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Dilute multi-a cluster condensed states with spherical and axially deformed shapes are studied with the
Gross-Pitaevskii equation and Hill-Wheeler equation, where thea cluster is treated as a structureless boson.
Applications to self-conjugate 4N nuclei show that the diluteNa states of12C to 40Ca withJp=0+ appear in the
energy region from threshold up to about 20 MeV, and the critical number ofa bosons that the diluteNa
system can sustain as a self-bound nucleus is estimated roughly to beNcr,10. We discuss the characteristics
of the diluteNa states with emphasis on theN dependence of their energies and rms radii.
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I. INTRODUCTION

The molecularlike picture as well as the single-particle
picture are fundamental viewpoints to understand the struc-
ture of light nuclei[1–4]. It is well known that the structure
of many states in light nuclei is described successfully by the
microscopic cluster model, where a group of nucleons is as-
sumed to form a localized substructure(cluster), interacting
with other clusters and/or nucleons in the nucleus. The pre-
dominant cluster is thea nucleus, which plays an important
role in the cluster model, because it is the lightest and also
smallest shell-closed nucleus with a binding energy as large
as 28 MeV, reflecting the strong four-nucleon correlation.
Molecularlike states in nuclei are expected to appear around
the threshold energy of breakup into constituent clusters[5],
because the intercluster binding is weak in the cluster states.
For example, the ground state of8Be and the second 0+ state
of 12C are known[6] to have loosely bound 2a and 3a
structures, respectively, which appear around the 2a and 3a
thresholds.

Special attention has been paid to such four-nucleon cor-
relations corresponding to ana-type condensation in sym-
metric nuclear matter, similar to the Bose-Einstein conden-
sation for finite number of dilute bosonic atoms such as87Rb
or 23Na at very low temperature[7]. Several authors have
discussed the possibility ofa-particle condensation in low-
density nuclear matter[8,9]. They found that sucha conden-
sation can occur in the low-density region below a fifth of
the saturation density, although the ordinary pairing correla-
tion can prevail at higher density. The result indicates thata
condensate states in finite nuclear system may exist in ex-
cited states of dilute density composed of weakly interacting
gas ofa particles. Thus, it is an interesting subject to study
the structure of light nuclei from the viewpoint ofa-particle
condensation.

Recently, a newa-cluster wave function was proposed
which is of theNa-particle condensate type[10]:

uFNal = sCa
+dNuvacl, s1d

kr1 ¯ rNuFNal ~ Ahe−nsr1
2+¯+rN

2 dfsa1d ¯ fsaNdj, s2d

whereCa
+ is the a-particle creation operator,fsad denotes

the internal wave function of thea cluster,r i is the center-
of-mass coordinate of theith a cluster, andA presents the
antisymmetrization operator among the constituent nucleons.
The important characteristic in Eq.s2d is that the center-of-
mass motion of eacha cluster is ofS-wave type with the
independent size parametern. Applications of the
condensate-type wave function to12C and16O showed that
the second 0+ state of 12C sEx=7.65 MeVd and fifth 0+

states of16O sEx=14.0 MeVd, located around the 3a- and
4a-particle thresholds, respectively, are specified by the
Na condensate state, which is quite similar to the Bose-
Einstein condensation of bosonic atoms in magnetic traps
where all atoms occupy the lowestS orbit f10g. The cal-
culated root-mean-squaresrmsd radius for those conden-
sate states is about 4 fm, which is much much larger than
that for the ground statesabout 2.7 fmd. As for 8Be, the
a-particle wave function in Eqs.s1d and s2d, taking into
account the axially symmetric deformation, was applied to
investigate the rotational structure of the ground-band
states s0+-2+-4+d f11g. It was found that the rotational
character of the8Be ground-state band is reproduced
nicely by this wave function with deformationf11g.

