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The contribution of thermal fluctuations to the widths of isoscalar giant multipole resonances(GMR) in
heated nuclei is studied. Starting from the collisional kinetic equation, it is shown that an additional contribu-
tion to the nuclear friction and the corresponding GMR widths arises due to the nonlinear dissipativity effect.
It is also shown that the magnitude of the contributions of the thermal fluctuations to the nuclear friction
coefficient and the GMR widths do not exceed,20%.
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I. INTRODUCTION

In general, the damping of collective excitations in a cold
finite Fermi system, e.g., the width of a giant multipole reso-
nance(GMR) in cold nuclei, is determined by the two-body
collisions, the particle-hole energy fragmentation(Landau
damping), and the escape width. The damping in cold nuclei
was intensively investigated in both the quantum(random-
phase-approximation-like) [1–5] and the semiclassical(ki-
netic theory) approaches[6–12]. The collisional damping is
due to the coupling of particle-hole excitations to more com-
plicated states. In the kinetic theory, this type of damping is
simulated by the collision integral and leads to a collisional
component of the intrinsic width of the collective eigen-
states. The fragmentation width is caused by the interaction
of particles with the time-dependent self-consistent mean
field. This contribution to the intrinsic width does not reflect
a motion of the system toward the thermal equilibrium but
indicates rather a redistribution of the particle-hole excita-
tions in the vicinity of the collective state.

In a hot system an additional contribution to the damping
of the collective excitations arises through thermodynamic
fluctuations of the corresponding collective variables be-
cause of the fluctuation-dissipation theorem. In this context,
one of the most important open problem is the behavior of
the GMR width in hot nuclei as a function of the temperature
T. There are two essential different sources for theT depen-
dence of the GMR width. The first one is given by the ther-
mal contribution to the damping width from an increasing
nucleon-nucleon collision rate(2p2h excitations) plus a Lan-
dau spreading due to thermally allowedph transitions
[3,4,13–16]. In the second one a temperature increasing of
the width is caused by the coupling of the giant dipole reso-
nance to the thermal shape fluctuations of the nucleus
[17–19].

In the present work, we study a new effect of the influ-
ence of the thermal shape fluctuations of the nucleus on the
damping of the collective motion caused by the nonlinear
dissipativity appearing in the higher order variations of the
collision integral. We point out that in the commonly used
linear order of the variation of the collision integral, the ther-
mal fluctuations do not lead to dissipation(viscosity) in the
macroscopic equations of motion because the following en-
semble smearing of the kinetic equation washes out the fluc-

tuation terms from the final macroscopic equations of mo-
tion.

This paper is organized as follows. In Sec. II we suggest a
proof of the Langevin equation for nuclear local variables
(particle density, velocity field, and pressure tensor), starting
from the collisional kinetic equation. We perform a high or-
der expansion of the collisional integral and derive the non-
Markovian pressure tensor to the Navier-Stokes-like equa-
tion of motion. In Sec. III we carry out the ensemble
averaging and reduce the local equations of motion to the
macroscopic form and derive the macroscopic response func-
tion. In the derivations, the main features of the dynamical
distortion of the Fermi surface are taken into account. Re-
sults of numerical calculations are presented in Sec. IV. We
conclude and summarize in Sec. V. The appendixes provide a
derivation of the high order variations of the collision inte-
gral with respect to the variation of the phase space distribu-
tion function.

II. LOCAL EQUATIONS OF MOTION

We will start from the collisional kinetic equation in the
following form [20]:
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Here, f ; fsrW ,pW ,td is the Wigner distribution function,V

;VsrW ,pW ,td is the self-consistent mean field,FW ext is the ex-
ternal driving force, anddStffg is the collision integral
which takes into account the memory effectsf21g. The
random variabley;ysrW ,pW ,td in Eq. s1d represents the ran-
dom force. As such, its ensemble average vanishes,kyl
=0. To reduce Eq.s1d to closed equations of motion for
the macroscopic collective variables we will follow the
nuclear fluid dynamic approachf22–26g and take into ac-
count the dynamic Fermi-surface distortion up to multipo-
larity l =2. Evaluating the first three moments of Eq.s1d in
the pW space, we reduce Eq.s1d to the hydrodynamiclike
equations of motion for particle densityr, velocity field uW,
and the pressure tensorPab sfor details, see Ref.f27gd,
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1

m
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g=4 is the spin-isospin degeneracy factor,Qab is associated
with dissipative processes,

Qab =
1

m
E gdpW

s2p"d3spa − muadspb − mubddStffg, s6d

andyab gives the contribution from the random force,

yab =
1

m
E gdpW

s2p"d3papby. s7d

In Eqs. s2d–s4d and in the following expressions, repeated
Greek indices are to be understood as summed over.

The pressure tensorPab can be written as

Pab = Peqdab + Pab8 , s8d

where

Pab8 =
1

m
E gdpW

s2p"d3spa − muadspb − mubddf2, s9d

df2;df2sr ,p ; td is the small quadrupole deviation of the dis-
tribution function f from the one in equilibrium, feq
; feqsrW ,pWd, andPeq is the pressure due to the Fermi motion
of the nucleons in the ground state of the nucleus. Assum-
ing the Thomas-Fermi approximation forfeq, one has
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wherereq;reqsrWd is the particle density in equilibrium.
Using Eq.(8) we will rewrite Eq.(4) as

]
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and the operatorL̂ is defined by

L̂Pab8 = un

]

] rn

Pab8 + Pab8
] un

] rn

+ Pan8
] ub

] rn

+ Pbn8
] ua

] rn

.

s12d

To evaluate the tensorQab in Eq. s10d we will use the col-
lision integral in the following general formf20g:

dStffg =E g2dpW2dpW3dpW4

s2p"d6 wshpW jjdQshf jjddsDeddsDpWd,

s13d

wherewshpW jjd;wspW1,pW2;pW3,pW4d is the spin-isospin averaged
probability for two-body scattering,Qshf jjd= f1f2s1− f3ds1
− f4d−s1− f1ds1− f2df3f4 is the Pauli blocking factor,DpW
=pW1+pW2−pW3−pW4, and De=e1+e2−e3−e4, with e j =pj

