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We explore, within the framework of an algebraio4pshell model, discrete approximations to various
derivatives of the energies of the lowésbvector-pairedd* states of atomic nuclei in the 40A<100 mass
range. The results show that the symplectic model can be used to successfully interpret fine structure effects
driven by the proton-neutro(pn) and like-particle isovector pairing interactions as well as interactions with
higherJ multipolarity. A finite energy difference technique is used to investigate two-proton and two-neutron
separation energies, observed irregularities found aroundt#¥region, and the like-particle argh isovec-
tor pairing gaps. A prominent staggering behavior is observed between groups of even-even and odd-odd
nuclides. An oscillation, in addition to that associated with changes in isospin values, that tracks with alter-
nating seniority quantum numbers related to the isovector pairing interaction is also found.
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I. INTRODUCTION <100, and for the rest odd-odd nuclei with (8™ 0*)
ground state, the energy of the lowest isobaric analbg 0

The observed staggering of energy levels in atomic nuclegxcited statgwhich corresponds to the ground state of the
requires a theory that goes beyond mean-field consideratioreyen-even neighbar We refer to these states as lowest
[1]. Staggering data contain detailed information about thdésovector-paired” stateg33]. Our aim is to investigate how
properties of the nucleonic interaction and suggest the exig/arious, comparatively small but not insignificant, parts of
tence of high-order correlations in the collective dynamicsthe interaction between nucleons influence these states when
Most studies of staggering focus on two aspects of the phee consider higher-order discrete derivatives of their ener-
nomena. There are discrete angular momentum depende®i€S Within the framework of a convenient systematics.
oscillations of physical observables; namely, M. transi- The algebraic pairing mod¢B4,33 we exploit is based
tions in nuclei[2] or of the energy levels themselvesg., in~ ©n & fermion realization of the symplectic (4p algebra
octupole [3-5, superdeformed[6—8], ground, andy, Which is isomorphic to s®) [35-37. It includes an isovec-
[1,9,1Q bands in atomic nuclei, as well as in molecular ro-tor (isospinT=1) pairing interaction as well as a diagortad
tational bandg$11]). And then there are sawtooth patterns ofan isospin basjsproton-neutron(pn) isoscalar(T=0) part.
different physical quantitieémost commonly binding ener- The latter is proportional to a so-callédT+1) symmetry
gies that track with changes in the number of particles in atermt  [33]. The operators of the reduction
system(both in nuclei[12] and in metallic cluster§l3,14). sp(4) Du(2) Du(l) ®su2) provide for a convenient and use-

In nuclear structure physics, staggering behavior of thdul classification of nuclei and their corresponding ground
second type is observed when one changes in a systematiad excited states. The systematics is in terms of the eigen-
way the usual nuclear characteristics such as prZpmeu-  values of these operators, namely, the total nunmbef va-
tron (N), mass(A), or isospin projection|Z-N|/2) num-  lence nucleons and the third projectiowf the isospin and
bers. Examples of these nuclear phenomena include oddheir linear combinations.
even mass staggeringlOEMS) [1,15-21, odd-even We have already shown in Ref33] that the Sp4)
staggering in isotope/isotone shiftd2,23, and zigzag pat- modef leads to a good reproduction of the experimental en-
terns of the first excited 2state energies in even-even nuclei ergies[38] of the lowest isovector-paired Gtate for everA
[24]. The staggering behavior of a nuclear observable is mostuclei, 32<A<100. As pointed ou{33], although theT
easily seen when discrete derivatives of second or higherl like-particle pairing energy and thie=1 pn pairing en-
order in its variablés) are considered. The aim of this ap- ergy yield An=2 staggering patterns that are of opposite
proach is to filter out the strong mean-figiglobal) effects  phases, the total isovector pairing energy has a smooth be-
and in so doing reveal weaker specific features. In this wayhavior. It is the symmetry term that makes an accurate theo-
for example, the OEMS, which is usually attributed to theretical prediction of the regular zigzag pattern of the experi-
nuclear pairing correlations, manifests itself in certain finite
differences of the binding energies that can provide for & 4 is common to address the symmetry energy in a slightly dif-
measure of the empirical pairing g&p]. Likewise, various  ferent way: theT(T+1) term together with the isospin dependence
discrete approximation of derivativeBlters) of the binding  of the isovector pairing term yield symmetfy-T2) and Wigner
energies can be considered to investigate detailed propertigsr) energies.
of the nuclear structurf25-37. ?\We distinguish between groups denoted with capital lefexs,

In this paper, we consider the binding energies of the 0 Sp(4)] and the associated algebras of their generators denoted with
ground states of eveA-nuclei in the mass range 40A lower-case letterge.g., sp4)].
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mental energies in isobaric sequences possible. As a further TABLE I. Realizations of the #(2) =u*(1) & su*(2) subalgebras
and more detailed investigation, we now consider differenof sp4).
types of discrete derivatives of the Coulomb corredtg@

energy function according to the @p classification and Symmetry(u) u“(1)  Eigenvalues SU(2)
with no adjustable parameters. (chH of Cf

The symplectic Sf@}) scheme not only allows for a sys- | - N ——
tematic investigation of staggering patterns in the experimen-SOSp'n( ) N n o 0.7~
tal energies of the eveA-nuclei, it also offers a simple al- pn pairg0) To i AL EN-Q A,
gebr_aic r_nodel_for_ interpreting the results. Moreoye_r, thispp pairg+) N N_; All,é(N+1-Q),A+1
detailed investigation serves as a test for the validity andnn aird-) - N © e
reliability of the Sg4) model and the interactions it includes. P Nasy 1 Al 5(N-a - ), Ay

