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We investigate reliability of Gamow-Teller transition strengths computed in the proton-neutron random
phase approximation, comparing with exact results from diagonalization in full 0"v shell-model spaces. By
allowing the Hartree-Fock state to be deformed, we obtain good results for a wide variety of nuclides, even
though we do not project onto good angular momentum. We suggest that deformation is as important or more
so than pairing for Gamow-Teller transitions.
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I. INTRODUCTION

Weak processes, such as betasbd and double-betasbbd
decay, have deep consequences for nucleosynthesis[1] and
physics beyond the Standard Model[2]. Weak processes are
also sensitive to details of nuclear structure: allowed
Gamow-Teller (GT) transitions depend in particular upon
Pauli blocking [1,3]. Thus, predictions for astrophysics as
well as interpretation ofbb-decay experiments must be mod-
eled with care. Because of this sensitivity to Pauli blocking
and thus upon configuration mixing, the large-basis interact-
ing shell model(SM) [4] provides one of the best micro-
scopic approaches to Gamow-Teller transitions.

The interacting shell model, however, is computationally
expensive, and only recently has the full 0"v pf shell be-
come tractable. A simpler approach is the random phase ap-
proximation(RPA) and its generalizations, which have been
widely and successfully applied to giant resonances such as
the electric dipole(giant dipole resonance or GDR) [5], and
has also been applied to many important problems in weak
transitions[1,6–10]. It is not immediately obvious, however,
that the RPA is an appropriate approximation forall transi-
tions. Because the RPA is the small-amplitude limit of time-
dependent mean-field theory[11,12], it seems appropriate for
the GDR, which can be described semiclassically in the
Goldhaber-Teller model[13] as protons oscillating in bulk
against neutrons. The application of the RPA and its exten-
sions to Gamow-Teller transitions, although with a long his-
tory [14,15], is more problematic. Two implicit assumptions
in the RPA are, first, ground-state correlations on top of a
mean-field state are small, and, second, particle-hole
phonons have boson commutation rules, which means that
Pauli blocking is not fully treated. Therefore, as GT transi-
tions are sensitive to Pauli blocking, they may not be well
matched to RPA calculations.

Reading the literature only furthers these doubts. A num-

ber of authors have previously tested the efficacy of calcu-
lating GT transitions within the proton-neutron quasiparticle
RPA (pnQRPA), through comparison with exact calculations
either with full shell-model diagonalization[9,16–18] or
group-theoretical schematic models[10]. The efficacy of
thesepnQRPA calculations, which we will discuss in more
detail below, can be broadly summarized as poor, typically
overestimating the total transition strength and underestimat-
ing the first moment of the transition strength. In order to
compare with the calculations described below, it is impor-
tant to understand that these calculations used sphericalJ
=0, N-even Z-even parent states and treated pairing care-
fully, starting with either the Hartree-Fock-Bogoliubov or the
Bardeen-Cooper-Schrieffer equations.

With the exception of those tests of Gamow-Teller transi-
tions, however, most other tests of the RPA and its generali-
zations have been against toy models. Recently we began to
systematically test the RPA against full shell-model diagonal-
ization [19–21]. In this paper we describe the generalization
to proton-neutron RPA(pnRPA) and compare Gamow-Teller
transitions against the full shell-model results. In contrast to
previous approaches, we do not treat pairing carefully, but do
allow arbitrary deformation, even though we do not project
to good angular momentum. Furthermore we are not limited
to even-even nuclides. We obtain good transition strengths,
and where we can compare to published sphericalpnQRPA
strengths, our calculations are generally superior. We there-
fore conclude that proper treatment of deformation, even
without projection, is at least as important as proper treat-
ment of pairing, and arguably more so. This agrees with
shell-model studies that show a correlation betweenE2 tran-
sition strengths(a measure of deformation) and GT transition
strengths[3,22].

We also briefly argue that thepnRPA frequencies should
be real, and not complex; such an argument is missing from
the literature. Included in this discussion is a lemma helpful
to understanding the solution of thepnRPA eigenvalue equa-
tions.

II. FORMALISM

In this paper we consider only charge-changing Gamow-
Teller transitions; the transition operators are thus
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O± = gAsW t±, s1d

wheret+ changes a neutron into a proton. Because here we
consider only strengthdistributionsand not absolute transi-
tion strengths, we drop the axial vector couplinggA. The
transition strength from the parent stateuil shere always a
ground stated to a final statef at excitation energyE=Ef
−Ei is given by

SsEd = o
f

dsEf − Ei − Edukf uOuilu2. s2d

The transition strength to a given level is also often called
the BsGTd value.

