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We explore, within the framework of an algebraic sps4d shell model, discrete approximations to various
derivatives of the energies of the lowestisovector-paired0+ states of atomic nuclei in the 40øAø100 mass
range. The results show that the symplectic model can be used to successfully interpret fine structure effects
driven by the proton-neutron(pn) and like-particle isovector pairing interactions as well as interactions with
higherJ multipolarity. A finite energy difference technique is used to investigate two-proton and two-neutron
separation energies, observed irregularities found around theN=Z region, and the like-particle andpn isovec-
tor pairing gaps. A prominent staggering behavior is observed between groups of even-even and odd-odd
nuclides. An oscillation, in addition to that associated with changes in isospin values, that tracks with alter-
nating seniority quantum numbers related to the isovector pairing interaction is also found.
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I. INTRODUCTION

The observed staggering of energy levels in atomic nuclei
requires a theory that goes beyond mean-field considerations
[1]. Staggering data contain detailed information about the
properties of the nucleonic interaction and suggest the exis-
tence of high-order correlations in the collective dynamics.
Most studies of staggering focus on two aspects of the phe-
nomena. There are discrete angular momentum dependent
oscillations of physical observables; namely, ofM1 transi-
tions in nuclei[2] or of the energy levels themselves(e.g., in
octupole [3–5], superdeformed[6–8], ground, and g,
[1,9,10] bands in atomic nuclei, as well as in molecular ro-
tational bands[11]). And then there are sawtooth patterns of
different physical quantities(most commonly binding ener-
gies) that track with changes in the number of particles in a
system(both in nuclei[12] and in metallic clusters[13,14]).

In nuclear structure physics, staggering behavior of the
second type is observed when one changes in a systematic
way the usual nuclear characteristics such as protonsZd, neu-
tron sNd, masssAd, or isospin projectionsuZ−Nu /2d num-
bers. Examples of these nuclear phenomena include odd-
even mass staggering(OEMS) [1,15–21], odd-even
staggering in isotope/isotone shifts[22,23], and zigzag pat-
terns of the first excited 21

+ state energies in even-even nuclei
[24]. The staggering behavior of a nuclear observable is most
easily seen when discrete derivatives of second or higher
order in its variable(s) are considered. The aim of this ap-
proach is to filter out the strong mean-field(global) effects
and in so doing reveal weaker specific features. In this way,
for example, the OEMS, which is usually attributed to the
nuclear pairing correlations, manifests itself in certain finite
differences of the binding energies that can provide for a
measure of the empirical pairing gap[1]. Likewise, various
discrete approximation of derivatives(filters) of the binding
energies can be considered to investigate detailed properties
of the nuclear structure[25–32].

In this paper, we consider the binding energies of the 0+

ground states of even-A nuclei in the mass range 40øA

ø100, and for the rest odd-odd nuclei with asJpÞ0+d
ground state, the energy of the lowest isobaric analog 0+

excited state(which corresponds to the ground state of the
even-even neighbor). We refer to these states as lowest
isovector-paired0+ states[33]. Our aim is to investigate how
various, comparatively small but not insignificant, parts of
the interaction between nucleons influence these states when
we consider higher-order discrete derivatives of their ener-
gies within the framework of a convenient systematics.

The algebraic pairing model[34,33] we exploit is based
on a fermion realization of the symplectic sps4d algebra
which is isomorphic to sos5d [35–37]. It includes an isovec-
tor (isospinT=1) pairing interaction as well as a diagonal(in
an isospin basis) proton-neutronspnd isoscalarsT=0d part.
The latter is proportional to a so-calledTsT+1d symmetry
term1 [33]. The operators of the reduction
sps4d.us2d.us1d % sus2d provide for a convenient and use-
ful classification of nuclei and their corresponding ground
and excited states. The systematics is in terms of the eigen-
values of these operators, namely, the total numbern of va-
lence nucleons and the third projectioni of the isospin and
their linear combinations.

We have already shown in Ref.[33] that the Sps4d
model2 leads to a good reproduction of the experimental en-
ergies[38] of the lowest isovector-paired 0+ state for even-A
nuclei, 32øAø100. As pointed out[33], although theT
=1 like-particle pairing energy and theT=1 pn pairing en-
ergy yield Dn=2 staggering patterns that are of opposite
phases, the total isovector pairing energy has a smooth be-
havior. It is the symmetry term that makes an accurate theo-
retical prediction of the regular zigzag pattern of the experi-

1It is common to address the symmetry energy in a slightly dif-
ferent way: theTsT+1d term together with the isospin dependence
of the isovector pairing term yield symmetrys,T2d and Wigner
s~Td energies.

2We distinguish between groups denoted with capital letters[e.g.,
Sps4d] and the associated algebras of their generators denoted with
lower-case letters[e.g., sps4d].
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mental energies in isobaric sequences possible. As a further
and more detailed investigation, we now consider different
types of discrete derivatives of the Coulomb corrected[39]
energy function according to the Sps4d classification and
with no adjustable parameters.

The symplectic Sps4d scheme not only allows for a sys-
tematic investigation of staggering patterns in the experimen-
tal energies of the even-A nuclei, it also offers a simple al-
gebraic model for interpreting the results. Moreover, this
detailed investigation serves as a test for the validity and
reliability of the Sps4d model and the interactions it includes.

