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Low-lying shell-model states may be approximated accurately by a sum over products of proton and neutron
states. The optimal factors are determined by a variational principle and result from the solution of rather
low-dimensional eigenvalue problems. Application of this method tosd-shell nuclei,pf-shell nuclei, and to
no-core shell-model problems shows that very accurate approximations to the exact solutions may be obtained.
Their energies, quantum numbers, and overlaps with exact eigenstates converge exponentially fast as the
number of retained factors is increased.
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I. INTRODUCTION

Realistic nuclear structure models are difficult to solve
due to the complexity of the nucleon-nucleon interaction and
the sheer size of the model spaces. Exact diagonalizations are
now possible forpf-shell nuclei [1–3] and for sufficiently
light systems[4,5], and quantum Monte Carlo calculations
[6,7] have solved light nuclei up to about massA=12. For
cases where an exact solution is not feasible, various ap-
proximations are employed. We mention stochastic methods
such as shell-model Monte Carlo[8,9] and Monte Carlo
shell-model[10], and recent applications of coupled cluster
expansions[11,12].

In recent years, several truncation methods for shell-
model diagonalizations have been developed. These methods
aim at a reduction of the enormous dimensionality of shell-
model Hilbert spaces while maintaining a high accuracy in
the computed observables. Based on arguments of statistical
spectroscopy, Horoi and co-workers[13–16] developed the
exponential convergence method. Mizusaki and Imada
[17,18] devised an extrapolation method and applied it to a
configuration truncation. Both techniques use single-particle
basis states and provide a method to extrapolate the results of
truncated calculations to the full Hilbert space. Other ap-
proaches use correlated basis states to obtain a rapid conver-
gence. Andreozziet al. [19,20], for instance, construct a ba-
sis from products of correlated proton states and correlated
neutron states. Gueorguievet al. [21,22] use a mixed-mode
shell model of single-particle and collective configurations,
while Vargaset al. [23] use a truncation based on coupled
SU(3) irreps to describe the interplay and competition of
collective and single-particle degrees of freedom.

Though the selection of the relevant states is physically
well motivated for all these truncation schemes, it does not
directly follow from a variational principle. This is different
for the density-matrix renormalization group(DMRG) [24]
and the very recently proposed factorization method[25].
The DMRG uses a sophisticated renormalization and trunca-
tion scheme that includes the most important states and cor-
relations. Dukelskyet al. [26,27] and Dimitrovaet al. [28]
applied this method to nuclear structure problems. The
ground-state factorization is based on a related truncation. At
a given truncation, the optimal states are determined from a

variational principle. These last two methods also allow for
an extrapolation to full Hilbert spaces as the results tend to
converge exponentially. In this paper we present a detailed
description of the factorization method and discuss several
applications. A summary of some of the main results has
been presented in an earlier paper[25].

This paper is organized as follows. In Sec. II we give a
derivation of the main theoretical results and present details
of the numerical implementation. Section III presents nu-
merical results forsd-shell nuclei,pf-shell nuclei, and for
no-core shell-model problems. The convergence of the fac-
torization method and a comparison with other truncation
methods is presented in Sec. IV, and we conclude with
Sec. V.

II. THEORETICAL BACKGROUND

A. Motivation

Shell-model basis states are products of proton Slater de-
terminantshupal ,a=1, . . . ,dPj and neutron Slater determi-
nantshunal ,a=1, . . . ,dNj. Here,dP anddN denote the dimen-
sion of the proton space and the neutron space, respectively.
The shell-model ground state may be expanded as

uCl = o
a

dP

o
b

dN

Cabupalunbl. s1d

This expansion is not unique since the amplitudesCab de-
pend on the choice of basis states within the two subsets.
There is, however, a preferred basis in which the amplitudes
Cab are “diagonal.” This basis is formally obtained from a
singular value decomposition of the rectangular amplitude
matrix C of dimensiondP3dN asC=USVT. HereU sVd is a
dP3dPsdN3dNd dimensional matrix with orthonormalized
columns.S is a rectangular matrix of dimensiondP3dN with
elementsSi,j =0 for i Þ j and the diagonal elementsSi,i =si are
the non-negative singular values. Performing the singular
value decomposition yields
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uCl = o
j=1

minsdP,dNd

sjup̃jluñjl. s2d

Heresj denote the singular values while the proton statesup̃jl
and the neutron statesuñjl are orthonormal sets of left and
right singular vectors, respectively. In general, these states
are superpositions of many Slater determinants and exhibit
strong correlations. The non-negative singular valuess1
ùs2ùs3¯ fulfill o jsj

2=1 due to wave function normaliza-
tion.

It is interesting to compute the singular value decomposi-
tion for ground states of realistic nuclear many-body Hamil-
tonians. To this purpose we perform a numerical singular
value decomposition of the amplitude matrixCab in Eq. (1)
using theLAPACK routines[29]. Figure 1 shows the squares
of the singular values for the ground states ofsd-shell nuclei
20Ne, 22Ne, 24Mg, and 28Si (from the USD interaction[30])
plotted versus their normalized indexj /dP. (We havedP
=190,190,495, and 924 for the nuclei20Ne, 22Ne, 24Mg, and
28Si, respectively.) The singular values decrease with in-
creasing index and rapidly become exponentially small.(De-
generacies are due to spin/isospin symmetry.) This suggests
that a truncation of the sum in Eq.(2) should yield an accu-
rate approximation to the ground state. In fact, the DMRG
[24] exploits this rapid falloff of singular values in a wave
function factorization. For obvious reasons, the expansion
(2) is a factorization, and the correlated proton and neutron
states are the factors. In what follows, we will devise a
method that directly obtains the most important factors with-
out knowledge of the exact ground state.

B. Derivation of main results

To determine the optimal factor for a given truncation we
make the ansatz

ucl = o
j=1

V

upjlunjl s3d

for the ground state. Here, the unknown factors are the pro-
ton statesupjl and the neutron statesunjl. These states may be
correlated and need not to be normalized. The truncation is

controlled by the parameterV which counts the number of
desired factors. Figure 1 suggests thatV!minsdP,dNd
yields accurate approximations to shell-model ground
states. This is also the result of our numerical computa-
tions below.

