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Shape fluctuations in a Fermi system with nonlinear dissipativity
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The contribution of thermal fluctuations to the widths of isoscalar giant multipole resoné@béR) in
heated nuclei is studied. Starting from the collisional kinetic equation, it is shown that an additional contribu-
tion to the nuclear friction and the corresponding GMR widths arises due to the nonlinear dissipativity effect.
It is also shown that the magnitude of the contributions of the thermal fluctuations to the nuclear friction
coefficient and the GMR widths do not excee@0%.
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[. INTRODUCTION tuation terms from the final macroscopic equations of mo-

In general, the damping of collective excitations in a coldtoN: _ _
finite Fermi system, e.g., the width of a giant multipole reso- ~ This paper is organized as follows. In Sec. Il we suggest a
nance(GMR) in cold nuclei, is determined by the two-body proof of the Langevin equation for nuclear local variables
collisions, the particle-hole energy fragmentatidrandau  (particle density, velocity field, and pressure tepsstarting
damping, and the escape width. The damping in cold nucleifrom the collisional kinetic equation. We perform a high or-
was intensively investigated in both the quantgandom-  der expansion of the collisional integral and derive the non-
phase-approximation-like[1-5 and the semiclassicaki- Markovian pressure tensor to the Navier-Stokes-like equa-
netic theory approache$6—12. The collisional damping is tion of motion. In Sec. Il we carry out the ensemble
due to the coupling of particle-hole excitations to more com-averaging and reduce the local equations of motion to the
plicated states. In the kinetic theory, this type of damping igmacroscopic form and derive the macroscopic response func-
simulated by the collision integral and leads to a collisionaltion. In the derivations, the main features of the dynamical
component of the intrinsic width of the collective eigen- distortion of the Fermi surface are taken into account. Re-
states. The fragmentation width is caused by the interactiogults of numerical calculations are presented in Sec. IV. We
of particles with the time-dependent self-consistent meagonclude and summarize in Sec. V. The appendixes provide a
field. This contribution to the intrinsic width does not reflect derivation of the high order variations of the collision inte-

a motion of the system toward the thermal equilibrium butgral with respect to the variation of the phase space distribu-
indicates rather a redistribution of the particle-hole excitation function.
tions in the vicinity of the collective state.

In a hot system an additional contribution to the damping
of the collective excitations arises through thermodynamic
fluctuations of the gorrequnding collective variables be- " \ve will start from the collisional kinetic equation in the
cause of the fluctuation-dissipation theorem. In this context{OIIOWing form [20]:
one of the most important open problem is the behavior o ’
the GMR width in hot nuclei as a function of the temperature

II. LOCAL EQUATIONS OF MOTION

T. There are two essential different sources for Thaepen- af + paf _ovatf +F If _ SS{f]+ (1)
dence of the GMR width. The first one is given by the ther- ot maf arap  ap v

mal contribution to the damping width from an increasing
nucleon-nucleon collision rai@p2h excitation$ plus a Lan-
dau spreading due to thermally allowggh transitions L ) s
[3,4,13-16. In the second one a temperature increasing of= V(';P.t) is the self-consistent mean fiell, is the ex-
the width is caused by the coupling of the giant dipole resofernal driving force, andsS{f] is the collision integral
nance to the thermal shape fluctuations of the nucleudhich takes into account the memory effe¢®&l]. The
[17-19. random variabley=y(r,p,t) in Eq. (1) represents the ran-
In the present work, we study a new effect of the influ-dom force. As such, its ensemble average vanisks,
ence of the thermal shape fluctuations of the nucleus on the0. To reduce Eq(1) to closed equations of motion for
damping of the collective motion caused by the nonlineathe macroscopic collective variables we will follow the
dissipativity appearing in the higher order variations of thenuclear fluid dynamic approadi22—26 and take into ac-
collision integral. We point out that in the commonly used count the dynamic Fermi-surface distortion up to multipo-
linear order of the variation of the collision integral, the ther-larity |=2. Evaluating the first three moments of K@) in
mal fluctuations do not lead to dissipatigviscosity) in the  the p space, we reduce Edql) to the hydrodynamiclike
macroscopic equations of motion because the following enequations of motion for particle densigy velocity field G,
semble smearing of the kinetic equation washes out the fluand the pressure tens@y,; (for details, see Ref.27]),

Here, f=1(r,p,t) is the Wigner distribution functionV
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ap J
—_—— u, 2
at arvp g 2)
imu imuu +iP + iV— Fexta =0
Jt p &r,, pu, Uy rV va pﬁra P exta = Y
(3
and
iP +iuP +P iu +P iu =Q.pt
at af rV v ap VB(?rV a Va(?f,, B~ XaB yaﬁ-
(4)
Here,
gdp -1 _9db P
(2mh)* " pJ 2nh)*m’
1
Pog=— 2 ﬂﬁ)g(pa mMu,)(pg — Mug)f, (5)

g=4 is the spin-isospin degeneracy facQy,; is associated
with dissipative processes,

(zwﬁ)g(pa mu,)(pg — Mug) 6S{f],  (6)
andy,z gives the contribution from the random force,
1(_9
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dug 2 _ du
=—ty—L_Zp5 — 11
ah™ &rﬁ ar, 3 Foar,)’ (3
and the operatol: is defined by
LP’ =u,-— P’ + P 9, pr Ol
b= B “ﬁa ’“ar BVarV'
(12

To evaluate the tensd,z in Eqg. (10) we will use the col-
lision integral in the following general forf20]:

g°dp,dpsdps

oS f]= (2mh)?

