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Gamow-Teller transitions and deformation in the proton-neutron random phase approximation
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We investigate reliability of Gamow-Teller transition strengths computed in the proton-neutron random
phase approximation, comparing with exact results from diagonalization in fiull $hell-model spaces. By
allowing the Hartree-Fock state to be deformed, we obtain good results for a wide variety of nuclides, even
though we do not project onto good angular momentum. We suggest that deformation is as important or more
so than pairing for Gamow-Teller transitions.
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I. INTRODUCTION ber of authors have previously tested the efficacy of calcu-

lating GT transitions within the proton-neutron quasiparticle
Weak processes, such as béi and double-betd3p) ' . ;
decay, have deep consequences for nucleosyntfisind RPA (pnQRPA), through comparison with exact calculations

: either with full shell-model diagonalizatiofi9,16—18 or
physics beyond the Standard Modg]. Weak processes are group-theoretical schematic moddl$0]. The efficacy of

also sensitive to details of nuclear structure: allowedtheseanRPA calculations, which we will discuss in more
Gamow-Teller (GT) transitions depend in particular upon getail helow, can be broadly summarized as poor, typically
Pauli blocking[1,3]. Thus, predictions for astrophysics as gyerestimating the total transition strength and underestimat-
well as interpretation oBB-decay experiments must be mod- jhq the first moment of the transition strength. In order to
eled with care. Because of this sensitivity to Pauli blockingcompare with the calculations described below, it is impor-
and thus upon configuration mixing, the large-basis interacttant to understand that these calculations used sphetical
ing shell model(SM) [4] provides one of the best micro- =0, N-even Z-even parent states and treated pairing care-

scopic approaches to Gamow-Teller transitions. fully, starting with either the Hartree-Fock-Bogoliubov or the
The interacting shell model, however, is computationallyBardeen-Cooper-Schrieffer equations.
expensive, and only recently has the fuld®pf shell be- With the exception of those tests of Gamow-Teller transi-

come tractable. A simpler approach is the random phase apions, however, most other tests of the RPA and its generali-
proximation(RPA) and its generalizations, which have beenzations have been against toy models. Recently we began to
widely and successfully applied to giant resonances such aystematically test the RPA against full shell-model diagonal-
the electric dipolggiant dipole resonance or GDR5], and ization[19-21]. In this paper we describe the generalization
has also been applied to many important problems in weaf® Proton-neutron RPAPnRPA) and compare Gamow-Teller
transitions[1,6—1Q. It is not immediately obvious, however, transitions against the full shell-model results. In contrast to
that the RPA is an appropriate approximation &fr transi- ~ Previous approaches, we do not treat pairing carefully, but do
tions. Because the RPA is the small-amplitude limit of time-&/low arbitrary deformation, even though we do not project
dependent mean-field theofy,12, it seems appropriate for to good angular m_omentum. Furfthermore we are not limited
the GDR, which can be described semiclassically in thd0 even-even nuclides. We obtain g_ood transition strengths,
Goldhaber-Teller model13] as protons oscillating in bulk 2nd where we can compare to published sphepoIRPA
against neutrons. The application of the RPA and its extenStrengths, our calculations are generally superior. _We there-
sions to Gamow-Teller transitions, although with a long his-for€ conclude that proper treatment of deformation, even

tory [14,15, is more problematic. Two implicit assumptions Without projection, is at least as important as proper treat-
in the RPA are, first, ground-state correlations on top of gnent of pairing, and arguably more so. This agrees with
mean-field state are small, and, second, particle-hol hell-model studies that show a correlation betwg2riran-

phonons have boson commutation rules, which means thé{tion strengthga measure of deformatipand GT transition

Pauli blocking is not fully treated. Therefore, as GT transi-Stengths3,22. .
tions are sensitive to Pauli blocking, they may not be well Ve also briefly argue that thenRPA frequencies should
matched to RPA calculations. be real, and not complex; such an argument is missing from

Reading the literature only furthers these doubts. A numthe literature. 'Included in t'his discussion i's a lemma helpful
to understanding the solution of tipeRPA eigenvalue equa-
tions.