Let Ĥ be the nuclear many-body Hamiltonian. To deter-
mine the unknown proton statesupjl and neutron statesunjl in

Eq. (3) we consider the energyE=kc u Ĥ ucl / kc ucl. Its varia-
tion dE=0 yieldss j =1, . . . ,Vd

o
i=1

V

sknjuĤunil − Eknjunildupil = 0,

o
i=1

V

skpjuĤupil − Ekpjupildunil = 0. s4d

The solution of these nonlinear equations determines the op-
timal factors and the ground-state energy. Note that for fixed
neutronsprotond states the firstssecondd set of these equa-
tions constitutes a generalized eigenvalue problem for the
proton sneutrond states. To fully understand the structure of
the matrices involved we rewrite the first set of the Eq.s4d as

1
kn1uĤun1l kn1uĤun2l ¯ kn1uĤunVl

kn2uĤun1l kn2uĤun2l ¯ kn2uĤunVl
A � A

knVuĤun1l ¯ ¯ knVuĤunVl
21 up1l

up2l
A

upVl
2

= E1
kn1un1lÎ P kn1un2lÎ P ¯ kn1unVlÎ P

kn2un1lÎ P kn2un2lÎ P ¯ kn2unVlÎ P

A � A

knVun1lÎ P ¯ ¯ knVunVlÎ P

21 up1l
up2l
A

upVl
2 .

s5d

Here, upjl=spj ,1,pj ,2, . . . ,pj ,dP
dT is a dP-dimensional column

vectorsT denotes the transposed while Î P denotes the identity
matrix in proton space. Thus,

kniunjlÎ P =1
kniunjl 0 ¯ 0

0 kniunjl 0

A � A
0 ¯ ¯ kniunjl

2 s6d

is a diagonal constant matrix of dimensiondP3dP. The

proton-space operatorskniuĤunjl stem from the nuclear struc-
ture Hamiltonian

Ĥ = ĤN + ĤP + V̂PN, s7d

with

ĤN = o
n

«nân
†ân +

1

4 o
n,n8,m,m8

vnn8m8mân
†ân8

† âmâm8,

FIG. 1. (Color online) Singular valuessj
2 for ground states of

20NesdP=66d, 22NesdP=66d, 24MgsdP=495d, 28MgsdP=495d, and
28SisdP=924d.
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ĤP = o
p

«pâp
†âp +

1

4 o
p,p8,q,q8

vpp8q8qâp
†âp8

† âqâq8,

V̂PN = o
p,n,n8,p8

vpnp8n8âp
†ân

†ân8âp8. s8d

Here, we use indicesp,q and m,n to refer to proton and
neutron orbitals, respectively. The antisymmetric two-body
matrix elements are denoted asvi jkl .

Thus, the proton-space Hamiltonian operatorkniuĤunjl is

kniuĤunjl = o
p,p8

So
n,n8

vpnp8n8kniuân
†ân8unjlDâp

†âp8 + kniuĤNunjl

+ kniunjlĤP. s9d

Note that the neutron-proton interactionV̂PN results into a

one-body proton operator while the neutron HamiltonianĤN
yields a constant. This concludes the detailed explanation of
the first set of equations in Eq.s4d. The second set has an
identical structure, only the role of neutrons and protons is
reversed.

C. Treatment of symmetries

Most modern shell-model codes use a basis of Slater de-
terminants that preserve axial symmetry. It is straightforward
to include this symmetry into the method proposed in this
work. For such an “m-scheme” ground-state factorization we
modify the ansatz(3) as

ucl = o
m=−M

M

o
k=1

Vm

upksmdlunks− mdl. s10d

Here upksmdl ,k=1, . . . ,Vm funks−mdl ,k=1, . . . ,Vmg, denote
dP,m-dimensional proton statessdN,−m-dimensional neutron
statesd with angular-momentum projectionJz=msJz=−md,
and the sum overm runs over all possible values ofJz. The
ansatzs10d leads to a generalized eigenvalue problem similar
to Eq.s4d, with the only difference that permissible products
of proton states and neutron states have zero angular-
momentum projection:

o
m=−M

M

o
k=1

Vm

fknk8sm8duĤunksmdl − Eknk8sm8dunksmdlgupks− mdl

= 0, s11d

o
m=−M

M

o
k=1

Vm

fkpk8sm8duĤupksmdl − Ekpk8sm8dupksmdlgunks− mdl

= 0. s12d

These equations have to be fulfilled for all possible values of
m8 andk8. It is again useful to display the eigenvalue prob-
lem s11d for the proton states in more detail,

1kns− MduĤuns− Mdl ¯ kns− MduĤunsMdl
A � A

knsMduĤuns− Mdl ¯ knsMduĤunsMdl
21 upsMdl

A
ups− Mdl

2
= E1kns− Mduns− Mdl upsMdl

A
knsMdunsMdl ups− Mdl

2 . s13d

Here, we used the shorthands

upsmdl = fup1smdl,up2smdl, . . . ,upVm
smdlgT, s14d

the rectangular block matrices

knskduĤunsldl =1 kn1skduĤun1sldl ¯ kn1skduĤunVl
sldl

A � A

knVk
skduĤun1sldl ¯ knVk

skduĤunVl
sldl
2 ,

and the overlap matrices

knskdunskdl

=1 kn1skdun1skdlÎ P,−k ¯ kn1skdunVk
skdlÎ P,−k

A � A

knVk
skdun1skdlÎ P,−k ¯ knVk

skdunVk
skdlÎ P,−k

2 .

Note that the right-hand side of Eq.s13d is a vector. Note

also that kniskduĤunjsldl is a rectangulardP,k3dP,l matrix

similar to Eq.s9d, while Î P,k denotes the identity operator for
the proton subspace with angular momentumJz=k. The ei-
genvalue problems13d differs from the eigenvalue problem
s5d due to the block diagonal overlap matrix on its right-hand
side. The eigenvalue problem for the neutrons is identical to
Eq. s13d when the role of neutrons and protons is reversed.

The number of factors used in them-scheme factorization
is given by the parametersVm. These parameters are input to
the factorization. In the following, we use

Vm = Vmsad = maxs1,adP,md, s15d

and recall thatdP,m is the dimension of the proton subspace
with angular-momentum projectionJz=m. For a=0 the most
severe truncation is obtained and leads us to solve eigenvalue
problems of the dimensiondP and dN, respectively. Setting
a=1 leads to an eigenvalue problem with the same dimen-
sion as an exact diagonalization inm scheme. Below we will
see that the choices15d of parameters yields rapidly converg-
ing results. However, there may be other parametrizations
that are superior. Comparison of Eqs.s13d ands5d shows that
the m-scheme factorization yields a lower-dimensional ei-
genvalue problem than the factorizations3d if the same num-
ber of factors is used.