w({pH)Q({f;h) a(Ae)s(Ap),
(13

wherew({p;}) =W(p;, P,; P3, Ps) is the spin-isospin averaged
probability for two-body scatteringQ({f;})=f1f,(1-f3)(1
—-f,)—-(1-f)(1-f,)f;f, is the Pauli blocking factorAp
=P1+P,—P3— P, and Ae=ete—e3— €y, With = p2/2m
+V(r;) being the single-particle energy. In performmg the
variation of the Pauli blocking factd®({f;}) with respect to
of, we will keep all the terms up to the third orderdf. The
collision integral then takes the following forfsee Appen-
dix A):

oSt = (SStl + 53':2 + 53'[3, (14)

where 6St, is the variation of the collision integralSt in
the nth order of 6f. Considering Eqs(6) and (14), the
tensorQ,; can be written as

Qup=Ql+ Q% +Q, (15)

In Egs. (2)—(4) and in the following expressions, repeatedWhereQ pis due to the contribution o#St, in Eq. (6). The

Greek indices are to be understood as summed over.
The pressure tensé,; can be written as
Pas=Peqlap* P;ﬁ, (8)

where

(Pa—Mu)(pg—mug)Sf,,  (9)

Pop = mJ
S6f,= 6f,(r,p;t) is the small quadrupole deviation of the dis-
tribution function f from the one in equilibrium,fe,
=feqr,P), andP qis the pressure due to the Fermi motion

(27Tﬁ)3

of the nucleons in the ground state of the nucleus. Assum

ing the Thomas-Fermi approximation fég, one has
s )
g

where peq= pe () is the particle density in equilibrium.
Using Eq.(8) we will rewrite Eq.(4) as

2
eq_é

gdp p* 242
(27h)% 2m ®~ 5m

2/3
5/3

Peq»

J ' D/
Epaﬁ + Pqua,B + Lpaﬁ = Qaﬁ + yaﬁy (10)

where

first-order teer is simplified as[28]

1
Q=P (16)
wherer, is the two-body relaxation time in the case of quad-
rupole deformation of the Fermi surface. The higher order
termsfo) and Qf‘) can be reduced to the following forms

[see Appﬁendix A,ﬁEqs(A18) and (A30)]:

2) — m PO ’ mZP(/)Z ’
Qaﬁ Paﬁa P
4 3

af?
where the quantitieg and ¢ are deduced from the collision
integral[see Appendix A, EqQ9A19) and(A31)] and

Q%= 17

Py = Z(P’ + Py~ P}). (18
To simplify the derivations, we will introduce the operafcbr

as

NPa,B Q(Z) + Q(S) (19)
Equation(10) is then rewritten as
J ! ! ' —KND/
apaﬁ +PeAapt —Pupt LPs=NP s+ Y5 (20
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We will look for a solution of Eq.(20) in the following
form:
1 —p/0) 4 pr(ND
Pos=Pas +Pog - (21
Here, the tensoP;(O) is obtained as a solution to the follow-
ing linear differential equatiof29]:

(22)

9 50 1 0_
StFap +Peq/\aﬁ+72paﬁ =Yaps

and it is given by the following non-Markovian form

t r_
0=~ [ o] "= JiPut ) -yigt].
—% 2
23

The tensorP’(N" in Eq. (21) satisfies the nonlinear differen-
tial equat|on

ip(’y%\”—) N

Py (24)

1 ~ ~
=~ p’(NL) ro_ [
Pt LR = NP, =0,

To solve Eq.(24), we will use the iteration procedure. The
first-order |terat|0nP'(N" (t') to Eq.(24) reads

P/ = f dtexp( )[NP’(O)(t) LP. ()],

(25
and the second iteration is given by
Pupz (0= j dt'exp( ){N[P'“”(t )+ Pisr ()]
= LPQ ) + PLaT ()] (26)

Below, we will apply Eqs(2)—4) to the small-amplitude
vibrations of the particle densit§p near the equilibrium. We
point out that we do not assume the velocity figldo be

small. Finally, taking into account the above mentioned deri-

vations we will rewrite Eq(3) as

AU, au, e IPg
Mpeq— ot mpequv Peqo7r [ 5P 5P:| + 0;1
eq @
9 Pr(NL)
+ (90; - Pequxt,a =0, (27)
(23

wheree is the particle energy density.

I1l. ENSEMBLE AVERAGING AND MACROSCOPIC
RESPONSE

Let us introduce the displacement figfdrelated to the
velocity field G by G(r,t)=x(r,t), where the dot denotes a

time derivative. For the displacement field we will assume

the following separable formy(r,t)=8(t)v(r). Using this

separable form of(r,t), we reduce Eq(27) to the equation
of motion for the collective variabl@(t) in the presence of
the external fieldF.(t) and the random forcg(t) [see Ap-

pendix C, Eq(C1)].
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FIG. 1. Temperature dependence fof7’ (solid curve } and
hl7" (solid curve 2 for the case of the temperature-dependent
Fermi distribution function30). The dashed line is the calculation
of #/7" with the sharp Thomas-Fermi distribution functié eg
—€).

Below, we will look for the response of a nucleus to the
periodic external fieldF,(t)=F expliwt). Because of the
random forcéy(t) in Eq. (C1), we will separate the descrip-

tion of the collective motion into two parts witB(t) :FB(t)
+5B(t). The first motion is related to the driving forde,(t)

and it is associated with the velocifg'. The second one is
due to the random forcg(t) with the velocity §8. We will

assume thatsg| >|B|. Performing the ensemble averaging,
one can write

(Bt Bty B(ty) = Blt)(5B(t) 9B(ts)) + Bity)
X(SB(ty) 5B(ts)) + Blta)(5B(to) SB(ty)).-
28)

We will also assume_the following ergodic property for the
correlation function(5p(t) 58(t')), see Ref[30], Chap. 12,
. . “do - e
(6Bt p(t")) = f 2—0)(532)w<e""’“'t ) (29
—0 £TT

The Fourier componer(ﬁBz)w of the correlation function is
governed by the correlation properties of the random force

Y(t), see below.