*Present address: Department of Physics, University of Arizona,
P.O. Box 210081, Tucson, AZ 85721. On leave from National In-
stitute for Physics and Nuclear Engineering Horia-Hulubei, Bucha- In this paper we consider only charge-changing Gamow-
rest, Romania. Teller transitions; the transition operators are thus
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Os = Qp0T:, 1 A B X X
B Al af .. (8)
where 7, changes a neutron into a proton. Because here we Y Y

consider only strengtlistributionsand not absolute transi-
tion strengths, we drop the axial vector coupligg The
transition strength from the parent stdig (here always a
ground statpto a final statef at excitation energ\E=E;
-E; is given by

Here the matri¥A, a Hermitian matrix, is in fact the subma-
trix of H between one-particle, one-hole statelso the ma-
trix for the Tamm-Dancoff approximationwhile the ele-
ments ofB, a symmetric matrix, are the matrix elements of
H between the HF state and two-particle, two-hole states.
. (For simplicity we assume real HF wave functions so that all
S(E) = X 8(E; -~ Ei - E)(F|O]i) 2. (2)  subsequent quantities are rg@ne can show that the exci-

f tation frequencie$) are real if the stability matrix

The transition strength to a given level is also often called A B
the B(GT) value. (B A)

A convenient way to characterize the distribution of tran-
sition strength is through moments. The zeroth moment is thbas no negative eigenvalues; this is equivalent to the Hartree-

9

total transition strengti%,, Fock state being at docal) minimum. Part of the proof of
this requires that botlA +B have no negative eigenvalues
S=2> SE), (3)  [12], which in turn requires thaf have no negative eigen-
E values. We emphasize this point because the situation will be

. ) = ] different for pnRPA.
while the centroid of the distributionE is the first moment One can show that the solutions of E8) come in pairs:
— if ()2,\?) is a solution with frequency), then(\?,)?) is also a
E= EE: E SBE)/S (4 solution with frequency Q. The solution withQ >0 is as-
sociated with the vectofX,Y) such that|X|>|Y|, and one

(note that this centroid is relative to the parent endgyand ~ chooses a normalizatiop|?~|Y|?=1; that one can do this
the width of the distribution,AE, is the square root of the also derives from the non-negative eigenvalues of the stabil-

second moment, calculated relative to the centroid: ity matrix. The special casB=0 corresponds to invariance
of the Hamiltonian under a symmetry, for example, rotation
AE2= (E—E)zs(E)/S,. (5)  or translation; here the vectgK,Y) cannot be normalized,
E as [X|=[Y|, and one must resort to a different formalism
[12,21,23.

An important check of any calculation is the well-known  The proton-neutron RPA is similar to the like-particle
lkeda sum rule, which holds true for any parent state, both irRPA but with important differences. For like-particle RPA,

the SM and in the RPA: the phonon creation operat@ uses one-particle, one-hole
operators of the formr'#, v'v (thus the name like-particle
S(B) - S(B)=3(N-2). (6)  The pnRPA phonon creation operator is also one-body but

changes the third component of isospin

BL= 2 Xip (PN 711 = Yo (WD) 73]

We now briefly review the random phase approximation
and its variant, thenRPA [15]. Unlike the standard or like-
particle RPA, pnRPA provides means to calculate excited
states of neighboring isobars. The starting point, however, is
similar to the regular RPA: a mean-field solution of the par- +> [Xmi,)\(np)v;m - Ymi,)\(pn)'”'iTVm]- (10
ent nucleus, which in turn defines a particle-hole basis. In mi

our case we began with a Hartree-Fock stal), allowing e first and the fourth terms in this equation describe the
unrestricted deformation. The RPA can be derived a numbegycited states of théZ+1,N-1) isobar, while the second

of ways, but it egsentially approximate_s the.energy s_,urfaC%Sd third the(Z-1,N+1) isobar. We follow the standard
about the mean-field state as a harmonic oscillator. This lea nvention and use indices, n for “particle” states, that is,

to a F;IDA ?rotmd StaékRF;?r’l which wr;pl:glth{[;éludesdzero- unfilled single-particle states in the Hartree-Fock wave func-
point Tuctuations about theé mean-nieid s ), and ex- tion, andi,j for “hole” states, or filled single-particle states;

cited states are ane-phonan excitations on the ground stalg s 7! v, destroys a filled neutron stater creates a neutron

= g1RP 7 hole in the HF wave function, in the usual vieand creates
[N = By[RPA. (7 a proton in an excited particle state. The equation of motion