II. Sp„4… CLASSIFICATION SCHEME

We start with a brief outline of the algebraic approach
[34] used to interpret phenomena that have been observed
experimentally and are related to the isovector(T=1 pairing
correlations) and isoscalar interactions in nuclei. The sps4d
algebra is realized in terms of creationcjms

† and annihilation
cjms fermion operators with the standard anticommutation
relations hcjms ,cj8m8s8

† j=d j ,j8dm,m8ds,s8, where these opera-
tors create(annihilate) a particle of types= ±1/2 (proton/
neutron) in a state of total angular momentumj (half integer)
with projectionm in a finite space 2V=o js2j +1d. In addition

to the number operatorN̂=N̂+1+N̂−1 and the third isospin

projectionT0=sN̂+1−N̂−1d /2, the generators of Sps4d are

T± =
1

Î2V
o
jm

cjm,±1/2
† cjm,71/2, s1d

Am=s+s8
† =

1

Î2Vs1 + dss8d
o
jm

s− 1d j−mcjms
† cj ,−m,s8

† ,

Am = sAm
†d†, s2d

where N̂±1 are the valence protonsneutrond number opera-
tors, T0 and T± are the valence isospin operators, and the
generatorsA0,+1,−1

† create apn pair, a proton-protonsppd
pair, or a neutron-neutronsnnd pair of total angular momen-
tum Jp=0+ and isospinT=1. A totally symmetric finite
space is spanned by the basis vectors constructed as
sT=1d-paired fermions,

un+1,n0,n−1d = sA+1
† dn+1sA0

†dn0sA−1
† dn−1u0l, s3d

wheren+1,0,−1 are the numbers of pairs of each kind,pp, pn,
nn, respectively, andu0l denotes the vacuum state. In the
like-particle pairing limit, n0 gives the number of protons
sneutronsd not coupled toJ=0 pp snnd pairs and hence de-
fines the usual seniority quantum numberf40,41g, n1=n0. On
the other hand, in thepn pairing limit another seniority num-
ber, 2n0=2n+1+2n−1, is recognized that counts the particles
not coupled inJ=0 pn pairs. The dependence ofn0 on n1
within a given nucleus allows one to consider onlyn1 in the
analysis; specifically, for a system ofn valence particles with
isospin projectioni =sZ−Nd /2, the fully paired statess3d dif-
fer in their coupling mode as the seniority quantum number
n1sn0=n/2−n1d changes by ±2s72d.

As a dynamical symmetry, the Sps4d symplectic group
describes isovector pairing correlations and isospin symme-
try through the four different reduction chains
Sps4d.Ums2d.Ums1d ^ SUms2d with m=T,0 ,± (Table I).

The first-order invariant of ums2d, C1
m=hT,0,±j=hN̂,T0,N̂71j, re-

alizes the ums2d.sums2d reduction and reduces the finite ac-
tion space into a direct sum of unitary irreducible represen-
tations of Ums2d (hn, i ,N71j multiplets). Within a multiplet
the third projection generator of SUms2d (middle operator in
the fourth column in Table I) further reduces the Ums2d rep-
resentation to a vector with fixed quantum numberssn, id, or
alternatively sN+1,N−1d, to which corresponds a given
nucleus(a cell in Table II). In this way the dynamical Sps4d
symmetry provides for a natural classification scheme of nu-
clei as belonging to a single-j level or a major shell(multi j),
which are mapped to the algebraic multiplets. This classifi-
cation also extends to the corresponding ground and excited
states of the nuclei including their isovector-paired 0+ states.

The general model Hamiltonian with Sps4d dynamical
symmetry, which consists of one- and two-body terms, can
be expressed through the Sps4d group generators,

H = − GA0
†A0 − FsA+1

† A+1 + A−1
† A−1d − E

ST2 −
3N̂

4
D

2V

− C
N̂sN̂ − 1d

2
− SD −

E

2V
DST0

2 −
N̂

4
D − eN̂, s4d

whereG,F ,E,C, andD are strength parameters ande.0 is
the Fermi level energy. This Hamiltonian conserves the num-
ber of particles and the third isospin projection, and changes
the seniority quantum numbern1 by zero or ±2; the latter
implies scattering of app pair and ann pair into twopn pairs
and vice versa. The isospin breaking Hamiltonians4d in-
cludes an isovectorsT=1d pairing interactionsGù0,Fù0
for attractiond and a diagonalsin an isospin basisd isoscalar
sT=0d force, which is related to a symmetry termE. Within
a shell sa single-j level, 1f7/2, or a major shell,
1f s5/2d2ps1/2,3/2d1gs9/2dd, a reasonable estimate for the param-
eters in the Hamiltonians4d is obtained in a fitting procedure
of the maximum eigenvalues ofuHu, E0, to the Coulomb
corrected f39g experimental energiesf38g of the lowest
isovector-paired 0+ states in even-A nuclei f33g. Although
the fits yield quite good agreement with the relevant experi-

TABLE I. Realizations of the ums2d=ums1d % sums2d subalgebras
of sps4d.

Symmetrysmd
ums1d Eigenvalues

sums2d
sC1

md of C1
m

IsospinsTd N̂ n T+,T0,T−

pn pairss0d T0 i A0
†, 1

2N̂−V ,A0

pp pairss+d N̂−1
N−1 A+1

† , 1
2sN̂+1−Vd ,A+1

nn pairss−d N̂+1
N+1 A−1

† , 1
2sN̂−1−Vd ,A−1
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mental values, a reproduction of the fine properties of
nuclear structurestypically of an order of magnitude or two
less than the energies that were fitd is not guaranteed due to
the strong mean-field contribution. For the present investiga-
tion these parameters in the energy operators4d are not var-
ied; their values are fixed asG=0.53V, F=0.45V, C=0.47,
D=−0.97, E=−1.12s2Vd, e=9.36 MeV for the 1f7/2 level
swith a 40Ca cored and G=0.35V, F=0.30V, C=0.19, D
=−0.80, E=−0.49s2Vd, e=9.57 MeV for the
1f s5/2d2ps1/2,3/2d1gs9/2d shell swith a 56Ni cored f33g. In the
second case, the parameters of the effective interaction in
the Sps4d model with degenerate multi-j levels are likely
to be influenced by the nondegeneracy of the orbits. Nev-
ertheless, as the dynamical symmetry properties of the
two-body interaction in nuclei from this region are not
lost, the model remains a good multi-j approximationf33g
and the extent to which it provides for a realistic descrip-
tion can be further tested with the use of various discrete
derivatives of the energy function.