The macroscopic equation of moti©¢@1) is significantly
simplified in the case of a Fermi distribution for the equilib-
rium distribution functionfe,

fo= [1+ex;<€_EF>}_l
eq— T )

wheregg is the Fermi energy. In this case, one obtains from
Egs. (A19) that 1//<1 (see also Figs. 1 and)2and the
contribution of the terms with,, Ag, andAg in Eq. (C1) is
negligible. Performing the ensemble averaging of &2fl),

(30)
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T(MeV)

FIG. 2. Same as in Fig. 1 but for the ratig/ 7 multiplied by
the factor 10(solid curve 3 and the ratior,/ 7’ (dashed and solid
curves 2.

using Eq. (28) and (y(t))=0, and assumingA(t))=A(t)
:Ew expliwt), we reduce Eq(C1) to the following form:

i dw’ (5B2)w'
-B +C 7 J
[0 ﬁw LDMB(D 1+iwn, (AO 2\ 277 l+tio'n
L 45 f do’ (389
1+|w7’2 L 27 L4+ (0' 1)
[ O
"'7% T i
= 2w 1ltio' Hlti(o +w)n

2A, (% do' (9D
+2_—4f do' )y _=BF,. (31
ltiorn) , 27 1+i(0 +w)n

Considering the nuclear isoscalar quadrupole mode, we will
assume an irrotational motion with the displacement field

v(F) given by[31]

0(F) = V[r2Y(f)1/2, (32

and the time-dependent radius of the nucleus given by

R(t) = Ry[1 + B(t) Yoo(f)]. (33

In this particular case the calculation of the coefficieAts
and A, from Eqs.(C4) and (C7) gives A;=16Ay(mPy)?/ ¢
and A;,=12A,. The mass coefficienB of Eq. (C2) for the
displacement field of Eq(32) is given by

B:iiAm%,

8 (34

whereA is the nuclear mass number.
Let us introduce the collective response functjgiw) as

Bo=x(@)F,. (35)

Using Egs.(31) and(33), we obtain from Eq(35)

PHYSICAL REVIEW C69, 024314(2004

X H0) == + 0y +iwye+ 12%% 1 "“TZTZK((»).
(36)
Here,
+C
wp = 1\/ Cou * Ew) BC (w), Yo= %—1 +(Z7_2)2 (37)
and
o' (8 2
K(w) = f_x 27 1 ff(j 7'2(1 " 1 +i(a):}+ )Ty
4 7ol 7 . 1 l+io'n )
l+ionl-io'n l+ionl+i(e +o)n/
(38
We have also used the following notations:
C'(w)= AT 2 (fz:i % (39
and
7= El(MPeg).

We point out that the additional contribution to the stiffness
coefficientC'(w) in Eq. (37) is caused by the distortion of
the Fermi surfac¢29].

The expressioti36) can be rewritten as

w?) +iw(yy+Ay), (40)

where we have introduced the following notations for the
additional components of the relaxation coefficient and the
squared frequency,

X o) = (0§ + Awh -

Ay = 1275{Re K(w) + o7, Im K(w)},

Yo
Ciom >_1
C'(w)/)
(42

Note that aboveg is real. Finally, the macroscopic strength
function S(w)=-Im x(w) is given by

(41)

2
é%?zlzé{ReKu@——i—m1Ku@}(1+
wTo

)

(Yot Ay
(03 + Awd = 0?2+ (v + Ay)2w?

Slw) = (43
Both the additional spreadindgy and the resonance shift
Awg appear in the strength functi@a3) due to the nonlinear
dissipativity effect.

IV. NUMERICAL RESULTS AND DISCUSSION

We have performed the numerical calculations assuming a
Fermi distribution for the equilibrium distribution function of
Eq. (30) and adopting the Fermi energy=39 MeV and the
nuclear radiuRy=r A3 with ry=1.12 fm. The higher order
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relaxation parameters ={/mPeq and 7'=£/(mPyy)? are re- 15
lated to the collision integral and can be evaluated using Egs.
(A19) and(A31) from Appendix A. We point out that in the
limit of a cold nucleus;T — 0 andf.,=0©(e:-—¢), the correc-
tions 7 and 7’ take the following simple form:

1 1 m°PZw,
= =0, ?21.542@_0, (44)
7 Pr

wherepg is the nucleon Fermi momentum and the scattering
probability wy=157%4%/mga is related to the in-medium
cross sections;, of nucleon-nucleon scattering. We use
a=9.2 MeV from Ref.[14], which corresponds tar, - ) ) )
= oyeel 2, Whereoee~40 mb is the cross section for the 0 2 4 6 8 10
nucleon-nucleon scattering in free space. Note that both T(MeV)

relaxation parameters’ and 7’ cannot be directly inter-

preted as the corrections to the observable relaxation time. 5 5 EnergyE=# Rew of the isoscalar giant quadrupole
In particular, the value of 1/ does not equa_l to zero in resonanc€GQR) and the corresponding collisional widthfor the
the ground state of the nucleus. The relaxation parametegg,cieus withA=224 as obtained from Eq49).

7 and 7’ determine the contribution of the viscous tensors

Q(azg and Qf; [see Eq.(%?)] to tge local equations of mo-
tion and both tensor@fxl)g andQEtl)g disappear in the ground

quadrupole resonand&QR). To apply Eqgs(38) and (41),
we have to derive the spectral correlation functi@s?),,.

state. . . .