Il. Sp(4) CLASSIFICATION SCHEME As a dynamical symmetry, the 89 symplectic group

We start with a brief outline of the algebraic approachdescribes isovector pairing co_rrelations and is_ospin symme-
[34] used to interpret phenomena that have been observdy through the —four different reduction chains
experimentally and are related to the isovegior 1 pairing Sp(4) D U#(2) D UH(1) ® SU(2) with M:T'g'i ('[able h.
correlation and isoscalar interactions in nuclei. The4p  The first-order invariant of4(2), C’l‘z{T'O'i}z{N,TO,Nil}, re-
algebra is realized in terms of creatiofy,, and annihilation ~ alizes the ¢#(2) D su“(2) reduction and reduces the finite ac-
Cjms fermion operators with the standard anticommutationtion space into a direct sum of unitary irreducible represen-
relations {cjmmcj’f,m,g,}:(%’j,gm’m,ﬁw,, where these opera- tations of U(2) ({n,i,N+;} multiplets. Within a multiplet
tors create(annihilate a particle of typec=+1/2 (proton/  the third projection generator of $(2) (middle operator in
neutron in a state of total angular momentujnthalf integey  the fourth column in Table)lfurther reduces the 42) rep-
with projectionmin a finite space 2=%(2j+1). In addition  resentation to a vector with fixed quantum numbers), or

to the number operatoN=N,;+N_, and the third isospin altelrna;i(vely I(I’\'IH'I"NBIl),I)t? \;\;}hich cciLresdponds' al 39;‘)’9”
- IR nucleus(a cell in Table I). In this way the dynamica
projectionTo=(N.,=N-,)/2, the generators of $¢) are symmetry provides for a natural classification scheme of nu-
1 " clei as belonging to a singlelevel or a major shellmulti j),
T, = =E Cim,+1/2Cjm,71/2: () which are mapped to the algebraic multiplets. This classifi-
‘ cation also extends to the corresponding ground and excited
states of the nuclei including their isovector-pairédséates.

Af - 1 S (- pime! of The general model Hamiltonian with 8p dynamical
KT 2001+ 8,00) m Jmommat symmetry, which consists of one- and two-body terms, can
be expressed through the (8pgroup generators,
A, =(ADT, () A
R 2 _ 2
where N,; are the valence prototneutror) number opera- T 4

tors, T, and T, are the valence isospin operators, and the ~ H=-GAA — F(A11A+1+Ai1A—1)—ET
generatorsA] ,, _, create apn pair, a proton-protor(pp)

pair, or a neutron-neutrofmn) pair of total angular momen- |§1(|§| -1 E ) N -
tum J7=0* and isospinT=1. A totally symmetric finite e Do /\Tom 5 )~ N, (4)
space is spanned by the basis vectors constructed as
(T=1)-paired fermions, whereG,F,E,C, andD are strength parameters aad 0 is
the Fermi level energy. This Hamiltonian conserves the num-
— (AT yne AT AT VN
[N:1,M0N-1) = (ALy) (A "(AL)0), S ber of particles and the third isospin projection, and changes

wheren,; o _; are the numbers of pairs of each ki, pn, the seniority quantum number, by zero or +2; the latter
nn, respectively, and0) denotes the vacuum state. In the implies scattering of @p pair and ann pair into twopn pairs
like-particle pairing limit, n, gives the number of protons and vice versa. The isospin breaking Hamiltonid@ in-
(neutron$ not coupled toJ=0 pp (nn) pairs and hence de- cludes an isovectofT=1) pairing interaction(G=0,F=0
fines the usual seniority quantum numpé®,41], »,=n,. On  for attraction and a diagonalin an isospin bas)sisoscalar
the other hand, in thpn pairing limit another seniority num- (T=0) force, which is related to a symmetry teiin Within
ber, 2v5=2n,,+2n_,, is recognized that counts the particlesa shell (a singlej level, 1f;, or a major shell,
not coupled inJ=0 pn pairs. The dependence of on v»;  1f52P12.32190012). @ reasonable estimate for the param-
within a given nucleus allows one to consider omlyin the  eters in the Hamiltoniafd) is obtained in a fitting procedure
analysis; specifically, for a system nivalence particles with  of the maximum eigenvalues dH|, E,, to the Coulomb
isospin projection=(Z-N)/2, the fully paired state) dif-  corrected[39] experimental energie$38] of the lowest
fer in their coupling mode as the seniority quantum numbeiisovector-paired 0 states in ever nuclei [33]. Although
v1(vp=n/2-vy) changes by +¢+2). the fits yield quite good agreement with the relevant experi-
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TABLE II. Classification scheme of evefs-nuclei in the T, energies of the isovector-paired States quite wel[33]. A
shell. The shape of the table is symmetric with respect to the sign afnore detailed investigation and a significant test for the
i andn-2(). An=2 in eachi multiplet (columng, Ai=1in eachn  theory is achieved through the discrete approximation of the

multiplet (rows), AN;,=2 in eachN=; multiplet (diagonals. The  sME / 5x™ derivatives of theE, energy function,
subsequent action of the 8(2) generatorgshown in brackets

constructs the constituents in a given “%2) multiplet (u

=T,0,9). u S )
Stg." 1>(x+ 5) - Stdﬁ””)<x— 5)
ni 2 1 0 -1 -2 -3 -4 Std”(x) = 5 , m=2,
0 ggcaeo
2 3Tiz0 335G 25Ca .
4. 424 44, 44, 5 5
A Vol el Sl eofx+ 2) - x-2)
6 o 35Crs 5Nos 29Tina 235Gs  30Cas 2 o even
8 (T 5Mny 5Cru 5Va5  53Tis  215C7 50Cas Std(x) = 9 ) ' (5)
10 2F&s 20Mns 30Cras  33V27  29Ting _
: 26 2Mnas 24 20V21 22 Eo(x + 6) - Eg(X)
2 AN LAY A =S, modd,
\