Note also that aj j -coupled scheme can be used. Let
upksJ,mdl funksJ,mdlg be a proton (neutron) state with
angular-momentum quantum numberJ and angular-
momentum projectionJz=m. The ground state of an even-
even nucleus hasJ=0 and can be factored as
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ucl = o
J

o
m=−J

J

o
k=1

VJ,m

upksJ,mdlunksJ,− mdl, s16d

where VJ,m is the number of retained states with angular-
momentum quantum numberJ and angular-momentum pro-
jection Jz=m. We choose

VJ,msad = maxs1,adP,J,md, s17d

where dP,J,m is the dimension of the proton subspace with
angular momentumJ and projectionm. This number is inde-
pendent ofm for fixed J. Generalizations of the ansatzs16d
to nonzeroJ are straightforward.

Other symmetries such as parity can also be used to fur-
ther reduce the dimensionality of the eigenvalue problem.
Parity even states, for instance, are products of parity even
proton states with parity even neutron states or products of
parity odd proton states with parity odd neutron states. The
ability to implement symmetries is particularly important as
it widens the flexibility of the ground-state factorization.
Consider for instance shell-model problems with proton and
neutron spaces that differ considerably in size such thatdP
!dN. In such cases one might switch to a more symmetric
factorization and factorize the ground state as follows: one of
the factor spaces would consist of neutron states that are
based on a subset of neutron single-particle orbitals, while
the other factor states would be based on the remaining neu-
tron orbitals and all proton orbitals. In such a scenario, the
correct implementation of the Pauli principle requires care.

D. Numerical solution and computational details

We discuss the solution of the eigenvalue problems. For
notational convenience we focus on the solution of Eqs.(4).
The corresponding equations(11) and (12) of the m-scheme
factorization can be treated similarly. We solve the coupled
set of nonlinear equations(4) in an iterative procedure. We
choose a random set of linearly independent initial neutron
stateshunjl , j =1, . . . ,Vj and construct the Hamiltonian and
overlap matrix presented in Eq.(5). We then solve this gen-
eralized eigenvalue problem of dimensionVdP for those pro-
ton stateshupjl , j =1, . . . ,Vj that yield the lowest energyE. In
practice, we use the sparse matrix solverARPACK [31] for
this task. The solution of the generalized eigenvalue problem
requires us to provide the LU factorization of the overlap
matrix [i.e., the right-hand side of Eq.(5)]. This factorization
simplifies considerably since the overlap matrix is a direct

productÎ P ^ MN and only requires the LU factorization of the
sV3Vd-dimensional overlap matrixMN with elements
kni unjl. We then input the resulting proton states to the sec-
ond set of Eqs.(4). The solution of thisVdN-dimensional
problem yields improved neutron stateshunjl , j =1, . . . ,Vj
and an improved(i.e., lowered) ground-state energyE. We
iterate this procedure until the ground-state energyE is con-
verged.

For small values ofV we typically need about 20 itera-
tions to obtain a converged energy, and the number of itera-
tions decreases with increasing number of kept statesV. For
maximal valueV=dN, the first solution of the proton prob-

lem (5) already yields the exact ground state. This can be
seen as follows: Using Slater determinantshunjl= un jl , j
=1, . . . ,Vj as input to the proton problem(5) yields a matrix
problem that is identical in structure to the full shell-model
problem.

Let us compare the effort of the ground-state factorization
with an exact diagonalization. Both methods require all

Hamiltonian matrix elementskpauknbuĤunglupdl. The advan-
tage of the factorization method is that the dimensionality of
the eigenvalue problem isV maxsdP,dNd with V!dP,dN

while the dimension of the exact diagonalization scales like
dP3dN. Note that existing shell-model codes may easily be
modified to include the ground-state factorization in order to
obtain accurate approximations or to compute useful starting
vectors for a Lanczos iteration.

It is possible to reduce Eqs.(4) to a standard eigenvalue
problem. For this purpose we choose a random orthonormal
set of initial neutron stateshunjl , j =1, . . . ,Vj as input to the
first eigenvalue problem. This reduces the “overlap” matrix
knj unil to a unit matrix, and we solve a standard eigenvalue
problem to obtain the proton stateshupjl , j =1, . . . ,Vj. The
resulting proton states will not be orthogonal since they are
components of only one solution vector of dimensionVdP.
Their coefficient matrixC with elementsCa j ;kpa upjl may,
however, be factorized in a singular value decomposition as
C=UDVT. HereD denotes a diagonalV3V matrix whileU
is a (column) orthogonaldP3V matrix, andV is an orthogo-
nal V3V matrix. The transformed statess j =1, . . . ,Vd

upj8l = o
a=1

dP

Ua,jupal,

unj8l = o
i=1

V

Vij unil

are orthonormal in the proton space and in the neutron space,
respectively, and they fulfill

ucl = o
j=1

V

upjlunjl = o
j=1

V

Djj upj8lunj8l. s18d

The orthogonal proton stateshupj8l , j =1, . . . ,Vj are then
input to the second set in Eqs.(4), which poses a standard
eigenvalue problem for the neutron states. Note that the
transformed neutron statesDjj unj8l are useful starting vectors
for the Lanczos iteration of the sparse matrix solver. The
resulting neutron states should again be orthonormalized by
a singular value decomposition. These singular value decom-
positions are very inexpensive compared to the diagonaliza-
tion. Similarly, we may cast the generalizedm-scheme eigen-
value problem(13) into a standard eigenvalue problem by
enforcing orthogonalityknksmd unlsmdl~dk,l between neutron
states with identical angular-momentum projection through
the singular value decomposition.

In our implementation of them-scheme factorization, we
compute the matrices of the proton-space operatorsHP and
âp

†âp8 as well as the matrices of the neutron-space operators
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HN and ân
†ân8. These sparse matrices can be stored in fast

memory. The sparse matrix on the left-hand side of Eq.(5) is
constructed from these matrices. This sparse matrix can be
kept in fast memory for sufficiently small problems; for
larger problems, its nonzero matrix elements along with the
row-column information can be stored in large chunks of
data on disk without a severe increase of computing times.

Our implementation of thej j -coupled factorization is
somewhat more tedious. Starting from them-scheme basis
statesupksmdl and unksmdl, we create basis statesupksJ,mdl
and unksJ,mdl with good angular momentum by numerical
projection. The projection operator is[32]

P̂J = p
jÞJ

Ĵ2 − js j + 1d
JsJ + 1d − js j + 1d

, s19d

where the product overj runs over all possible angular mo-

menta, andĴ denotes the angular-momentum operator. The
matrices of the proton HamiltonianHP and the neutron
Hamiltonian HN are then transformed to this basis and
stored. The matrices of the operatorsâp

†âp8 andân
†ân8 are not

sparse in the basis with goodJ, and are therefore kept in the
m-scheme basis. We perform the appropriate basis trans-
forms in the construction of the Hamiltonian matrices.