The above-mentioned theoretical results for8Be, 12C, and
16O lead us to conjecture that such dilutea-cluster states
near theNa threshold may also occur in other heavier 4N
self-conjugate nuclei. The Coulomb-potential barrier should
play an important role to confine such diluteNa-particle
states, as inferred from the analyses of the8Be, 12C, and16O
nuclei. In fact, the ground state of8Be, which appears at
E2a=92 keV referring to the 2a threshold, exists as a reso-
nant state with very narrow width, due to the Coulomb-
potential barrier, whose height is estimated to be 1–2 MeV.
This self-trapping ofa particles by the Coulomb barriers is
in contrast to the case of the dilute neutral atomic condensate
states, where the atoms are trapped by the external magnetic
field [7].
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It is an intriguing problem and of interest to study how
manya particles can be bound in the dilute nuclear system.
Increasing the number ofa clusters, the rms radius of the
system should become gradually larger, because the dilute
character must be retained. Then, the total kinetic energy of
the Na system becomes significantly smaller in comparison
with the potential energy, similar to the case of bosonic at-
oms in the condensed state. In addition, the height of the
Coulomb-potential barrier will become steadily lower. This
is due to the following reasons. Thea-a nuclear potential is
short ranged, while the Coulomb potential is long ranged.
Increasing the number of thea particles, the repulsive con-
tribution from the Coulomb potentials prevails gradually
over the attractive one from thea-a nuclear potentials, be-
cause the gaslikeNa system is expanding in such a way that
the rms radius between twoa particles is gradually getting
larger. This means that the height of the potential barrier
confining the gaslikeNa particles becomes lower with in-
creasingN, and then, there should exist a critical number
sN=Ncrd beyond which theNa system cannot sustain itself
as a bound nuclear state. Thus, it is interesting to estimate the
number ofNcr as well as to study the structure of the dilute
Na system up toN=Ncr. Since the application of the
condensate-type wave function in Eqs.(1) and (2) to the
generalNa system is not easy and the computational limita-
tion is N,6 at most, we need to study them with phenom-
enological models.

In this paper, the gaslikeNa-cluster states are studied
with the following two approaches: the Gross-Pitaevskii-
equation approach and Hill-Wheeler-equation approach. The
Gross-Pitaevskii equation, which is of the nonlinear
Schrödinger type, was proposed about 50 years ago to de-
scribe the single-boson motion in the dilute atomic conden-
sate state[12]. Recent experiments starting from the middle
of 1990s have succeeded in realizing such a condensate state
consisting of 105–106 neutral atoms trapped by the magnetic
field at very low temperature. Many characteristic aspects of
the dilute states are described successfully by the Gross-
Pitaevskii equation[7]. Thus, its application to the diluteNa
nuclear systems is also very promising, and we expect from
such a study useful information on the condensed states. On
the other hand, we here propose also a different approach.
Although the Gross-Pitaevskii equation is simple and inter-
esting for the study of the structure of the diluteNa system,
the center-of-mass motion in theNa system is not com-
pletely removed in this framework. The effect of the center-
of-mass motion should be non-negligible to the total energy
and rms radius, etc., for small numbers ofa bosons. We,
thus, formulate in this paper the framework describing the
dilute Na systems free from the center-of-mass motion, with
the approach of the Hill-Wheeler equation. The sphericalNa
systems as well as the deformed ones, with the axial symme-
try, are discussed with this equation. The two different ap-
proaches, the Gross-Pitaevskii-equation approach and the
Hill-Wheeler-equation approach, are complementary to one
another, and we will obtain useful understanding of the dilute
multi-a-particle states. Starting from8Be, the structure of the
gaslike Na-boson systems withJp=0+ is investigated and
the critical numberNcr is estimated with those two different
approaches.

The paper is organized as follows. We formulate in Sec. II
the Gross-Pitaevskii-equation approach and the Hill-
Wheeler-equation approach for the diluteNa system. In Sec.
III the calculated results are presented, and the characteristics
of the diluteNa states are discussed with emphasis on theN
dependence of their energies and rms radii. A summary fi-
nally is given in Sec. IV.

II. FORMULATION

In this section, we formulate the two approaches to study
the structure of the diluteNa nuclear systems: the Gross-
Pitaevskii-equation approach and Hill-Wheeler-equation ap-
proach.

A. Gross-Pitaevskii equation for dilute Na nuclear systems

In the mean-field approach, the total wave function of the
condensateNa-boson system is represented as

FsNad = p
i=1

N

wsr id, s3d

where w and r i are the normalized single-a wave function
and coordinate of theith a boson. Then, the equation of
motion for thea boson, called as the Gross-Pitaevskii equa-
tion, is of nonlinear Schrödinger type,

−
"2

2m
S1 −

1

N
D=2wsrd + Usrdwsrd = «wsrd, s4d

Usrd = sN − 1d E dr8uwsr8du2y2sr8,rd +
1

2
sN − 1dsN − 2d

3E dr9dr8uwsr9du2uwsr8du2y3sr9,r8,rd, s5d

where m stands for the mass of thea particle, U is the
mean-field potential ofa particles, andy2 sy3d denotes the
2a s3ad interaction. The center-of-mass kinetic energy cor-
rection,1−1/N, is taken into account together with the finite
number corrections,N−1, etc. In the present study, only the
S-wave state is solved self-consistently with the iterative
method. The total energy of theNa systemEsNad is pre-
sented as