A convenient way to characterize the distribution of tran-
sition strength is through moments. The zeroth moment is the
total transition strengthS0,

S0 = o
E

SsEd, s3d

while thecentroidof the distributionĒ is the first moment

Ē = o
E

E SsEd/S0 s4d

snote that this centroid is relative to the parent energyEid and
the width of the distribution,DE, is the square root of the
second moment, calculated relative to the centroid:

DE2 = o
E

sE − Ēd2SsEd/S0. s5d

An important check of any calculation is the well-known
Ikeda sum rule, which holds true for any parent state, both in
the SM and in the RPA:

S0sb−d − S0sb+d = 3sN − Zd. s6d

We now briefly review the random phase approximation
and its variant, thepnRPA [15]. Unlike the standard or like-
particle RPA,pnRPA provides means to calculate excited
states of neighboring isobars. The starting point, however, is
similar to the regular RPA: a mean-field solution of the par-
ent nucleus, which in turn defines a particle-hole basis. In
our case we began with a Hartree-Fock stateuHFl, allowing
unrestricted deformation. The RPA can be derived a number
of ways, but it essentially approximates the energy surface
about the mean-field state as a harmonic oscillator. This leads
to a RPA ground stateuRPAl, which implicitly includes zero-
point fluctuations about the mean-field stateuHFl, and ex-
cited states are one-phonon excitations on the ground state:

ull = bl
†uRPAl. s7d

For RPA one usually assumes the creation operators are
simple one-particle, one-hole operators. In order to properly
discuss thepnRPA, it is useful to further, if briefly, recapitu-
late the like-particle RPAf12g. In the matrix formalism, one
solves

S A B

− B − A
DSXW

YW
D = VSXW

YW
D . s8d

Here the matrixA, a Hermitian matrix, is in fact the subma-
trix of H between one-particle, one-hole statessalso the ma-
trix for the Tamm-Dancoff approximationd, while the ele-
ments ofB, a symmetric matrix, are the matrix elements of
H between the HF state and two-particle, two-hole states.
sFor simplicity we assume real HF wave functions so that all
subsequent quantities are real.d One can show that the exci-
tation frequenciesV are real if the stability matrix

SA B

B A
D s9d

has no negative eigenvalues; this is equivalent to the Hartree-
Fock state being at aslocald minimum. Part of the proof of
this requires that bothA ±B have no negative eigenvalues
f12g, which in turn requires thatA have no negative eigen-
values. We emphasize this point because the situation will be
different for pnRPA.

One can show that the solutions of Eq.(8) come in pairs:

if sXW ,YW d is a solution with frequencyV, thensYW ,XW d is also a
solution with frequency −V. The solution withV.0 is as-

sociated with the vectorsXW ,YW d such thatuXu. uYu, and one
chooses a normalizationuXu2− uYu2=1; that one can do this
also derives from the non-negative eigenvalues of the stabil-
ity matrix. The special caseV=0 corresponds to invariance
of the Hamiltonian under a symmetry, for example, rotation

or translation; here the vectorsXW ,YW d cannot be normalized,
as uXu = uYu, and one must resort to a different formalism
[12,21,23].

The proton-neutron RPA is similar to the like-particle
RPA but with important differences. For like-particle RPA,
the phonon creation operatorb† uses one-particle, one-hole
operators of the formp†p, n†n (thus the name like-particle).
The pnRPA phonon creation operator is also one-body but
changes the third component of isospinTz:

bl
† = o

mi

fXmi,lspndpm
† ni − Ymi,lsnpdni

†pmg

+ o
mi

fXmi,lsnpdnm
† pi − Ymi,lspndpi

†nmg. s10d

The first and the fourth terms in this equation describe the
excited states of thesZ+1,N−1d isobar, while the second
and third thesZ−1,N+1d isobar. We follow the standard
convention and use indicesm,n for “particle” states, that is,
unfilled single-particle states in the Hartree-Fock wave func-
tion, andi , j for “hole” states, or filled single-particle states;
thuspm

† ni destroys a filled neutron statesor creates a neutron
hole in the HF wave function, in the usual viewd and creates
a proton in an excited particle state. The equation of motion

kRPAu†db,fH,b†g‡uRPAl = VkRPAufdb,b†guRPAl
s11d

transforms as usual to a non-Hermitian eigenvalue problem
f12g
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1
Anp,pn 0 0 Bnp,pn