2/2m
+Vsr jd being the single-particle energy. In performing the
variation of the Pauli blocking factorQshf jjd with respect to
df, we will keep all the terms up to the third order indf. The
collision integral then takes the following formssee Appen-
dix Ad:

dSt =dSt1 + dSt2 + dSt3, s14d

wheredStn is the variation of the collision integraldSt in
the nth order of df. Considering Eqs.s6d and s14d, the
tensorQab can be written as

Qab = Qab
s1d + Qab

s2d + Qab
s3d , s15d

whereQab
snd is due to the contribution ofdStn in Eq. s6d. The

first-order termQab
s1d is simplified asf28g

Qab
s1d = −

1

t2
Pab8 , s16d

wheret2 is the two-body relaxation time in the case of quad-
rupole deformation of the Fermi surface. The higher order
termsQab

s2d and Qab
s3d can be reduced to the following forms

fsee Appendix A, Eqs.sA18d and sA30dg:

Qab
s2d =

mP08

z
Pab8 , Qab

s3d =
m2P08

2

j
Pab8 , s17d

where the quantitiesz andj are deduced from the collision
integral fsee Appendix A, Eqs.sA19d and sA31dg and

P08 = 1
2sPxx8 + Pyy8 − Pzz8 d. s18d

To simplify the derivations, we will introduce the operatorN̂
as

N̂Pab8 = Qab
s2d + Qab

s3d . s19d

Equations10d is then rewritten as

]

] t
Pab8 + PeqLab +

1

t2
Pab8 + L̂Pab8 = N̂Pab8 + yab. s20d
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We will look for a solution of Eq.(20) in the following
form:

Pab8 = Pab8s0d + Pab8sNLd. s21d

Here, the tensorPab
8s0d is obtained as a solution to the follow-

ing linear differential equationf29g:

]

] t
Pab8s0d + PeqLab +

1

t2
Pab8s0d = yab, s22d

and it is given by the following non-Markovian form

Pab8s0dstd = −E
−`

t

dt8expS t8 − t

t2
DfPeqLabst8d − yabst8dg.

s23d

The tensorPab
8sNLd in Eq. s21d satisfies the nonlinear differen-

tial equation

]

] t
Pab8sNLd +

1

t2
Pab8sNLd + L̂Pab8 − N̂Pab8 = 0. s24d

To solve Eq.s24d, we will use the iteration procedure. The
first-order iterationPab,1

8sNLdst8d to Eq. s24d reads

Pab,18sNLdstd =E
−`

t

dt8expS t8 − t

t2
DfN̂Pab8s0dst8d − L̂Pab8s0dst8dg,

s25d

and the second iteration is given by

Pab,28sNLdstd =E
−`

t

dt8expS t8 − t

t2
DhN̂fPab8s0dst8d + Pab,18sNLdst8dg

− L̂fPab8s0dst8d + Pab,18sNLdst8dgj. s26d

Below, we will apply Eqs.(2)–(4) to the small-amplitude
vibrations of the particle densitydr near the equilibrium. We
point out that we do not assume the velocity fielduW to be
small. Finally, taking into account the above mentioned deri-
vations we will rewrite Eq.(3) as

mreq
] ua

] t
+ mrequn

] ua

] rn

+ req
]

] ra
FUd2«

dr2U
eq

drG +
] Pab8s0d

] ra

+
] Pab8sNLd

] ra

− reqFext,a = 0, s27d

where« is the particle energy density.

III. ENSEMBLE AVERAGING AND MACROSCOPIC
RESPONSE

Let us introduce the displacement fieldxW related to the

velocity field uW by uWsrW ,td=xẆ srW ,td, where the dot denotes a
time derivative. For the displacement field we will assume
the following separable formxW srW ,td=bstdvWsrWd. Using this
separable form ofxW srW ,td, we reduce Eq.(27) to the equation
of motion for the collective variablebstd in the presence of
the external fieldFextstd and the random forceỹstd [see Ap-
pendix C, Eq.(C1)].

Below, we will look for the response of a nucleus to the
periodic external fieldFextstd=Fvexpsivtd. Because of the
random forceỹstd in Eq. (C1), we will separate the descrip-

tion of the collective motion into two parts withbstd=b̃std
+dbstd. The first motion is related to the driving forceFextstd

and it is associated with the velocityb̃
˙
. The second one is

due to the random forceỹstd with the velocitydḃ. We will

assume thatudḃ u @ ub̃˙ u. Performing the ensemble averaging,
one can write

kḃst1dḃst2dḃst3dl < b̃
˙ st1dkdḃst2ddḃst3dl + b̃

˙ st2d

3kdḃst1ddḃst3dl + b̃
˙ st3dkdḃst2ddḃst1dl.

s28d

We will also assume the following ergodic property for the

correlation functionkdḃstddḃst8dl, see Ref.f30g, Chap. 12,

kdḃstddḃst8dl =E
−`

` dv

2p
sdḃ2dve−ivst−t8d. s29d

The Fourier componentsdḃ2dv of the correlation function is
governed by the correlation properties of the random force
ỹstd, see below.

The macroscopic equation of motion(C1) is significantly
simplified in the case of a Fermi distribution for the equilib-
rium distribution functionfeq,

feq= F1 + expS e − eF

T
DG−1

, s30d

where«F is the Fermi energy. In this case, one obtains from
Eqs. sA19d that 1/z!1 ssee also Figs. 1 and 2d and the
contribution of the terms withA2, A3, andA5 in Eq. sC1d is
negligible. Performing the ensemble averaging of Eq.sC1d,

FIG. 1. Temperature dependence of" /t8 (solid curve 1) and
" /t9 (solid curve 2) for the case of the temperature-dependent
Fermi distribution function(30). The dashed line is the calculation
of " /t9 with the sharp Thomas-Fermi distribution functionQseF

−ed.