III. DISCRETE DERIVATIVES AND FINE STRUCTURE
EFFECTS

The symplectic Sps4d model[namely, theE0 maximal ei-
genvalues ofuHu Eq. (4)] reproduces the Coulomb corrected

energies of the isovector-paired 0+ states quite well[33]. A
more detailed investigation and a significant test for the
theory is achieved through the discrete approximation of the
]mE0/]xm derivatives of theE0 energy function,

Stgd
smdsxd =

Stgd
sm−1dSx +

d

2
D − Stgd

sm−1dSx −
d

2
D

d
, mù 2,

Stgd
s1dsxd =5E0Sx +

d

2
D − E0Sx −

d

2
D

d
, m even

E0sx + dd − E0sxd
d

, m odd,

s5d

expressed recursively with two terminating conditions de-
pending on the orderm seven or oddd of the derivative,
where the variable isx=hn, i ,N+1,N−1j according to the
Sps4d classification anddù1 is a discrete integer step.
The present investigation is focused predominantly on the
d=1 or 2 casesfthe way the different variables,n, i ,N+1,
or N−1 vary in the Sps4d systematics can be recognized in
Table IIg.

The first sm=1d discrete derivative defined in Eq.(5),
fE0sx+dd−E0sxdg /d, is related to thed-particle separation
energy, whenx counts the(total, proton, or neutron) number
of particles. The generalStgd

smdsxd quantity represents a finite
difference between theE0 energies of neighboring nuclei, for
example,

Stgd
s2dsxd =

E0sx + dd − 2E0sxd + E0sx − dd
d2 , s6d

whenm=2, and

TABLE II. Classification scheme of even-A nuclei in the 1f7/2

shell. The shape of the table is symmetric with respect to the sign of
i andn−2V. Dn=2 in eachi multiplet (columns), Di =1 in eachn
multiplet (rows), DN±1=2 in eachN71 multiplet (diagonals). The
subsequent action of the SUms2d generators(shown in brackets)
constructs the constituents in a given SUms2d multiplet sm
=T,0 ,±d.

n\ i 2 1 0 −1 −2 −3 −4

0 20
40Ca20

2 22
42Ti20 21

42Sc21 20
42Ca22

4 ↙ 23
44V21 22

42Ti22 21
44Sc23 20

44Ca24

6 ¯ 24
46Cr22 23

46V23 22
46Ti24 21

46Sc25 20
46Ca26

8 ←sT+d 25
48Mn23 24

48Cr24 23
48V25 22

48Ti26 21
48Sc27 20

48Ca28

10 ¯ 26
50Fe24 25

50Mn25 24
50Cr26 23

50V27 22
50Ti28

12 sA−1
† d↘ A ↓sA0

†d A ↙sA+1
† d

FIG. 1. (Color online) The S2p two-proton separation energy in
MeV for the even-evenseed and odd-oddsood nuclei in the
1f s5/2d2ps1/2,3/2d1gs9/2d major shell(a) vs number of protons for dif-
ferent isotonessN=28–50d (the Coulomb repulsion energy is taken
into account); (b) vs number of neutrons for Ge, Se, Kr, Sr isotopes.

FIG. 2. (Color online) Second discrete derivatives of theE0

energy (1f s5/2d2ps1/2,3/2d1gs9/2d shell) (a) with respect to N+1,
dIppsN+1d, as an estimation of the nonpairing like-particle nuclear
interaction in MeV for theN=34,36,38 multiplets;(b) with respect
to N+1 andN−1, dVpnsN+1,N−1d, for Zn, Ge, Sr isotopes.
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Stgd
s3dsxd =

E0sx + 2dd − 3E0sx + dd + 3E0sxd − E0sx − dd
d3 ,

s7d

whenm=3, and filters out contributions toE0 proportional to
xm−1.

The filters (5) are sm+1d-point expressions that account
for deviations from the common behavior of neighboring
nuclei. Whenmù3 theStgd

smdsxd discrete derivative is inde-
pendent of strong mean-field effects, strictly speaking it can-
cels out all regularly varying linear and quadratic inx con-

tributions to the energy, which are typically large, and only
can provide for a description of higher-order terms in the
variablex, as well as for discontinuities in the energy func-
tion. In this way, the finite energy difference isolates specific
parts of the interaction that are comparatively smaller and
may vary substantially from one nucleus to its neighbors.
While these interactions do not contribute much to the over-
all trend of theE0 energies, they play a very significant role
in determining nuclear structure properties.

The mixed derivatives also provide useful information
about the nuclear fine structure effects and are defined as

Stgd1,d2

s2d sx,yd =
E0sx + d1,y + d2d − E0sx + d1,yd − E0sx,y + d2d + E0sx,yd

d1d2
, s8d

where the variables represent quantities among the set
sx,yd=hn, i ,N+1,N−1j and d1,2ù1 is a discrete increment in
accordance with the Sps4d classification schemesTable IId.

Different types of discrete derivatives are considered and
various staggering patterns are investigated in the following
sections. The corresponding components of the interaction
isolated through the energy difference filters can be ex-
plained in analogous ways as in Ref.[27,28], in addition to
the advantage that because they are free of Coulomb effect
they reflect phenomena related only to nuclear forces.