III. NUMERICAL RESULTS

A successful application of the ground-state factorization
would yield accurate approximations from calculations in-
volving rather small dimensional eigenvalue problems.
Clearly, the outcome depends on the model space and the
interaction under consideration. In this section we apply the
m-scheme factorization to realistic structure calculations in-
volving sd-shell nuclei,pf-shell nuclei, and no-core shell-
model computations for4He. The results are compared to
exact diagonalizations. We expect the method to converge
most rapidly in the case of weak proton-neutron correlations.
Thus, the study ofN=Z nuclei provides a challenging testing
ground sinceT=0 proton-neutron correlations may be strong
in these systems. Throughout this sectiond denotes the di-
mension of them-scheme eigenvalue problems(11) and(12)
we actually solve, whiledmax denotes them-scheme dimen-
sion required for an exact solution of the problem.

A. sd-shell nuclei

We apply them-scheme factorization to thesd-shell nu-
clei 24Mg, 26Al, 28Mg, and28Al and use the USD interaction.

While the factorization is particularly suited to compute ac-
curate approximations of the ground states, we may also use
it for the computation of low-lying excited states. In some
cases, excited states can be obtained as a by-product of the
ground-state computation. While solving the eigenvalue
problems(11) and (12) for the ground state, we may also
compute excited state solutions. Let us assume that we solve
Eqs. (11) for the proton states. The excited proton-state so-
lutions will be obtained in the presence of neutron states that
are optimized for the ground state. Therefore, we expect that
the excited states are less accurately reproduced than the
ground state. Figure 2 shows the resulting low-energy spec-
tra for 24Mg, 28Mg, 26Al, and 28Al.

The ground states converge most rapidly as more factors
are retained in the factorization and the dimensiond of the
eigenvalue problem increases. Typically, excellent results are
obtained from computations involving relative dimensions
d/dmax<1/4, . . . ,1 /3. For the Mgisotopes, excited states
converge somewhat slower than the ground states, and level
spacings are reproduced to a very good accuracy already at
severe truncations. This shows that the factors of the low-
lying excitations have a large overlap with the corresponding
ground-state factors, and we assume that this finding is re-
lated to the band structure of the low-lying excitations. The
situation is different for the Al isotopes, as evident from the
right panel of Fig. 2. This slower convergence of excited
states is not unexpected due to the absence of band structure
in these nuclei.

There are at least two approaches to improve the conver-
gence of the excited states. In the first approach, we may
target excited states by solving the eigenvalue problems(11)
and (12) directly for an excited state, i.e., we solve the ei-
genvalue problem for a few low-lying energies and use the
eigenvector corresponding to an excited energy for the sub-
sequent iterations. While there is no variational principle that
guarantees the convergence of this procedure, we find that
this method works well for the first and second excited states
of 24Mg, which converge rapidly toward the exact results, as
shown in Fig. 3. A closer inspection of this figure reveals that
the convergence is indeed exponential. However, this ap-
proach is unstable for higher excited states of24Mg and for
the first excited state of26Al, as the solutions of the eigen-
value problem are oscillating but fail to converge with in-
creasing number of iterations. This is not unexpected since
we did not project to the space that is orthogonal to the
ground state. The second approach avoids these problems
and can be used in the case of26Al. Its ground state has
angular momentumJ=5 while the first excited state has an-

FIG. 2. (Color online) Low-energy spectrum ofsd-shell nuclei vs the dimensiond of the eigenvalue problem. Results are obtained from
targeting the ground state. From left to right: Mg isotopessdmax=28 503d 24Mg, 28Mg, and Al isotopessdmax=69 784d 26Al, 28Al.
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gular momentumJ=0. We may thus use thej j -coupled an-
satz(16) to compute the lowest-lying state with angular mo-
mentum J=0. This yields the first excited state. Figure 4
shows the results plotted versus the correspondingm-scheme
dimension. The convergence is much improved and compa-
rable to that of the ground state. We confirmed that this ex-
cited state converges exponentially quickly toward the exact
result as the dimension of the eigenvalue problem increases.

So far we have only focused on the energies. In the re-
mainder of this section we discuss how the states and their
quantum numbers are reproduced by the factorization. For
24Mg we analyze the wave-function structure of the low-
lying levels. Figure 5 shows the squared overlaps with the
exact results, obtained from targeting the ground state. The
solution of an eigenvalue problem of only 10% of the full
dimensiondmax already yields between 90% and 96% of
squared overlap. The directly targeted ground state is repro-
duced to more than 99% once the dimension exceeds 20% of
the full dimensiondmax. The inset of Fig. 5 shows that the
defect 1−kcexactucfactorl2 decreases exponentially fast as
more factors are retained. While the convergence is best for
the directly targeted ground state, the excited states are also
very accurately reproduced and also exhibit an exponential
convergence.

Let us also verify for24Mg that the quantum numbers of
the low-lying states are reproduced correctly. Due to rota-
tional symmetry, the expectation value for the angular mo-
mentum should fulfill

kĴ2l = js j + 1d, s20d

where j is a non-negative integer. Figure 6 shows thej val-
ues of the low-lying states for24Mg. The results were ob-
tained by targeting the ground state. The angular momenta
are very accurately reproduced once about 20% of the
states are retained in the factorization. This is remarkable
since rotational symmetry is not enforced in them-scheme
factorization, and no kind of constraint or projection was
used. Similar results are obtained for the total isospin and
for other sd-shell nuclei. The accurate reproduction of
quantum numbers, wave functions, and energies implies
that transition matrix elements can accurately be com-
puted. This concludes our detailed discussion of24Mg.

We finally mention that we also compared them-scheme
factorization with thej j -coupled scheme. For24Mg we find
practically identical convergence of the ground-state energy
when plotted versus the relative dimensiond/dmax of the
corresponding eigenvalue problem. The dimensionsd, dmax

FIG. 3. Energies of the first and second excited states of24Mg vs
the dimension of the eigenvalue problem. Hollow data points: re-
sults from targeting the ground state. Filled data points: results from
directly targeting the excited states. Dashed lines: exact results.