We also point out that the relaxation parametgrand  USing the correlation properties of the random fof8e]
as well asf and ¢ depend on the nuclear mean field potential 29T
V due to the space integralg andr;y, see Eqs(A10) and V), =——, (46)

(A21). This dependence appears after the Abrikosov-
Khalatnikov transformation(A7) in the collision integral e obtain according to the fluctuation-dissipation theorem
5S{f]. However, due to the presence of the strongly pickedne following result32]:
functions df¢y;/ de;, at e=€g, in EQs. (A10) and (A21) the

final results forf and ¢ are not sensitive to the specific choice 2Dw?

of the mean field potential at T< e. . (6%, = (wg_ )2+ 7’30)2' (47)
In Fig. 1, we have plotted the results of calculations of the

quantities?i/ 7' (solid curve 3 and /7" (solid curve 2 as  whereD is the diffusion coefficient,

functions of temperatur€ for the nucleus wittA=224. Both

quantitiesi/ 7" and#/ 7" show a very broad and weak maxi- D= ﬂ_ (48)

mum. The magnitude of the maximum does not exceed the B
value of 0.07 MeV fori/7 and 0.49 MeV fori/7". The
dashed line in Fig. 1 corresponds to the valudi6f” from
Eq. (44). We can see from Fig. 1 and E@4) that the sim-
plest Thomas-Fermi distribution functio®(e-—¢), with
nl 7 andh/7” from Eq.(44), provides a good description of
both quantitiesi/ 7 and#/+". Figure 2 shows the ratio of
the collisional relaxation tiqu to.both relaxation param- (05— )2+ Y2w?=0. (49)
eters7’ and 7’. For the relaxation time-,, we have used the

expression from Ref[14] which takes into account the For the numerical solution of E¢49), we have used in Eq.

To evaluate the relative contribution to the collisional
width T" from Ay, we will start from the usual case with
Avy=0. In this case, the width of the GQR can be obtained
from the solution in the formv=Rew+iI"/ 2% to the follow-
ing secular equation, see E¢.3):

memory effects: namely, (37) the liquid drop stiffness coefficient, py, in the form
[33]
drat (45) 1 5 L-1_ 22
o= 5 . o -
fiwg)? + AT - (L- 23_ 2 =~ 2
(o) Ciom 47T(|- (L +2)bA or ol + 1bCA1/3’
As seen from Fig. 2, the value et/ is relatively small (50)

over the entire range of the temperature. The value,bf”

decreases with the temperature monotonically starting frorwhere bs=17.2 MeV andb.=0.7 MeV are, respectively,

7,/ 7'=1.16 atzero temperature. the surface and Coulomb energy coefficients appearing in
Let us now carry out a numerical study of the additionalthe nuclear mass formula. Figure 3 shows the results of

contribution to the friction coefficienhy caused by the non- the numerical solution of Eq49) for the nucleus with

linear dissipativity, see Eqg40) and (41) and the corre- A=224 and Z=A(1-6x10°A%3)/2=87, which corre-

sponding contribution to the width of the isoscalar giant sponds to the valley of beta stabilif33]. The energy of
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40

30 N\

T(MeV)

FIG. 4. Dependence of the dimensionless paranigtgff on
the temperaturd@ for the GQR in the nucleus witA=224 with 7,
from Eq.(45). The solid curve was obtained usifigr# Re w from
Eqg. (49). The dashed curve was obtained wHEg, where Eg
=60A 13 MeV is the experimental value of the GQR energy.

the collective excitationE=% Rew decreases with tem-
perature and approaches the hydrodynaftiguid drop
mode) limit E py=7%\VC pu/B at high temperatures. In

Fig. 4 we have plotted the temperature dependence of tl\ﬁ

parameterEr,/# which determines the sound regime:
Er,/fi>1 for the zero soundrare collision regimg and
Em/fh<1 for the first sound(frequent collision regime
The solid curve in Fig. 4 corresponds to the calculation
with the temperature dependencebofiven by Fig. 3. For
the dashed line, the phenomenological parametrization
the GQR energE=Ex=60A"13 MeV was used.

Using Eqs(39), (41), (47), and(48), one can evaluate the
contributionA+y to the friction coefficient due to the nonlin-
ear dissipativity. In Fig. 5, the value dfy/ y, is shown as a
function of temperature. The ratitvy/ y, equals zero af
=0 becausé\y appears due to the thermodynamical fluctua-
tions of the collective variabl@. The ratioA+y/ vy, increases

with temperature and reaches a maximum value, which does

not exceed=0.2. In the high-temperature region the ratio
Avyl vy, decreases because the temperature dependenge of
~T? is stronger than that oAy~ T. For comparison, we
have also performed the calculation of the ralig/ v, using

the phenomenological parametrization for the GQR energy

Er=60A"13 MeV (see dashed line in Fig)3n this case, the
variation of Ay/ v, with temperature is somewhat stronger.

Taking into account the nonlinear dissipativity effects, the
collisional widthI'" of the GQR is obtained from the solu-
tion, in the formw=Rew+il"'/ 24, to the secular equation,
see Eq(43),

(w(2)+AwS— @)%+ (yp+ Ay)?w?=0. (51)

PHYSICAL REVIEW C69, 024314(2004

0.5

0.4
> 03 AR
~
A :.
<1 02}

0.1 |

O 1 1 1 1
0 2 4 6 8 10
T(MeV)

FIG. 5. Temperature dependence of the ralig/y, for the
nucleus withA=224 for the GQR. The solid curve was obtained
using Eq.(41) with o from Eq. (49) (see also Fig. 8 the dashed
line was obtained using Eq41) with vy, from Eq. (37) and o
=wr=Eg/h with the phenomenological parametrizatiokg
=60A"13 MeV.