mental values, a reproduction of the fine properties of . . L .
nuclear structurdtypically of an order of magnitude or two exprgssed recursively with two terminating cond_mo_ns de-
less than the energies that werg fi not guaranteed due to p(;ndlnghon th? &rdgm_(evgn or oddl of thedQerlvatlvr?,
the strong mean-field contribution. For the present investigal/nere the variable is<={n,i,N,;,N-,} according to the
tion these parameters in the energy operédbiare not var- Sp(4) classification andé=1 is a discrete integer step.
ied: their values are fixed &8=0.53), F=0.45), C=0.47, The present investigation is focused predominantly on the
D=-0.97, E=-1.122Q), €=9.36 MeV for the I, level 9=10r2 casegthe way the different variablesy,i,N,;,
(with a “%Ca coré and G=0.35), F=0.3Q), C=0.19,D  ©°F N_; vary in the Sf4) systematics can be recognized in
=-0.80, E=-04920), e=957MeV for the Tablell. - o
1f5/92P/2.3210/ Shell (with a 56N core) [33]. In the The first (m=1) c!|screte derivative def!ned in E(QS),
second case, the parameters of the effective interaction iHEO(XJ’ 9 _hEO(X)]/ 6, Is ;elateo: to thes-particle separation
the Sgg4) model with degenerate muljilevels are likely —ENErgy, when counts t E(t?nt)a, proton, or neutrgmumber

to be influenced by the nondegeneracy of the orbits. Nevof particles. The generaitg; (X) quantity represents a finite
ertheless, as the dynamical symmetry properties of th&ifference between thg, energies of neighboring nuclei, for
two-body interaction in nuclei from this region are not €xample,
lost, the model remains a good mujtapproximation 33]

and the extent to which it provides for a realistic descrip- _ _
tion can be further tested with the use of various discrete Std?(x) = Eglx + 9) = 2Eo(x) + Eg(X 6),
derivatives of the energy function. &

(6)
IIl. DISCRETE DERIVATIVES AND FINE STRUCTURE
EFFECTS when m=2, and

The symplectic Sf@) model[namely, theE, maximal ei-
genvalues ofH| Eq. (4)] reproduces the Coulomb corrected

+ = theory, even-even (ee) X + experiment, ee
30 50, + theory, odd-odd (0o % experiment, 00
40
20 N
30 Tl
10 20

. =2t
x X X

- —=—N=38,th |

E x  N=38, expt

30 35 40 45 50 30 35 40 45 50
30 35 (a)40 45 750 35 (b) 40 45 N 50 (a) Z (b) N

FIG. 1. (Color onling The S, two-proton separation energy in FIG. 2. (Color onling Second discrete derivatives of th®
MeV for the even-even(ee and odd-odd(oo) nuclei in the energy (1f(22p1/2321992 Shel) (a) with respect to N,
11(5/22P(1/2,31219(9/2 Major shell(a@) vs number of protons for dif- A pp(Nsp), @s an estimation of the nonpairing like-particle nuclear
ferent isotonegN=28-50 (the Coulomb repulsion energy is taken interaction in MeV for theN=34, 36,38 multiplets(b) with respect
into accouny; (b) vs number of neutrons for Ge, Se, Kr, Srisotopes.to N,; andN_y, 6V,(N,1,N_y), for Zn, Ge, Sr isotopes.
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3, _ Eo(X+26) = 3Eg(X + &) + 3Eg(X) — Eo(X— &) tributions to the energy, which are typically large, and only

St@f? () = 58 ' can provide for a description of higher-order terms in the
variablex, as well as for discontinuities in the energy func-

(7 tion. In this way, the finite energy difference isolates specific

whenm=3, and filters out contributions t6, proportional to  parts of the interaction that are comparatively smaller and
XML, may vary substantially from one nucleus to its neighbors.

The filters (5) are (m+ 1)-point expressions that account While these interactions do not contribute much to the over-
for deviations from the common behavior of neighboringall trend of theE, energies, they play a very significant role

nuclei. Whenm=3 theStg(am)(x) discrete derivative is inde- in determining nuclear structure properties.

pendent of strong mean-field effects, strictly speaking it can- The mixed derivatives also provide useful information
cels out all regularly varying linear and quadraticxircon-  about the nuclear fine structure effects and are defined as

Eo(x+ 8,y + &) — Ep(x+ 81,y) — E +0,)+E
Stdazl), 52(X,y)= o(X+ 81,y + &) — Eg(X 5;:) X,y + ) o(X,Y)’ ®)

where the variables represent quantities among the seictive beam experiments near the limits of stability. Yet, the
(X,y)=1{n,i,N,1,N_;} and 6, ,=1 is a discrete increment in findings of our model are in close agreement with the results
accordance with the $f) classification scheméTable Il). of other theoretical predictiorjgi2—45. Particularly, the es-
Different types of discrete derivatives are considered andimate for the two-proton separation energies in Refs.
various staggering patterns are investigated in the following43—49 confirms the division in nuclides such that the iso-
sections. The corresponding components of the interactiofpnes with lower/higheZ values than the nuclei if®) have
isolated through the energy difference filters can be expositive/negatives,, energies(compare to Fig. L In addi-
plained in analogous ways as in Rg27,28, in addition to  tion, the two-proton separation energies for those of the nu-
the advantage that because they are free of Coulomb effegtei in (9) considered also in the other studies are close in
they reflect phenomena related only to nuclear forces. their estimates: the quadratic mean of the differenc&jn
between our model and Rd#3] is 0.32 MeV[in a com-
parison of the first three nuclei i(9)], is 0.78 MeV when
all the nuclei in(9) are compared to Ref44], and is
0.43 MeV in a cormparison to Ref[45] of the first four