SHAPE FLUCTUATIONS IN A FERMI SYSTEM WITH… PHYSICAL REVIEW C 69, 024314(2004)

024314-3



using Eq. s28d and kystdl=0, and assumingkbstdl=b̃std
=b̃v expsivtd, we reduce Eq.sC1d to the following form:

− Bv2b̃v + CLDMb̃v +
ivt2

1 + ivt2
SA0 + t2

2A4E
−`

` dv8

2p

sdḃ2dv8

1 + iv8t2

+
4t2

3A1

1 + ivt2
E

−`

` dv8

2p

sdḃ2dv8

1 + sv8t2d2

+ t2
2A4E

−`

` dv8

2p

sdḃ2dv8

1 + iv8t2

1

1 + isv8 + vdt2

+
t2

2A4

1 + ivt2
E

−`

` dv8

2p

sdḃ2dv8

1 + isv8 + vdt2
Db̃v = BFv. s31d

Considering the nuclear isoscalar quadrupole mode, we will
assume an irrotational motion with the displacement field
vWsrWd given by f31g

vWsrWd = ¹W fr2Y20sr̂dg/2, s32d

and the time-dependent radius of the nucleus given by

Rstd = R0f1 + b̃stdY20sr̂dg. s33d

In this particular case the calculation of the coefficientsA1
and A4 from Eqs. sC4d and sC7d gives A1=16A0smPeqd2/j
and A4=12A0. The mass coefficientB of Eq. sC2d for the
displacement field of Eq.s32d is given by

B =
3

8p
AmR0

2, s34d

whereA is the nuclear mass number.
Let us introduce the collective response functionxsvd as

b̃v = xsvdFv. s35d

Using Eqs.s31d and s33d, we obtain from Eq.s35d

x−1svd = − v2 + v0
2 + ivg0 + 12t2

2A0

B

ivt2

1 + ivt2
Ksvd.

s36d

Here,

v0 =ÎCLDM + C8svd
B

, g0 =
A0

B

t2

1 + svt2d2 s37d

and

Ksvd =E
−`

` dv8

2p

sdḃ2dv8

1 + iv8t2
S1 +

1

1 + isv8 + vdt2

+
4

1 + ivt2

t2/t9

1 − iv8t2
+

1

1 + ivt2

1 + iv8t2

1 + isv8 + vdt2
D .

s38d

We have also used the following notations:

C8svd = A0
svt2d2

1 + svt2d2 s39d

and

t9 = j/smPeqd2.

We point out that the additional contribution to the stiffness
coefficient C8svd in Eq. s37d is caused by the distortion of
the Fermi surfacef29g.

The expression(36) can be rewritten as

x−1svd = sv0
2 + Dv0

2 − v2d + ivsg0 + Dgd, s40d

where we have introduced the following notations for the
additional components of the relaxation coefficient and the
squared frequencyv,

Dg

g0
= 12t2

2hRe Ksvd + vt2 Im Ksvdj, s41d

Dv0
2

v0
2 = 12t2

2HRe Ksvd −
1

vt2
Im KsvdJS1 +

CLDM

C8svd
D−1

.

s42d

Note that above,v is real. Finally, the macroscopic strength
function Ssvd=−Im xsvd is given by

Ssvd =
sg0 + Dgdv

sv0
2 + Dv0

2 − v2d2 + sg0 + Dgd2v2 . s43d

Both the additional spreadingDg and the resonance shift
Dv0 appear in the strength functions43d due to the nonlinear
dissipativity effect.

IV. NUMERICAL RESULTS AND DISCUSSION

We have performed the numerical calculations assuming a
Fermi distribution for the equilibrium distribution function of
Eq. (30) and adopting the Fermi energyeF=39 MeV and the
nuclear radiusR0=r0A

1/3 with r0=1.12 fm. The higher order

FIG. 2. Same as in Fig. 1 but for the ratiot2/t8 multiplied by
the factor 10(solid curve 1) and the ratiot2/t9 (dashed and solid
curves 2).
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relaxation parameterst8=z /mPeq and t9=j / smPeqd2 are re-
lated to the collision integral and can be evaluated using Eqs.
(A19) and(A31) from Appendix A. We point out that in the
limit of a cold nucleus,T→0 and feq=QseF−ed, the correc-
tions t8 andt9 take the following simple form:

1

t8
= 0,

1

t9
< 1.5

m3Peq
2 w0

pF
6 , s44d

wherepF is the nucleon Fermi momentum and the scattering
probability w0=15p2"5/m3ga is related to the in-medium
cross sectionsin of nucleon-nucleon scattering. We use
a=9.2 MeV from Ref. f14g, which corresponds tosin
<sfree/2, wheresfree<40 mb is the cross section for the
nucleon-nucleon scattering in free space. Note that both
relaxation parameterst8 and t9 cannot be directly inter-
preted as the corrections to the observable relaxation time.
In particular, the value of 1/t9 does not equal to zero in
the ground state of the nucleus. The relaxation parameters
t8 andt9 determine the contribution of the viscous tensors
Qab

s2d and Qab
s3d fsee Eq.s17dg to the local equations of mo-

tion and both tensorsQab
s2d andQab

s3d disappear in the ground
state.

We also point out that the relaxation parameterst8 andt9
as well asz andj depend on the nuclear mean field potential
V due to the space integralsr ij and r ijk, see Eqs.(A10) and
(A21). This dependence appears after the Abrikosov-
Khalatnikov transformation(A7) in the collision integral
dStffg. However, due to the presence of the strongly picked
functions ]feq,i /]ei, at e=eF, in Eqs. (A10) and (A21) the
final results forz andj are not sensitive to the specific choice
of the mean field potentialV at T!eF.

