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Solution of large scale nuclear structure problems by wave function factorization
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Low-lying shell-model states may be approximated accurately by a sum over products of proton and neutron
states. The optimal factors are determined by a variational principle and result from the solution of rather
low-dimensional eigenvalue problems. Application of this methoddshell nuclei,pf-shell nuclei, and to
no-core shell-model problems shows that very accurate approximations to the exact solutions may be obtained.
Their energies, quantum numbers, and overlaps with exact eigenstates converge exponentially fast as the
number of retained factors is increased.
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[. INTRODUCTION variational principle. These last two methods also allow for
Realistic nuclear structure models are difficult to solve@n €xtrapolation to full Hilbert spaces as the results tend to
due to the complexity of the nucleon-nucleon interaction andonverge exponentially. In this paper we present a detailed
the sheer size of the model spaces. Exact diagonalizations af€scription of the factorization method and discuss several
now possible forpf-shell nuclei[1-3] and for sufficiently —applications. A summary of some of the main results has
light systems[4,5], and quantum Monte Carlo calculations been presented in an earlier pap2s).
[6,7] have solved light nuclei up to about ma&s 12. For This paper is organized as follows. In Sec. Il we give a
cases where an exact solution is not feasible, various aglerivation of the main theoretical results and present details
proximations are employed. We mention stochastic methodsef the numerical implementation. Section Il presents nu-
such as shell-model Monte Carl8,9] and Monte Carlo merical results forsd-shell nuclei, pf-shell nuclei, and for
shell-model[10], and recent applications of coupled cluster no-core shell-model problems. The convergence of the fac-
expansiong11,12. torization method and a comparison with other truncation
In recent years, several truncation methods for shellimethods is presented in Sec. IV, and we conclude with
model diagonalizations have been developed. These metho&c. V.
aim at a reduction of the enormous dimensionality of shell-
model Hilbert spaces while maintaining a high accuracy in
the computed observables. Based on arguments of statistical Il. THEORETICAL BACKGROUND
spectroscopy, Horoi and co-worke$3—-16 developed the
exponential convergence method. Mizusaki and Imada
[1743 dey|sed an extrapolatlon me_thod and applled 10 & gpail.model basis states are products of proton Slater de-
conflguratlon truncatlpn. Both techniques use S'ngle'part'd?efrminants{|Tra),a:1, ... dp} and neutron Slater determi-
basis states and provide a method to extrapolate the results 0

truncated calculations to the full Hilbert space. Other ap_nants{|va>,a:1, .-+ Ay} Here,dp anddy denote the dimen-

proaches use correlated basis states to obtain a rapid convt_'i;}ﬁn Orf] tne prgtclxn spacde and the nebutron spa:jced respectively.
gence. Andreozzit al. [19,20, for instance, construct a ba- | e shell-model ground state may be expanded as
sis from products of correlated proton states and correlated

A. Motivation

neutron states. Gueorguie¥ al. [21,22 use a mixed-mode dp dy
shell model of single-particle and collective configurations, |q,>22 >y 7| ve). (1)
while Vargaset al. [23] use a truncation based on coupled o B apITel IR

SU(3) irreps to describe the interplay and competition of
collective and single-particle degrees of freedom.

Though the selection of the relevant states is physicallyrhis expansion is not unique since the amplitutigs; de-
well motivated for all these truncation schemes, it does nopend on the choice of basis states within the two subsets.
directly follow from a variational principle. This is different There is, however, a preferred basis in which the amplitudes
for the density-matrix renormalization grodpMRG) [24] ¥,z are “diagonal.” This basis is formally obtained from a
and the very recently proposed factorization metfi@g].  singular value decomposition of the rectangular amplitude
The DMRG uses a sophisticated renormalization and truncamatrix ¥ of dimensionds X dy as¥=USV'. HereU (V) is a
tion scheme that includes the most important states and coélp X dp(dy X dy) dimensional matrix with orthonormalized
relations. Dukelskyet al. [26,27] and Dimitrovaet al. [28] columns.Sis a rectangular matrix of dimensialp X dy with
applied this method to nuclear structure problems. TheelementsS ;=0 fori+j and the diagonal elemens =s; are
ground-state factorization is based on a related truncation. Ahe non-negative singular values. Performing the singular
a given truncation, the optimal states are determined from salue decomposition yields
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1 - - - - controlled by the paramet& which counts the number of
ok B desired factors. Figure 1 suggests thatgmin(dp,dy)
yields accurate approximations to shell-model ground
10* states. This is also the result of our numerical computa-
'y tions below.
§; 10 Let H be the nuclear many-body Hamiltonian. To deter-
it mine the unknown proton statfs) and neutron statgs;) in
N Eq. (3) we consider the enerdy=(y|H| )/ (| ). Its varia-
10 tion SE=0 yields(j=1,... Q)
107 02 04 06 038 1 Q R
jld, 2(<nj|H|ni>_E<nj|ni>)|pi>:0.
i=1
FIG. 1. (Color onling Singular valuess® for ground states of
2ONe(dp=66), ?°Ne(dp=66), *Mg(dp=495, *Mg(dp=495), and 15
28g; — ~
Si(dp=924. > (pjlH[p) = E(pylp)Iny = 0. (@)
i=1
min(dp,dy) . . . .
W= S s ) The solution of these nonlinear equations determines the op-
o timal factors and the ground-state energy. Note that for fixed