0 Apn,np Bpn,np 0

0 − Bnp,pn − Anp,pn 0

− Bpn,np 0 0 − Apn,np
21

Xspnd
Xsnpd
Ysnpd
Yspnd

2
= V1

Xspnd
Xsnpd
Ysnpd
Yspnd

2 , s12d

where the definitions forApn,np andBnp,pn matrices are simi-
lar to the regular proton-neutron conserving formalism,
where one approximatesuRPAl<uHFl:

Ami,nj
np,pn = kHFu†ni

†pm,fH,pn
†n jg‡uHFl = sen

p − ei
nddmndi j − Vmn,ji

pn ,

s13d

Bmi,nj
np,pn = − kHFu†nm

† pi,fpn
†n j,Hg‡uHFl = − Vin,jm

pn . s14d

sFor the QRPA one uses instead of the Hartee-Fock state a
Hartree-Fock-Bogoliubov state or a Bardeen-Cooper-
Schrieffer state, and the QRPA phonon is composed of
quasiparticle-quasihole operators instead.d The matrices
Apn,np andBpn,np are defined similarly, but are distinct unless
Z=N; in fact, they have different dimensions unlessZ=N.
Let Np

p, Nh
p be number of proton particle and hole states,

respectively, andNp
n, Nh

n the number of neutron particle and
hole states. Thus the vectorsXspnd andYsnpd are of length
Np

pNh
n while vectorsXsnpd, Yspnd are of lengthNp

nNh
p; the

two lengths are unequal unlessZ=N. Similarly, Anp,pn

is a square matrix of dimensionNp
pNh

n while Apn,np is a
square matrix of dimensionNp

nNh
p, while Bnp,pn is a rectan-

gular matrix of dimension Np
pNh

n3Np
nNh

p, and Bpn,np

=sBnp,pndT.
The zeros in Eq.(12) occur because the original Hamil-

TABLE I. Total strengthS0, centroidĒ, and widthDE for GT transition operator. The nuclei have been
grouped into even-even, odd-odd, and odd-A.

S0 ĒsMeVd DEsMeVd

Nucleus SM RPA SM RPA SM RPA

20Ne b+/b− 0.55 0.69 15.81 12.20 4.22 2.42
22Ne b+ 0.50 0.63 19.71 16.17 3.81 1.33

b− 6.50 6.63 4.48 4.75 5.64 3.79
24Ne b+ 0.51 0.61 19.73 18.37 3.31 1.36

b− 12.51 12.61 3.82 4.26 4.91 3.46
24Mg b+/b− 2.33 2.73 13.40 10.92 3.86 2.33
26Mg b+ 1.78 2.05 15.72 13.42 3.55 1.97

b− 7.78 8.05 6.94 5.93 5.58 4.62
28Si b+/b− 3.89 3.39 13.54 12.29 3.07 1.86
30Si b+ 2.52 2.33 15.59 13.39 2.59 1.83

b− 8.52 8.33 8.69 7.38 4.69 3.26
32S b+/b− 4.01 4.25 12.48 10.38 3.04 2.21
34S b+ 1.59 1.88 14.22 11.90 2.53 2.13

b− 7.59 7.88 7.91 7.88 4.06 2.34
36Ar b+/b− 2.10 2.22 12.09 10.07 2.59 2.57
44Ti b+/b− 0.61 0.79 9.95 7.96 2.27 1.50
46Ti b+ 0.44 0.60 12.47 10.46 1.80 0.55

b− 6.44 6.60 2.99 3.31 3.51 2.39
24Na b+ 1.67 1.92 14.59 12.34 3.53 2.65

b− 7.67 7.92 6.67 6.15 4.87 3.72
26Al b+/b− 4.28 4.28 11.86 10.37 3.43 2.87
21Ne b+ 0.63 0.67 15.85 13.96 4.49 2.82

b− 3.63 3.67 6.49 5.82 5.05 4.17
25Na b+ 1.39 1.50 15.96 14.06 3.27 1.95

b− 10.39 10.50 5.27 4.92 5.13 3.97
27Al b+ 3.20 2.52 14.04 12.72 2.94 2.02

b− 6.20 5.52 9.33 8.61 5.20 3.75
29Al b+ 1.80 1.97 16.10 13.51 2.76 2.04

b− 10.80 10.97 6.61 6.45 4.85 2.99
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tonian conserves charge(and thusTz). The overall form of
Eq. (12) is identical to that of Eq.(8); we have merely intro-
duced a block structure toA, B. Because of the zeros in Eq.
(12), the equations decouple:

S Anp,pn Bnp,pn

− Bpn,np − Apn,npDSXspnd
Yspnd

D = VSXspnd
Yspnd

D s15d

and

S Apn,np Bpn,np

− Bnp,pn − Anp,pnDSXsnpd
Ysnpd

D = VSXsnpd
Ysnpd

D . s16d

It is important to note two things here. First, the decou-
pled equations(15) and(16) arenot of the same form as Eq.
(8), becauseApn,npÞAnp,pn unlessZ=N. Because of this,
some of the usual theorems do not immediately apply to Eqs.
(15) and(16), especially regarding the positivity ofV (more
about this, however, in a moment) and the sign ofuXu2
− uYu2.

Second, any solution(Xspnd ,Yspnd) to Eq. (15) with fre-
quencyV is related to a solution(Xsnpd ,Ysnpd) of Eq. (16)
with frequency −V, by (Xsnpd ,Ysnpd)=(Yspnd ,Xspnd), up to
some overall phase factor. This simplifies finding solutions.
Let sU ,Vd be a solution of Eq.(15) with frequencyv, which
can be positive or negative. IfuUu2− uVu2.0, and so normal-
izable to 1, then let(Xspnd ,Yspnd)=sU ,Vd with frequency
V=v. Otherwise, if uUu2− uVu2,0, then let(Xsnpd ,Ysnpd)
=sV,Ud with frequencyV=−v be the solution to Eq.(16). In
both cases one can normalize to 1.

What aboutV=0? In like-particle RPA, if exact symme-
tries are broken by the mean field, one obtains zero eigen-
values; the corresponding eigenvectors, which identify the
generators of the broken symmetries[24], are not normaliz-
able and must be treated with care. ForpnRPA, although
zero eigenvalues are not excluded, the corresponding eigen-

vectors do not play a special role and are in fact normaliz-
able, as argued below.

In like-particle RPA, one can show that stability of the
mean-field state implies thatVù0. But now inpnRPA one
can haveV,0, even foruXu2− uYu2=1. At first glance this is
troubling; however, we provide two arguments which resolve
this apparent paradox.

First, becausepnRPA allows charge-changing phonons of
the form (10), one should, at least implicitly, also perform
the Hartree-Fock minimization allowing mixing of proton
and neutron states, withN-Z fixed by a Lagrange multiplier
l. (We have in fact done such a calculation, but the results
are indistinguishable from fixingN-Z by hand, that is, as one
variesl, N-Z makes integral jumps. Nonetheless, the image
is useful.) Now the constrained Hartree-Fock is at a true
minimum, and if one considers the eigenfrequencies of Eq.
(12) all the resultantpnRPA frequencies are proven positive
definite [although in practice one solves Eqs.(15) and (16)
instead]. To interpret the results as physical transition ener-
gies, however, one has to subtract offlsN−Zd which leads to
negative frequencies.

One can see this directly. By adding the Langrange mul-
tiplier, one shifts the diagonals of theA matrices,

Ãnp,pn = Anp,pn − lsN − ZdI s17d

and

Ãpn,np = Apn,np + lsN − ZdI . s18d

By substituting into Eq.s15d, it is clear one is adding a
constant along the entire diagonal, which only shiftsV to

Ṽ=V+lsN−Zd, while the frequencies in Eq.s16d are shifted
in the opposite direction. In fact, foranyvalue ofl one only
shifts the frequencies and the solutionssX,Yd are manifestly
unchanged.sA similar result is found for pairing vibrations

FIG. 1. (Color online) SM (full curve), RPA
(dashed), and QRPA(dotted) summed strength
for b+ (left) GT transitions from24Ne, 34S. The
QRPA calculation is from Ref.[16].

FIG. 2. (Color online) SM (full curve) and
RPA (dashed curve) summed strength forb+

(left) and b− (right) GT transitions in26Mg. For
b+ transitions we also include the QRPA calcula-
tion [16] (dotted curve).
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in a preprintf25g; the final published versionf26g lacks the
full discussion.d

We call this result the shift lemma: by adding the
Lagrange multiplier one shifts the relative position of the
proton and neutron Fermi surfaces, but the only result is
shifting the absolute value of thepnRPA frequencies. The
relative frequencies and the eigenvectors are unchanged.
There is a useful consequence: if one obtains a zero mode,
from the shift lemma one can find a case where the fre-
quency corresponding to the same eigenvector is positive,
and one expects thepnRPA vector to be normalizable; and as
the eigenvector is independent of the shift, it isalwaysnor-
malizable. The reader should note that the shift lemma only
arises because of the unique isospin dependence of the block
decomposition(12); no such shift is possible for like-particle
RPA because one cannot add a constant to the diagonal.