6 because of the temperature dependenck. dfhe com-
parison of the solid and dashed lines in Fig. 6 shows that
the contribution of the nonlinear dissipative effects to the
idth I" does not exceed20%. In Figs. 7 and 8 we have
plotted the strength functio®w) of Eq. (43). The com-
parison between the solid and the dashed lines in Fig. 7
shows the accuracy of the derivation of the valueAof
directly from the strength functio®(w) of Eq. (43) and

0tprough the solution of the secular equati@hl). The

comparison of the solid lines with the dashed lines in Fig.
8 demonstrates the effect of the nonlinear dissipativity on
the strength function.

T(MeV)

FIG. 6. Collisional widthl" as a function of temperatufe for

the nucleus withA=224 for the GQR. The solid lines are for
In Fig. 6 we have plotted the temperature dependence of thezs; |m o from Eq.(49) and the dashed lines are fBf from Eq.
widths I" (dashed lingsandI™" (solid lineg for two choices  (51). The curves 1 were obtained using the temperature-dependent
of the resonance energg=# Rew using Eq.(49) (curves  resonance frequency=wgr=Rew from Eq. (49). The curves 2
1) and Eg=60A"Y3 MeV (curves 2. We point out that an were obtained using=wg=Eg/% with the phenomenological pa-
increase of the width is more apparent for curves 1 in FigrametrizationEg=60A"13 MeV (see also Fig. b
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0.1 ; , ; ; ; Assuming a separable form for the displacement field, we
have introduced the macroscopic collective varigkle and
0.08 | reduced the problem to a macroscopic equation of motion for
o B(t). Note that we do not assume the velocft) to be
> 006 small. The final macroscopic equation of motig@l) in-
= cludes both the memory effects and the nonlinear dissipativ-
< 0.04 | ity terms ~ 3°. We have separated the description of the col-
% lective motion into two parts. The firgslow) one is related
0.02 to the driving forceF,,(t) and it is associated with a slow
' motion having the velocit;é. The secondfast) one is due to
0= the random forcey(t) with the velocity 5B>E. Using the
9 10 11 12 13 14 15 correlation properties of the random force, we have per-

ha (MeV) formed the averaging of the macroscopic equation of motion

FIG. 7. The strength functioB(e) in 2 units for two tempera-  OVer the fast quctuationsé_ﬁ, reducing the nonlinear dissi-

tures:T=1.9 MeV (curves 3} and T=5 MeV (curves 3. The solid pativity terms to the form~B(t){(5B(t") §8(t")), which is lin-
curves 1 and 2 were obtained from Eq41)—(43). The dashed ~

curves 1 and 2 were obtained using &) with y,+Ay=I"/% and ear with respect to the slow collective mOtl@ﬂB Fina”y,
w2+Aw3=(E/h)?, whereE andT are obtained from the solution, in assuming a periodic driving forcg,(t) ~ expliot), we have

the form w=E/A+i'/2#, to the secular equatiof5l). derived the macroscopic strength functi®w). As seen
from Eq. (43), the nonlinear dissipativity effect leads to the
V. SUMMARY AND CONCLUSIONS additional spreading\y and the resonance shifiw, in the

_ o o _ _ strength functionS(w). The contributionAy appears due to

Starting from the collisional kinetic equation with a ran- the thermodynamical fluctuations of the collective variable
dom force and using the-moments techniques, we have g |n contrast to the Fermi-liquid friction parametgg with
derived the equations of motion of the viscous fluid dynamlcyONTz (at T<e:), the spreading\y is a linear function of
for the local values of particle density, velocity field, and the temperatur@. This fact provides a nonmonotonic behav-
pressure tensor. The obtained equations are closed due to tfag of the ratioAy/ y,, see Fig. 5. As seen from Fig. 5, the
restriction imposed on the multipolarity of the Fermi-  nonjinear dissipativity effects are enhanced at the moderate
surface distortion, up tb=2. The important features of these temperatured ~ 2 MeV and do not exceee-20%.
equations of motion are due to the non-Markovian form of = The nonlinear dissipativity effect increases the collisional
the pressure tensd,. In contrast to the commonly used \idth of the GMR. Usually the total collisional width of the
approximation, we take into account the higher orders of thgsggcalar GQR in cold nuclei does not exceed 30—40 % of
variation of the collision integral with respect to the variation {pe experimental value and the main contribution to the
of the phase-space distribution function. Using theygth is due to the Landau damping. One can expect that the
Abrikosov-Khalatnikov transformation we have then ob-poplinear dissipativity effect on the collisional width can

approximation. from the usual Fermi-liquid predictiofi(T)~ T2. Unfortu-
nately, at present time, experimental data on the temperature
0.12 ' ' ' ' ' behavior of'(T) of the isoscalar GQR are not available. In
this respect, it is more instructive to study the isovector giant
0.1 \ 1 ] dipole resonance where the temperature dependencerpf
«— was studied for some heavy nuclg4,35. However our
> 0.08 1 final results for the viscous tens@,; and the relaxation
= 0.06 | parameterg and¢ cannot be applied directly to the isovector
e mode because the dipole distortion of the Fermi surface must
B 0.04 | be taken into account in the collision integgal3), in con-
w = trast to our case of the isoscalar GMR, see Sec. Il. The gen-
002 | ] eraliz_ation of our approach to the case isovector modes is
N now in progress.
9 10 11 12 13 14 15
ho (MeV) ACKNOWLEDGMENTS
FIG. 8. The strength functioS(w) in #2 units for two tempera- This work was supported in part by the U.S. Department

tures:T=1.9 MeV (curves 3} and T=5 MeV (curves 3. The solid of Energy under Grant No. DOE-FGO3'93ER40773 One of
curves 1 and 2 are the same as in Fig. 7. The dashed curves 1 atg (V.M.K.) acknowledges the Cyclotron Institute at Texas
2 were obtained from Eq$43), but with Ay=0. A&M University for the kind hospitality.
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APPENDIX A
As a basic expression for the collision integ8f f] we
use Eq(13). The second and third variations of Ed3) with
respect tosf take the following form:

([ Pdpdidp, < FQ
‘SStz'f e "2 5G|
X (1) 81 (1) A SAP), (A1)
[ Fdpddp, < FQ
256= | e D2 s a0 .,
X 8%(1) o1 () S (k) A€ S(AD), (A2)

where §f(i) = 5f(p;) and the symboE means a summation
over indices,j,k=1—-4with i #j, j #k, k#1.