FIG. 4. Energy of the first excited state of26Al vs the dimension
of the eigenvalue problem. Hollow data points: results from target-
ing the ground state. Filled data points: ground-state calculation for
zero angular momentum. Dashed line: exact result.

FIG. 5. (Color online) Squared overlapskcexactucfactorl2 for the
low-lying states in24Mg vs the dimension of the eigenvalue prob-
lem (from targeting the ground state). The inset shows the deviation
1−kcexactucfactorl2 vs the dimension of the eigenvalue problem.

FIG. 6. (Color online) Angular-momentum valuej for the low-
lying states in24Mg vs the dimension of the eigenvalue problem
(from targeting the ground state).
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of the eigenvalue problem in thej j -coupled scheme are, of
course, smaller than for them scheme. However, this does
not translate directly into a computational speedup since the
j j -scheme algorithm is more complex and involves less
sparse matrices. We believe that its main advantage consists
of the possibility to directly target the lowest state with a
given angular momentum.

B. pf-shell nuclei

Many theoretical results forpf-shell nuclei are available
from exact calculations for the KB3 interaction. In the lower
pf shell, diagonalizations can be based on anm-scheme basis
[1]. The m-scheme dimensions of upperpf-shell nuclei ex-
ceed 109, and exact diagonalizations have been performed in
a J=0 coupled basis[2], reducing the dimensions to the or-
der of 107. In this section we compare the results from
m-scheme factorization with the exact results. We are par-
ticularly interested in the efficiency of the method and would
like to answer the following question. How does the relative
dimensiond/dmax, at which an accurate approximation to the
ground state is obtained, scale with increasing dimension
dmax required for an exact diagonalization?

For pf-shell nuclei we use the KB3 interaction[33]. Fig-
ure 7 shows the low-lying energies for48Cr plotted versus
the relative dimensiond/dmax of the eigenvalue problem.
The exact ground-state energy isE0=−32.95 MeV and re-
sults from the solution of an eigenvalue problem with dimen-
siondmax=1.963106 [1]. The ground-state energy converges
exponentially quickly as the number of retained factors in-
creases. The rightmost data point results from an eigenvalue
problem with only 8% of them-scheme dimension and in-
volves V=om Vm=391 factors. It deviates less than
100 KeV from the result of an exact diagonalization. An ex-
ponential fit of the formEsd/dmaxd=a+b exps−cd/dmaxd to
the rightmost six data points yields the estimateEs1d
=−32.92 MeV, which is only 30 keV above the exact result.
The excited states are obtained from targeting the ground
state. The level spacings of the two lowest excitations are
very accurately reproduced even at the most severe trunca-

tion, while the spacings to the higher levels are about
200–300 keV too large. An exponential fit to the energy of
the first excited states yields an energy that deviates less than
100 keV from the exact result. The angular-momentum ex-
pectation values are plotted in Fig. 8. Ford/dmax*0.04, en-
ergies and quantum numbers are sufficiently well converged.
Considering the modest size of the eigenvalue problem we
solved, these are very good results.

Next we consider the odd-mass nucleus49Cr and the odd-
odd nucleus60Mn. The exact ground-state energies areE
=−35.59 MeV[2] andE=−50.37 MeV, respectively, and the
correspondingm-scheme dimensions aredmax<63106 and
dmax<18.63106. Figure 9 shows that the ground states of
these nuclei can very well be approximated by factorization.
Using exponential fits we obtain energies that deviate about
30 keV and 40 keV from the exact results for49Cr and60Mn,
respectively. The relative dimension of the eigenvalue prob-
lem we solve is aboutd/dmax<10% for 49Cr and about
d/dmax<2.5% for 60Mn. Odd-mass nuclei can pose a chal-
lenge since the first few excited states might be very close to
the energy of the ground state. This is particularly the case
in, e.g.,45Ti where the spacing is just about 10 keV. At fixed

FIG. 7. (Color online) Data points: Low-lying energies of48Cr
(KB3 interaction) vs the dimensiond of the eigenvalue problem
relative to them-scheme dimensiondmax. Dashed lines: Exact re-
sults. Dashed-dotted line: Exponential fitEsd/dmaxd=−32.92
+0.851 exps−31.38d/dmaxd to the ground-state energy.

FIG. 8. (Color online) Angular-momentum valuej for the low-
lying excitations of thepf-shell nucleus48Cr (KB3 interaction)
plotted vs the dimensiond of the eigenvalue problem relative to the
m-scheme dimensiondmax. The dotted lines are the exact results.

FIG. 9. (Color online) Ground-state energyE vs the dimension
d of the eigenvalue problem relative to them-scheme dimension
dmax<18.63106 for 60Mn. The data points are from them-scheme
factorization, and the dashed line is an exponential fit to the data.
Inset: Similar plot for49Cr sdmax<63106d.
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truncation we need a larger number of iterations of the sys-
tem of Eqs.(11) and (12) to obtain a precise value for the
spins of the two lowest states in45Ti. In such cases, accurate
approximations of the energies also require us to include
more states into the factorization.

Turning to large scale problems, we factor the ground
states of 60Fe and 56Ni. The exact energies areE
=−67.0 MeV andE=−78.46 MeV, respectively[2], and the
correspondingm-scheme dimensions aredmax<1103106

anddmax<1.093109, respectively. Figure 10 shows that the
ground states of these nuclei can very efficiently be factored.
Using an exponential fit to the numerical data points, the
ground-state energies are reproduced within a deviation of
50 keV for 60Fe and 100 keV for56Ni. Most importantly, the
relative dimension of the eigenvalue problem we solve is
d/dmax<1% for 60Fe (from V=om Vm=352 states) and
aboutd/dmax<0.1% for 56Ni (from V=om Vm=147 states).
This suggests that the factorization gets increasingly efficient
as the dimension of the problem increases.

C. No-core shell model

As a final test, we consider a no-core shell-model problem
and apply them-scheme factorization to4He using a man-
ageable model space and a realistic interaction from a
G-matrix calculation. The model space consists of the
0s-0p-1s-0d-0f-1p shells. TheG matrix stems from a 15"v
calculation and is based on the Idaho-A potential[34]. The
Idaho-A potential is derived from an effective Lagrangian
that respects QCD inspired chiral symmetry. We calculate the
G matrix from

Gsvd = V +
1

v − QTQ
Gsvd, s21d

wherev is the starting energy,T is the kinetic energy opera-
tor, andQ is the Pauli operator. Our Pauli operator allows for
all allowed configurations to be active in the chosen model
space. We also employ folded diagrams calculated atṽ
=−20.0 MeV todecrease the dependence of the resulting

two-body interaction on the starting energy. Details con-
cerning the derivation of theG matrix may be found in
Ref. f35g. Finally, we employ the method of Ref.f36g to
obtain an interaction that yields a ground-state energy that
is approximately free of center-of-mass contamination.
Note that this small space is not sufficient to completely
describe the4He nucleus, but still illustrates the power of
the factorization method for problems in which the core is
absent.