III. RESULTS

We test the reliability ofpnRPA’s predictions for GT
strengths against exact diagonalization in full 0"v SM
spaces. That is, we calculate the GT strength distributions for
several nuclei in thesds1s1/2-0d3/2-0d5/2d shell on top of an
inert 16O core, and two Ti isotopes in thepfs1p1/2-1p3/2-
0f5/2-0f7/2d shell above a40Ca core. While we do not com-
pare directly with experiment, we use in our calculations
phenomenological interactions which are very successful in
reproducing the experimental data: Wildenthal “USD” in the
sd shell [27], and Richter-Brown in thepf shell [28]. The
shell-model diagonalizations were performed using a descen-
dent of the Glasgow code[29], and the shell-model strength
distributions using an efficient Lanczos moment method
[30].

Having defined thepn-phonon creation operatorb† in Eq.
(10), one can calculate the transition matrix element required
by Eq. (2) as

kRPAuOulsZ±1,N71dl = kRPAufO,bl
†guRPAl

= o
mi

fXmi
l spn/npdOmi + Ymi

l spn/npdOimg.

s19d

In our case,O is the GT transition operator defined in Eq.
s1d, which induces transitions between the correlated ground
state of the parent nucleus and thesZ+1,N−1d or sZ−1,N
+1d isobars.

Table I summarizes results for total transition strengths,
centroids, and distribution widths, where indeed we find that
thepnRPA moments are reasonably close to SM. As a check,
note that the Ikeda sum rule(6) is fulfilled in both SM and
pnRPA, as expected. We find same features typical of like-
particle RPA, that is, thepnRPA centroids are usually lower
in energy, while the SM distribution widths are larger[5,21].
The latter can be understood as particle-hole correlation be-
yond RPA which further fragment the distributions.

Note that we have results not only for even-Z, even-N
nuclides but also odd-odd and odd-A, all with comparable
success.(A technical note: In our mean-field calculations, we
allow only real wave functions. This does not have any effect
for the even-even nuclei. For even-odd or odd-A nuclei how-
ever, the exact mean-field solution could be complex, and we
see small symptoms of this restriction: because the rotations
with respect tox and z axes are complex, the proton and
neutron number conserving RPA formalism identifies some
generators of the broken symmetries as lying at small, but
notzero, excitation energies. While these approximations can
be relevant for other transitions[21], they do not have an
impact here.)

In a previous paper[21] we have computed charge-
conserving Gamow-Teller transitions, that is, with an opera-
tor sW t0, in like-particle RPA. These results are identical to
our presentpnRPA calculations forN=Z nuclides, but are
different for NÞZ. This is easily understood through the

FIG. 3. (Color online) SM (full curve) and
RPA (dashed curve) summed strength forb+

(left) andb− (right) GT transitions in24Na.

FIG. 4. (Color online) Same as in Fig. 3, but
for 25Na.
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isospin structure of the spectrum. For like-particle RPA, the
charge-conserving GT operator can only take one to isospin
Tù uZ−Nu /2; but charge-changing GT transitions can go to
isospinT, uZ−Nu /2 and for this one needspnRPA.

Figures 1–5 illustrate selected results in detail. These are
typical results, neither better nor worse on the average. These
figures follow a useful convention used by many authors and
plot the accumulated sum of the strength,oBsGTd
=oE,Ef

SsEd, which allows one to compare by eye the first
few moments. Again we see by eye generally good results,
for even-even, odd-odd, and odd-A alike. The major system-
atic error of RPA appears to be lower centroids forb+ tran-
sitions; why there is no similar lowering of theb− centroid is
unknown.