In Fig. 1, we have plotted the results of calculations of the
quantities" /t8 (solid curve 1) and " /t9 (solid curve 2) as
functions of temperatureT for the nucleus withA=224. Both
quantities" /t8 and" /t9 show a very broad and weak maxi-
mum. The magnitude of the maximum does not exceed the
value of 0.07 MeV for" /t8 and 0.49 MeV for" /t9. The
dashed line in Fig. 1 corresponds to the value of" /t9 from
Eq. (44). We can see from Fig. 1 and Eq.(44) that the sim-
plest Thomas-Fermi distribution functionQseF−ed, with
" /t8 and" /t9 from Eq. (44), provides a good description of
both quantities" /t8 and " /t9. Figure 2 shows the ratio of
the collisional relaxation timet2 to both relaxation param-
eterst8 andt9. For the relaxation timet2, we have used the
expression from Ref.[14] which takes into account the
memory effects: namely,

t2 =
4p2a"

s"v0d2 + 4p2T2 . s45d

As seen from Fig. 2, the value oft2/t8 is relatively small
over the entire range of the temperature. The value oft2/t9
decreases with the temperature monotonically starting from
t2/t9=1.16 atzero temperature.

Let us now carry out a numerical study of the additional
contribution to the friction coefficientDg caused by the non-
linear dissipativity, see Eqs.(40) and (41) and the corre-
sponding contribution to the widthG of the isoscalar giant

quadrupole resonance(GQR). To apply Eqs.(38) and (41),
we have to derive the spectral correlation functionsdḃ2dv.
Using the correlation properties of the random force[30]

sỹ2dv =
2g0T

B
, s46d

we obtain according to the fluctuation-dissipation theorem
the following resultf32g:

sdḃ2dv =
2Dv2

sv0
2 − v2d2 + g0

2v2 , s47d

whereD is the diffusion coefficient,

D =
g0T

B
. s48d

To evaluate the relative contribution to the collisional
width G from Dg, we will start from the usual case with
Dg=0. In this case, the widthG of the GQR can be obtained
from the solution in the formv=Rev+ iG /2" to the follow-
ing secular equation, see Eq.(43):

sv0
2 − v2d2 + g0

2v2 = 0. s49d

For the numerical solution of Eq.s49d, we have used in Eq.
s37d the liquid drop stiffness coefficientCLDM in the form
f33g

CLDM =
1

4p
sL − 1dsL + 2dbSA

2/3 −
5

2p

L − 1

2L + 1
bC

Z2

A1/3,

s50d

where bS=17.2 MeV andbC=0.7 MeV are, respectively,
the surface and Coulomb energy coefficients appearing in
the nuclear mass formula. Figure 3 shows the results of
the numerical solution of Eq.s49d for the nucleus with
A=224 and Z=As1−6310−3A2/3d /2=87, which corre-
sponds to the valley of beta stabilityf33g. The energy of

FIG. 3. EnergyE=" Rev of the isoscalar giant quadrupole
resonance(GQR) and the corresponding collisional widthG for the
nucleus withA=224 as obtained from Eq.(49).
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the collective excitationE=" Rev decreases with tem-
perature and approaches the hydrodynamicsliquid drop
modeld limit ELDM ="ÎCLDM /B at high temperatures. In
Fig. 4 we have plotted the temperature dependence of the
parameterEt2/" which determines the sound regime:
Et2/"@1 for the zero soundsrare collision regimed and
Et2/"!1 for the first soundsfrequent collision regimed.
The solid curve in Fig. 4 corresponds to the calculation
with the temperature dependence ofE given by Fig. 3. For
the dashed line, the phenomenological parametrization of
the GQR energyE=ER=60A−1/3 MeV was used.

Using Eqs.(38), (41), (47), and(48), one can evaluate the
contributionDg to the friction coefficient due to the nonlin-
ear dissipativity. In Fig. 5, the value ofDg /g0 is shown as a
function of temperature. The ratioDg /g0 equals zero atT
=0 becauseDg appears due to the thermodynamical fluctua-
tions of the collective variableb. The ratioDg /g0 increases
with temperature and reaches a maximum value, which does
not exceed<0.2. In the high-temperature region the ratio
Dg /g0 decreases because the temperature dependence ofg0
,T2 is stronger than that ofDg,T. For comparison, we
have also performed the calculation of the ratioDg /g0 using
the phenomenological parametrization for the GQR energy
ER=60A−1/3 MeV (see dashed line in Fig. 5). In this case, the
variation ofDg /g0 with temperature is somewhat stronger.

Taking into account the nonlinear dissipativity effects, the
collisional width G8 of the GQR is obtained from the solu-
tion, in the formv=Rev+ iG8 /2", to the secular equation,
see Eq.(43),

sv0
2 + Dv0

2 − v2d2 + sg0 + Dgd2v2 = 0. s51d

In Fig. 6 we have plotted the temperature dependence of the
widths G sdashed linesd andG8 ssolid linesd for two choices
of the resonance energy:E=" Rev using Eq.s49d scurves
1d and ER=60A−1/3 MeV scurves 2d. We point out that an
increase of the width is more apparent for curves 1 in Fig.

6 because of the temperature dependence ofE. The com-
parison of the solid and dashed lines in Fig. 6 shows that
the contribution of the nonlinear dissipative effects to the
width G does not exceed,20%. In Figs. 7 and 8 we have
plotted the strength functionSsvd of Eq. s43d. The com-
parison between the solid and the dashed lines in Fig. 7
shows the accuracy of the derivation of the value ofDg
directly from the strength functionSsvd of Eq. s43d and
through the solution of the secular equations51d. The
comparison of the solid lines with the dashed lines in Fig.
8 demonstrates the effect of the nonlinear dissipativity on
the strength function.

FIG. 4. Dependence of the dimensionless parameterEt2/" on
the temperatureT for the GQR in the nucleus withA=224 with t2

from Eq. (45). The solid curve was obtained usingE=" Rev from
Eq. (49). The dashed curve was obtained withE=ER, whereER

=60A−1/3 MeV is the experimental value of the GQR energy.