_ ) neutron(proton states the firs{second set of these equa-
Heres; denote the singular values while the proton stdigs  tions constitutes a generalized eigenvalue problem for the
and the neutron statés;) are orthonormal sets of left and proton (neutron states. To fully understand the structure of

right singular vectors, respectively. In general, these statefe matrices involved we rewrite the first set of the E4.as
are superpositions of many Slater determinants and exhibit

strong correlations. The non-negative singular valses nAInS ARy 0 alAIn
=s,= sy - fulfill Ejsjzzl due to wave function normaliza- < 1|A| v 1|A| ) < 1|A| o) Py
tion. (nglH[ny) (nylHIny) “*+ (nyH[ng) )

It is interesting to compute the singular value decomposi- : .. : :
tion for ground states of realistic nuclear many-body Hamil- N A Ipo)
tonians. To this purpose we perform a numerical singular (no/Hiny) " (nalH[ng) o
value decomposition of the amplitude matiix,; in Eq. (1) o ~ -
using theLAPACK routines[29]. Figure 1 showsﬁ the squares (nufnp)le (Ml {na|no)lp [
of the singular values for the ground statesdfshell nuclei |t (lnodle  (nongdie || P2
2ONe, #°Ne, Mg, and?8Si (from the USD interactiorj30]) =E . . . :
plotted versus their normalized indgxdp. (We havedp C ' o i
=190,190,495, and 924 for the nucféNe, >°Ne, **Mg, and (ngjnplp = o A{ng/np)lp [Pa)
283, respectively. The singular values decrease with in- (5)

creasing index and rapidly become exponentially snigk-
generacies are due to spin/isospin symmgffiiis suggests Here, |pj>=(pj,1apj,2- 'pj,dP)T is a de-dimensional column

that a truncation of the sum in E(¢) should yield an accu- vector(T denotes the transposehile Tp denotes the identity
rate approximation to the ground state. In fact, the DMRG SN
matrix in proton space. Thus,

[24] exploits this rapid falloff of singular values in a wave

function factorization. For obvious reasons, the expansion (njny 0 - 0

(2) is a factorization, and the correlated proton and neutron !

states are the factors. In what follows, we will devise a <ni|n,>|“P: 0 <I"i|”i> 0 (6)
method that directly obtains the most important factors with- ) : - i

out knowledge of the exact ground state. 0 e (nilny)

is a diagonal constant matrix of dimensiala X dp. The

proton-space operato(Bi|I:||nj> stem from the nuclear struc-
ture Hamiltonian

B. Derivation of main results

To determine the optimal factor for a given truncation we
make the ansatz

o A A
H=Hy+Hp+Vpy, (7
=2 IppIny) (3 _
j=1 with
for the ground state. Here, the unknown factors are the pro- ~ 1
ton statesgp;) and the neutron statés). These states may be Hy=> edia,+> > vnn,m,mégé;émém,,
correlated and need not to be normalized. The truncation is n nn’ mm’
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.qugspa;ap+% S el Ay (n(=M)[A[n(=M)) = <n(=M)[FIn(M)) | [ [p(V))
P PP’ .a.q’ : : :
. (NM)JAIn(=M) == (n(M)[A[n(v)) /AP MD)
Vo= 2 vpnp gy ® (n(=M)ln(- M) [p(M))
p.n’,p _E : 13
Here, we use indicep,q and m,n to refer to proton and (n(M)|n(M)) |p(= M))

neutron orbitals, respectively. The antisymmetric two-body

matrix elements are denoted @g;.

Thus, the proton-space Hamiltonian opera(mhiﬂnj) is

Here, we used the shorthands

pZ(m)>1 e v|p()m(m)>]Tl (14)

Ip(m)) =[|p,(M)),

(nfHIn) = X (E vpnp,n,(ni|é;én,|nj>)agap, +(n|Hylny) the rectangular block matrices
pp" \nn’ A A
(nnoA ) (ny([H[Ng(0) ==+ <{m(k)|H[ng, (1)
+{ni|n)Hp. R
e (MWIAIN()) = : : |
Note that the neutron-proton interacti&ﬁ,,\, results into a <n9k(k)|l:||nl(l)> <n0k(k)|':||n0|(|)>

one-body proton operator while the neutron Hamiltortigp )
yields a constant. This concludes the detailed explanation @"d the overlap matrices
the first set of equations in E@4). The second set has an (n(k)|n(k)

identical structure, only the role of neutrons and protons is

reversed.

C. Treatment of symmetries

Most modern shell-model codes use a basis of Slater de-

<n1(k)|n1(k)>iP,—k <n1(k)|n(2k(k)>TP,—k

(o, (IR Tp o+ (N, (KN, (K p

terminants that preserve axial symmetry. It is straightforward\jgie that the right-hand side of E¢L3) is a vector. Note

to include this symmetry into the method proposed in this
work. For such anrh-scheme” ground-state factorization we

modify the ansatz3) as

M QO

=2 2 [pm)ln(-m).

m=—-M k=1

Here |p(m)), k=1, ... Qn, [In(-m)), k=1, ... Q,], denote
dp -dimensional proton state@y _-dimensional neutron
state$ with angular-momentum projectiod,=m(J,=-m),

also that(ni(k)||:||nj(l)) is a rectangulardp X dp; matrix

similar to Eq.(9), while I denotes the identity operator for
the proton subspace with angular momentilymk. The ei-
genvalue problent13) differs from the eigenvalue problem
(10)  (5) due to the block diagonal overlap matrix on its right-hand
side. The eigenvalue problem for the neutrons is identical to
Eq. (13) when the role of neutrons and protons is reversed.
The number of factors used in tihescheme factorization
is given by the parametef3,,. These parameters are input to
the factorization. In the following, we use

and the sum ovem runs over all possible values d§. The

ansatzZ10) leads to a generalized eigenvalue problem similar Qm=Qn(a) =max1,adp ), (15

to Eq.(4), with the only difference that permissible products ) ) i

of proton states and neutron states have zero angulafd recall thatp y is the dimension of the proton subspace

momentum projection:

with angular-momentum projectiaB=m. For «=0 the most
severe truncation is obtained and leads us to solve eigenvalue