PHYSICAL REVIEW C69, 024314(2004

in the coordinate system with axes alongp;. We point
out that the anglep varies only from O towr because the
particles are indistinguishable. Using the transformation
(A7) and the relation(see Appendix B

2w d
%Ynm(ﬂi)Yn'm'(Qj) = Ynm(Ql)Yn’m’(Ql) Pn(COS 0i)

0

X Py (cos b)), (A8)

we obtain

2(277)2m3

6St2: g (277%/)6

[1(1) 2 2 (WP5(cos 6)P,(cos G))ri;.

(A9)

We will follow the fluid dynamic approach and represent|_|(_:.re,rij is given by

the variation of the distribution functioaf in the following
form:

1=2
V(l) = E V2m(th)Y2m|(Qi)-

I,m|

87(i) = - Lteai ),
(9€i

(A3)

We point out that thé=0 and 1 components of the expan-

sion (A3) do not contribute to the collision integrél3),

reflecting the conservation of particle number and momen-

tum in a collision. The expansion coefficientg,(r,t) in Eq.
(A3) are related to the pressure tenﬁ% of Eq. (9). Using
Egs.(9) and(A3), we obtain

2

, gl -

Ps=- dQ Yom (), (A4
LY 2 6)3m§_2’/2m| PaPpYom (), (A4)

where

* of
= J dp p—=, (A5)

0 Jde
and f): p/p is the unit vector. In particular, performing the
angle integration in Eq.A4), we obtain

3 /52ah)°m_,
Vo= - Po,
4 Vo gl

(A6)

wherePy is given by Eq.(18).

To evaluate the collision integra@St,, we will substitute
Eqg. (A3) into (Al) and make use of the Abrikosov-
Khalatnikov transformation in the following forij20]:

e o . m ([
f dpodpsdpy(--+) S(Ap) O > J de,dezde,
\

J|

wheredQ=sind déd¢, 6 is the angle betweep; andp,, ¢
is the angle between the planes formed (py,p,) and
(B3, Ps), and ¢, is the azimuthal angle of the momentuan

dQ de,

cog6/2) ¢,

(A7)

&Q
of(i) ot ()

eq 0& JEg

o]
rij:J
\%

and the symbo(:--) denotes the following average:

de,desdey

(A10)

(W(6, p)Py(cos 6;)P,(cos 6)))

= ZJWda sin(ﬁ/Z)JW d—(ﬁw(e, $)P,(cos 6)P,(cos ),
0 0 2m

where cosejz(ﬁj -61), i.e., 6,=6, and

COs 63 = coZ(6/2) + sirf(6/2)cos ¢, (A11)

cos 6, = coS(6/2) — sirf(6/2)cos ¢,

and Py(cos 6) is a Legendre polynomial.
Using Egs.(6), (14), (15), and(A9), we obtain

1 dp
Q= (2977%%3(% ~ MUy (P~ MUg) S
3 (2m)°m’ <
_ % ((27;3; 2 (WP,(cos 6;)P,(cos 6))R;

X f dQypy WPy (DT, (A12)

where

R;j :fo dp.piri;.

To exclude the unknown amplitudél) from Eq.(A12),
we will calculate the arbitrary partial contribution to the ten-
soerg. Using Eg.(Al), we will consider the partial contri-
bution Qfgylz to the tensong given by
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3
Qféf@ f APy Py 5F(1) f dp,5f(2) f db.dp,
5Q
X wW(6, ) FRE ) eqé(Ae)(S(Aﬁ). (A13)

We will assume the isotropic probability scatteringé, ¢)
=wp, and apply the Abrikosov-Khalatnikov transformation in
the following form:

f dezde,dep(---),
(A14)

fdﬁ3df>4(---)5(A|5)D w

where pg is the Fermi momentum. Using Eq86A3) and
(A14), we transform Eq(A13) as

2

o° 2mmiw Yom(€),)

@ Yon(€25)

Qup12™ m2(211-h)9R122 vam 2coq6/2)
X fdﬂlf)laﬁl,ﬂy(l)- (A15)

Integrating overd(), in Eq. (A15) and using Eq(A6), we
obtain
37Tm3\NO R]_z

Q(az,‘212: (277%)6 I_Péfdglﬁl,abl,ﬁv(l)- (A16)

Comparing Eq(A16) with the partiali=1, j=2 term of Eq.
(A12), we find the relation

3 (2mh)®
47g(P,(cos ) |

f dQapy oy f (D] = mP;

X J dQypy oP1pv(1).  (AL7)

Finally, from Egs.(A12), (A4), and(Al7) we obtain

mP; _,
Q=" "Pus (A18)
where
1_ 3mgnrw, S (P,(cos 6)P,(cos O)R; a9

{ (2mh)®

Let us go now to the third-order variation of the collision
integral 5St; of Eq. (A2). Applying Egs.(A3) and the trans-
formation (A7) to Eq. (A2) and using the relatiofsee Ap-
pendix B