In Figs. 1 and 2 we compareb+ calculation against the
sphericalpnQRPA calculations of Lauritzen[16], which are
similar to those of Refs.[9,18]. (All of these papers com-
puted onlyb+ decay, and only for even-even nuclides.) In
general the QRPA strengthsS0 are about twice as much as

the exact calculation, and the centroidsĒ are significantly
lower. The calculations of Ref.[18] found that pnQRPA
gives results very similar to shell-model calculations re-
stricted to two-particle, two-hole excitation out of the 0d5/2
orbit. This is believable, as RPA correlations are approxi-
mately two-particle, two-hole in nature. By contrast, our
pnRPA calculations on top of a deformed HF state do much
better. In particular, our deformedpnRPA calculations better
approximate the correct total strength than does the spherical
pnQRPA. That deformation can “quench” Gamow-Teller
strength is already known from shell-model calculations
[3,22]. (See, however,pnQRPA calculations of Ref.[31],
who find the total strength to be insensitive to deformation,
although thedetailsof the distribution they find to be sensi-
tive. They speculate that the difference is that they include up
to ten harmonic oscillator shells in their calculations, while
our calculations and those of Refs.[3,22] are within a single
harmonic oscillator shell. Why a multishell calculation
should be insensitive to deformation is not clear.)

There is a curious exception: the sphericalpnQRPA cal-

culation of Ref.[17] on 26Mg yields S0 andĒ with approxi-
mately the same accuracy relative to SM results as us. They

only compute the oneb+ decay, however, and it is difficult to
understand the difference between their methodology and
that of Refs.[9,16,18]; furthermore, although in principle all
three calculations are using the same shell-model interaction
[27], which we properly scaled toA=26, we can reproduce
Lauritzen’s shell-model results[16] but not those of Ref.
[17].

In order to further illustrate how important it is to treat
correctly deformation, we show in Fig. 5 three different
pnRPA calculations for32S: with dotted line we represent the
distribution strength for a spherical HF state, with dot-dashed
line a distribution obtained by starting with a prolate HF
state, and with dashed line a distribution obtained starting
with a triaxial HF state. The two deformed states are almost
degenerate in energy, the triaxial state being slightly lower.
From Fig. 5 one sees that the strength distribution off the
triaxial HF state best approximates the SM result(as one
might expect). QRPA strength distributions which use a start-
ing spherical mean-field solution[16] are slightly more frag-
mented than in our spherical calculation(we obtain just one
state withJ=1), but the total strength is about the same in
bothpnRPA and QRPA, overestimating seriously the SM to-
tal strength. We conclude that using a deformed mean-field
solution is at least as important, and arguably more so, than
treating pairing with rigor.

In the above discussion we have focused on the gross
properties of the Gamow-Teller “resonance,” which is the
main application of RPA. But for cold systems, one is often
most interested exclusively in low-lying transitions. As is
observable in the figures, ourpnRPA calculations are rather
mediocre when it comes to the lowest-lying GT transitions:
arguably better thanpnQRPA, but not very good compared
to the exact shell-model results. This is an important caveat
for any applications.

IV. CONCLUSIONS

The main purpose of this paper was to investigate the
pnRPA’s reliability for predictingb± GT transition strengths;
the motivation is astrophysical applications, where, aside
from binding energies and electromagnetic transitions, a
good knowledge of weak transitions is essential. Our tool in
this investigation was the interacting SM which can provide
the exact numerical solution in a restricted space. Although
we made our tests for nuclides near the bottom of the valley
of stability, presumably our results apply out to the driplines;
in fact the major uncertainty will be the shell-model interac-
tion, not thepnRPA.

We show a very good agreement between SM andpnRPA
b± transition distributions in a large number of nuclides in
the sd andpf shells, similar to high-lying collective electro-
magnetic transitions investigated in a previous paper[21].
Furthermore, we obtain better results than spherical
pnQRPA, obtaining better suppression of the total strength.
This may seem surprising, as we do not treat rigorously the
pairing interaction; on the other hand, we model correctly the
deformation and this proves suitable for describing GT tran-
sition strengths.(Because of this, we view tests ofpnRPA in
schematic models without symmetry breaking[32] as being

FIG. 5. (Color online) Comparison of the SM(full curve) and
pnRPA predictions for the summed strength of GTb+ transitions in
32S. ThepnRPA was performed on top of a spherical(dotted curve),
prolate (dot-dashed), and triaxial (dashed) HF state, respectively,
emphasizing the importance of a correct treatment of deformation
for a correct description of the strength distribution.
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inadequate.) It is possible that a deformedpnQRPA ap-
proach, with better treatment of pairing, will lead to further
improvement. We hope however to extend our program to
the deformedpnQRPA in the not-so-distant future. Further-
more, it will be important to consider multishell spaces,
where at least one set of deformedpnQRPA calculations(not
validated by direct shell-model calculations, however, due to
the enormous size of the model space) suggest a weaker
dependence on deformation[31].
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