M QO problems of the dimensiod, anddy, respectively. Setting
> > [<nk,(m')||3||nk(m)> = E(ni (M) |ni(m)) ]| pic(= m)) a=1 leads to an eigenvalue problem with the same dimen-
m=-M k=1 sion as an exact diagonalizationrimscheme. Below we will
-0 (11) see that the choidd 5) of parameters yields rapidly converg-
' ing results. However, there may be other parametrizations
that are superior. Comparison of E¢s3) and(5) shows that
M- Om - the m-scheme factorization yields a lower-dimensional ei-
> 2 [P (M)|HIpm)) = E(pie (M) pi(m) | ni(— m)) genvalue problem than the factorizati8) if the same num-
m=-M k=1 ber of factors is used.
=0. (12) Note also that ajj-coupled scheme can be used. Let

Ip(3,m)) [|n(3,m))] be a proton (neutron state with

These equations have to be fulfilled for all possible values oiingular-momentum quantum numbel and angular-
m’ andk’. It is again useful to display the eigenvalue prob- momentum projectiold,=m. The ground state of an even-

lem (11) for the proton states in more detail,

even nucleus ha3=0 and can be factored as
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I Ym lem (5) already yields the exact ground state. This can be
=2 > > p3,m)n(3,—m)), (16)  seen as follows: Using Slater determinarits;)=|v;),]
J m=-J k=l =1,... Q} as input to the proton proble®) yields a matrix

momentum quantum numbérand angular-momentum pro- Problem.

jection J,=m. We choose _Letus compare the ef_fort 'of the ground-state factor?zation
with an exact diagonalization. Both methods require all
Qym(@) =maxl,adpym), (17 Hamiltonian matrix elementér,[(vg/H|v,)|75. The advan-

wheredp ;, is the dimension of the proton subspace withtage of the factorization method is that the dimensionality of
angular momenturd and projectiorm. This number is inde- the eigenvalue problem i§) max(dp,dy) with Q) <dp,dy
pendent ofm for fixed J. Generalizations of the ansatz6) ~ while the dimension of the exact diagonalization scales like
to nonzeroJ are straightforward. dp X dy. Note that existing shell-model codes may easily be
Other symmetries such as parity can also be used to fumodified to include the ground-state factorization in order to
ther reduce the dimensionality of the eigenvalue problemobtain accurate approximations or to compute useful starting
Parity even states, for instance, are products of parity evewectors for a Lanczos iteration.
proton states with parity even neutron states or products of It is possible to reduce Eq#4) to a standard eigenvalue
parity odd proton states with parity odd neutron states. Th@roblem. For this purpose we choose a random orthonormal
ability to implement symmetries is particularly important asset of initial neutron state§n;),j=1, ... Q} as input to the
it widens the flexibility of the ground-state factorization. first eigenvalue problem. This reduces the “overlap” matrix
Consider for instance shell-model problems with proton andn;|n;) to a unit matrix, and we solve a standard eigenvalue
neutron spaces that differ considerably in size suchdpat problem to obtain the proton staté|spj),j:1, ... Q) The
<dy. In such cases one might switch to a more symmetrigesulting proton states will not be orthogonal since they are
factorization and factorize the ground state as follows: one ofomponents of only one solution vector of dimensidde.
the factor spaces would consist of neutron states that argheir coefficient matrixC with elementsC,;=(m,|p;) may,
based on a subset of neutron single-particle orbitals, whil§owever, be factorized in a singular value decomposition as
the othe_r factor states would be_ based on the remaining new=ypyvT, HereD denotes a diagon& x Q matrix while U
tron orbitals and all proton orbitals. In such a scenario, thgs g (column orthogonalde X Q matrix, andV is an orthogo-
correct implementation of the Pauli principle requires care. na1 () x () matrix. The transformed staté=1, ... Q)

d
D. Numerical solution and computational details |ij> — EP Ua,j|77a>v
We discuss the solution of the eigenvalue problems. For a=l
notational convenience we focus on the solution of E4.
The corresponding equation$l) and(12) of the m-scheme @
factorization can be treated similarly. We solve the coupled ) =2 Vil
set of nonlinear equationd) in an iterative procedure. We i=1
choose a random set of linearly independent initial neutro
states{|n;),j=1, ... Q2} and construct the Hamiltonian and
overlap matrix presented in E¢). We then solve this gen-
eralized eigenvalue problem of dimensiQu for those pro- Q Q
ton stated|p;),j=1, ... Q} that yield the lowest enerdg. In ) =2 Ipplny) = 2 Dylp)Iny). (18)
practice, we use the sparse matrix solw&rPAck [31] for =1 =1
this task. The solution of the generalized eigenvalue problem The orthogonal proton stateffp;),j=1, ... 2} are then
requires us to prowde the.LU factonzathn of thg oyerlapinput to the second set in Eqgg}), which poses a standard
matrix [i.e., the right-hand side of E¢5)]. This factorization  gjgenvalue problem for the neutron states. Note that the
S|mpl|f|eis considerably since the overlap matrix is a direCt,onsformed neutron staté);”|nj’> are useful starting vectors
productl,® My and only requires the LU factorization of the for the Lanczos iteration of the sparse matrix solver. The
(Q xQ)-dimensional overlap matrixMy with elements resulting neutron states should again be orthonormalized by
(ni|nj). We then input the resulting proton states to the seca singular value decomposition. These singular value decom-
ond set of Egs(4). The solution of thisQdy-dimensional positions are very inexpensive compared to the diagonaliza-
problem yields improved neutron statémJ-),j:l, ...,QQ}  tion. Similarly, we may cast the generalizedscheme eigen-
and an improvedi.e., lowered ground-state energi. We  Vvalue problem(13) into a standard eigenvalue problem by
iterate this procedure until the ground-state endgy con-  enforcing orthogonalitgn,(m)|n,(m)) = &, between neutron
verged. states with identical angular-momentum projection through
For small values of) we typically need about 20 itera- the singular value decomposition.