Figure 11 shows the energies for the three lowest-lying
states of4He versus the dimensiond of the eigenvalue prob-
lem we solve. The results for the excited states were obtained
while targeting the ground state. The exact results are ob-
tained from a diagonalization withm-scheme dimension
dmax=79 298. Note that the ground state and the excited
states converge very fast toward the exact results. A calcula-
tion with d/dmax<0.2 already yields excellent approxima-
tions, and the angular-momentum quantum numbers are con-
verged.

Let us finally suggest an alternative treatment of the
center-of-mass problem. The center of mass is separable in
an oscillator basis where all many-body states with up to
Nmax oscillator quanta are included. The factorization could
be applied in this scheme by combining proton states withn
oscillator quanta and neutron states withn8 oscillator quanta
such thatn+n8øNmax.

IV. CONVERGENCE OF THE METHOD

A. Convergence properties

The results of the preceding section showed that the fac-
torization converges exponentially quickly as more factors
are retained. So far we considered nuclei with equal dimen-
sion of proton space and neutron space, most of them being
N=Z nuclei. What can be expected for other cases? To an-
swer this important question, we computed the exact ground
states of severalpf-shell nuclei and numerically performed
singular value decompositions of their amplitude matrices
Cab as defined in Eq.(1). Figure 12 shows logarithmic plots
of the resulting singular value spectra. The singular value
spectra exhibit a very sharp initial falloff followed by an

FIG. 10. (Color online) Ground-state energyE vs the dimension
d of the eigenvalue problem relative to them-scheme dimension
dmax<1.093109 for 56Ni. The data points are from them-scheme
factorization, and the dashed line is an exponential fit to the data.
Inset: Similar plot for60Fe sdmax<1103106d.

FIG. 11. (Color online) Energies of low-lying states of4He plot-
ted vs the dimensiond of the eigenvalue problem. The dashed lines
are the exact results.
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exponential decay. The initial falloff is stronger for larger
dimension of the proton spacedP, and this renders the fac-
torization method very effective. There is no clear trend for
isotopic chains. The singular value spectra of the lighter
pf-shell nuclei decay most rapidly for theN=Z nuclei, while
the decay is faster for midshell nuclei away fromN=Z. Our
results suggest that the application of the factorization
method is not limited toN=Z nuclei. We also computed the
number of factorsVsxd such thato j=1

Vsxdsj
2.x for x=0.99 and

x=0.999. The results of Table I show that the factorization of
all these nuclei should converge rapidly as more factors are
included. Larger dimensional model spaces usually require
the retention of more factors, but the ratioVsxd /minsdP,dNd
decreases with increasing size of the problem. Note that48Cr
is relatively difficult to factor into proton and neutron states.
This suggests that this nucleus exhibits particularly strong
proton-neutron correlations.

Let us also consider the factorization of excited states.
The results of the previous sections showed examples of
even-even and odd-odd nuclei with an exponential conver-
gence for excited states. Can the same be expected for an
odd-mass nucleus? Our investigation of49Cr gives an affir-

mative answer to this question. Figure 13 shows that the
singular value spectra for the ground state, and for the
lowest-lying excited states withJ=7/2 andJ=9/2, respec-
tively, fall off exponentially quickly. The falloff for the ex-
cited states is comparable to the ground state. The results
presented in this paper thus show that low-lying states of
even-even, odd-odd, and odd-mass nuclei can very well be
approximated by the wave function factorization.

We recall that them-scheme factorization(10) requires as
input the number of factors with a given angular-momentum
projection,Vm, which were taken according to the “demo-
cratic prescription” in Eq.(15). It is interesting and important
to check this choice of input parameters. To this purpose we
compare the singular value spectrum from the factorization
with the singular value spectrum from an exact calculation.
The factorization was performed for48Cr usinga=0.04 and
a=0.08 in Eq.(15). These truncations included a total of
V=omVsad=197 andV=391 factors, respectively. Figure
14 compares the resulting singular value spectra with the
singular value decomposition of the exact ground state. The
agreement between the exact results and the approximations
is rather good, and improves with increasing number of re-
tained factors. It is clear that the factorization works when-

FIG. 12. (Color online) Singular value spectra(squared singular
valuessj

2) for ground states of Ti isotopes(upper left,dP=190), V
isotopes(upper right,dP=1140), Cr isotopes(lower left,dP=4845),
and 50Mn (lower right,dP=15 504).

TABLE I. Proton-space dimensiondP and neutron-space dimen-
sion dN for various pf-shell nuclei.Vsxd denotes the number of
factors that have to be retained for an overlapo j=1

V sj
2=x with the

exact ground state.

Nucleus dP dN Vs0.99d Vs0.999d

44Ti 190 190 40 75
45Ti 190 1140 45 109
46Ti 190 4845 43 126
46V 1140 1140 98 270
47V 1140 4845 111 324
48V 1140 15504 151 392
48Cr 4845 4845 258 775
49Cr 4845 15504 168 619
50Mn 15504 15504 197 821
60Mn 15504 15504 163 570

FIG. 13. (Color online) Singular value spectra(squared singular
valuessj

2) for the ground state(full line), the lowestJ=7/2 state
(dashed line), and the lowestJ=9/2 state(dotted line) of 49Cr. The
inset shows details of the fast initial falloff.

FIG. 14. (Color online) Singular value spectra(squared singular
valuessj

2) for 48Cr. Singular value decomposition of exact ground
state (full line), m-scheme factorization usingV=391 factors
(dashed line), andV=197 factors(dashed-dotted line).
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ever the singular value spectrum of the exact wave function
falls off sufficiently fast. Note, however, that the smaller sin-
gular values deviate from each other. This suggests that it
should be possible to somewhat improve the choice of input
parametersVm.