For RPA one usually assumes the creation operators are <RPA|[5,8,[H,,8T]]|RPA>:Q<RPA|[5,B,,8T]|RPA)
simple one-particle, one-hole operators. In order to properly (11)
discuss th@nRPA, it is useful to further, if briefly, recapitu-

late the like-particle RPA12]. In the matrix formalism, one transforms as usual to a non-Hermitian eigenvalue problem
solves [12]
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TABLE I. Total strengthS,, centroidE, and widthAE for GT transition operator. The nuclei have been
grouped into even-even, odd-odd, and @dd-

S E(MeV) AE(MeV)
Nucleus SM RPA SM RPA SM RPA
“ONe BB 0.55 0.69 15.81 12.20 4.22 2.42
2Ne B 0.50 0.63 19.71 16.17 3.81 1.33
B 6.50 6.63 4.48 4.75 5.64 3.79
2Ne B 0.51 0.61 19.73 18.37 3.31 1.36
B 12.51 12.61 3.82 4.26 4.91 3.46
Mg BB 2.33 2.73 13.40 10.92 3.86 2.33
25Mg B 1.78 2.05 15.72 13.42 3.55 1.97
B 7.78 8.05 6.94 5.93 5.58 4.62
285 BB 3.89 3.39 13.54 12.29 3.07 1.86
305 B 2.52 2.33 15.59 13.39 2.59 1.83
B 8.52 8.33 8.69 7.38 4.69 3.26
823 BB 4.01 4.25 12.48 10.38 3.04 2.21
343 B 1.59 1.88 14.22 11.90 2.53 2.13
B 7.59 7.88 7.91 7.88 4.06 2.34
3GAr BB 2.10 2.22 12.09 10.07 2.59 2.57
44Tj BB 0.61 0.79 9.95 7.96 2.27 1.50
46T B 0.44 0.60 12.47 10.46 1.80 0.55
B 6.44 6.60 2.99 3.31 3.51 2.39
2Na B 1.67 1.92 14.59 12.34 3.53 2.65
B 7.67 7.92 6.67 6.15 4.87 3.72
26\ BB 4.28 4.28 11.86 10.37 3.43 2.87
2INe B 0.63 0.67 15.85 13.96 4.49 2.82
B 3.63 3.67 6.49 5.82 5.05 417
2Na B 1.39 1.50 15.96 14.06 3.27 1.95
B 10.39 10.50 5.27 4.92 5.13 3.97
27pl B 3.20 2.52 14.04 12.72 2.94 2.02
B 6.20 5.52 9.33 8.61 5.20 3.75
291 B 1.80 1.97 16.10 13.51 2.76 2.04
B 10.80 10.97 6.61 6.45 4.85 2.99
AP0 0 B™\ [X(pn) BAvR = = (HFILvim, [miy, HIIHFY = = VBl (14)
0 APRIP - BPRIP 0 X(np) (For the QRPA one uses instead of the Hartee-Fock state a
0 - B"PPN — ANPPD 0 Y(np) Hartree-Fock-Bogoliubov state or a Bardeen-Cooper-
B 0 — AP [\ y(pn) Schrieffer state, and the QRPA phonon is composed of
quasiparticle-quasihole operators instgadhe matrices
X(pn) APMIP and BPMP are defined similarly, but are distinct unless
X(np) Z=N; in fact, they have different dimensions unlegsN.
=Q Y(np) |’ (12 Let Ng, N7 be number of proton particle and hole states,
. v )
Y(pn) respectively, andN;, Ny the number of neutron particle and

where the definitions foAP™"P and B"PP" matrices are simi-
lar to the regular proton-neutron conserving formalism

where one approximatéRPA) =~ |HF):

hole states. Thus the vectaxépn) and Y(np) are of length
N;N,’; while vectorsX(np), Y(pn) are of IengthN;Nﬁ; the
two lengths are unequal unlesd=N. Similarly, A"PP"
'is a square matrix of dimensioNN; while AP is a
square matrix of dimensioNgNy, while B"PP" is a rectan-
gular matrix of dimension NFNy X NiN7, and BP"P

ATR?'= (HFIy o, [H, mw 11IHF) = (€ = €)nndy ~ Vi =(gneen)T,
(13 The zeros in Eq(12) occur because the original Hamil-
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tonian conserves chargand thusT,). The overall form of
Eqg. (12) is identical to that of Eq(8); we have merely intro-
duced a block structure A, B. Because of the zeros in Eq.
(12), the equations decouple:

ATPPR X(pn)
—BPMP — AP A Y(pn)

APMP
— gneen

and

Bnp,pn

BPnP

)(X(np)
=~ APPAY(np)

Q(X(lon)) (15

Y(pn)

(X(np)

Y(np) ) (16)

vectors do not play a special role and are in fact normaliz-
able, as argued below.

