sk2 + M*2d1/2d3k. s11d

Therefore the static Hamiltonian density in the nuclear mat-
ter becomes

Hnm =
2
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0
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In SHF calculations, the Hamiltonian density is derived ana-
lytically, while it is calculated numerically in RMF calcula-
tions.

The neutron skin thicknessdnp and the binding energies
obtained in the SHF and RMF models are plotted in Figs. 1
and 2 for132Sn and208Pb, respectively. Spherical symmetry
is assumed for finite nuclei. The neutron skin thickness is
defined as the difference between the root-mean-square neu-
tron and proton radii,

dnp = Îkr2ln − Îkr2lp. s13d

In Fig. 1, the horizontal axis is the neutron skin thicknessdnp
of 132Sn and the vertical axis is the binding energy differ-
ence between132Sn and100Sn. Both 132Sn and100Sn are
doubly closed-shell nuclei like208Pb. Open circles and

FIG. 1. The neutron skin thickness of132Sn and the binding
energy difference between132Sn and100Sn are plotted for 18 pa-
rameter sets of the SHF model(open circles and open diamonds)
and 5 parameter sets of the RMF model(filled circles and filled
diamonds). The experimental binding energy difference is shown as
a dotted line. The numbers are a shorthand notation for the different
interactions: 1 for SI, 2 for SIII, 3 for SIV, 4 for SVI, 5 for Skya, 6
for SkM, 7 for SkM*, 8 for SLy4, 9 for MSkA, 10 for SkI3, 11 for
SkI4, 12 for SkX, 13 for NLSH, 14 for NL3, 15 for NLC, 16 for
SII, 17 for SV, 18 for Skyb, 19 for SGI, 20 for SGII, 21 for SLy10,
22 for NL1, and 23 for NL2.
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open diamonds are results with SHF parameter sets, while
filled circles and filled diamonds are results obtained with
the various RMF parameter sets. Each parameter set is
designated by a specific number. The experimental bind-
ing energy difference is shown as a dotted line. The neu-
tron radii have not yet been measured for132Sn and100Sn.
In Fig. 2, results for208Pb and182Pb are presented. The
open and filled diamonds in Figs. 1 and 2, represent the
eight parameter sets, which do not reproduce the experi-
mental binding energy difference between132Sn and100Sn
and that between208Pb and 182Pb to a reasonably good
accuracy. They are therefore omitted in the subsequent
studies.

Figure 3 shows the neutron equations of state for our dif-
ferent parameter sets, while the pressure of neutron matter is
plotted as a function of neutron density in Fig. 4. In Figs. 3
and 4 the solid and dotted lines show the results with SHF
and RMF models, respectively. We present results obtained
with 13 SHF parameter sets(SI, SIII, SIV, SVI, Skya, SkM,
SkM*, SkI3, SkI4, MSkA, SLy4, SkX, SGII) and 3 RMF
parameter sets(NL3, NLSH, NLC). All except the SGII in-
teraction reproduce well the experimental binding energy
differences between132Sn and100Sn and between208Pb and
182Pb as shown in Figs. 1 and 2, respectively. We plot the
results obtained with SGII(long-dashed curves) in Figs. 3
and 4, since the SGII interaction gives almost equivalent
results to those of the variational calculations using thev14
nucleon-nucleon potential together with a phenomenological
three-nucleon interaction[32], which is fitted to reproduce
nucleon-nucleon scattering data and the properties of nuclear
matter. In Figs. 3 and 4 one can see large variations among
different parameter sets. A general feature is that the RMF
curves exhibit a much larger curvature than do the SHF

curves, some of which even have negative curvature. Figures
3 and 4 show that results obtained with the SGII and SkX
parameter sets are almost equivalent to the results of the
variational calculations.

Next, we study the relation between the neutron skin
thickness of finite nuclei and the pressures of neutron matter
at rn=0.1 fm−3 and 0.2 fm−3. Results for the pressures at
rn=0.1 fm−3 and rn=0.2 fm−3 are given in Figs. 5(a) and
6(a) and Figs. 5(b) and 6(b), respectively. We plot in Figs.
5(b) and 6(b) the results atrn=0.2 fm−3 where the different
interactions result in a wider range of pressures. The proper-
ties of nuclear matter at high densities are important for a
unified description of neutron stars, from the outer crust
down to the dense core[33]. Clear linear correlations are
found between the neutron skin thicknessdnp and the pres-
sureP of 208Pb and132Sn in Figs. 5 and 6, respectively, with
the parameter sets of the SHF and RMF models used in Figs.
3 and 4. In general, the RMF pressures are larger than those
of SHF models, and the RMF models give the larger neutron
skin thickness. The results atrn=0.1 fm−3 are consistent with
the studies of Refs.[8,9]. Thus, experimentaldnp values
would provide important constraints on the parameters used
in SHF and RMF models. We fit linear functions to the data
presented in each figure by the method of least squares and
obtain