We finally mention that we lack an understanding about
the rapid initial falloff in singular value spectra. For the
Hamiltonians considered in this work the falloff is evident.
Moreover, the results obtained from DMRG calculations
over the past decade demonstrate that density-matrix spectra
decay rapidly for the ground states of a large number of
relevant Hamiltonians. A few works address the theoretical
foundations of the DMRG. Peschel and co-workers investi-
gated density-matrix spectra of several soluble problems
[37], while Okunishiet al.discussed the asymptotic behavior
of density-matrix eigenvalues for noncritical spin systems
[38]. Östlund and Rommer showed that if the DMRG renor-
malization converges to a fixed point, the DMRG ground
state is of a special matrix-product form[39]. Given the lack
of generally valid analytical results, it is thus interesting to
numerically investigate singular value spectra for “generic”
Hamiltonians. For this purpose we considered the model
space ofpf-shell nuclei 44Ti and 46V and used a random
two-body interaction that preserves spin and isospin, i.e., the
spin/isospin coupled two-body matrix elementsVa,b are in-
dependent Gaussian random variables with zero mean
kVa,bl=0 and variancekVa,bVa8,b8l=sda,a8db,b8+da,b8db,a8d.
For a realistic choice of the single-particle energies we find
singular value spectra that are similar to the realistic spectra.
However, setting all single-particle energies to zero yields
singular value spectra with longer tails and a less rapid
decay.

B. Comparison with other truncation methods

In recent years, several truncation methods have been de-
veloped for and applied to shell-model problems. In this sec-
tion we compare some of these approaches with the method
presented in this work. This comparison focuses on conver-
gence and accuracy of low-lying energy spectra at a given
level of truncation.

We start with the DMRG which also bases its truncation
on the singular values[24]. Dukelsky and co-workers ap-
plied the DMRG to nuclear structure problems involving
pairing [26] and pairing-plus-quadrupole interactions[27].
These applications were very successful as accurate results
could be obtained for huge Hilbert spaces. The factorization
method proposed in this work can only treat much smaller
Hilbert spaces and cannot compete with the DMRG for these
systems. However, the recent DMRG calculation[28] for the
realistic nuclear structure problem(24Mg with USD interac-
tion) converges very slowly.

Recently, Andreozzi and Porrino[19] used a small num-
ber of correlated proton states and correlated neutron states
as a truncated basis for shell-model problems. The correlated
proton (neutron) states are the low-energy eigenstates of the
proton-proton(neutron-neutron) Hamiltonian. The full shell-
model Hamiltonian including the proton-neutron interaction
is then solved in this space. Andreozzi and Porrino report

exponentially converging results and a considerable reduc-
tion in the number of basis states[19]. This procedure differs
from our approach mainly by the absence of a variational
principle. In a subsequent work, Andreozziet al. [20] em-
ployed an importance sampling algorithm that provides an
optimal criterion for the selection of the basis states and
yields an exponential convergence for the energy.

A third related method is the exponential convergence
method(ECM) developed by Horoi and co-workers[13–16].
In this method, shell-model configurations are ordered ac-
cording to their average centroid, which are obtained from
statistical spectroscopy. This ordering gives a natural trunca-
tion scheme, and analytical arguments suggest an exponen-
tial convergence of energies with increasing number of re-
tained configurations. Once the exponential region is
identified, the full space energies can be extrapolated by an
exponential fit. A direct comparison is not easy since the
FPD6 interaction is used forpf-shell nuclei, and since ECM
results are plotted versusJT-coupled dimension of the trun-
cated space. We believe, however, that our method converges
more rapidly than the ECM. For48Cr, for instance, our rate
of exponential convergence isc<−31.38(see Fig. 7), which
is about a factor 8 larger than what is reported for the ECM
in Fig. 1 of Ref.[15]. For 56Ni, our exponential rate is about
a factor 200 larger than the ECM rate[40], and our identifi-
cation of the exponential region requires am-scheme dimen-
sion d<106 (see Fig. 10) while the ECM requires an
m-scheme dimension ofs4–5d3106 [40].

For upperpf-shell nuclei, truncations can be based on the
maximal numbert of nucleons outside thef7/2 subshell[41].
Within this truncation, the convergence of the energy is
rather slow, and it is difficult to extrapolate from results in
truncated spaces to the full Hilbert space. Mizusaki and
Imada devised extrapolation methods that link the error due
to the truncation to the variance of the energy in the trun-
cated space. This approach leads to a first-order[17] and a
second-order extrapolation method[18] for predictions of
low-lying states in variouspf-shell nuclei. For56Ni the ap-
proximation of a closedf7/2 subshell is well justified, and the
extrapolation methods yield results that are superior to the
factorization[42]. For 48Cr, however, the factorization seems
to be of advantage: The exact ground-state energy beingE
=−32.95 MeV and them-scheme dimensiond=1.963106.
The first-order extrapolation method[17] yields E
=−33.008 fort=5 andE=−32.975 fort=6, and the corre-
spondingm-scheme dimensions aredst=5d<1.33106 and
dst=6d<1.763106. The second-order extrapolation
(“scheme I”) [18] yields E=−32.91 fort=5. Slightly better
results are obtained from a different truncation scheme
(“scheme II”). The ground-state factorization yields a com-
parably good energy estimateE=−32.92 MeV (see Fig. 7)
from solving a much smaller eigenvalue problem of dimen-
sion d=1.63105.

The mixed-mode shell-model approach developed by
Gueorguievet al. [21,22] combines single-particle configu-
ration and SU(3) collective configurations to describe the
interplay and competition between single-particle and collec-
tive degrees of freedom. For thesd-shell nucleus24Mg, the
mixed-mode shell model yields good approximations to the
binding energy(within 2% deviation of the exact result), and
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low-energy configurations which exceed 90% overlap with
the exact results. These results stem from a truncated space
of only 10% of the full Hilbert space[22]. At the 10% level
of the truncation, the factorization method yields an energy
deviation of less than 1%(see Fig. 2), and squared overlaps
exceed 96% for the two lowest-lying states and 90% for the
following three states(see Fig. 5).

The method proposed in this work thus compares well to
most of the alternatives regarding convergence and accuracy
at a given level of truncation. Note, however, that its imple-
mentation seems somewhat more complex than a shell-
model approach with a configuration truncation and some-
what less complex than the DMRG algorithm.

V. CONCLUSION

We approximated the ground states of realistic nuclear
structure Hamiltonians by sums over products of correlated
proton states and correlated neutron states. The optimal
states are determined by a variational principle and are the
solution of rather low-dimensional eigenvalue problems.
Computations forsd-shell nuclei,pf-shell nuclei, and no-
core shell models show that the method converges exponen-
tially quickly as more factors are included, and that accurate

approximations to shell-model ground states and low-lying
excitations may be obtained. For the largest problems we
considered, the dimension of the eigenvalue problem was
reduced by three orders of magnitude. Momentarily, the ap-
plication of this method is limited by the size of the proton
space and the neutron space. An interesting future develop-
ment would also consider the factorization of these spaces in
order to treat larger dimensional problems. While the reason
of the exponential convergence is not yet understood, com-
putations of shell-model problems with realistic and random
two-body interactions suggest that this behavior can be ex-
pected for a variety of interactions.