In like-particle RPA, one can show that stability of the
mean-field state implies th& =0. But now inpnRPA one
can have() <0, even for|X|?—|Y|?=1. At first glance this is
troubling; however, we provide two arguments which resolve
this apparent paradox.

First, becaus@nRPA allows charge-changing phonons of
the form (10), one should, at least implicitly, also perform
the Hartree-Fock minimization allowing mixing of proton
and neutron states, witR-Z fixed by a Lagrange multiplier
\. (We have in fact done such a calculation, but the results
are indistinguishable from fixindJ-Z by hand, that is, as one

It is important to note two things here. First, the decou-varies\, N-Z makes integral jumps. Nonetheless, the image
pled equationgl5) and(16) arenot of the same form as Eq.
(8), becauseAP™ P ANPPN ynlessZ=N. Because of this,
some of the usual theorems do not immediately apply to Eqg12) all the resultanpnRPA frequencies are proven positive
(15) and(16), especially regarding the positivity 61 (more
about this, however, in a momgnand the sign of|X|?

_|Y|2.

Second, any solutiofX(pn), Y(pn)) to Eq.(15) with fre-
quency() is related to a solutioX(np),Y(np)) of Eq. (16)
with frequency €2, by (X(np),Y(np))=(Y(pn), X(pn)), up to
some overall phase factor. This simplifies finding solutions.
Let (U,V) be a solution of Eq(15) with frequencyw, which
can be positive or negative. i)|>-|V|>>0, and so normal-
izable to 1, then le{X(pn),Y(pn))=(U,V) with frequency
Q=w. Otherwise, if|U]2-|V[2<0, then let(X(np),Y(np))
=(V,U) with frequency() =-w be the solution to Eq16). In
both cases one can normalize to 1.

What about(2=07 In like-particle RPA, if exact symme- 1 , )
tries are broken by the mean field, one obtains zero eigerROnstant along the entire diagonal, which only shiftsto
values; the corresponding eigenvectors, which identify th€2=Q+X(N-2), while the frequencies in E416) are shifted
generators of the broken symmetrigel], are not normaliz-

able

and must be treated with care. FMRPA, although

is useful) Now the constrained Hartree-Fock is at a true
minimum, and if one considers the eigenfrequencies of Eq.

definite [although in practice one solves E¢&5) and (16)
instead. To interpret the results as physical transition ener-
gies, however, one has to subtract fN—2Z) which leads to
negative frequencies.

One can see this directly. By adding the Langrange mul-
tiplier, one shifts the diagonals of the matrices,

AMPPN = ATPPN — )\ (N = Z)] (17)

and
APNNP = APNNP 4 AMN=2)I. (18)

By substituting into Eq.(15), it is clear one is adding a

in the opposite direction. In fact, f@anyvalue ofA one only
shifts the frequencies and the solutidXsY) are manifestly

zero eigenvalues are not excluded, the corresponding eigeanchanged(A similar result is found for pairing vibrations

i | LI I LILI I LILI I LILI | LI I 1 I: | 1 | 1 | I I _I I 1 I __| 8
= + 3 | [ _
3B & B Jde
= E = 3 i i = FIG. 2. (Color onling SM (full curve) and
% 2 i'—- — | 54 4 % RPA (dashed curve summed strength foB*
N E : E B Mg - 5 (lefty and B~ (right) GT transitions in®*®Mg. For
1 —ad — — —12 B transitions we also include the QRPA calcula-
o _.-I - 3 = - tion [16] (dotted curve
=2 I N I T r",||||||||| 0
8§ 10 12 14 16 18 20 S5 0 5 10 15 20 25

E (MeV)

E (MeV)
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i : (left) and 8~ (right) GT transitions in*“Na.
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in a preprint[25]; the final published versiof26] lacks the (RPAOI\ zu1n=1) = (RPA[O, BIIRPA)
full discussion) +1,