tions to obtain a converged energy, and the number of itera- In our implementation of then-scheme factorization, we
tions decreases with increasing number of kept statdSor  compute the matrices of the proton-space operatarsnd
maximal valueQ)=dy, the first solution of the proton prob- é;gép, as well as the matrices of the neutron-space operators

Yre orthonormal in the proton space and in the neutron space,
respectively, and they fulfill
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FIG. 2. (Color onling Low-energy spectrum add-shell nuclei vs the dimensioth of the eigenvalue problem. Results are obtained from
targeting the ground state. From left to right: Mg isotopes,,=28 503 2*Mg, ?®Mg, and Al isotopegdm,=69 784 2°Al, 28Al.

Hy and é;ﬁén/. These sparse matrices can be stored in fastVhile the factorization is particularly suited to compute ac-
memory. The sparse matrix on the left-hand side of(Bpis  curate approximations of the ground states, we may also use
constructed from these matrices. This sparse matrix can befor the computation of low-lying excited states. In some
kept in fast memory for sufficiently small problems; for cases, excited states can be obtained as a by-product of the
larger problems, its nonzero matrix elements along with th&round-state computation. While solving the eigenvalue
row-column information can be stored in large chunks ofProblems(1l) and (12) for the ground state, we may also
data on disk without a severe increase of computing times.COMpute excited state solutions. Let us assume that we solve
Our implementation of thejj-coupled factorization is Egs.(11) for the proton states. The excited proton-state so-
somewhat more tedious. Starting from thescheme basis lutions ywl_l be obtained in the presence of neutron states that
states|p(m)) and [n(m)), we create basis statég,(J,m)) are optimized for the ground state. Therefore, we expect that

and |n(J,m)) with good angular momentum by numerical the excited states are less accurately reproduced than the

K . round state. Figure 2 shows the resulting low-energy spec-
projection. The projection operator [i82] ?ra for Mg stg 2671 and 28All. g gy sp

The ground states converge most rapidly as more factors

|E>J =11 M (19) are retained in the factorization and the dimengioof the
30+ -j(j+1) eigenvalue problem increases. Typically, excellent results are
) _ obtained from computations involving relative dimensions
where the product overruns over all possible angular mo- d/d,..~1/4,...,1/3. For the Mgsotopes, excited states

menta, and) denotes the angular-momentum operator. Theconverge somewhat slower than the ground states, and level
matrices of the proton Hamiltoniaki, and the neutron spacings are reproduced to a very good accuracy already at
Hamiltonian Hy are then transformed to this basis andsevere truncations. This shows that the factors of the low-
stored. The matrices of the operatarg,, andé;én, are not lying excitations have a large overlap with the corresponding
sparse in the basis with goddand are therefore kept in the ground-state factors, and we assume that this finding is re-
m-scheme basis. We perform the appropriate basis trandated to the band structure of the low-lying excitations. The

forms in the construction of the Hamiltonian matrices. situation is different for the Al isotopes, as evident from the
right panel of Fig. 2. This slower convergence of excited
I1l. NUMERICAL RESULTS states is not unexpected due to the absence of band structure

— .. inthese nuclei.
A successful application of the ground-state factorization Tpere are at least two approaches to improve the conver-

would yield accurate approximations from calculations i”'gence of the excited states. In the first approach, we may
volving rather small dimensional eigenvalue problems.target excited states by solving the eigenvalue probldrs
Clearly, the outcome depends on the model space and thg,q 1) directly for an excited state, i.e., we solve the ei-
interaction underi con3|derat|on. In this section we apply t,hegenvalue problem for a few low-lying energies and use the
m-scheme factorization to realistic structure calculations iNsigenvector corresponding to an excited energy for the sub-
volving sd-shell puclel,af-shell nuclei, and no-core shell-  geqent iterations. While there is no variational principle that
model computations fofHe. The results are compared 10 ¢ arantees the convergence of this procedure, we find that

exact diagonalizations. We expect the method {0 convergg,is method works well for the first and second excited states
most rapidly in the case of weak proton-neutron correlationsy 24\g, which converge rapidly toward the exact results, as

Thus, the study oN=Z nuclei provides a challenging testing ghown in Fig. 3. A closer inspection of this figure reveals that
ground sincel =0 proton-neutron correlations may be stronghe convergence is indeed exponential. However, this ap-
in the_se systems. Throughout this sectibdenotes the di- proach is unstable for higher excited state€g and for
mension of then-scheme eigenvalue problenl) and(12)  he first excited state GAl, as the solutions of the eigen-
we actually solve, whileiy,, denotes then-scheme dimen- y51ye problem are oscillating but fail to converge with in-
sion required for an exact solution of the problem. creasing number of iterations. This is not unexpected since
we did not project to the space that is orthogonal to the
ground state. The second approach avoids these problems
We apply them-scheme factorization to thed-shell nu- and can be used in the case BAl. Its ground state has
clei Mg, 26Al, Mg, and?Al and use the USD interaction. angular momentund=5 while the first excited state has an-