A. Discrete derivatives with respect toN,; and N_4:
the N=Z region

For even-even nuclei, the discrete approximation of thewuclei in(9). For odd-odd nuclei the zero point S£7p can

JES/ N, first derivative of the binding energigicluding ~ be also determined®Gay, %‘Asgy;, ®®Bras, "“Rbgs, Y3,
the Coulomb repulsion energjs related to the well-known "8Y 39, 8Nbyy, 8Tc,s “Rhys, %*Agy,) although it does not
two-proton(two-neutron separation energy, which is usually define the drip line, ass,, is a relation of the lowest™0
defined a§zp(2n)(Nﬂ)=EOC(Nﬂ)—EoC(Nﬂ—Z) [see Fig. {a) state energieg, rather than of the binding energies for
for a relation to proton number and Fig(b} for the differ- ~ Most odd-odd nuclei. o _
ence of the Coulomb corrected energ&sversus neutron ~ AS @ whole, the higher-order derivatives with respect to
numbei. The Si4) theory reproduces very well the avail- Proton (neutron number have a smooth behavior. This is
able experimental dat88] (shown as X” or “+” symbols because the_se derivatives reflect changes oqu Wlthl!’] a se-
for even-even nuclei and as “*” for odd-odd nuclei in Fig. uénce of either even-even orzodd—odd nuclei. The discreti-
1(a)), especially the irregularity a,;=N_,. The zero point Zation  of  the PEg/oN;;  second-order  de-
of S, along an isotone sequence determines the two-protorfivative, - 4dlppnn (Net) =Eg(Nuy +2) = 2E¢(Nyy) +Eg(Nsy =2)
drip line (dashed black line in Fig.)1which according to the [=4St§£2)(Nﬂ), Eqg.(5)], accounts for the interaction between
Sp4) model for the X522p(1/232190/2 Major shell lies  the last twopp (nn) pairs in the(N,; +2) nucleus[Fig. 2a)].
near the following even-even nuclei: The average interactiofl ,,,,, may be used as an alternative
way to Ref.[28] to estimate the nonpairing like-particle
interactior? [of the last two protongneutrong]. It shows no
78 8 86 % o outlined ste_lg_gering pattern but a repulsi_ve peak arou_nd the

Zr3g," M09, "RUygp, Py, “"Cllge, (9 N=Z nuclei in very good agreement with the experiment

60, 64 68 72, 76
Gey5 "S630, Krgy, “Slag, ""Zr36,

beyond which the highez-isotones are unstable with respect
to diproton emissions. These nuclei are not yet explored as®the meaning of “nonpairing” relates tb#0 andT# 1 interac-

seen in Fig. 1 and an experimental comparison for the twotion or any interaction that is different from the isovector pairing.
proton-drip line is expected to be soon possible due to radioAlso, here the approximation is @(1/0).
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FIG. 3. (Color onling 8V, in MeV of the total binding energy _100 ‘ b s s s s st
0 -5 0 5 .10 60 65 70 75 80 85 90 95,

(M) and of theT=1 pairing energy(*) in comparison to experiment - ;
(X) for Ti isotopes in the 1,5, shell. The isovector pairing interac-
tion is not enough to reproduce the experimental pedk=z. FIG. 5. (Color onling Discrete derivatives Stgg")(i)
56\(j . — — —
[38] and with the results and discussions of R&8]. An- gﬁgﬂ?ﬁ;{?ﬁ; gr(ﬁ’j)'zi foNrI (fgrf)l') (:])uii;)llét?,\i;’g forA=76
other smaller peak is observed around midsfieit). 2(a)], ' ' ' '
which is due to the particle-hole discontinuity introduced in
the pairing theory. The analysis yields that as a whole the
Sp(4) model reproduces the fine structure effects in interac-
tions isolated via th@tdzz)(Nﬂ) filters. The Sp4) classification scheme can also be used to inves-
Another aspect of the nuclear interaction is revealed byigate energy differences with respect to the total number of

the second-order discrete mixed derivative of the energparticlesn and their isospin projection Indeed, in contrast
[46], Vpn(Ni1,N_)=[Eo(Ns1+2,N1+2)-Eo(N,;+2,N_y)  with the typical smooth behavior observed for discrete de-
—Eo(N4q,N_1+2)+E(N,1,N_1)]/4, Eq. (8). For even-even rivatives with respect ti\,; andN_; that was highlighted in
nuclei it was found to represent the residual interaction bethe preceding section, the derivatives with respect smdi
tween the last proton and the last neutf@i,47 and it was are the ones that reveal distinct staggering effects. They give
empirically approximated by 4@/ [29]. The theoretical dis- a relation between even-evéae) and odd-odd0o) nuclei
crete derivativgdFig. 2(b)] agrees remarkably well with the and the patterns can be referred as ae-00” staggering.
experimen{38], especially in reproducing the typical behav-
ior atN,,=N_,, and is consistent with the empirical tre(ah 1. Second- and higher-order derivatives in one variable
average,~0.71 for If;,, and~0.52 for the major shell above ) o )