We call this result the shift lemma: by adding the = > XM (pVnp) O + YA (pVNP) Ojn].
Lagrange multiplier one shifts the relative position of the mi
proton and neutron Fermi surfaces, but the only result is (19)

shifting the absolute value of thenRPA frequencies. The

relative frequencies and the eigenvectors are unchangelf! our caseO is the GT transition operator defined in Eq.
There is a useful consequence: if one obtains a zero modél): Which induces transitions between the correlated ground

from the shift lemma one can find a case where the freState of the parent nucleus and it&+1,N-1) or (Z-1,N
guency corresponding to the same eigenvector is positivé‘:l) isobars.

and one expects thenRPA vector to be normalizable; and as ~ Table | summarizes results for total transition strengths,
the eigenvector is independent of the shift, ilsaysnor- centroids, and distribution widths, where indeed we find that
malizable. The reader should note that the shift lemma onlyhe pPnRPA moments are reasonably close to SM. As a check,
arises because of the unique isospin dependence of the bloBRte that the lkeda sum ru(®) is fulfilled in both SM and
decompositior{12); no such shift is possible for like-particle PPRPA, as expected. We find same features typical of like-

RPA because one cannot add a constant to the diagonal. Particle RPA, that is, thenRPA centroids are usually lower
in energy, while the SM distribution widths are largér21].

The latter can be understood as particle-hole correlation be-
IIl. RESULTS yond RPA which further fragment the distributions.
Note that we have results not only for evEnevenN

We test the reliability ofpnRPA's predictions for GT  nuclides but also odd-odd and odd-all with comparable
strengths against exact diagonalization in fulk«d SM  syccess(A technical note: In our mean-field calculations, we
spaces. That is, we calculate the GT strength distributions fogllow only real wave functions. This does not have any effect
several nuclei in thed(1s;/,-0d3/,-0ds/») shell on top of an  for the even-even nuclei. For even-odd or cdduclei how-
inert 1°0 core, and two Ti isotopes in thef(1py-1ps-  ever, the exact mean-field solution could be complex, and we
0fs-0f;») shell above &°Ca core. While we do not com- see small symptoms of this restriction: because the rotations
pare directly with experiment, we use in our calculationswith respect tox and z axes are complex, the proton and
phenomenological interactions which are very successful imeutron number conserving RPA formalism identifies some
reproducing the experimental data: Wildenthal “USD” in the generators of the broken symmetries as lying at small, but
sd shell [27], and Richter-Brown in thepf shell [28]. The  notzero, excitation energies. While these approximations can
shell-model diagonalizations were performed using a descere relevant for other transitiori2l], they do not have an
dent of the Glasgow code9], and the shell-model strength impact here.
distributions using an efficient Lanczos moment method In a previous papef2l] we have computed charge-
[30]. conserving Gamow-Teller transitions, that is, with an opera-

Having defined the@n-phonon creation operatg’ in Eq.  tor a7, in like-particle RPA. These results are identical to
(10), one can calculate the transition matrix element require@ur presentpnRPA calculations folN=Z nuclides, but are
by Eq.(2) as different for N#Z. This is easily understood through the

1.5

1.0
FIG. 4. (Color onling Same as in Fig. 3, but
for 2°Na.

> B(GT)
¥ B(GT)

0.5

0.0
-10 0 10 20

E (MeV)
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8 T T T T only compute the ong* decay, however, and it is difficult to
B : 1 | B=0 understand the difference between their methodology and
6 : s N — B=0.100 y=0 that of Refs[9,16,1§; furthermore, although in principle all
i oo 1 (22 B=0.112 =25 three calculations are using the same shell-model interaction
4- B : 17 = [27], which we properly scaled t&=26, we can reproduce
1 Lauritzen’s shell-model resultgl6] but not those of Ref.
[17].
In order to further illustrate how important it is to treat
5' 10 15 correctly deformation, we show in Fig. 5 three different
E (MeV) pnRPA calculations fof?S: with dotted line we represent the
distribution strength for a spherical HF state, with dot-dashed
FIG. 5. (Color online Comparison of the SMfull curve) and  line a distribution obtained by starting with a prolate HF
pnRPA predictions for the summed strength of BTtransitions in  state, and with dashed line a distribution obtained starting
823, ThepnRPA was performed on top of a spheri¢dbtted curvg, with a triaxial HF state. The two deformed states are almost
prolate (dot-dashey and triaxial (dashegl HF state, respectively, degenerate in energy, the triaxial state being slightly lower.
emphasizing the importance of a correct treatment of deformatiofrrom Fig. 5 one sees that the strength distribution off the
for a correct description of the strength distribution. triaxial HF state best approximates the SM regal one
might expect QRPA strength distributions which use a start-

isospin structur_e of the spectrum. For like-particle RPA, theﬁng spherical mean-field solutigii6] are slightly more frag-
charge-conserving GT operator can only take one 10 iSOSPifhented than in our spherical calculatiome obtain just one