ACKNOWLEDGMENTS

The authors acknowledge useful discussions with M.
Horoi, N. Michel, T. Mizusaki, and G. Stoitcheva, and thank
M. Hjorth-Jensen for providing us with aG matrix. This
research used resources of the Center for Computational Sci-
ences(Oak Ridge National Laboratory) and the National En-
ergy Research Scientific Computing Center(Berkeley). This
work was supported in part by the U.S. Department of En-
ergy under Contract Nos. DE-FG02-96ER40963(University
of Tennessee) and DE-AC05-00OR22725 with UT-Battelle,
LLC (Oak Ridge National Laboratory).

[1] E. Caurier, A. P. Zuker, A. Poves, and G. Martínez-Pinedo,
Phys. Rev. C50, 225 (1994).

[2] E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, J. Re-
tamosa, and A. P. Zuker, Phys. Rev. C59, 2033(1999).

[3] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys.
Rev. C 65, 061301(R) (2002).

[4] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett.84,
5728 (2000); Phys. Rev. C62, 054311(2000).

[5] P. Navrátil and W. E. Ormand, Phys. Rev. Lett.88, 152502
(2002).

[6] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci.51,
53 (2001).

[7] S. C. Pieper, K. Varga, and R. B. Wiringa, Phys. Rev. C66,
044310(2002).

[8] G. H. Lang, C. W. Johnson, S. E. Koonin, and W. E. Ormand,
Phys. Rev. C48, 1518(1993).

[9] S. E. Koonin, D. J. Dean, and K. Langanke, Phys. Rep.278, 1
(1997).

[10] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. Lett.75,
1284 (1995).

[11] J. H. Heisenberg and B. Mihaila, Phys. Rev. C59, 1440
(1999).

[12] D. J. Dean and M. Hjorth-Jensen, in Frontiers in Nuclear
Structure, edited by P. Fallon and R. Clark, AIP Conf. Proc.
No. 656(AIP, Melville, NY, 2003), p. 197.

[13] M. Horoi, B. A. Brown, and V. Zelevinsky, Phys. Rev. C50,
R2274(1994).

[14] M. Horoi, A. Volya, and V. Zelevinsky, Phys. Rev. Lett.82,
2064 (1999).

[15] M. Horoi, B. A. Brown, and V. Zelevinsky, Phys. Rev. C65,

027303(2002).
[16] M. Horoi, B. A. Brown, and V. Zelevinsky, Phys. Rev. C67,

034303(2003).
[17] T. Mizusaki and M. Imada, Phys. Rev. C65, 064319(2002).
[18] T. Mizusaki and M. Imada, Phys. Rev. C67, 041301(R)

(2003).
[19] F. Andreozzi and A. Porrino, J. Phys. G27, 845 (2001).
[20] F. Andreozzi, N. Lo Iudice, and A. Porrino, J. Phys. G29,

2319 (2003).
[21] V. G. Gueorguiev, J. P. Draayer, and C. W. Johnson, Phys. Rev.

C 63, 014318(2001).
[22] V. G. Gueorguiev, W. E. Ormand, C. W. Johnson, and J. P.

Draayer, Phys. Rev. C65, 024314(2002).
[23] C. E. Vargas, J. G. Hirsch, and J. P. Draayer, Nucl. Phys.

A690, 409 (2001).
[24] S. R. White, Phys. Rev. Lett.69, 2863 (1992); Phys. Rev. B

48, 10345(1993).
[25] T. Papenbrock and D. J. Dean, Phys. Rev. C67, 051303(R)

(2003).
[26] J. Dukelsky and S. Pittel, Phys. Rev. C63, 061303(2001).
[27] J. Dukelsky, S. Pittel, S. S. Dimitrova, and M. V. Stoitsov,

Phys. Rev. C65, 054319(2002).
[28] S. S. Dimitrova, S. Pittel, J. Dukelsky, and M. V. Stoitsov,

nucl-th/0207025.
[29] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.

Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen,LAPACK User’s Guide3rd ed.
(SIAM, Philadelphia, 1999).

[30] B. A. Brown and B. H. Wildenthal, Annu. Rev. Nucl. Part. Sci.
38, 29 (1988).

SOLUTION OF LARGE SCALE NUCLEAR STRUCTURE… PHYSICAL REVIEW C 69, 024312(2004)

024312-11



[31] R. B. Lehoucq, D. C. Sorensen, and C. Yang,ARPACK User’s
Guide (SIAM, Philadelphia, 1998).

[32] P. O. Löwdin, Rev. Mod. Phys.36, 966 (1964).
[33] T. T. S. Kuo and G. E. Brown, Nucl. Phys.A114, 241 (1968);

A. Poves and A. P. Zuker, Phys. Rep.70, 235 (1980).
[34] D. R. Entem and R. Machleidt, Phys. Lett. B524, 93 (2002).
[35] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep.261,

125 (1995).
[36] D. J. Dean, M. T. Ressell, M. Hjorth-Jensen, S. E. Koonin, K.

Langanke, and A. P. Zuker, Phys. Rev. C59, 2474(1999).
[37] I. Peschel and M.-C. Chung, J. Phys. A32, 8419 (1999); I.

Peschel, M. Kaulke, and Ö. Legeza, Ann. Phys.(Leipzig) 8,
153 (1999); M.-C. Chung and I. Peschel, Phys. Rev. B62,
4191 (2000); 64, 064412(2001).

[38] K. Okunishi, Y. Hieida, and Y. Akutsu, Phys. Rev. E59,
R6227(1999).

[39] S. Östlund and S. Rommer, Phys. Rev. Lett.75, 3537(1995);
S. Rommer and S. Östlund, Phys. Rev. B55, 2164(1997).

[40] M. Horoi (private communication).
[41] E. Caurier, F. Nowacki, A. P. Zuker, G. Martínez-Pinedo, A.

Poves, and J. Retamosa, Nucl. Phys.A654, 747c(1999).
[42] T. Mizusaki (private communication).

T. PAPENBROCK, A. JUODAGALVIS, AND D. J. DEAN PHYSICAL REVIEW C69, 024312(2004)

024312-12