A. Discrete derivatives with respect toN+1 and N−1:
the N=Z region

For even-even nuclei, the discrete approximation of the
]E0

C/]N±1 first derivative of the binding energies(including
the Coulomb repulsion energy) is related to the well-known
two-proton(two-neutron) separation energy, which is usually
defined asS2ps2ndsN±1d=E0

CsN±1d−E0
CsN±1−2d [see Fig. 1(a)

for a relation to proton number and Fig. 1(b) for the differ-
ence of the Coulomb corrected energiesE0 versus neutron
number]. The Sps4d theory reproduces very well the avail-
able experimental data[38] (shown as “3” or “+” symbols
for even-even nuclei and as “*” for odd-odd nuclei in Fig.
1(a)), especially the irregularity atN+1=N−1. The zero point
of S2p along an isotone sequence determines the two-proton-
drip line (dashed black line in Fig. 1), which according to the
Sps4d model for the 1f s5/2d2ps1/2,3/2d1gs9/2d major shell lies
near the following even-even nuclei:

60Ge28,
64Se30,

68Kr32,
72Sr34,

76Zr36,

78Zr38,
82Mo40,

86Ru42,
90Pd44,

94Cd46, s9d

beyond which the higher-Z isotones are unstable with respect
to diproton emissions. These nuclei are not yet explored as
seen in Fig. 1 and an experimental comparison for the two-
proton-drip line is expected to be soon possible due to radio-

active beam experiments near the limits of stability. Yet, the
findings of our model are in close agreement with the results
of other theoretical predictionsf42–45g. Particularly, the es-
timate for the two-proton separation energies in Refs.
f43–45g confirms the division in nuclides such that the iso-
tones with lower/higherZ values than the nuclei ins9d have
positive/negativeS2p energiesscompare to Fig. 1d. In addi-
tion, the two-proton separation energies for those of the nu-
clei in s9d considered also in the other studies are close in
their estimates: the quadratic mean of the difference inS2p
between our model and Ref.f43g is 0.32 MeV fin a com-
parison of the first three nuclei ins9dg, is 0.78 MeV when
all the nuclei in s9d are compared to Ref.f44g, and is
0.43 MeV in a comparison to Ref.f45g of the first four
nuclei in s9d. For odd-odd nuclei the zero point ofS2p can
be also determineds60Ga29,

64As31,
68Br33,

72Rb35,
76Y37,

78Y39,
82Nb41,

86Tc43,
90Rh45,

94Ag47d although it does not
define the drip line, asS2p is a relation of the lowest 0+

state energiesE0 rather than of the binding energies for
most odd-odd nuclei.

As a whole, the higher-order derivatives with respect to
proton (neutron) number have a smooth behavior. This is
because these derivatives reflect changes only within a se-
quence of either even-even or odd-odd nuclei. The discreti-
zation of the ]2E0/]N±1

2 second-order de-
rivative, 4dIppsnndsN±1d=E0sN±1+2d−2E0sN±1d+E0sN±1−2d
[=4Stg2

s2dsN±1d, Eq. (5)], accounts for the interaction between
the last twopp snnd pairs in thesN±1+2d nucleus[Fig. 2(a)].
The average interactiondIppsnnd may be used as an alternative
way to Ref. [28] to estimate the nonpairing like-particle
interaction3 [of the last two protons(neutrons)]. It shows no
outlined staggering pattern but a repulsive peak around the
N=Z nuclei in very good agreement with the experiment

3The meaning of “nonpairing” relates toJÞ0 andTÞ1 interac-
tion or any interaction that is different from the isovector pairing.
Also, here the approximation is ofOs1/Vd.

K. D. SVIRATCHEVA, A. I. GEORGIEVA, AND J. P. DRAAYER PHYSICAL REVIEW C69, 024313(2004)

024313-4



[38] and with the results and discussions of Ref.[28]. An-
other smaller peak is observed around midshell[Fig. 2(a)],
which is due to the particle-hole discontinuity introduced in
the pairing theory. The analysis yields that as a whole the
Sps4d model reproduces the fine structure effects in interac-
tions isolated via theStg2

s2dsN±1d filters.
Another aspect of the nuclear interaction is revealed by

the second-order discrete mixed derivative of the energy
[46], dVpnsN+1,N−1d=fE0sN+1+2,N−1+2d−E0sN+1+2,N−1d
−E0sN+1,N−1+2d+E0sN+1,N−1dg /4, Eq. (8). For even-even
nuclei it was found to represent the residual interaction be-
tween the last proton and the last neutron[27,47] and it was
empirically approximated by 40/A [29]. The theoretical dis-
crete derivative[Fig. 2(b)] agrees remarkably well with the
experiment[38], especially in reproducing the typical behav-
ior at N+1=N−1, and is consistent with the empirical trend(on
average,,0.71 for 1f7/2 and,0.52 for the major shell above
the 56Ni core). It is well known that the attractive peak in the
self-conjugate nuclei cannot be described by a model with an
isovector interaction only[47] and in this respect our model
achieves this result due to the additional terms included in
the Hamiltonian, mainly the symmetry term(Fig. 3). The
dVpn energy difference provides for a powerful test for the
symplectic model: the theory not only gives a thorough de-
scription of the isovectorpn and like-particle pairing but
additionally accounts forJ.0 components of thepn inter-
action in a consistent way with the experiment. As a result
the model can be used to provide for a reasonable prediction
of dVpn of proton-rich exotic nuclei as well as odd-odd
nuclei.

B. Discrete derivatives with respect ton and i:
staggering behavior

The Sps4d classification scheme can also be used to inves-
tigate energy differences with respect to the total number of
particlesn and their isospin projectioni. Indeed, in contrast
with the typical smooth behavior observed for discrete de-
rivatives with respect toN+1 andN−1 that was highlighted in
the preceding section, the derivatives with respect ton and i
are the ones that reveal distinct staggering effects. They give
a relation between even-evenseed and odd-oddsood nuclei
and the patterns can be referred as an “ee−oo” staggering.