dnp = 1.093 10−1P + 7.763 10−2 for 208Pb with

rn = 0.1 fm−3 sr = 0.988,S= 7.963 10−3d, s14d

FIG. 2. The neutron skin thickness of208Pb and the difference
between the binding energies of208Pb and182Pb are plotted for 18
parameter sets of the SHF model(open circles and open diamonds)
and 5 parameter sets of the RMF model(filled circles and filled
diamonds). The experimental binding energy difference is shown as
a dotted line. See the caption of Fig. 1 for details.

FIG. 3. The neutron equations of state are shown for the 12
parameter sets of the SHF model(solid lines) and 3 parameter sets
of the RMF model(dashed lines) which in Figs. 1 and 2 were
shown to reproduce the differences of experimental binding ener-
gies reasonably well. Filled circles correspond to the variational
calculations using thev14 nucleon-nucleon potential and a phenom-
enological three-nucleon interaction, while the long-dashed curve
corresponds to the SGII interaction. See the caption of Fig. 1 for
details.
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dnp = 1.023 10−2P + 1.153 10−1 for 208Pb with

rn = 0.2 fm−3 sr = 0.986,S= 8.653 10−3d, s15d

dnp = 1.213 10−1P + 1.293 10−1 for 132Sn with

rn = 0.1 fm−3 sr = 0.987,S= 9.203 10−3d, s16d

dnp = 1.133 10−2P + 1.713 10−1 for 132Sn with

rn = 0.2 fm−3 sr = 0.977,S= 1.223 10−2d, s17d

wherednp and P are the neutron skin thicknesses in fm and
the pressures in MeV fm−3, respectively. The quantitiesr and
S are the correlation coefficient and the standard deviation,
respectively. These equations show that the coefficients of
the P terms for208Pb are almost equal to those for132Sn for
the two neutron matter densitiesrn=0.1 and 0.2 fm−3.

We also study the relation between the pressure and the
neutron skin thickness of several other nuclei, namely,32Mg,
38Ar, 44Ar, 100Sn, 138Ba, 182Pb, and214Pb obtained in SHF1
BCS calculations. In Fig. 7,38Ar (filled triangles), 138Ba
(crosses) and 208Pb (filled circles) are stable nuclei, whereas
32Mg (reversed open triangles), 44Ar (open triangles), 132Sn
(open diamonds), and 214Pb (open squares) are neutron-rich
nuclei. The two nuclei100Sn (filled diamonds) and 182Pb
(open circles) are neutron deficient. This figure shows, in
general, that the higher the third component of the nuclear
isospinTz=sN−Zd /2 is, the steeper the slope of the line is.

This isospin rule does not hold in32Mg. This is because the
effect of the neutron-proton Fermi energy disparity domi-
nates the increase in the neutron radii of neutron-rich light
nuclei while the pressure plays a minor role, although the
absolute magnitude ofdnp is the largest in Fig. 7. It was
pointed out in Ref.[34] that configuration mixing might play
an important role in determining the neutron and proton radii
in 32Mg. However, the correlation between the neutron skin
thickness and the pressure might not be changed by configu-
ration mixing. The linear functions obtained from the fits to
the data in Fig. 7 by the method of least squares behave in a
similar way as those of208Pb and132Sn:

FIG. 4. The pressure of neutron matter as a function of neutron
densities. The same parameter sets as those of Fig. 3 are used. The
variational calculations with thev14 potential are shown by filled
circles. The results of the SHF model are given by the solid lines,
while those of the RMF model are given by the dashed lines. The
long-dashed curve shows the results of the SGII interaction. See the
caption of Fig. 1 for details.