T=[Z-N|/2; but charge-changing GT transitions can go togtate withJ=1), but the total strength is about the same in
isospinT<[Z-N|/2 and for this one needsRPA. both pnRPA and QRPA, overestimating seriously the SM to-
Figures 1-5 illustrate selected results in detail. These arg, strength. We conclude that using a deformed mean-field
typical results, neither better nor worse on the average. Thesg) | tion is at least as important, and arguably more so, than
figures follow a useful convention used by many authors a”‘i‘reating pairing with rigor.
plot the accumulated sum of the strengthB(GT) In the above discussion we have focused on the gross
=Ze<g, S(E), which allows one to compare by eye the first yroperties of the Gamow-Teller “resonance,” which is the
few moments. Again we see by eye generally good resultsnain application of RPA. But for cold systems, one is often
for even-even, odd-odd, and oddalike. The major system- most interested exclusively in low-lying transitions. As is
atic error of RPA appears to be lower centroids frtran-  observable in the figures, opnRPA calculations are rather
sitions; why there is no similar lowering of tige centroid is  mediocre when it comes to the lowest-lying GT transitions:
unknown. arguably better thapnQRPA, but not very good compared

In Figs. 1 and 2 we comparg" calculation against the to the exact shell-model results. This is an important caveat
sphericalpnQRPA calculations of LauritzefiL6], which are  for any applications.

similar to those of Refs[9,18]. (All of these papers com-
puted only 8* decay, and only for even-even nuclides
general the QRPA strengtt® are about twice as much as IV. CONCLUSIONS

the exact Calculation, and the Centl’oiﬂsare Significantly The main purpose of th|S paper was to investigate the
lower. The calculations of Refl18] found thatpnQRPA  pnRPAs reliability for predicting3* GT transition strengths;
gives results very similar to shell-model calculations re-the motivation is astrophysical applications, where, aside
stricted to two-particle, two-hole excitation out of thés  from binding energies and electromagnetic transitions, a
orbit. This is believable, as RPA correlations are approxigood knowledge of weak transitions is essential. Our tool in
mately two-particle, two-hole in nature. By contrast, ourthjs investigation was the interacting SM which can provide
PNRPA calculations on top of a deformed HF state do muchhe exact numerical solution in a restricted space. Although
better. In particular, our deformgqzhRPA calculations better e made our tests for nuclides near the bottom of the valley
approximate the correct total strength than does the sphericgt stapility, presumably our results apply out to the driplines;
PNQRPA. That deformation can “quench” Gamow-Teller jn fact the major uncertainty will be the shell-model interac-
strength is already known from shell-model calculationstion, not thepnRPA.
[3,22. (See, howeverpnQRPA calculations of Ref[31], We show a very good agreement between SM amiRPA
WhO f|nd the tOtal Strength to be insensitive to deformation,Bt transition distributions in a |arge number Of nuciides in
although thedetailsof the distribution they find to be sensi- the sd and pf shells, similar to high-lying collective electro-
tive. They Speculate that the difference is that they include Umqagnetic transitions investigated in a previous pm
to ten harmonic oscillator shells in their calculations, while pyrthermore, we obtain better results than spherical
our calculations and those of Ref8,22] are within a single  ynQRPA, obtaining better suppression of the total strength.
harmonic oscillator shell. Why a multishell calculation This may seem Surprising, as we do not treat rigorousiy the
should be insensitive to deformation is not clgar. pairing interaction; on the other hand, we model correctly the
There is a curious exception: the spheripaQRPA cal-  deformation and this proves suitable for describing GT tran-
culation of Ref.[17] on ?5Mg yields S, and E with approxi-  sition strengths(Because of this, we view tests pfiRPA in
mately the same accuracy relative to SM results as us. Theschematic models without symmetry breakii®®] as being

2 B(GT)
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