1. Second- and higher-order derivatives in one variable

The discrete derivatives,Stg1
smdsid, m=1,2, . . ., show a

prominentDi =1 staggering of the experimental energies[38]
of the lowest 0+ isovector-paired states for different isobaric
multiplets [see Fig. 4 for the 1f7/2 shell and Fig. 5(a) for
nuclei above the56Ni core]. The theory reproduces this stag-
gering very well.

For each of thei multiplets (i fixed), a Dn=2 staggering
effect is also observed for the experimental values[38] via
the energy filtersStg2

smdsnd, m=1,2, . . ., andsuccessfully pre-
dicted by the symplectic model[Fig. 6 (1f7/2) and Fig. 5(b)
s1f s5/2d2ps1/2,3/2d1gs9/2dd].

The staggering amplitudes of bothStg1
smdsid and

Stg2
smdsnd, while almost independent of the total number of

FIG. 4. (Color online) The Stg1
s1,2dsid discrete derivatives for

different isobaric multiplets for even-A nuclei with valence nucle-
ons in the 1f7/2 shell with a core40Ca.

FIG. 5. (Color online) Discrete derivatives Stgd
smdsid

(1f s5/2d2ps1/2,3/2d1gs9/2d, a 56Ni core): (a) d=1, m=2,3,4 forA=76
isobars;(b) d=2, m=2,4 for si =−1d multiplet fN=Z+2g.

FIG. 3. (Color online) dVpn in MeV of the total binding energy
sjd and of theT=1 pairing energys•d in comparison to experiment
s3d for Ti isotopes in the 1f7/2 shell. The isovector pairing interac-
tion is not enough to reproduce the experimental peak atN=Z.

FIG. 6. (Color online) Discrete derivativesStg2
s1,2dsnd for differ-

ent i multiplets for even-A nuclei (1f7/2, a 40Ca core).
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particlesn, increase with increasing difference in proton and
neutron numbers,i, and hence theee−oo staggering effect is
greater for the proton-(neutron-) rich nuclei than aroundN
<Z. Also, the amplitude ofStg1

smdsid increases in higher-
order derivatives. This analysis shows a more complicated
dependence of the energy function on the isospin projectioni
than on the mass numberA.

The first,m=1, discrete derivative,Spn=2Stg2
s1dsnd=E0sn

+2d−E0snd, where i is fixed, corresponds to the energy
gained when aT=1 pn pair is added[Fig. 6(a) (1f7/2) and
Fig. 7 (a 56Ni core)]. Spn is the truepn separation energy only
when E0 is the binding energy of the odd-odd nucleus in-
volved in its calculation. The experimental data, where avail-
able [38], are also shown in Fig. 7 and the Sps4d model
follows the distinctive zigzag pattern very well. ADn=4
bifurcation separates the nuclei into two groups: one of even-
even nuclei[sn/2+id even] and another of odd-odd nuclei
[sn/2+id odd]. The Spn energy difference has a smooth be-
havior within each group. The magnitude ofSpn is propor-
tional to the total number of particles and increases(de-
creases) with i for odd-odd (even-even) nuclei (Fig. 7).4

Furthermore, theStg4
s1dsnd=fStg2

s1dsn+2d+Stg2
s1dsndg /2 en-

ergy difference shows noDn=4 staggering(average values
of two consecutive data points in Fig. 7). This indicates that
the addition of ana-like cluster has almost the same effect
for both even-even and odd-odd nuclei. This statement does
not contradict the stronger binding of even-pairs nuclei as
compared to odd-pairs ones, which is detected viaSpn and
the binding energy (BE) filter, BEsZ+2,N+2d−fBEsZ
+2,Nd+BEsZ,N+2dg /2 [26].

2. Pairing gaps

The Stg1
smdsid and Stg2

smdsnd energy differences,m
=1,2, . . .,described above, isolate effects related to the vari-
ous types of pairing in addition to nonmonopole interactions
resulting in changes in energy due to the different isospin
values(symmetry term). As noted in[27,28], the significance
of the various energy filters can be understood using phe-
nomenological arguments that can be given by a simple and
useful graphical representation. Specifically, each nucleus
can be represented by an inactive core, schematically illus-
trated by a boxh, in which the interaction between the con-
stituent particles does not change. Active particles beyond
this core can be represented by solid or empty dots, for pro-
tons or neutrons, above the box.

The second-order filter

Stg1
s2dsid = E0si + 1d − 2E0sid + E0si − 1d=E0sN+1 + 1,N−1 − 1d

− 2E0sN+1,N−1d + E0sN+1 − 1,N−1 + 1d,

n = const, s10d

when centered at an odd-oddfsn/2+id oddg self-conjugate

si =0d nucleus, represents the pairing gap relation 2D̃,

Stg1
s2dsi = 0d =

sn/2−oddd

h
••

+ h
++

− 2h
•+

<2D̃ ; 2Dpp + 2Dnn − 4Dpn.

s11d

The results11d follows from the well-known definition of the
empirical like-particle pairing gapf1g,

Dppsnnd ; 1
2hBEsN+1 ± 1,N−1 7 1d − BEsN+1 − 1,N−1 − 1d

− 2fBEsN±1,N71 − 1d − BEsN+1 − 1,N−1 − 1dgj

= 1
2sh

••

− h − 2fh
•

− h gd, s12d

which isolates the isovector pairing interaction of thesN±1dth
and sN±1+1dth protons sneutronsd for an even-evensN+1

−1,N−1−1d core smarked by a squared f28g. We also define
the pn isovector pairing gap

Dpn ; 1
2hE0sN+1,N−1d − BEsN+1,N−1 − 1d − fBEsN+1 − 1,N−1d

− BEsN+1 − 1,N−1 − 1dgj

= 1
2sh

•+

− h
•

− fh
+

− h gd s13d

as the pairing interaction of thesN+1dth proton and the
sN−1dth neutron. In order to account correctly for theT=1
mode of thepn pairing one should consider in Eq.s13d the
E0 energy of the odd-oddsN+1,N−1d nucleus sthat is, the
energy of the isobaric analog state rather than its ground state
energy, BEd. For the remaining even-even nuclei in Eq.
s10d, replacing the symbolE0 with BE is justified. In the

computation ofD̃, all odd-A binding energies in Eqs.s12d
and s13d cancel so their theoretical calculation is not re-
quired.