A. sd-shell nuclei
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FIG. 3. Energies of the first and second excited staté&\dj vs FIG. 5. (Color onling Squared overlap&feyac Yracton? for the

the dimension of the eigenvalue problem. Hollow data points: redow-lying states in*Mg vs the dimension of the eigenvalue prob-
sults from targeting the ground state. Filled data points: results fronfem (from targeting the ground statélhe inset shows the deviation
directly targeting the excited states. Dashed lines: exact results. 1 —(exacl Ytacion> VS the dimension of the eigenvalue problem.

gular momentumJ=0. We may thus use thg-coupled an-

H 4
satz(16) to compute the lowest-lying state with angular mo- Let us also verify for*Mg that the guantum numbers of

the low-lying states are reproduced correctly. Due to rota-

mentum J=0. This yields the first excited state. Figure 4 . .
. tional symmetry, the expectation value for the angular mo-
shows the results plotted versus the corresponaisgheme :
mentum should fulfill

dimension. The convergence is much improved and compa-
rable to that of the ground state. We confirmed that this ex- o
cited state converges exponentially quickly toward the exact (I=i(G+1), (20)

result as the dimension of the eigenvalue problem increases, . L .
9 P wherej is a non-negative integer. Figure 6 shows fheal-

So far we have only focused on the energies. In the re- f the low-Ivi tates fMa. Th It b
mainder of this section we discuss how the states and theff€S ©' tn€ low-lying states g. 1he resufts were ob-

quantum numbers are reproduced by the factorization. Fotf"“ned by targeting the ground state. The angular momenta

. 0,
2%Mg we analyze the wave-function structure of the low- are very accu_rately_ reproduce(_j once ab_ou_t 20% of the
: states are retained in the factorization. This is remarkable

ince rotational symmetry is not enforced in thescheme
actorization, and no kind of constraint or projection was
used. Similar results are obtained for the total isospin and
dor other sd-shell nuclei. The accurate reproduction of
pantum numbers, wave functions, and energies implies
that transition matrix elements can accurately be com-
puted. This concludes our detailed discussiorfdg.

exact results, obtained from targeting the ground state. Th
solution of an eigenvalue problem of only 10% of the full
dimensiond,,,, already yields between 90% and 96% of
squared overlap. The directly targeted ground state is repr
duced to more than 99% once the dimension exceeds 20%
the full dimensiond,,. The inset of Fig. 5 shows that the

defect 1 2 decreases exponentially fast as . :
~{eract iactor b y We finally mention that we also compared timescheme

more factors are retained. While the convergence is best fqr - . . i
the directly targeted ground state, the excited states are al%%ctorlzanon with thejj-coupled scheme. FdfMg we find

verv accuratelv reproduced and also exhibit an ex onemiéﬁractically identical convergence of the ground-state energy
Y y rep P when plotted versus the relative dimensidhd,,,, of the

convergence. ; : . s
9 corresponding eigenvalue problem. The dimensiond,,.y
-103 T T .
4t 4
m‘.
-104F ] 5l -
2 o
H j2F =4 4
-105 r v 4!
e, H?’rd
o g r le: |
cogs.
- 1 1 L oF C—p -
1065 20000 40000 60000 . .
d 0 10000 ;) 20000 30000

FIG. 4. Energy of the first excited state ¥R vs the dimension
of the eigenvalue problem. Hollow data points: results from target- FIG. 6. (Color onling Angular-momentum valug for the low-
ing the ground state. Filled data points: ground-state calculation folying states in2“Mg vs the dimension of the eigenvalue problem
zero angular momentum. Dashed line: exact result. (from targeting the ground state
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B0 TTT004 006008 0 00T 002 003 004 005 006
d/d_ d/d_
FIG. 7. (Color onling Data points: Low-lying energies dfCr FIG. 8. (Color onling Angular-momentum valug for the low-

(KB3 interaction vs the dimensiord of the eigenvalue problem lying excitations of thepf-shell nucleus*Cr (KB3 interaction
relative to them-scheme dimensiod,,,,. Dashed lines: Exact re- plotted vs the dimensiod of the eigenvalue problem relative to the
sults. Dashed-dotted line: Exponential ff(d/dya)=-32.92 m-scheme dimensiod,,,. The dotted lines are the exact results.
+0.851 exp—31.38d/d4y to the ground-state energy.

tion, while the spacings to the higher levels are about
of the eigenvalue problem in thg¢-coupled scheme are, of 200—300 keV too large. An exponential fit to the energy of
course, smaller than for the scheme. However, this does the first excited states yields an energy that deviates less than
not translate directly into a computational speedup since th&00 keV from the exact result. The angular-momentum ex-
ji-scheme algorithm is more complex and involves lesgectation values are plotted in Fig. 8. Fbid,,,=0.04, en-
sparse matrices. We believe that its main advantage consistsgies and quantum numbers are sufficiently well converged.
of the possibility to directly target the lowest state with a Considering the modest size of the eigenvalue problem we
given angular momentum. solved, these are very good results.

Next we consider the odd-mass nuclé®@r and the odd-
odd nucleus®®Mn. The exact ground-state energies &e
=-35.59 MeV[2] andE=-50.37 MeV, respectively, and the

Many theoretical results fopf-shell nuclei are available correspondingn-scheme dimensions adk,,,~6x 10° and
from exact calculations for the KB3 interaction. In the lower d,,,,~ 18.6x 1(f. Figure 9 shows that the ground states of
pf shell, diagonalizations can be based omascheme basis these nuclei can very well be approximated by factorization.
[1]. The m-scheme dimensions of upppf-shell nuclei ex-  Using exponential fits we obtain energies that deviate about
ceed 16, and exact diagonalizations have been performed ir80 keV and 40 keV from the exact results f8€r and®®Mn,
aJ=0 coupled basi$2], reducing the dimensions to the or- respectively. The relative dimension of the eigenvalue prob-
der of 10. In this section we compare the results fromlem we solve is aboutl/dma=~10% for 4°Cr and about
m-scheme factorization with the exact results. We are pare/dy,~2.5% for ©®Mn. Odd-mass nuclei can pose a chal-
ticularly interested in the efficiency of the method and wouldlenge since the first few excited states might be very close to
like to answer the following question. How does the relativethe energy of the ground state. This is particularly the case
dimensiond/d,,,, at which an accurate approximation to the in, e.g.,**Ti where the spacing is just about 10 keV. At fixed
ground state is obtained, scale with increasing dimension
dmax required for an exact diagonalization?