FIG. 5. Temperature dependence of the ratioDg /g0 for the
nucleus withA=224 for the GQR. The solid curve was obtained
using Eq.(41) with v from Eq. (49) (see also Fig. 3); the dashed
line was obtained using Eq.(41) with g0 from Eq. (37) and v
=vR=ER/" with the phenomenological parametrizationER

=60A−1/3 MeV.

FIG. 6. Collisional widthG as a function of temperatureT for
the nucleus withA=224 for the GQR. The solid lines are forG
=2" Im v from Eq. (49) and the dashed lines are forG8 from Eq.
(51). The curves 1 were obtained using the temperature-dependent
resonance frequencyv=vR=Rev from Eq. (49). The curves 2
were obtained usingv=vR=ER/" with the phenomenological pa-
rametrizationER=60A−1/3 MeV (see also Fig. 5).
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V. SUMMARY AND CONCLUSIONS

Starting from the collisional kinetic equation with a ran-
dom force and using thep-moments techniques, we have
derived the equations of motion of the viscous fluid dynamic
for the local values of particle density, velocity field, and
pressure tensor. The obtained equations are closed due to the
restriction imposed on the multipolarityl of the Fermi-
surface distortion, up tol =2. The important features of these
equations of motion are due to the non-Markovian form of
the pressure tensorPab. In contrast to the commonly usedt
approximation, we take into account the higher orders of the
variation of the collision integral with respect to the variation
of the phase-space distribution function. Using the
Abrikosov-Khalatnikov transformation we have then ob-
tained the collision integral in the form of the extendedt
approximation.

Assuming a separable form for the displacement field, we
have introduced the macroscopic collective variablebstd and
reduced the problem to a macroscopic equation of motion for

bstd. Note that we do not assume the velocityḃstd to be
small. The final macroscopic equation of motion(C1) in-
cludes both the memory effects and the nonlinear dissipativ-

ity terms,ḃ3. We have separated the description of the col-
lective motion into two parts. The first(slow) one is related
to the driving forceFextstd and it is associated with a slow

motion having the velocityb̃
˙
. The second(fast) one is due to

the random forceystd with the velocity dḃ@b̃
˙
. Using the

correlation properties of the random force, we have per-
formed the averaging of the macroscopic equation of motion

over the fast fluctuations,dḃ, reducing the nonlinear dissi-

pativity terms to the form,b̃
˙ stdkdḃst8ddḃst9dl, which is lin-

ear with respect to the slow collective motion,b̃
˙
. Finally,

assuming a periodic driving forceFextstd,expsivtd, we have
derived the macroscopic strength functionSsvd. As seen
from Eq. (43), the nonlinear dissipativity effect leads to the
additional spreadingDg and the resonance shiftDv0 in the
strength functionSsvd. The contributionDg appears due to
the thermodynamical fluctuations of the collective variable
b. In contrast to the Fermi-liquid friction parameterg0 with
g0,T2 (at T!eF), the spreadingDg is a linear function of
the temperatureT. This fact provides a nonmonotonic behav-
ior of the ratioDg /g0, see Fig. 5. As seen from Fig. 5, the
nonlinear dissipativity effects are enhanced at the moderate
temperaturesT<2 MeV and do not exceed<20%.

The nonlinear dissipativity effect increases the collisional
width of the GMR. Usually the total collisional width of the
isoscalar GQR in cold nuclei does not exceed 30–40 % of
the experimental value and the main contribution to the
width is due to the Landau damping. One can expect that the
nonlinear dissipativity effect on the collisional width can
lead to a deviation of the temperature-dependent widthGsTd
from the usual Fermi-liquid predictionGsTd,T2. Unfortu-
nately, at present time, experimental data on the temperature
behavior ofGsTd of the isoscalar GQR are not available. In
this respect, it is more instructive to study the isovector giant
dipole resonance where the temperature dependence ofGsTd
was studied for some heavy nuclei[34,35]. However our
final results for the viscous tensorQab and the relaxation
parametersz andj cannot be applied directly to the isovector
mode because the dipole distortion of the Fermi surface must
be taken into account in the collision integral(13), in con-
trast to our case of the isoscalar GMR, see Sec. II. The gen-
eralization of our approach to the case isovector modes is
now in progress.
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FIG. 7. The strength functionSsvd in "2 units for two tempera-
tures:T=1.9 MeV (curves 1) andT=5 MeV (curves 2). The solid
curves 1 and 2 were obtained from Eqs.(41)–(43). The dashed
curves 1 and 2 were obtained using Eq.(43) with g0+Dg=G /" and
v0

2+Dv0
2=sE/"d2, whereE andG are obtained from the solution, in

the formv=E/"+ iG /2", to the secular equation(51).

FIG. 8. The strength functionSsvd in "2 units for two tempera-
tures:T=1.9 MeV (curves 1) andT=5 MeV (curves 2). The solid
curves 1 and 2 are the same as in Fig. 7. The dashed curves 1 and
2 were obtained from Eqs.(43), but with Dg=0.
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APPENDIX A
As a basic expression for the collision integraldStffg we

use Eq.(13). The second and third variations of Eq.(13) with
respect todf take the following form:

dSt2 =E g2dpW2dpW3dpW4

s2p"d6 wshpW jjdōU d2Q

dfsiddfs jd
U

eq

3dfsiddfs jddsDeddsDpWd, sA1d

dSt3 =E g2dpW2dpW3dpW4

s2p"d6 wshpW jjdōU d3Q

dfsiddfs jddfskd
U

eq

3dfsiddfs jddfskddsDeddsDpWd, sA2d

wheredfsid;dfspW id and the symbolō means a summation
over indicesi , j ,k=1–4 with i Þ j , j Þk, kÞ i.