The D̃ relation of the gaps is a measure of the difference
in the isovector pairing energy between even-even and odd-

odd nuclei. For odd-oddN=Z nuclei information aboutD̃ is
extracted via theStg1

s2dsid energy filter(10). Both experimen-

tal and model estimations yieldD̃>0 for all the odd-oddi
=0 nuclei in the 1f7/2 shell [for example, see solid(purple)
line with open squares in Fig. 8 forA=46, i =0]. The result
reflects the fact that in this case all three isovector pairing
gapsDpp, Dnn, andDpn are equal[31,32].

4When sn/2+id corresponds to an odd-odd nucleusSpn is related
to the properties of the even-evensn+2d nucleus.

FIG. 7. (Color online) The Stg2
s1dsnd discrete approximation of

the first derivative]E0/]n (56Ni core) with respect to(a) A for
severali multiplets and(b) i for different isobars.
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A different scenario regarding two aspects is encountered
when one considers theStg1

s2dsid discrete derivative centered
at an even-sn/2+id N=Z nucleus[relative to asN+1−2,N−1

−2d-core]:

Stg1
s2dsi = 0d = h

•
•
+
•

+ h
+
+

+
•

− 2h
•
•
+
+

, Sn

2
+ iD even

<− 2
3D̃ + I2

JÞ0,TÞ1, s14d

where an additional nonpairing two-body interactionI2
JÞ0,TÞ1

is not filtered out in this case. Here, for example,I2
JÞ0,TÞ1 is

related to the nonpairing interaction of the three protons and
of the three neutrons in the odd-odd nucleis14d. Another
new feature of Eq.s14d is that Stg1

s2dsi =0d does not simply
account for the energy gained when twopn pairs are created
sin the first two odd-odd nucleid and the energy lost to de-
stroy app pair and ann pair in the even-evenN=Z nucleus.
The straightforward reason is thatpp, nn, andpn T=1 pairs
coexist. A good approximation that serves well in estimating
the pairing gaps is to assume that a 2p-2n formation above
the inactive coreshd consists of n0=2/3 pn pairs, n1
=2/3 pp pairs, andn−1=2/3 nn pairs frather than a proton
pair sn1=1d and a neutron pairsn−1=1dg. This is in analogy
to an even-evenn=4 nucleus where thepp, nn, and pn
“numbers of pairs” are the same and equal to one-third the
total number of pairs,n/2 f37,33g. Additionally, the rela-
tions, such as, Eqs.s11d–s14d, are based on the assumptions
that the interaction of a particle with the core is independent
of the type of added/removed particles and is the same for all
protonssneutronsd above the core. Finally, all the approxi-
mations are of an orderOs1/Vd.

The additional nonmonopole two-body residual interac-
tion I2

JÞ0,TÞ1 should be also taken into account for the rest
i Þ0 of the (ee, andoo) nuclei:

Stg1
s2dsi Þ 0d < H− 4

3D̃ + I2
JÞ0,TÞ1, ee

4
3D̃ + I2

JÞ0,TÞ1, oo.
s15d

The main contribution to theI2
JÞ0,TÞ1 interaction is due to the

symmetry energy as is apparent from the Sps4d model.

The very close theoretical reproduction of the experimen-
tal staggering allows us to use the symplectic model as a
microscopic explanation of the observed effects through the
investigation of the different terms in the Hamiltonian(4)
(Fig. 8). According to the Sps4d model, theee-oo staggering
patterns appear due to the discontinuous change of the se-
niority numbers driven by theT=1 pairing interaction[33].
Even values of the seniority quantum numbern1 in even-
even nuclei and odd values for odd-odd nuclei lead to a
change inpn and like-particle pairing energies in opposite
directions. After the contribution from the isovector pairing
energy is taken away, the theoretical staggering amplitude,
s−dn/2+i+1Stg1

s2dsid, has still a (typically large) component
from the remainingsJÞ0,TÞ1d interactions in the Hamil-
tonian (4), mainly the symmetrysT2d term [Fig. 8, long-
dashed(purple) line with squares]. This is the same non-
monopole nuclear interaction,I2

JÞ0,TÞ1, that was suggested in
Eqs. (14) and (15) using phenomenological arguments. In-
deed, the symmetry energy contribution is significant and
nonzero in all nuclei but the odd-oddN=Z (4) (Fig. 8),
which is consistent with the discussion above[Eqs. (11),
(14), and (15)]. Also, an estimation of the pairing gaps is
possible based on the examination of the model Hamiltonian
but the theoretical staggering amplitudes of theT=1 pairing
energies(shown in Fig. 8) need to be rescaled in accordance
with Eqs.(11), (14), and(15).