For pf-shell nuclei we use the KB3 interacti¢83]. Fig- n
ure 7 shows the low-lying energies f6fCr plotted versus 3
the relative dimensiord/d,,,, of the eigenvalue problem.
The exact ground-state energy Es=—-32.95 MeV and re-
sults from the solution of an eigenvalue problem with dimen-
SioNdmg,=1.96x 10° [1]. The ground-state energy converges
exponentially quickly as the number of retained factors in-
creases. The rightmost data point results from an eigenvalue
problem with only 8% of then-scheme dimension and in-
volves Q=2 Q,=391 factors. It deviates less than o , ) ~
100 KeV from the result of an exact diagonalization. An ex- Ol 0.01 0.02 0.03
ponential fit of the formE(d/dya)=a+b exp(—cd/dy,,) to max
the rightmost six data points yields the estimaf€l) FIG. 9. (Color onling Ground-state energl§ vs the dimension
=-32.92 MeV, which is only 30 keV above the exact result.q of the eigenvalue problem relative to thescheme dimension
The excited states are obtained from targeting the ground, ,.~18.6x 10° for ®Mn. The data points are from the-scheme
state. The level spacings of the two lowest excitations argactorization, and the dashed line is an exponential fit to the data.
very accurately reproduced even at the most severe truncaset: Similar plot for*Cr (dpa= 6% 10°).

B. pf-shell nuclei

E +35.56 MeV

E +50.33 MeV
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FIG. 10. (Color online Ground-state energy vs the dimension FIG. 11. (Color onling Energies of low-lying states dHe plot-
d of the eigenvalue problem relative to tmescheme dimension ted vs the dimensiod of the eigenvalue problem. The dashed lines
o= 1.09X 10° for 5Ni. The data points are from the-scheme are the exact results.
factorization, and the dashed line is an exponential fit to the data.
Inset: Similar plot forf9Fe (dpa~ 110X 10F). two-body interaction on the starting energy. Details con-
cerning the derivation of th& matrix may be found in

truncation we need a larger number of iterations of the sysRef. [35]. Finally, we employ the method of Reff36] to
tem of Eqgs.(11) and (12) to obtain a precise value for the Obtain an interaction that yields a ground-state energy that
spins of the two lowest states #fTi. In such cases, accurate iS approximately free of center-of-mass contamination.
approximations of the energies also require us to includ&ote that this small space is not sufficient to completely
more states into the factorization. describe théHe nucleus, but still illustrates the power of
Turning to large scale problems, we factor the groundhe factorization method for problems in which the core is
states of ®Fe and ®Ni. The exact energies are  absent. _ _
=-67.0 MeV andE=-78.46 MeV, respectively?], and the Figure 11 shows the energies for the three lowest-lying
correspondingm-scheme dimensions aré,,,~110x10°  States of*He versus the dimensiahof the eigenvalue prob-
andd,,,,~1.09x 10°, respectively. Figure 10 shows that the lem we solve. The results for the excited states were obtained
ground states of these nuclei can very efficiently be factoredVhile targeting the ground state. The exact results are ob-
Using an exponential fit to the numerical data points, thd@ined from a diagonalization witm-scheme dimension
ground-state energies are reproduced within a deviation dImax=79 298. Note that the ground state and the excited
50 keV for5%Fe and 100 keV fof®Ni. Most importantly, the — States converge very fast toward the exact results. A calcula-
relative dimension of the eigenvalue problem we solve igion with d/dq.,~0.2 already yields excellent approxima-
d/dya=1% for ©Fe (from Q=3 =352 states and tions, and the angular-momentum quantum numbers are con-
aboutd/ dy,a=~ 0.1% for %Ni (from Q=3 ,,=147 stateg ~ Verged.

This suggests that the factorization gets increasingly efficient Let us finally suggest an alternative treatment of the
as the dimension of the problem increases. center-of-mass problem. The center of mass is separable in

an oscillator basis where all many-body states with up to
Nmax OScillator quanta are included. The factorization could
C. No-core shell model be applied in this scheme by combining proton states with

' . oscillator quanta and neutron states withoscillator quanta
As a final test, we consider a no-core shell-model problemy |\ .1 than+n’ <N
= Nmax

and apply them-scheme factorization téHe using a man-
ageable model space and a realistic interaction from a
G-matrix calculation. The model space consists of the
0s-0p-1s-0d-0f-1p shells. TheG matrix stems from a 1w
calculation and is based on the Idaho-A potenitgd]. The A. Convergence properties
Idaho-A potential is derived from an effective Lagrangian
that respects QCD inspired chiral symmetry. We calculate th?or
G matrix from