The discrete denvatlvesStdim)(l), m=1,2,...,show a

the ®Ni core). It is well known that the attractive peak in the _ _ . _
self-conjugate nuclei cannot be described by a model with aRrominentAi=1 staggering of the experimental enerdigg]
isovector interaction only47] and in this respect our model ©f the lowest 0 isovector-paired states for different isobaric
achieves this result due to the additional terms included irmultiplets [see Fig. 4 for the fl; shell and Fig. &) for
the Hamiltonian, mainly the symmetry tertkig. 3. The  nuclei above th&®Ni core]. The theory reproduces this stag-

oVpn energy difference provides for a powerful test for thegering very well. - _ o _
symplectic model: the theory not only gives a thorough de- For each of the multiplets(i fixed), a An=2 staggering
scription of the isovectopn and like-particle pairing but €ffect is also observed for the experimental val{@§ via
additionally accounts fod>0 components of then inter-  the energy filterStd™(n), m=1,2,..., andsuccessfully pre-
action in a consistent way with the experiment. As a resuldicted by the symplectic mod¢Fig. 6 (1f;,) and Fig. %b)
the model can be used to provide for a reasonable predictiofdf s/22P1/2,3219(012)]-

of 6Vy, of proton-rich exotic nuclei as well as odd-odd The staggering amplitudes of botrStdlm)(i) and

B. Discrete derivatives with respect ton and i:
staggering behavior

nuclei. Stdzm)(n), while almost independent of the total number of
200, P
I —e—A=44, th R RS
15 | X A=44, exp 20 61
Eod ——A=46, th . |
10y o A=46,exp > o> 4
> i - A=48,th > é) ﬁ
Q = (] | i
s / A_48,exp E = < 5,
= ot P4 < S 2
= I = = g - -
= H g 8 o8
=~ 10" i < 1 ! 5
95 E II el 5; —a--i=-3,th —e-i=-1,th i
15 ¢ ' X i=-3,exp X i=-1,exp i
H(a) v © o |eeei=2,th ——i=0,th | 40 i
_2()_4 32401 23 O"(a) x 1‘:‘,2.ex‘p‘ >‘<‘1:0,exp 6»(b)‘ B ‘ N ‘
40 42 44 46 48 50 52 54,56 40 42 44 46 48 50 52 54,56
FIG. 4. (Color online The Stdll’z)(i) discrete derivatives for
different isobaric multiplets for eveA-nuclei with valence nucle- FIG. 6. (Color onling Discrete derivative§tdzl'2)(n) for differ-
ons in the T, shell with a core®’Ca. enti multiplets for evenA nuclei (1f;,, a“°Ca core.
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particlesn, increase with increasing difference in proton and
neutron numbers, and hence thee-oo staggering effect is

greater for the protonéneutrony rich nuclei than around\ S 10
~Z. Also, the amplitude ofStdlm)(i) increases in higher- 2 20
order derivatives. This analysis shows a more complicatec‘é

—_
(=)

dependence of the energy function on the isospin projection
than on the mass numbgr
The first,m=1, discrete derivativespn:ZStg(Zl)(n):Eo(n

+2)-Ey(n), wherei is fixed, corresponds to the energy
gained vgpen a=1 pn pair is addedFig. 6a) (1f;,) and
Fig. 7 (a>°Ni core)]. is the truepn separation energy onl
wr?en EEO is the b)i]n(i?’]ng energyegf thepodd-odd nugI)(/aus )i/n— FIG. 7. (Color onling The Std’(n) discrete approximation of
volved in its calculation. The experimental data, where availhe first derivativedEq/an (*Ni core) with respect to(a) A for
able [38], are also shown in Fig. 7 and the (&p model severali multiplets and(b) i for different isobars.
Lc.)]llows .the distinctivehzigza? pattern very well. An=f4 rmodd e .

ifurcation separates the nuclei into two groups: one of even- . ~
even nuclei[(rﬁ)/2+i) ever] and another gf ogd-odd nuclei Stg?(1=0) = [O+0-20~2A=2A+ 205~ 44,
[(n/2+i) odd]. The S,, energy difference has a smooth be- (11
havior within each group. The magnitude §f, is propor- o
tional to the total number of partides and increa@e_ The reSUh(ll) follows from the well-known definition of the
creases with i for odd-odd (even-even nuclei (Fig. 7).*  empirical like-particle pairing gapi],
Furthermore, theStd"(n)=[Std"’(n+2)+Std"(n)]/2 en- )
ergy difference shows ndn=4 staggeringaverage values  Appnn = 2{BE(N;1 £ 1,N; + 1) = BE(N;; = 1,N_; - 1)
of two consecutive data points in Fig). This indicates that
the addition of ana-like crl)uster has g)lmost the same effect 2ABEN.1,Nz1 = 1) = BEN.a = LN = Dy
for both even-even and odd-odd nuclei. This statement does
not contradict the stronger binding of even-pairs nuclei as
compared to odd-pairs ones, which is detectedSjjaand
the binding energy(BE) filter, BE(Z+2,N+2)—-[BE(Z
+2,N)+BE(Z,N+2)]/2 [26].