FIG. 5. The correlations between the pressures of neutron matter
and the neutron skin thickness of208Pb obtained with the same SHF
(open circles) and RMF(filled circles) parameter sets as were used
in Fig. 3. (a) The result for pressure atrn=0.1 fm−3, (b) that atrn

=0.2 fm−3. See the caption of Fig. 1 for details.
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dnp = 4.853 10−2P + 2.443 10−1 for

32Mg sr = 0.744,S= 1.333 10−2d, s18d

dnp = 3.643 10−3P + 1.193 10−2 for

38Ar sr = 0.247,S= 4.343 10−3d, s19d

dnp = 6.823 10−2P + 1.283 10−1 for

44Ar sr = 0.799,S= 1.563 10−2d, s20d

dnp = − 3.383 10−3P − 7.433 10−3 for

100Sn sr = − 0.168,S= 6.043 10−3d, s21d

dnp = 9.103 10−2P + 6.883 10−2 for

138Ba sr = 0.938,S= 1.033 10−2d, s22d

dnp = 3.813 10−2 P − 1.243 10−2 for

182Pb sr = 0.922,S= 4.863 10−3d, s23d

dnp = 1.323 10−1P + 9.883 10−2 for

214Pb sr = 0.981,S= 7.913 10−3d. s24d

Equations(19) and (21) show that the standard deviationsS
are larger than gradients of the linear correlations between
the dnp and the pressureP in 38Ar and 100Sn, so that thednp
values look almost flat as a function of the pressureP. This is
due to the fact that these two nuclei are close to the proton
drip line and a high Coulomb barrier prevents an increase of
dnp. The correlations are weak in the neutron-richTZ=4 nu-
clei 32Mg and44Ar in which the large difference between the
proton and neutron Fermi energies is the main reason a siz-
able neutron skin is obtained.

FIG. 6. The correlations between the pressures of neutron matter
and the neutron skin thickness of132Sn obtained by use of the same
SHF (open circles) and RMF(filled circles) parameter sets as were
used in Fig. 3.(a) The result for pressure atrn=0.1 fm−3, (b) that at
rn=0.2 fm−3. See the caption of Fig. 1 for details.

FIG. 7. The correlations between the pressures of neutron matter
and the neutron skin thickness of32Mg (reversed open triangles),
38Ar (filled triangles), 44Ar (open triangles), 100Sn (filled dia-
monds), 132Sn (open diamonds), 138Ba (crosses), 182Pb (open
circles), 208Pb (filled circles), 214Pb (open squares) for the pressure
at rn=0.1 fm−3. The parameter sets of SHF model are the same as
those of Fig. 3. See the caption of Fig. 1 for details.
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IV. NEUTRON SKIN THICKNESS AND SYMMETRY
ENERGY COEFFICIENT

In this section, we study the correlation between the neu-
tron skin thickness and the volume and surface symmetry
energy coefficients in SHF and RMF models. Figure 8 shows
a correlation between the neutron skin thickness of208Pb and
the volume symmetry energy coefficientasym. In Fig. 8, we
can see that there is an approximately linear correlation be-
tween dnp and asym, although the mean square deviation is
larger than that of Fig. 5; the correlation is somewhat weaker
than those between thednp and theP values. The correlation
betweendnp andasym was also discussed in Ref.[35] based
on the mass formula. In neutron-rich nuclei, the wave func-
tions of the excess neutrons have small components in
nuclear center. Instead, large components of their wave func-
tions are located in the outer surface region. This is caused
essentially by the disparity of neutron-proton mean field po-
tentials due to the asymmetry energy. Therefore, we can un-
derstand that the neutron skins of RMF having larger asym-
metry energies are larger than those of SHF. It is also
interesting to observe that one of the nuclear matter proper-
ties, namely,asym, has a close connection with the first de-
rivative of EOS in neutron matter.

The incompressibility makes a crucial contribution to the
nuclear matter EOS. We have investigated whether there is
any correlation between the neutron skin thickness and the
incompressibilityK of asymmetric nuclear matter in Fig. 9.
We found that there is essentially no correlation between the
two quantities, as is seen in Fig. 9 where the ratio of neutron
density to proton density for asymmetric nuclear matter is
taken to be the same as the ratio of proton to neutron num-
bers of208Pb.

Finally, we study in Fig. 10 the relation between thednp
and the surface symmetry energy coefficient«ss for the vari-

ous SHF and RMF forces. The surface symmetry energy de-
scribes the surface properties of semi-infinite asymmetric
nuclear matter. We find that for the SHF model a linear cor-
relation betweendnp and «ss holds approximately although
the mean square deviation is larger than the case of the vol-
ume symmetry energy. Detailed formulas of the surface sym-
metry energies are given in the Appendix.