IV. CONVERGENCE OF THE METHOD

The results of the preceding section showed that the fac-
ization converges exponentially quickly as more factors
are retained. So far we considered nuclei with equal dimen-
1 sion of proton space and neutron space, most of them being
Glw)=V+ WG@)), (21)  N=Z nuclei. What can be expected for other cases? To an-
@ swer this important question, we computed the exact ground
wherew is the starting energyf, is the kinetic energy opera- states of severgbf-shell nuclei and numerically performed
tor, andQ is the Pauli operator. Our Pauli operator allows for singular value decompositions of their amplitude matrices
all allowed configurations to be active in the chosen modelN’,,; as defined in Eq1). Figure 12 shows logarithmic plots
space. We also employ folded diagrams calculatedoat of the resulting singular value spectra. The singular value
=-20.0 MeV todecrease the dependence of the resultingpectra exhibit a very sharp initial falloff followed by an

024312-8
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FIG. 12. (Color online Singular value spectr@gquared singular

valuessjz) for ground states of Ti isotopdsipper left,dp=190), V
isotopequpper right,dp=1140, Cr isotopeglower left,dp=4845,
and®Mn (lower right,dp=15 504.

exponential decay. The initial falloff is stronger for larger
dimension of the proton spady, and this renders the fac-
torization method very effective. There is no clear trend for
isotopic chains. The singular value spectra of the lighte
pf-shell nuclei decay most rapidly for tid=Z nuclei, while
the decay is faster for midshell nuclei away fréweZ. Our
results suggest that the application of the factorizatio
method is not limited tdN=Z nuclei. We also computed the
number of factor€)(x) such thats*¥'s?> x for x=0.99 and
x=0.999. The results of Table | s

17
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inset shows details of the fast initial falloff.

5000

FIG. 13. (Color onling Singular value spectrgquared singular
valuessjz) for the ground statgfull line), the lowestJ=7/2 state
(dashed ling and the lowesi=9/2 state(dotted ling of °Cr. The

mative answer to this question. Figure 13 shows that the

singular value spectra for the ground state, and for the

lowest-lying excited states with=7/2 andJ=9/2, respec-

rtively, fall off exponentially quickly. The falloff for the ex-

cited states is comparable to the ground state. The results
resented in this paper thus show that low-lying states of
ven-even, odd-odd, and odd-mass nuclei can very well be

approximated by the wave function factorization.

b We recall that them-scheme factorizatio(lL0) requires as

ow that the factorization ofinpyt the number of factors with a given angular-momentum

all these nuclei should converge rapidly as more factors argrgjection, (), which were taken according to the “demo-
included. Larger dimensional model spaces usually requirg atic prescription” in Eq(15). It is interesting and important

the retention of more factors, but the rafigx)/min(dp,dy)
decreases with increasing size of the problem. Note*fiit

to check this choice of input parameters. To this purpose we
compare the singular value spectrum from the factorization

is relatively difficult to factor into proton and neutron states.yith the singular value spectrum from an exact calculation.
This suggests that this nucleus exhibits particularly strongrhe factorization was performed f6Cr usinga=0.04 and

proton-neutron correlations.

4 o ) «=0.08 in Eq.(15). These truncations included a total of
Let us also consider the factorization of excited states() =% O (a)=197 and)=391 factors, respectively. Figure

The results of the previous sections showed examples of4 compares the resulting singular value spectra with the
even-even and odd-odd nuclei with an exponential convergingular value decomposition of the exact ground state. The
gence for excited states. Can the same be expected for @greement between the exact results and the approximations
odd-mass nucleus? Our investigation®8Cr gives an affi- s rather good, and improves with increasing number of re-

. . ) tained factors. It is clear that the factorization works when-
TABLE I. Proton-space dimensiaip and neutron-space dimen-

sion dy for various pf-shell nuclei.Q)(x) denotes the number of

factors that have to be retained for an overlp,s’=x with the ' ' '

exact ground state.

Nucleus dp dy 0(0.99 0(0.999

44T] 190 190 40 75

45Tj 190 1140 45 109

46Tj 190 4845 43 126

46y 1140 1140 98 270

4y 1140 4845 111 324 107 . . .

48y 1140 15504 151 392 0 100 200 300 400

a&Cy 4845 4845 258 775 index J

4cr 4845 15504 168 619 FIG. 14. (Color onling Singular value spectr@quared singular
50Mn 15504 15504 197 821 valuessjz) for 48Cr. Singular value decomposition of exact ground
60Mn 15504 15504 163 570 state (full line), m-scheme factorization usin@2=391 factors
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ever the singular value spectrum of the exact wave functiomxponentially converging results and a considerable reduc-
falls off sufficiently fast. Note, however, that the smaller sin-tion in the number of basis statgk9]. This procedure differs
gular values deviate from each other. This suggests that from our approach mainly by the absence of a variational
should be possible to somewhat improve the choice of inpuprinciple. In a subsequent work, Andreozi al. [20] em-
parameterg),, ployed an importance sampling algorithm that provides an
We finally mention that we lack an understanding aboupptimal criterion fo_r the selection of the basis states and
the rapid initial falloff in singular value spectra. For the Yi€lds an exponential convergence for the energy.
Hamiltonians considered in this work the falloff is evident. A third related method is the exponential convergence
Moreover, the results obtained from DMRG calculationsMethod(ECM) developed by Horoi and co-workefs3-1§.
over the past decade demonstrate that density-matrix specﬁ% this method, shell-model configurations are ordered ac-
decay rapidly for the ground states of a large number O]cordlng to their average centroid, which are obtained from

S .__statistical spectroscopy. This ordering gives a natural trunca-
relevant Hamiltonians. A few works address the theoretical. .
foundations of the DMRG. Peschel and co-workers investi-Eon scheme, and analytical arguments suggest an exponen-

. . tial convergence of energies with increasing number of re-
gated density-matrix spectra of several soluble problem g 9 g