We will follow the fluid dynamic approach and represent
the variation of the distribution functiondf in the following
form:

dfsid = −
] feq,i

] ei
nsid, nsid = o

l,ml

l=2

n2ml
srW,tdY2ml

sVid.

sA3d

We point out that thel =0 and 1 components of the expan-
sion sA3d do not contribute to the collision integrals13d,
reflecting the conservation of particle number and momen-
tum in a collision. The expansion coefficientsn2msrW ,td in Eq.
sA3d are related to the pressure tensorPab8 of Eq. s9d. Using
Eqs.s9d and sA3d, we obtain

mPab8 = −
gI

s2p"d3 o
ml=−2

2

n2ml
E dVp̂ap̂bY2ml

sVd, sA4d

where

I =E
0

`

dp p4] feq

] e
, sA5d

and pŴ =pW /p is the unit vector. In particular, performing the
angle integration in Eq.sA4d, we obtain

n20 =
3

4
Î 5

p

s2p"d3m

gI
P08, sA6d

whereP08 is given by Eq.s18d.
To evaluate the collision integraldSt2, we will substitute

Eq. (A3) into (A1) and make use of the Abrikosov-
Khalatnikov transformation in the following form[20]:

E dpW2dpW3dpW4s¯ddsDpWd ⇒
m3

2
E

V

`

de2de3de4

3E dV df2

cossu/2d
s¯d, sA7d

wheredV=sinu dudf, u is the angle betweenpW1 andpW2, f
is the angle between the planes formed byspW1,pW2d and
spW3,pW4d, andf2 is the azimuthal angle of the momentumpW2

in the coordinate system withz axes alongpW1. We point
out that the anglef varies only from 0 top because the
particles are indistinguishable. Using the transformation
sA7d and the relationssee Appendix Bd

E
0

2p df2

2p
YnmsVidYn8m8sV jd = YnmsV1dYn8m8sV1dPnscosuid

3Pn8scosu jd, sA8d

we obtain

dSt2 = g2s2pd2m3

s2p"d6 fns1dg2ōkwP2scosuidP2scosu jdlr ij .

sA9d

Here,r ij is given by

r ij =E
V

`

de2de3de4U d2Q

dfsiddfs jd
U

eq

] feq,i

] ei

] feq,j

] e j
dsDed,

sA10d

and the symbolk¯l denotes the following average:

kwsu,fdP2scosuidP2scosu jdl

= 2E
0

p

du sinsu/2dE
0

p df

2p
wsu,fdP2scosuidP2scosu jd,

where cosu j ;spŴ j ·pŴ1d, i.e., u2=u, and

cosu3 = cos2su/2d + sin2su/2dcosf, sA11d

cosu4 = cos2su/2d − sin2su/2dcosf,

and Plscosud is a Legendre polynomial.
Using Eqs.(6), (14), (15), and(A9), we obtain

Qab
s2d =

1

m
E gdpW

s2p"d3spa − muadspb − mubddSt2

=
g3

m

s2pd2m3

s2p"d9 ōkwP2scosuidP2scosu jdlRij

3E dV1p̂1,ap̂1,bfns1dg2, sA12d

where

Rij =E
0

`

dp1p1
4r ij .

To exclude the unknown amplitudens1d from Eq. (A12),
we will calculate the arbitrary partial contribution to the ten-
sor Qab

s2d. Using Eq.(A1), we will consider the partial contri-
bution Qab,12

s2d to the tensorQab
s2d given by
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Qab,12
s2d =

g3

ms2p"d9 E dpW1p1,ap1,bdfs1d E dpW2dfs2d E dpW3dpW4

3 wsu,fdU d2Q

dfs1ddfs2d
U

eq
dsDeddsDpWd. sA13d

We will assume the isotropic probability scatteringwsu ,fd
=w0, and apply the Abrikosov-Khalatnikov transformation in
the following form:

E dpW3dpW4s¯ddsDpWd ⇒
m2

2pF cossu/2d
E d«3d«4dfs¯d,

sA14d

where pF is the Fermi momentum. Using Eqs.sA3d and
sA14d, we transform Eq.sA13d as

Qab,12
s2d =

g3

m

2pm3w0

2s2p"d9R12 o
m=−2

2

n2mE dV2
Y2msV2d
cossu/2d

3E dV1p̂1,ap̂1,bns1d. sA15d

Integrating overdV2 in Eq. sA15d and using Eq.sA6d, we
obtain

Qab,12
s2d = g23pm3w0

s2p"d6

R12

I
P08E dV1p̂1,ap̂1,bns1d. sA16d

Comparing Eq.sA16d with the partiali =1, j =2 term of Eq.
sA12d, we find the relation

E dV1p̂1,ap̂1,bfns1dg2 =
3

4pgkP2scosudl
s2p"d3

I
mP08

3E dV1p̂1,ap̂1,bns1d. sA17d

Finally, from Eqs.sA12d, sA4d, andsA17d we obtain

Qab
s2d =

mP08

z
Pab8 , sA18d

where

1

z
=

3pgm3w0

s2p"d3

ōkP2scosuidP2scosu jdlRij

kP2scosudlI2 . sA19d

Let us go now to the third-order variation of the collision
integraldSt3 of Eq. (A2). Applying Eqs.(A3) and the trans-
formation (A7) to Eq. (A2) and using the relation(see Ap-
pendix B)