Stg, 1
[y}
(=}

—_
(=)

=30 -0-20-0)), (12

which isolates the isovector pairing interaction of thig,)th
and (N, +1)th protons(neutron$ for an even-evenN,;
-1,N_;—1) core(marked by a squay¢28]. We also define
2. Pairing gaps the pn isovector pairing gap
The Stdlrm(i) and Stgg“)(n) energy differences,m A, = H{Eo(N4g,N_y) = BE(N,1,N_; — 1) - [BE(N,; — 1,N_y)
=1,2,...,described above, isolate effects related to the vari- ~BE(N,;~ 1.N_, - D]}
ous types of pairing in addition to nonmonopole interactions A
resulting in changes in energy due to the different isospin
values(symmetry term As noted in[27,28, the significance
of the various energy filters can be understood using phe- . .
nomenological arguments that can be given by a simple anai the pairing interaction of theN,,)th proton and the
useful graphical representation. Specifically, each nucleud\-th neutron. In order to account correctly for tfie-1
can be represented by an inactive core, schematically illughode of thepn pairing one should consider in E(L3) the
trated by a boxJ, in which the interaction between the con- Eo €nergy of the odd-oddN.;,N_;) nucleus(that is, the
stituent particles does not change. Active particles beyon§nergy of the isobaric analog state rather than its ground state
this core can be represented by solid or empty dots, for prgeN€rgy, BE. For the remaining even-even nuclei in Eq.
tons or neutrons, above the box. (10), replacmgNthe symbok, with BE is justified. In the
The second-order filter computation ofA, all odd-A binding energies in Eqg12)
and (13) cancel so their theoretical calculation is not re-
Stg?(i) = Eo(i + 1) = 2Eq(i) + Eqli = )=Eg(N,y + 1N, = 1) quired.
— 2Eo(Ny,N_y) + Eg(Nyy - LN, + 1), The A relation of the gaps is a measure of the difference
in the isovector pairing energy between even-even and odd-
odd nuclei. For odd-od&l=Z nuclei information abouf is
extracted via th(Stgff)(i) energy filter(10). Both experimen-
tal and model estimations yield=0 for all the odd-odd
=0 nuclei in the 1, shell [for example, see solicburple
line with open squares in Fig. 8 f&x=46, i=0]. The result

“When (n/2+i) corresponds to an odd-odd nuclef is related ~ reflects the fact that in this case all three isovector pairing
to the properties of the even-evém+2) nucleus. gapsApp, An, andA, are equal31,32.

=x0O-0-[0-0) (13)

n=const, (10

when centered at an odd-odith/2+i) odd] self-conjugate
(i=0) nucleus, represents the pairing gap relatidn 2
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FIG. 8. (Color onling Theoretical staggering amplitudes for the
total energy in comparison to experimef@8] for the isovector
pairing energy, th@n and the like-particle pairing energies, and for
the symmetry energy fohk=48, A=46 andA=44 nuclei in the 1;,,
shell (a *°Ca core.

A different scenario regarding two aspects is encountereg

when one considers trﬁtdlz)(i) discrete derivative centered
at an ever(n/2+i) N=Z nucleusrelative to a(N,;—2,N_;
-2)-corel:

. S
Stg?(i=0)=0 + 0 - 201, (§+i> even

z_%z_'_l\;&o,ﬁ&l, (14)

where an additional nonpairing two-body interactigh®’**
is not filtered out in this case. Here, for examghg,%™ 1 is

related to the nonpairing interaction of the three protons and

of the three neutrons in the odd-odd nuc{&#). Another
new feature of Eq(14) is that Stdf)(i =0) does not simply
account for the energy gained when tywo pairs are created
(in the first two odd-odd nuclg¢iand the energy lost to de-
stroy app pair and ann pair in the even-eveN=Z nucleus.
The straightforward reason is thap, nn, andpn T=1 pairs

coexist. A good approximation that serves well in estimating

the pairing gaps is to assume that @2h formation above
the inactive core((d) consists of np=2/3 pn pairs, n;
=2/3 pp pairs, andn_;=2/3 nn pairs[rather than a proton
pair (n;=1) and a neutron paifn_;=1)]. This is in analogy
to an even-evem=4 nucleus where thep, nn, and pn

PHYSICAL REVIEW C 69, 024313(2004)

The very close theoretical reproduction of the experimen-
tal staggering allows us to use the symplectic model as a
microscopic explanation of the observed effects through the
investigation of the different terms in the Hamiltonig)
(Fig. 8). According to the S@!) model, theee-oo staggering
patterns appear due to the discontinuous change of the se-
niority numbers driven by th&=1 pairing interactior{33].
Even values of the seniority quantum numbegrin even-
even nuclei and odd values for odd-odd nuclei lead to a
change inpn and like-particle pairing energies in opposite
directions. After the contribution from the isovector pairing
energy is taken away, the theoretical staggering amplitude,
(-)2+15td?(i), has still a (typically large component
from the remainingJ#0,T# 1) interactions in the Hamil-
tonian (4), mainly the symmetry(T?) term [Fig. 8, long-
dashed(purple line with squarep This is the same non-
monopole nuclear interactioy”*"*?, that was suggested in
gs. (14 and (15) using phenomenological arguments. In-
eed, the symmetry energy contribution is significant and
nonzero in all nuclei but the odd-odd=Z (4) (Fig. 8),
which is consistent with the discussion abojggs. (11),
(14), and (15)]. Also, an estimation of the pairing gaps is
possible based on the examination of the model Hamiltonian
but the theoretical staggering amplitudes of Tl pairing
energiegshown in Fig. 8 need to be rescaled in accordance
with Egs.(11), (14), and(15).