In a way analogous to that used in Eq.(15), the second-
order discrete derivative with respect ton (can be compared
to the filter used in Ref.[31]),

Stg2
s2dsnd =

E0sn + 2d − 2E0snd + E0sn − 2d
4

, i = const,

s16d

is related to the pairing gap relation

Stg2
s2dsnd < 5−

D̃

3
+ I2

JÞ0,TÞ1, ee

D̃

3
+ I2

JÞ0,TÞ1, oo,

s17d

where in the odd-odd case, for example,I2
JÞ0,TÞ1 is the non-

pair interaction of the last two protons with the last two

neutrons in thesn+2d nucleus. The effects due toD̃ cannot
be isolated via Eq.s17d because of the additional nonzero
contribution due to the symmetry energy. However, the
staggering amplitude of the discrete derivatives16d,
−3s−dn/2+iStg2

s2dsnd, of the theoretical total,pp snnd, and pn
pairing energies can provide for estimation of the pairing

gapsD̃, Dppsnnd, and −2Dpn, respectivelyfFig. 9sadg. The like-
particle pairing gap can be compared to the empirical value
of Dpp+Dnn=24/A1/2 f1g fsolid spurpled lineg. The gap is
smaller in odd-odd nuclei as compared to their even-even
neighbors. This is a consequence of a decrease in the like-
particle pairing energy in the odd-odd nuclei due to the
blocking effect while there is an increase in energy due to
the pn pairing. The pn isovector pairing gap increases

FIG. 8. (Color online) Theoretical staggering amplitudes for the
total energy in comparison to experiment[38] for the isovector
pairing energy, thepn and the like-particle pairing energies, and for
the symmetry energy forA=48,A=46 andA=44 nuclei in the 1f7/2

shell (a 40Ca core).
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toward i =0 and eventually gets almost equal toDppsnnd for
odd-odd nuclei around theN=Z region, which is in agree-
ment with the discussion of Refs.f31,32g.

Furthermore, an average of the additional nonpair interac-
tion is achieved by the fourth-order derivatives both in
nfStg2

s4dsndg and ifStg1
s4dsidg:

D̃ui uÞ0,1 < 3
16s− dn/2+ifStg1

s4dsid − I2
JÞ0,TÞ1g s18d

<3s− dn/2+ifStg2
s4dsnd − I2

JÞ0,TÞ1g. s19d

Assuming that thepn pairing gap is negligible for high-i
nuclei in large shells, such as the 1f s5/2d2ps1/2,3/2d1gs9/2d major
shell, the gap relations18d or s19d provides for a rough esti-
mation of the like-particle pairing gaps. With the use of the
model Hamiltonian s4d we can estimate the additional
I2
JÞ0,TÞ1 interaction with the major input being the symmetry

energy. Although the existence of a very small mixing of
isospin values complicates the computation of the symmetry
energy for nuclear systems with very large interaction matri-
ces, as a very good approximation one may useEsym,T

=sE/2VdTsT+1d with isospin valuesT= ui u for even-even nu-
clei andT= ui u +1 for odd-odd nuclei. Once the fourth-order
discrete derivatives5d of the approximated symmetry energy
is removed fromStg1

s4dsid, Eq. s18d, the like-particle pairing
gapsDpp+Dnn are found to be in a very good agreement with
the experimental approximation of 24/ÎA for the si
= ±6, ±7, ±8d multiplets in the 1f s5/2d2ps1/2,3/2d1gs9/2d major
shell fFig. 9sbdg. For lower ui u values the difference in-
creases due to an increase in thepn pairing gap as men-
tioned above. As a whole, the agreement would not be
possible if the significant energy contribution due to the
symmetry energy was not taken into account.

3. Second-order mixed derivatives

Next we consider the second-order discrete mixed deriva-
tive of the relevant energies with respect to the total number
n and the third projectioni:

FIG. 10. (Color online) Second-order energy filterStg2,1
s2dsn, id

for nuclei above the56Ni core with respect toA (a) and i (b).

FIG. 11. (Color online) Discrete derivative,
Stg1,1

s2dsx, id, for variousi multiplets for even-A nu-
clei: (a) x=N+1, 1f7/2 level; (b) x=N+1,
1f s5/2d2ps1/2,3/2d1gs9/2d shell; (c) x=N−1,
1f s5/2d2ps1/2,3/2d1gs9/2d shell.

FIG. 9. (Color online) Estimation of the pairing gaps:(a) total

isovector pairing gapD̃, 2Dpn, andDpp+Dnn, as well as the empiri-
cal like-particle pairing gapDpp+Dnn=24/A1/2 shown for compari-
son, forA=48 andA=46 nuclei vsi (1f7/2 shell); (b) like-particle
pairing gap[according to Eq.(18)] vs A for i = ±6, ±7, ±8 multip-
lets in the 1f s5/2d2ps1/2,3/2d1gs9/2d shell.
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Stg2,1
s2dsn,id

=
E0sn + 2,i + 1d − E0sn + 2,id − E0sn,i + 1d + E0sn,id

2

s20d

<5
2

3
D̃ + I2

JÞ0,TÞ1, ee

−
2

3
D̃ + I2

JÞ0,TÞ1, oo,

s21d

where in addition to the pairing gaps relation,D̃, there is the
contribution due to the nonpairing interaction,I2

JÞ0,TÞ1. For
example, for the odd-oddseven-evend case it is the positive
snegatived nonpairing average interaction between the last
three protonssneutronsd in the fn+2snd , i +1g nucleus with a

fn−2sn−4d , ig core. Within the Sps4d framework the addi-
tional nonpairing contribution corresponds to the stagger-
ing of the symmetry energy approximation,Esym,T, of
s−dn/2+i+1sE/2Vds2u i u +3d.

The filter (20) isolates fine structure effects between twoi
multiplets [Fig. 10(a)] and two consecutive isobaric se-
quences[Fig. 10(b)]. Clearly, it reveals ahDn,Dij=h2,1j
symmetric oscillating pattern as it is observed in the experi-
ment [38]. Its positive(negative) value is centered at even-
even (odd-odd) nuclei and its amplitude increases(de-
creases) with ui u. This mixed discrete derivative(20) serves
as another test for the Sps4d model and allows for a detailed
investigation of the nonpairing, like-particle interactions in-
volved.