E df2

2p
YnmsVidYn8m8sV jdYn9m9sVkd

= YnmsV1dYn8m8sV1dYn9m9sV1dPnscosuidPn8scosu jd

3Pn9scosukd,

we will reduce the collision integraldSt3 to the following
form:

dSt3 = − g2s2pd2m3

s2p"d6 fns1dg3ōkwP2scosuidP2scosu jd

3P2scosukdlr ijk , sA20d

where

r ijk =E
V

`

de2de3de4U d3Q

dfsiddfs jddfskd
U

eq

3
] feq,i

] ei

] feq,j

] e j

] feq,k

] ek
dsDed. sA21d

Using Eqs.s6d, s14d, s15d, andsA20d, we obtain

Qab
s3d =

1

m
E gdpW

s2p"d3spa − muadspb − mubddSt3

= −
g3

m

s2pd2m3

s2p"d9 ōkwP2scosuidP2scosu jd

3P2scosukdlRijk E dV1p̂1,ap̂1,bfns1dg3,

sA22d

where

Rijk =E
0

`

dp p4r ijk . sA23d

Similar to the previous evaluation of the tensorQab
s2d, we

will consider the partial term of Eq.(A20) with i =1,j =2,k
=3 and the corresponding partial tensorQab,123

s3d which is
given by

Qab,123
s3d = −

g3

ms2p"d9 E dpW1p̂1,ap̂1,bdfs1d

3E dpW2dfs2d E dpW3dfs3d

3E dpW4wsu,fddsDeddsDpWd, sA24d

where we have used the following relation:

U d3Q

dfs1ddfs2ddfs3d
U

eq
= − 1.

We will again assume the isotropic scattering probability
wsu ,fd=w0 and apply the transformationsA14d to Eq.
sA24d. The angle integrals overdV2df, appearing in Eq.
sA24d, can be transformed as

E dV2df
Y2m8sV2d

cossu/2d
Y2m9sV3d

= Y2m9sV1d E dV2df
P2scosu3d
cossu/2d

Y2m8sV2d,

sA25d

where we have used the relationf36g
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E
0

p df2

2p
YnmsVid = YnmsV1dPnscosuid. sA26d

The result reads

Qab,123
s3d = −

g3

m

m3w0

2s2p"d9R123 o
m=−2

2

n2m

3E dV2df
P2scosu3d
cossu/2d

Y2msV2d

3E dV1p̂1,ap̂1,bfns1dg2. sA27d

Performing the integration overdV2df in Eq. sA27d and
using Eqs.sA17d and sA6d, we obtain

Qab,123
s3d = −

27

28

gm3

s2p"d3

w0

kP2scosudl
R123

I2 mP08
2

3E dV1p̂1,ap̂1,bns1d. sA28d

Comparing Eq.sA28d with the partiali =1,j =2,k=3 term of
Eq. sA22d we obtain the following relation:

E dV1p̂1,ap̂1,bn3s1d =
27

28

s2p"d6

s2pd2g2I2

3
m2P08

2

kP2scosudlkP2scosudP2scosu3dl

3E dV1p̂1,ap̂1,bns1d. sA29d

Finally, substituting Eq.sA29d into Eq. sA22d and using Eq.
sA4d, we obtain

Qab
s3d =

m2P08
2

j
Pab8 , sA30d

where

1

j
=

27m3w0

28

ōkP2scosuidP2scosu jdP2scosukdlRijk

kP2scosudlkP2scosudP2scosu3dlI3 .

sA31d

APPENDIX B
In this appendix, we will consider some angle integrals

which appear in the calculations of the collision integral and
its variations. Let us start from the integral

M23 =E dV2

4p
Pn

mscosQ2deimF2Pn8
m8scosQ3deimF3Plscosud,

sB1d

where sQ j ,F jd are the angle coordinates of the momentum
vectorspW j in the arbitrary coordinate frames j =1–4d andu is
the angle between the vectorspW1 andpW2. Using the addition
theorem for spherical harmonicsf37g

Plscosud = o
r=−l

l sl − ur ud!
sl + ur ud!

Pl
ur uscosQ1dPl

ur uscosQ2deir sF1−F2d,

sB2d

we find

M23 = o
r=−l

l sl − ur ud!
sl + ur ud! E dF2

4p
E sin Q2dQ2Pn

mscosQ2d

3Pn8
m8scosQ3dPl

ur uscosQ2dPl
ur uscosQ1d

3eimF2eim8F3eir sF1−F2d

=
dnl

2n + 1
Pn

mscosQ1deimF1Pn8
m8scosQ1deim8F1Pn8scosQ3d.

sB3d

Here,u3 is the angle betweenpW1 andpW3. On the other hand,
using the direction of pW1 as a polar axis withdV2
=sinu dudf2 wheref2 is the azimuthal coordinate ofpW2 in
the new coordinate frame, we will rewrite Eq.sB1d as

M23 =E du

2
sin uPlscosud

3HE df2

2p
Pn

mscosQ2deimF2Pn8
m8scosQ3deim8F3J .

sB4d

Here and below the anglesQi and Fi are dependent on the
anglesu and f2. Comparing Eqs.sB3d and sB4d and using
the orthogonality condition for the Legendre polynomial
Plscosud in Eq. sB4d, one obtains the following integral
relation:

E df2

2p
Pn

mscosQ2deimF2Pn8
m8scosQ3deim8F3

= Pn
mscosQ1deimF1Pn8

m8scosQ1deim8F1

3PnscosudPn8scosu3d. sB5d

Starting from the integral

M24 =E dV2

4p
Pn

mscosQ2deimF2Pn8
m8scosQ4deimF4Plscosud,

we will also obtain an integral relation analogous to Eq.sB5d
but with the replacement 3→4.

Let us consider now the integral

M34 =E dV3

4p
Pn

mscosQ3deimF3Pn8
m8scosQ4deim8F4Plscosu3d.

sB6d

Using the addition theorem forPlscosu3d fsee Eq.sB2dg, we
reduce Eq.sB6d as
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M34 =
dnl

2n + 1
Pn

mscosQ1deimF1E dF3

2p
Pn8

m8scosQ4deim8F4

=
dnl

2n + 1
Pn

mscosQ1deimF1Pn8
m8scosQ1deim8F1PnscosQ4d.

sB7d

Replacing in Eq.sB6d the integration overF3 to integration
overF2 and using the direction ofpW1 as a polar axis, we will
rewrite Eq.sB6d as

M34 =E du3

2
sin u3Plscosu3d

3HE df2

2p
Pn

mscosQ3deimF3Pn8
m8scosQ4deim8F4J .

sB8d

Comparing Eqs.sB7d and sB8d and using the orthogonality
conditions for the Legendre polynomials, we obtain

E df2

2p
Pn

mscosQ3deimF3Pn8
m8scosQ4deim8F4

= Pn
mscosQ1deimF1Pn8

m8scosQ1deim8F1Pnscosu3d

3Pn8scosu4d. sB9d

Using the representation of the spherical functionYnmsVd
via the Legendre polynomialsPn

mscosud [37],

YnmsVd =Î2n + 1

4p

sn − md!
sn + md!