In a way analogous to that used in E45), the second-
order discrete derivative with respectriqcan be compared
to the filter used in Ref{31)]),

stg?(n) = Eo(n+2) — 2Eg(n) + Eg(n - 2)

, i=const,
4
(16)
is related to the pairing gap relation
- % + I%#O,T#l, ee
stg?(n) =~ - (17)
é + IJ#O,T#l 00
3 2 S

where in the odd-odd case, for examplg,*™** is the non-

“‘numbers of pairs” are the same and equal to one-third thgir interaction of the last two protons with the last two

total number of pairsn/2 [37,33. Additionally, the rela-

tions, such as, Eq$11)—(14), are based on the assumptions

that the interaction of a particle with the core is independen N
P b aﬁontrlbutlon due to the symmetry energy. However, the

of the type of added/removed particles and is the same for
protons(neutron$ above the core. Finally, all the approxi-
mations are of an orded(1/()).

neutrons in then+2) nucleus. The effects due th cannot
pe isolated via Eq(17) because of the additional nonzero

staggering amplitude of the discrete derivati do),
-3(-)"2%std?(n), of the theoretical totalpp (nn), and pn

The additional nonmonopole two-body residual interac-PaIriNg energies can provide for estimation of the pairing
tion 157%7** should be also taken into account for the restgapsA, Apynn, and =2, respectivelyFig. (a)]. The like-

i #0 of the(eg andoo) nuclei:

AR 4 1FOTFL ee

stPi+0)~=1 °

_ (15
%A+ |%¢0,T¢1, 00.

The main contribution to thg)” ™! interaction is due to the

symmetry energy as is apparent from thé8pnodel.

particle pairing gap can be compared to the empirical value
of ApptAn,=24/AY2 [1] [solid (purple line]. The gap is
smaller in odd-odd nuclei as compared to their even-even
neighbors. This is a consequence of a decrease in the like-
particle pairing energy in the odd-odd nuclei due to the
blocking effect while there is an increase in energy due to
the pn pairing. The pn isovector pairing gap increases
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FIG. 9. (Color onling Estimation of the pairing gaps$a) total
isovector pairing gag, 2A,,, andApp+A,, as well as the empiri-
cal like-particle pairing gaphpp+A,n= 24/AY2 shown for compari-
son, forA=48 andA=46 nuclei vsi (1f;, shell; (b) like-particle

pairing gap[according to Eq(18)] vs A for i=+6,+7, +8 multip-
lets in the 1(5/2)2p(1/2’3/alg(g/2) shell.

towardi=0 and eventually gets almost equalXgy,, for
odd-odd nuclei around thid=Z region, which is in agree-
ment with the discussion of Reff31,32].
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FIG. 10. (Color online Second-order energy filteBt 2’)1(n,i)
for nuclei above thé®Ni core with respect td\ (a) andi (b).

energy. Although the existence of a very small mixing of
isospin values complicates the computation of the symmetry
energy for nuclear systems with very large interaction matri-
ces, as a very good approximation one may &gyt
=(E/2Q)T(T+1) with isospin value§ =|i| for even-even nu-
clei andT=|i| +1 for odd-odd nuclei. Once the fourth-order
discrete derivativéb) of the approximated symmetry energy
is removed fronStdf)(i), Eq. (18), the like-particle pairing
gapsA,,+An, are found to be in a very good agreement with

Furthermore, an average of the additional nonpair interacthe experimental approximation of 2d& for the (i
tion is achieved by the fourth-order derivatives both in=i6,i7,i8) multiplets in the %s/2p(123/210/2 Major

n[Std” ()] andi[Stg”(i)]:

Ajjso1= (-)"[std () - 130T (19

~3(- )n/2+i[8t$4)(n) _ |%¢O,T¢l]. (19)

Assuming that thepn pairing gap is negligible for high-
nuclei in large shells, such as th§gl,2p(1/2,3/219(0/2 Major
shell, the gap relatiofil8) or (19) provides for a rough esti-

shell [Fig. 9(b)]. For lower |i| values the difference in-
creases due to an increase in thepairing gap as men-
tioned above. As a whole, the agreement would not be
possible if the significant energy contribution due to the
symmetry energy was not taken into account.

3. Second-order mixed derivatives

mation of the like-particle pairing gaps. With the use of the Next we consider the second-order discrete mixed deriva-
model Hamiltonian (4) we can estimate the additional tive of the relevant energies with respect to the total number

157971 interaction with the major input being the symmetry n and the third projection:
5 —a—i=3,th

S of S 2

3 e
: — il

% 5§ —n—i=1,th

=y E X i=1,exp

S of o

+ i=0, ex

Z G 1

S 2Jf’z

ca:" e e T e S e (ﬁl) e - FIG. 11. (Color onling Discrete derivative,

“ X e Stdlz)(x,i),for variousi multiplets for evenA nu-
E e a) + =2, exp _,l
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3t9(22>1(n,i) [n=2(n-4),i] core. Within the Sp4) framework the addi-
’ ) , i , tional nonpairing contribution corresponds to the stagger-
_Eo(n+2,i +1) —Eg(n+2,i) — Eg(n,i + 1) + Eq(n,) ing of the symmetry energy approximatiofsy,r, of
2 (=)VZHHLE20)(2]i] +3).
(20) The filter (20) isolates fine structure effects between two

multiplets [Fig. 1Q@)] and two consecutive isobaric se-
quences[Fig. 1Qb)]. Clearly, it reveals &An,Ai}={2,1}
EZ LFP2FOTEL g symmetric oscillating pattern as it is observed in the experi-
2 J ment[38]. Its positive(negative value is centered at even-
~ (21)  even (odd-odd nuclei and its amplitude increasgsle-
- 214. 1370771 qo, creasepwith |i|. This mixed discrete derivative20) serves
3 as another test for the 8) model and allows for a detailed
_ investigation of the nonpairing, like-particle interactions in-
where in addition to the pairing gaps relatidn, there is the  volved.
contribution due to the nonpairing interactidéfo'”l. For To isolate the effect of nonpairing interactiofagain, it is
example, for the odd-od¢even-evehcase it is the positive understood to order 1Y), an energy difference with respect
(negative nonpairing average interaction between the lasto both N,; andi can be considered. The second discrete
three protongneutron$ in the[n+2(n),i+1] nucleus with a  derivative of the energy,

Eo(Nyp+ 1,i +1) = Eg(Nyg + 1,i) = Eg(Nyq,i + 1) + Eg(Nyyq,i)

Std? (N, 4,i) =
2(NLg,0) >

(22)

represents the negativpositive) nonpairing two-body inter- lowest isovector-paired states as observed from the experi-
action of the last two neutroriprotons with a proton and a mental data and reproduced remarkably well by thé45p
neutron in the[N,;+1,i(+1)] nucleus. It shows prominent model.