(P,(cos 0))I?

d
f 24)2 Ynm( ) n’ m’(Q )Yn”m”(Qk)
a
= Ynm(Ql)Yn’m’(Ql)Yn”m”(Ql) Pn(COS 0|) Pnr(COS 01)
X P(cos 6,),

we will reduce the collision integradSt; to the following
form:

PHYSICAL REVIEW C 69, 024314(2004)

2 3
(2ﬂ’ﬁ)6
X PQ(COS Hk)>rijk,

2(

SSt= - [v(l)]3E<WP2(cos 6)P5(cos 6,)

(A20)
where

__

Of (i) of(j) F(K) | oq

0 feqj dfeqj d fe
_CLJJL_CL&A)

Jeg de e

rijk = f d€2d€3d€4
\%

(A21)

1
3 _

Using Egs.(6), (14), (15), and(A20), we obtain
gdp
(zﬂﬁ)g(pa —mu,)(Pg — MUg) St

(277)2m3
" m (27h)°

D (WP,(cos 6)P,(cos b))

X P,(cos 9k)>RijkfdQl@l,aﬁl,ﬁ[V(l)]g,
(A22)

where

(A23)

Rijk:f dp pri.

Similar to the previous evaluation of the tens,@(f2 we
will consider the partial term of EqA20) with i=1 j—2 k
=3 and the corresponding partial tens@b3 5,123 which is
given by

g3
m(2mh)°

QS}% 123=~ J dpip1,aP1 6 (1)

xfdﬁzaf(z)fd@ar(s)
X f dpw(6, ) (Ae) S(AP), (A24)

where we have used the following relation:

&Q _
of(1)5f(2)5t(3) |

We will again assume the isotropic scattering probability

w(6,d)=w, and apply the transformatiotA14) to Eq.
(A24). The angle integrals oved(),d¢, appearing in Eq.
(A24), can be transformed as

[ o

= Yo (£2y) f dQ,de

Y2m’ (QZ)

dé cog6/2)

Yo (Q3)

COi 9/2) Y2m’ (QZ) 1l

(A25)

where we have used the relatif36]
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f 3oy ()= Yo QOPu(cOSE).  (A26)
0 2’7T

The result reads

g m3W0
Qfglzs_ m2(277ﬁ)9 1232 Vom

P
< [ a0a6"E8 R (0,

X f dQpy Py gl V(DT (A27)

Performing the integration ovelQ),d¢ in Eq. (A27) and
using Egs(A17) and (A6), we obtain

Qe =_2 g’ Wo  Rizs
ap 123~ 28(27h)3(P,(cosh)) 12 °

x [ dogpy by ot (A28)

Comparing Eq(A28) with the partiali=1,j=2,k=3 term of
Eq. (A22) we obtain the following relation:
. 27 (21h)°
[¢) () =———5
J d 1pl,apl,ﬂV ( ) 28(277)292|2
mPPy?
(Pz(cos 0)){P,(cos 0)P,(cos 65))

X J dQ4py 4Py g1(1). (A29)

Finally, substituting Eq(A29) into Eq.(A22) and using Eq.

(A4), we obtain
0 ’
— P (A30)

where

1 27wy 2{Pa(C0S 6)P(C0s 6)Pa(C0S 6)) R
& 28  (P,(cosf))P,(cos )P,(cos 6s))13
(A31)

APPENDIX B

PHYSICAL REVIEW C69, 024314(2004

|
Pi(cos6) = _EI E: _: :; PI(cos©,)P[(cos @) @12,

(B2)

we find

=)t [ dd
23~ | (I | —2 2d®2an(COS 0,)
—

P (cos®y) P!”(cos 0,)P(cos®,)

 @m®ogim’ D (@1-d5)

=—0 2n Pm(cosG) )emP1pl '(cos@,)eM 1P, (cos O).
(B3)

Here, 65 is the angle betweep, andp;. On the other hand,
using the direction ofp; as a polar axis withd(Q,
=sing déd¢, where ¢, is the azimuthal coordinate @& in
the new coordinate frame, we will rewrite EB1) as

de .
Myg= ?sm 0P,(cos 6)

{f dé ——P(cos@,)em*2py, '(cos@4)e™m ‘D3}
(B4)
Here and below the anglé3; and ®; are dependent on the
anglesé and ¢,. Comparing Eqs(B3) and (B4) and using
the orthogonality condition for the Legendre polynomial

P,(cos ) in Eq. (B4), one obtains the following integral
relation:

J ¢2Pm(c0302)e'm‘1’2P (cos@z)em ¥3

= Pl(cos @) em*1pT, '(cos@,)e™ 1

X P,(cos )P, (cos b6s). (B5)

Starting from the integral

M,y = f—P”‘(cos@ )em PP '(cos©,)@™4P (cos 6),

In this appendix, we will consider some angle integrals
which appear in the calculations of the collision integral anqNe will also obtain an integral relation analogous to &)

its variations. Let us start from the integral

Moz = f —P”‘(cos®z)e'm‘1’2P (cosO3)e™sPy(cos 6),

(B1)

but with the replacement-3.4.
Let us consider now the integral

dQ . ) -,
Mg,= f 4—3an(coss)e'm‘1’3an, (cos®,)e™ 4P (cos 6s).
T

where (0;,®;) are the angle coordinates of the momentum (B6)

vectorsﬁ,— in the arbitrary coordinate fram¢=1-4) andé is

the angle between the vectgis and p,. Using the addition

theorem for spherical harmoni¢37]

Using the addition theorem fdt (cos 65) [see Eq(B2)], we
reduce Eq(B6) as
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! .
P™ (cos@,)em ¥4

Ol —m - deDg
Mg,= ——PM(cos@,) ™1 | —
34 on+1 n( 1) 20

Onl
ot 1P”‘(cos@)l)e'”‘q’lP '(cos@®,)é™ 1P, (cos0,).