Pn
mscosudeimf, sB10d

and collecting Eqs.sB5d and sB9d we obtain the following
integral relation:

E df2

2p
YnmsVidYn8m8sV jd

= YnmsV1dYn8m8sV1dPnscosuidPn8scosu jd,

sB11d

wherei , j =1–4.
Let us consider finally the integral

M234=E dV2

4p
Pn

mscosQ2deimF2Pn8
m8scosQ3deimF3

3Pn9
m9scosQ4deimF4Plscosud. sB12d

Similar to the previous consideration, we will transform Eq.
sB12d as

M234=E du

2
sin uPlscosud

3 HE df2

2p
Pn

mscosQ2deimF2Pn8
m8scosQ3deim8F3

3Pn9
m9scosQ4deim8F4J

=
dnl

2n + 1
Pn

mscosQ1deimF1Pn8
m8scosQ1deim8F1

3 Pn9
m9scosQ1deim9F1Pn8scosQ3dPn9scosQ4d.

sB13d

Using the orthogonality conditions for the Legendre polyno-
mials, we obtain

E df2

2p
Pn

mscosQ2deimF2Pn8
m8scosQ3deim8F3Pn9

m9scosQ4deim9F4

= Pn
mscosQ1deimF1Pn8

m8scosQ1deim8F1Pn9
m9scosQ1deim9F1

3 PnscosudPn8scosu3dPn8scosu4d. sB14d

Finally, taking into account Eq.sB10d we will generalize Eq.
sB14d as

E df2

2p
YnmsVidYn8m8sV jdYn9m9sVkd

= YnmsV1dYn8m8sV1dYn9m9sV1dPnscosuid

3Pn8scosu jdPn9scosukd. sB15d

APPENDIX C
In this appendix we give a proof of the macroscopic equa-

tion of motion for the nuclear shape variablebstd derived by
the displacement field asxW srW ,td=bstdvWsrWd, see Sec. III. Sub-
stituting this separable form in Eq.(27) and multiplying by
va, summing overa, and integrating overrW space, we obtain
the equation of motion for the collective variablebstd;
namely,

Bb̈ + D0ḃ2 + A0E
−`

t

dt8 expS t8 − t

t2
Dḃst8d + CLDMb− D1E

−`

t

dt8E
−`

t8
dt18 expS t18 − t

t2
Dḃst8dḃst18d

− D2E
−`

t

dt8E
−`

t8
dt18E

−`

t8
dt28 expS t18 − t

t2
DexpS t28 − t8

t2
Dḃst18dḃst28d+ A1E

−`

t

dt8E
−`

t8
dt18E

−`

t8
dt28E

−`

t8
dt38 expS t18 − t

t2
DexpS t28 − t8

t2
D

3expS t38 − t8

t2
Dḃst18dḃst28dḃst38d + A2E

−`

t

dt8E
−`

t8
dt18E

−`

t18
dt28E

−`

t8
dt38 expS t28 − t

t2
DexpS t38 − t8

t2
Dḃst18dḃst28dḃst38d
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+ A3E
−`

t

dt8E
−`

t8
dt18E

−`

t18
dt28E

−`

t18
dt38E

−`

t8
dt48 expS t28 − t

t2
DexpS t38 − t18

t2
DexpS t48 − t8

t2
Dḃst28dḃst38dḃst48d

+ A4E
−`

t

dt8E
−`

t8
dt18E

−`

t18
dt28 expS t28 − t

t2
Dḃst8dḃst18dḃst28d

+ A5E
−`

t

dt8E
−`

t8
dt18E

−`

t18
dt28E

−`

t18
dt38expS t28 − t

t2
DexpS t38 − t18

t2
Dḃst8dḃst28dḃst38d=BFextstd + Bỹstd, sC1d

whereBFext and Bỹstd are, respectively, the external and
random forces in the collective space of the variableb swe
have separated the mass coefficientB from the external
and random forces for technical convenienced. The trans-
port coefficients in Eq.sC1d are given by

B = mE drWreqv
2, CLDM =E drWSd2 «

dr2 D
eq
F ]

] rn

sreqvndG2

,

sC2d

D0 = mE drWreqvavn

] va

] rn

, D1 =E drWL̄
ˆ sPeqL̄and

] va

] rn

,

sC3d

D2 =E drW
Peq

2

z
L̄0L̄an

] va

] rn

, sC4d

A0 =E drWPeqL̄an

] va

] rn

, A1 = m2E drW
Peq

3

j
L̄0

2L̄an

] va

] rn

,

sC5d

A2 = mE drW
Peq

z
fL̄anL̄

ˆ sPeqL̄0d + L̄0L̄
ˆ sPeqL̄andg

] va

] rn

,

sC6d

A3 = 2m2E drW
Peq

3

z2 L̄0
2L̄an

] va

] rn

, A4 =E drWL̄
ˆ 2sPeqL̄and

] va

] rn

,

sC7d

A5 = mE drWL̄
ˆSPeq

2

z
L̄0L̄anD ] va

] rn

, sC8d

with

L̄
ˆ
Pab8 = vn

] Pab8

] rn

+ Pab8
] vn

] rn

+ Pan8
] vb

] rn

+ Pbn8
] va

] rn

,

L̄ab =
] va

] rb

+
] vb

] ra

−
2

3
dab

] vn

] rn

,

and

L̄0 = 1
2sL̄xx + L̄yy − L̄zzd.
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