V. SUMMARY

We studied relations between the neutron skin thickness
and the pressure of the EOS in neutron matter obtained in

FIG. 8. The neutron skin thickness of208Pb vs the volume sym-
metry energy coefficient obtained with the same SHF(open circles)
and RMF(filled circles) parameter sets as were used in Fig. 3. See
the caption of Fig. 1 for details.

FIG. 9. The neutron skin thickness of208Pb vs the incompress-
ibility of asymmetric nuclear matter. The SHF(open circles) and
RMF (filled circles) parameter sets are the same as in Fig. 3. See the
caption of Fig. 1 for details.

FIG. 10. The neutron skin thickness of208Pb vs the surface
symmetry energy coefficient of semi-infinite asymmetric nuclear
matter. The SHF(open circles) and RMF(filled circles) parameter
sets are the same as in Fig. 3. See the caption of Fig. 1 for details.
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SHF and RMF models. A strong linear correlation between
the neutron skin thickness and the pressure of neutron matter
as given by the EOS is obtained for stable nuclei such as
132Sn and208Pb. On the other hand, the correlations between
the two quantities in unstable nuclei such as32Mg and 44Ar
are found to be weaker. We pointed out that, in general, the
pressure derived from the RMF model is much higher than
that obtained from the SHF model. Also the neutron skin
thickness of both stable and unstable nuclei is much larger in
the RMF models than in the SHF models for stable nuclei.
Thus, experimental data on the neutron skin thickness give
critical information both on the EOS pressure in neutron
matter and on the relative merits of the various parameter
sets used in mean-field models. We also studied relations
between the neutron skin thickness and other nuclear matter
properties such as the nuclear incompressibility and the sym-
metry energy coefficients of SHF and RMF models. We
found clearly a correlation between the neutron skin thick-
ness and the symmetry energy coefficients, while there is
essentially no correlation between the nuclear incompress-
ibility K and the neutron skin thicknessdnp. Further studies
of the relation between the pressure of neutron matter and the
symmetry energy coefficients are in progress.
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APPENDIX: VOLUME AND SURFACE SYMMETRY
ENERGY OF SHF AND RMF

The symmetry energy coefficientasym is defined as the
second derivative of the Hamiltonian densityH,

asym=
1

2
lim
I→0

]2

] I2SH
r
D sA1d

with respect to the asymmetry parameterI =sN−Zd /A. The
kinetic energy part ofH is evaluated for semi-infinite
nuclear matter by the extended Thomas-Fermi approxima-
tion,

tq = arq
5/3 + b

s¹rqd2

rq
+ gDrqsq = n,pd sA2d

with a= 3
5s3p2d2/3, b= 1

18, g= 1
3 f6g. In SHF models, the

symmetry energy coefficient is given by

asym=
"2

6m
S3p2

2
Dr2/3 −

1

8
t0s1 + 2x0dr −

1

48
t3s1 + 2x3dra+1

−
1

24
S3p2

2
D2/3

h3t1x1 − t2s4 + 5x2djr5/3, sA3d

while in RMF models, it becomes

asym=
3p2A

16gskF
3F3sms

2f + g1f2 + g2f3d −
M*

gs

sms
2 + 2g1f

+ 3g2f2dG +
gr

2kF
3

3p2mr
2 +

1

24
F−

kF
4

B3 +
5kF

2

B
+

9M*A

B
G ,

sA4d

whereA andB are given by

A = F2gskF

p2 SB −
M*2

B
D +

3

M* sms
2f + g1f2 + g2f3d

−
1

gs

sms
2 + 2g1f + 3g2f2dG−1F−

2kF
5M*

9B3 G , sA5d

B = ÎkF
2 + M*2 . sA6d

It is known that the surface symmetry energy influences
the surface properties of semi-infinite asymmetric nuclear
matter. To second order inI the surface energy«ssId is given
by

«ssId = «ss0d + «ssI
2. sA7d

The quantity«ss is given by

«ss= 8prnm
2 E

−`

`

rf«dsrd − Jgdx+ 2«ss0d
L

K
, sA8d

where«dsrd is the isovector part of Hamiltonian densityH
up to second order insrn−rpd, J is the nuclear matter sym-
metry energy,K is the nuclear incompressibility, andL is
defined by

L = 3rnm
d«dsrd
drnm

. sA9d

The isovector density«d can be expressed as a Taylor expan-
sion aroundrnm:

«dsrd = J +
L

3

r − rnm

rnm
+

Ksym

18
Sr − rnm

rnm
D2

. sA10d

The quantityKsym is defined by

Ksym= 9rnm
2 d2«dsrd

drnm
2 . sA11d

The surface symmetry energy«ss is evaluated to be

«ss= −
2a

rnm
SL −

1

12
KsymD + 2«ss0d

L

K
sA12d

by inserting Eq.sA10d f36g and the Fermi-type density dis-
tribution

r =
rnm

1 + expsx/ad
; rnmy sA13d

into Eq. sA8d. In order to determine the surface diffuseness
a, the nuclear matter part of the Hamiltonian density is ex-
pressed in terms of the nuclear incompressibilityK, which
gives the relation
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H = rF K

18
S1 −

r

rnm
D2

− E0G + Asrds¹rd2, sA14d

whereE0 is the binding energy. The derivative terms in Eq.
sA14d are evaluated assuming the density is given by a Fermi
distribution sA13d as

H = rnm yF K

18
s1 − yd2 − E0G + A8sydSdy

dx
D2

. sA15d

The parametera of Fermi distributiony can be obtained by
solving the differential equation

ys1 − yd = F18

K
S"2b

2m
+

1

2
Brnm y

+ Crnm
2 o

i=1

2
uiy

2

1 + virnmy
DG1/2 Sdy

dx
D , sA16d

which is derived by taking the functional derivative of Eq.
sA15d with respect toy, where

B =
1

4
ht1s1 − x1d + 3t2s1 + x2djsb − gd

1 + I2

2
+

1

2
Ht1S1 +

1

2
x1D

+ t2S1 +
1

2
DJsb − gd

1 − I2

2
+

3

16
ht1s1 − x1d − t2s1 + x2dj

3
1 + I2

2
+

1

8
H3t1S1 +

1

2
x1D − t2S1 +

1

2
x2DJ1 − I2

2
,

C = −
mW0

2

32"2 ,

u1s2d = 9 ± 11I + 7I2 ± 5I3,

v1s2d =
m

8"2f3st1 + t2d 7 ht1s1 + 2x1d − t2s1 + 2x2djg.

EquationsA16d is solved with the boundary condition

lim
y→1

dy

dx
= 0. sA17d

The surface diffuseness is given by the integral

a =E
−`

`

ys1 − yddx. sA18d

In the RMF model, the Hamiltonian density is given by

H =
2

s2pd3FE
0

kFn

+E
0

kFp Gsk2 + M* 2
d1/2d3k + gvvrB + grbr3

+
1

2
ms

2s2 +
1

2
s¹sd2+ Ussd −

1

2
s¹vd2 −

1

2
mv

2v2

−
1

2
s¹bd2 −

1

2
mr

2b2. sA19d

We approximate the Hamiltonian density for nuclear matter
Hnm given in Eq.s12d by

rBF K

18
S1 −

rB

rnm
D2

− E0G . sA20d

Therefore, in this approximation the Hamiltonian density is
given by

H =
2

s2pd3FEkFn

+EkFp Gsk2 + M* 2
d1/2d3k + gvvrB + grbr3

+
1

2
ms

2s2 +
1

2
s¹sd2 + Ussd −

1

2
s¹vd2 −

1

2
mv

2v2

−
1

2
s¹bd2 −

1

2
mr

2b2 − Hnm + rBF K

18
S1 −

rB

rnm
D2

− E0G
= rBF K

18
S1 −

rB

rnm
D2

− E0G −
gv

2rB
2

2mv
2 −

gr
2r3

2

2mr
2 + gvvrB

+ grbr3 +
1

2
s¹sd2 −

1

2
s¹vd2 −

1

2
mv

2v2 −
1

2
s¹bd2

−
1

2
mr

2b2. sA21d

We assume a Fermi-type density distribution for the baryon
densityrB such as in the SHF calculations,

rB =
rnm

1 + expsx/ad
; rnm y. sA22d

The Fermi distributiony is the solution to the differential
equation

ys1 − yd2 =
9

Krnm
Fgv

2rnm
2 y2

mv
2 +

gr
2rnmy2I2

mr
2 − 3gvrnmyv

− 3grrnmIyb + 2mv
2v2+ 2mr

2b2 − ssms
2s + gsrs

+ g2s2 + g3s3dG , sA23d

where s, v, and r meson fields are given by solving the
Klein-Gordon equations. Finally, we obtain the surface dif-
fuseness from the integral

a

2
=E

−`

`

ys1 − yd2dx. sA24d
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