. S ) . €MPained configurations. Once the exponential region is
[37], while Okunishiet al. discussed the asymptotic behavior jyenified, the full space energies can be extrapolated by an

of density-matrix eigenvalues for noncritical spin systemsgyponential fit. A direct comparison is not easy since the
[38]. Ostlund and Rommer showed that if the DMRG renor-gppg interaction is used fquf-shell nuclei, and since ECM

malization converges to a fixed point, the DMRG groundyesults are plotted versud-coupled dimension of the trun-
state is of a special matrix-product fofl89]. Given the lack  cated space. We believe, however, that our method converges
of generally valid analytical results, it is thus interesting tomore rapidly than the ECM. FdCr, for instance, our rate
numerically investigate singular value spectra for “generic”of exponential convergence ¢s=—31.38(see Fig. J, which
Hamiltonians. For this purpose we considered the modek about a factor 8 larger than what is reported for the ECM
space ofpf-shell nuclei**Ti and % and used a random in Fig. 1 of Ref.[15]. For 5Ni, our exponential rate is about
two-body interaction that preserves spin and isospin, i.e., tha factor 200 larger than the ECM rg#0], and our identifi-
spin/isospin coupled two-body matrix elemeMs, are in-  cation of the exponential region requiresnescheme dimen-
dependent Gaussian random variables with zero meagion d~10° (see Fig. 10 while the ECM requires an
<Va,B>:0 and Variancdva.ﬁva’,ﬂ’>:(aa,a’éﬂ,ﬁ’+5a,ﬁ'5ﬁ,a’)' m-scheme dimension q#—5) X 10° [40].

For a realistic choice of the single-particle energies we find For upperpf-shell nuclei, truncations can be based on the
singular value spectra that are similar to the realistic spectranaximal numbet of nucleons outside thg,, subshel[41].
However, setting all single-particle energies to zero yieldswithin this truncation, the convergence of the energy is
singular value spectra with longer tails and a less rapidather slow, and it is difficult to extrapolate from results in
decay. truncated spaces to the full Hilbert space. Mizusaki and
Imada devised extrapolation methods that link the error due
to the truncation to the variance of the energy in the trun-
cated space. This approach leads to a first-oftiéy and a

In recent years, several truncation methods have been deecond-order extrapolation meth¢ii8] for predictions of
veloped for and applied to shell-model problems. In this seclow-lying states in variougpf-shell nuclei. For®Ni the ap-
tion we compare some of these approaches with the methgaroximation of a closed-,, subshell is well justified, and the
presented in this work. This comparison focuses on converextrapolation methods yield results that are superior to the
gence and accuracy of low-lying energy spectra at a givefiactorization[42]. For “éCr, however, the factorization seems
level of truncation. to be of advantage: The exact ground-state energy k€ing

We start with the DMRG which also bases its truncation=—-32.95 MeV and then-scheme dimensiod=1.96x 1C°.
on the singular value§24]. Dukelsky and co-workers ap- The first-order extrapolation method17] vyields E
plied the DMRG to nuclear structure problems involving =-33.008 fort=5 andE=-32.975 fort=6, and the corre-
pairing [26] and pairing-plus-quadrupole interactiofia7]. spondingm-scheme dimensions adi{t=5)~1.3x 1¢° and
These applications were very successful as accurate resullét=6)~1.76x10°. The second-order extrapolation
could be obtained for huge Hilbert spaces. The factorizationi“scheme I’ [18] yields E=—32.91 fort=5. Slightly better
method proposed in this work can only treat much smalleresults are obtained from a different truncation scheme
Hilbert spaces and cannot compete with the DMRG for thesg‘scheme 1. The ground-state factorization yields a com-
systems. However, the recent DMRG calculatj28] for the  parably good energy estimate=-32.92 MeV (see Fig. ¥
realistic nuclear structure proble(fMg with USD interac-  from solving a much smaller eigenvalue problem of dimen-
tion) converges very slowly. siond=1.6x 10C°.

Recently, Andreozzi and Porrifd9] used a small num- The mixed-mode shell-model approach developed by
ber of correlated proton states and correlated neutron stat€ueorguievet al. [21,22 combines single-particle configu-
as a truncated basis for shell-model problems. The correlategtion and S@B) collective configurations to describe the
proton(neutror) states are the low-energy eigenstates of thenterplay and competition between single-particle and collec-
proton-proton(neutron-neutronHamiltonian. The full shell-  tive degrees of freedom. For tisetshell nucleus“Mg, the
model Hamiltonian including the proton-neutron interactionmixed-mode shell model yields good approximations to the
is then solved in this space. Andreozzi and Porrino reporbinding energywithin 2% deviation of the exact resyland

B. Comparison with other truncation methods

024312-10
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low-energy configurations which exceed 90% overlap withapproximations to shell-model ground states and low-lying
the exact results. These results stem from a truncated spaegcitations may be obtained. For the largest problems we
of only 10% of the full Hilbert spac§22]. At the 10% level considered, the dimension of the eigenvalue problem was
of the truncation, the factorization method yields an energyeduced by three orders of magnitude. Momentarily, the ap-
deviation of less than 1%see Fig. 2, and squared overlaps plication of this method is limited by the size of the proton
exceed 96% for the two lowest-lying states and 90% for thespace and the neutron space. An interesting future develop-
following three stategsee Fig. 5. ment would also consider the factorization of these spaces in

The method proposed in this work thus compares well toorder to treat larger dimensional problems. While the reason
most of the alternatives regarding convergence and accura®f the exponential convergence is not yet understood, com-
at a given level of truncation. Note, however, that its imple-putations of shell-model problems with realistic and random
mentation seems somewhat more complex than a sheltwo-body interactions suggest that this behavior can be ex-
model approach with a configuration truncation and somepected for a variety of interactions.

what less complex than the DMRG algorithm.
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