(B7)
Replacing in Eq(B6) the integration ovefP; to integration

over®, and using the direction gf, as a polar axis, we will
rewrite Eq.(B6) as

do; .
Mg, = 7sm 0;P,(cos 65)

{ f ¢2Pm(cost3)e'mq’3P (cos®,)em ‘1’4}
(B8)
Comparing Eqs(B7) and (B8) and using the orthogonality

conditions for the Legendre polynomials, we obtain

f ¢2Pm(costs)e'mq’3P (cos @)™ P4

=PM(cos 1)eim‘1’1an,’(cos 0,)e™ *1P (cos 6,)

X P,/(COS6,). (B9)

Using the representation of the spherical functiGp((2)
via the Legendre polynomialB}'(cos 6) [37],

2n+1(n—-m)!

4w (n+m)!

Yom(€2) = ———PM(cos §)é™, (B10)

and collecting Eqs(B5) and (B9) we obtain the following
integral relation:

[E=Arnamty

= Ynm(Ql)Yn’m’(Ql) Pn(COS 0i) Pn’(coS 0j) ’
(B11)

wherei,j=1-4.
Let us consider finally the integral

!

i t
BB+ DyB2+ Aof dt’ exp(t

t t/ t/ ti
—sz dt’f dtif dt; ex
th—
><exp< 3
7

-t t;
2

)B(tl)ﬂ(tz)ﬁ(tg) + AZJ dt’J dtlf dtzf dt; ex;{t -

PHYSICAL REVIEW C 69, 024314(2004)

dQ . / )
Mojz,= f —2PM(c0os 0,)e™ 2P (cos O )M

™ (cos0,)eMP4P,(cos 6). (B12)

n”

Similar to the previous consideration, we will transform Eq.
(B12) as

de .
Moga= ?sm 0P (cos 6)
% %pm ©,)gmepm ©.)gm @3
Py n(cos®,)¢ o (C0SO3)

nl/

M (cos @ ,)em P4 }

2n . 1 0,)em1pT '(cos@,)em 1

" (cos@,)eM V1P, (cosO4) Py (COSO,).
(B13)

Using the orthogonality conditions for the Legendre polyno-
mials, we obtain

nr/

f ¢2Pm(cos® )em®2pn (cos04)e™ *3P™ (cos @,)em Vs

n

= PM(cos ©,)e™1PT (cos O,)eM 1P
X Pp(cos 6)P,(cos 63) P,/ (cos 6,).

'(cos @,)em' 1

(B14)

n"

Finally, taking into account EqB10) we will generalize Eq.
(B14) as

d
f %Ynm(ni)vn,m,(nj)vn,,m,(nk)
a

= Ynm(Ql)Yn’m’(Ql)Yn”m(’(Ql) Pn(COS ei)

X Pp:(cos 6;)Py(Cos 6). (B15)
APPENDIX C
In this appendix we give a proof of the macroscopic equa-

tion of motion for the nuclear shape varialfé) derived by
the displacement field ag(i’,t)=8(t)o(r), see Sec. lll. Sub-
stituting this separable form in E¢R7) and multiplying by

v, Summing ovewr, and integrating over space, we obtain
the equation of motion for the collective variabjg(t);
namely,

)B(t)"'CLDMB Df dtf dty ex%t )3(t )B(tl)

—t\. . t t t t t -t t,—t
)ﬂ(ti)ﬁ(téﬁ A f dt’ f dt] f dt, f dt} exp(l—)exp< z )
2 — —o0 —o0 —o0 T2 2

't

t)e p(t

)ﬁ(tl)ﬂ(tz)ﬁ(t3)

024314-11



V. M. KOLOMIETZ, S. V. LUKYANQYV, AND S. SHLOMO

PHYSICAL REVIEW C69, 024314(2004

t !
+A3f dt’f dtlf dtzf dtsf dt4exp<2 )xp(

i ti)exp( b= - )B(tz)ﬁ(ts )B(t))

+ A4f dt’f dtlf dt; ex I{ )B(t ),B(tl)ﬁ(tz)
t t' t t) t, -
+ A5J dt’J dtif dtéf dtzex .
—0 -0 =00 —00 2

where BF,,; and By(t) are, respectively, the external and

random forces in the collective space of the varigBleve
have separated the mass coeffici@&from the external
and random forces for technical conveniencehe trans-
port coefficients in Eq(C1) are given by

52 2
:mfdl?pedﬂ, C,_DM:fdr< 5p8> |: (Peqv ):|

(C2)

Jdv,

. U, N
Do:mfdrpeqvav,,%. D]_:J ﬂ—(PquaV ’

I/

(C3

P2 —— au,
D,= f di—9A A, (C4)

{ Yar,’

(?va

— 9 P3
Ao:dePquwa—‘f“, AlzmzdefA A,

(CH

t)exp(t%l)B(t')ﬁ(té)ﬁ(té):sfex«t) +BY(),
2

T2

(Cy
[
Peg ™ b ) A LPA e
A,=m | df : [AavL(Pquo)+AoL(Pquay)]a_r,
(C6)
A3 - 2m2 f dFJAéAaV a, A4 f 12( PquaV '
(C7)
~(pZ —— \ov
A5:mfdﬂ_ ﬂAoAaV a, (CS)
4 ar,
with
£ JdP! d d
LP(’IB:U—E P:yﬁ i P:w_é Pﬁv va
ar, ar, ar,
_ Ve, Ivp 2o Uy
b org ar, 3 %Por,’
and

= %(Xxx"'xyy_ Xzz)
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