Ai=1 staggering patterns for differenmultiplets (Fig. 11).

While in the framework of the Sg) model its amplitude IV. CONCLUSIONS

does not depend oM., and i except for irregularities ) )

around the midshell, the magnitude of the few experimen- A dynamical Sp4) symmetry was used to provide for a
tal values[38] (where data existtends to be slightly natural classification scheme of nuclei and to describe is-
lower away from the closed shell. As a whole, the resultsovector pairing correlations and highinteractions. In a pre-
show that the staggering behavior of this interaction is du&ious study[33], it was found that the S4) model repro-

to the fine structure features in the relationship betweerfluced reasonably well the experimental energies of the
the like-particle angn nonpairing interactions and differs lowest isovector-paired*Gstates and provided for an estima-
between proton-rich and neutron-rich nuclei. tion of the interaction strength parameters.

Regarding Eq(22) and the other discrete approximations  Here the sp4) algebraic approach has been further tested
of the derivatives in Sec Il B, it is clear that the oscillating through second- and higher-order discrete derivatives of the
patterns that exist and their regular appearance throughoenergies of the lowest isovector-pairetidates in the S@)
the nuclear chart cannot be a simple artifact due to errors isystematics, without any parameter variation. If reality were
the experimental or theoretical energies. Even more, the stagnly a mean-field theory, none of the finite energy differ-
gering amplitudes are usuallyery) large compared to the ences would reveal regular or irregular staggering effects.
energy uncertainties. The reason is that any effect due to a smoothly varying

For all the discrete derivatives that we have investigatednean-field part of the nuclear interaction is either entirely
above and that showe 00 staggering behavior, the discon- canceled out in a finite energy difference filter or contributes
tinuity of the symmetry terngdue to discrete changes in the regularly to the isolated part of the interaction. Indeed, the
isospin valug plays an important role. In contrast, when results obtained show that this is not the case and staggering
these discrete derivatives include states of odd-odd nucldiehavior is observed. The theoretical discrete derivatives in-
with a dominantT=0 pn coupling there is a constant or no vestigated not only followed the experimental patterns but
contribution due to the symmetry energy, and hence yieldheir magnitude was also found to be in a remarkable agree-
patterns of different shapes and interpretations. Our investiment with the data. The proposed model successfully inter-
gation does not aim to account for such effects. It is focusegreted the following: the two-protoftwo-neutron separa-
on theeeoo staggering behavior of thE, energies of the tion energyS,,,, (hence determined the two-proton drip
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line) for even-even nuclei, thg,, energy difference when a interpret specific phenomena revealed in finite energy differ-
pn T=1 pair is added, the observed irregularities arobhd ences and to investigate the contribution of the underlying
=Z, the prominentee-oo staggering when even-even and interactions. In this way, it provides for an estimation of the
odd-odd nuclides are considered simultaneously, the likeisovector pairing gaps. FON=Z odd-odd nuclei all three
particle andpn isovector pairing gaps, and the large contri- pairing gaps were found equal while thEn pairing was
bution to the finite energy differences due to the symmetrytound to weaken relative to the like-particle pairing strengths
term. The oscillating effects, where observed, were found tQyith increasing protonneutron excess. The like-particle
develop due to the discontinuity of the seniority numbers forpairing gaps were found to be in a good agreement with the

the pnand like-particle isovector pairing, which is in addi- ¢ irical value of 12(A. Additionally, the discrete deriva-
tion to the larger staggering due to the discontinuous chan es give insight into particular small parts of the various

in isospin valuegsymmetry term between even-even and non{J=0,T=1) interactions, mainly into the detailed contri-

Od(\j/vzd;jogﬁglz'ﬁmte energy difference that, for a SpeciﬁCbution of the interaction related to tA€T+ 1) term(symme-

. . L try energy. Small deviations from the experimental data are
case, can be mterpreted as an isovector pa_unngﬁgap.pp attributed to other two-body interactions or higher-order cor-
*Ann=2Ap,, Which is related to the like-particle ameh is-  o|ations that are not included in the theoretical model.
ovector pairing gaps. They cqrrespond. to'fhel pairing We explored independent finite energy differences based
mode because we do not consider the binding energies for gl}, 5 simple spt) algebraic classification scheme. The results
the nuclei but Fhe_ respective isobaric analdgsqates fc_)r the suggest that this theoretical framework can be used to repro-
odd-odd nuclei with &+ 0" ground state. This investigation duce various experimental results including observed stag-

is the first of its kind. Moreover, the relevant energies aregering behavior in fine structure effects of nuclear collective

corrected for the Coulomb interaction and therefore the isofnotion
lated effects reflect solely the nature of the nuclear interac- '
tion.

The outcome qf this investigation shows that, in compari- ACKNOWLEDGMENTS
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