To isolate the effect of nonpairing interactions(again, it is
understood to order 1/V), an energy difference with respect
to both N±1 and i can be considered. The second discrete
derivative of the energy,

Stg1,1
s2dsN±1,id =

E0sN±1 + 1,i + 1d − E0sN±1 + 1,id − E0sN±1,i + 1d + E0sN±1,id
2

, s22d

represents the negativespositived nonpairing two-body inter-
action of the last two neutronssprotonsd with a proton and a
neutron in thefN±1+1,is+1dg nucleus. It shows prominent
Di =1 staggering patterns for differenti multiplets sFig. 11d.
While in the framework of the Sps4d model its amplitude
does not depend onN±1 and i except for irregularities
around the midshell, the magnitude of the few experimen-
tal values f38g swhere data existd tends to be slightly
lower away from the closed shell. As a whole, the results
show that the staggering behavior of this interaction is due
to the fine structure features in the relationship between
the like-particle andpn nonpairing interactions and differs
between proton-rich and neutron-rich nuclei.

Regarding Eq.(22) and the other discrete approximations
of the derivatives in Sec III B, it is clear that the oscillating
patterns that exist and their regular appearance throughout
the nuclear chart cannot be a simple artifact due to errors in
the experimental or theoretical energies. Even more, the stag-
gering amplitudes are usually(very) large compared to the
energy uncertainties.

For all the discrete derivatives that we have investigated
above and that showee-oo staggering behavior, the discon-
tinuity of the symmetry term(due to discrete changes in the
isospin value) plays an important role. In contrast, when
these discrete derivatives include states of odd-odd nuclei
with a dominantT=0 pn coupling there is a constant or no
contribution due to the symmetry energy, and hence yield
patterns of different shapes and interpretations. Our investi-
gation does not aim to account for such effects. It is focused
on theee-oo staggering behavior of theE0 energies of the

lowest isovector-paired states as observed from the experi-
mental data and reproduced remarkably well by the Sps4d
model.

IV. CONCLUSIONS

A dynamical Sps4d symmetry was used to provide for a
natural classification scheme of nuclei and to describe is-
ovector pairing correlations and high-J interactions. In a pre-
vious study[33], it was found that the Sps4d model repro-
duced reasonably well the experimental energies of the
lowest isovector-paired 0+ states and provided for an estima-
tion of the interaction strength parameters.

Here the sps4d algebraic approach has been further tested
through second- and higher-order discrete derivatives of the
energies of the lowest isovector-paired 0+ states in the Sps4d
systematics, without any parameter variation. If reality were
only a mean-field theory, none of the finite energy differ-
ences would reveal regular or irregular staggering effects.
The reason is that any effect due to a smoothly varying
mean-field part of the nuclear interaction is either entirely
canceled out in a finite energy difference filter or contributes
regularly to the isolated part of the interaction. Indeed, the
results obtained show that this is not the case and staggering
behavior is observed. The theoretical discrete derivatives in-
vestigated not only followed the experimental patterns but
their magnitude was also found to be in a remarkable agree-
ment with the data. The proposed model successfully inter-
preted the following: the two-proton(two-neutron) separa-
tion energyS2ps2nd (hence determined the two-proton drip
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line) for even-even nuclei, theSpn energy difference when a
pn T=1 pair is added, the observed irregularities aroundN
=Z, the prominentee-oo staggering when even-even and
odd-odd nuclides are considered simultaneously, the like-
particle andpn isovector pairing gaps, and the large contri-
bution to the finite energy differences due to the symmetry
term. The oscillating effects, where observed, were found to
develop due to the discontinuity of the seniority numbers for
the pn and like-particle isovector pairing, which is in addi-
tion to the larger staggering due to the discontinuous change
in isospin values(symmetry term) between even-even and
odd-odd nuclei.

We found a finite energy difference that, for a specific

case, can be interpreted as an isovector pairing gapD̃=Dpp
+Dnn−2Dpn, which is related to the like-particle andpn is-
ovector pairing gaps. They correspond to theT=1 pairing
mode because we do not consider the binding energies for all
the nuclei but the respective isobaric analog 0+ states for the
odd-odd nuclei with aJÞ0+ ground state. This investigation
is the first of its kind. Moreover, the relevant energies are
corrected for the Coulomb interaction and therefore the iso-
lated effects reflect solely the nature of the nuclear interac-
tion.

The outcome of this investigation shows that, in compari-
son to the experiment, the simple Sps4d model reproduces
not only global trends of the relevant energies but as well the
smaller fine structure effects driven by isovector pairing cor-
relations and higher-J pn and like-particle nuclear interac-
tions. In particular, the sps4d algebraic model was used to

interpret specific phenomena revealed in finite energy differ-
ences and to investigate the contribution of the underlying
interactions. In this way, it provides for an estimation of the
isovector pairing gaps. ForN=Z odd-odd nuclei all three
pairing gaps were found equal while thepn pairing was
found to weaken relative to the like-particle pairing strengths
with increasing proton(neutron) excess. The like-particle
pairing gaps were found to be in a good agreement with the
empirical value of 12/ÎA. Additionally, the discrete deriva-
tives give insight into particular small parts of the various
non-sJ=0,T=1d interactions, mainly into the detailed contri-
bution of the interaction related to theTsT+1d term (symme-
try energy). Small deviations from the experimental data are
attributed to other two-body interactions or higher-order cor-
relations that are not included in the theoretical model.

We explored independent finite energy differences based
on a simple sps4d algebraic classification scheme. The results
suggest that this theoretical framework can be used to repro-
duce various experimental results including observed stag-
gering behavior in fine structure effects of nuclear collective
motion.
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