EsNad = NFktl +
1

2
sN − 1dky2l +

1

6
sN − 1dsN − 2dky3lG ,

s6d

ktl = S1 −
1

N
Dkwsrdu −

"2

2m
=2uwsrdl, s7d
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ky2l = kwsrdwsr8duy2sr,r8duwsrdwsr8dl, s8d

ky3l = kwsrdwsr8dwsr9duy3sr,r8,r9duwsrdwsr8dwsr9dl, s9d

and the eigenenergy« in Eq. s4d is given as

« = ktl + sN − 1dky2l + 1
2sN − 1dsN − 2dky3l. s10d

The nuclear rms radius in theNa state is evaluated as

ÎkrN
2l = Îkra

2lGP + 1.712, s11d

kra
2lGP = S1 −

1

N
Dkwur2uwl, s12d

where we take into account the finite size effect of thea
particle and the correction of the center-of-mass motion.

B. Hill-Wheeler equation for dilute Na states

The framework of the Gross-Pitaevskii approach is simple
and useful for the study of the structure of the diluteNa
systems. The center-of-mass motion, however, is not re-
moved exactly in this approach. The effect on the total en-
ergy and rms radius, etc., is not negligible for the small-
number a-boson systems. We formulate here the Hill-
Wheeler-equation approach for the axially symmetricNa
systems as well as for the spherical ones, in which the center-
of-mass motion is completely eliminated. Only the Hill-
Wheeler equation for the deformedNa systems with the
axial symmetry is provided in this section, because the limit
of the spherical systems is included in the deformed case.

The singlea-particle wave function should be mainly in
the lowestS state in the gaslikeNa-boson system. Thus, the
model wave function of the axially symmetricNa system
should be described in terms of a superposition of a Gaussian
basis with axially symmetric deformation(taking thez axis
as the symmetric axis) as follows:

FsintdsNad = o
n1,n3

fsn1,n3dFsintdsn1,n3d, s13d

Fsintdsn1,n3d =E dRc.m.F
sc.m.d*sRc.m.;n1,n3dFsn1,n3d,

s14d

Fsn1,n3d = p
i=1

N

fsr i ;n1,n3d

= Fsintdsn1,n3dFsc.m.dsRc.m.;n1,n3d, s15d

fsr ;n1,n3d = S2p

n1
D1/2S2p

n3
D1/4

exps− n1x
2 − n1y

2 − n3z
2d,

s16d

Fsc.m.dsRc.m.;n1,n3d = fsRc.m.;Nn1,Nn3d, s17d

wherer i sRc.m.d denotes the coordinate of theith a boson
sthe center-of-mass coordinate of theNa systemd, and n1
sn3d presents the Gaussian size parameter of thex and y
directions szd. The wave function in Eq.s13d is totally
symmetric under any exchange of twoa bosons. The
angular-momentum-projected total wave function for di-
lute Na systems free from the center-of-mass motion is
given as

FJM
sintdsNad = o

n1,n3

fJsn1,n3dFJM
sintdsn1,n3d, s18d

FJM
sintdsn1,n3d =E d cosudM0

J sudRysudFsintdsn1,n3d,

s19d

whereRy denotes the rotation operator around they axis.
Settingn3=n1 in Eq. s18d, we obtain the wave function for
the sphericalNa system, where onlyJp=0+ state is allowed.
The matrix element of a translational invariant scalar opera-

tor Ô with respect to the angular-momentum-projectedNa
wave function in Eq.s19d is evaluated as

kFJM=0
sintd sn1,n3duÔuFJM=0

sintd sn18,n38dl =E d cosud00
J sudkFsintdsn1,n3duRysudÔuFsintdsn18,n38dl, s20d

=E d cosud00
J sud

kFsn1,n3duRysudÔuFsn18,n38dl

kFsc.m.dsRc.m.;n1,n3duRysuduFsc.m.dsRc.m.;n18,n38dl
, s21d
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The total Hamiltonian of theNa-boson system is given as

H = o
i=1

N

ti − Tc.m.+ o
i, j

y2sr i,r jd + o
i, j,k

y3sr i,r j,rkd, s22d

wherey2 andy3 denote, respectively, the 2a and 3a interac-
tions. The kinetic energy of the center-of-mass motionsTc.m.d
is subtracted from the Hamiltonian.

The equation of motion for the diluteNa-boson states is
given in terms of the Hill-Wheeler equation[13]:

o
n18,n38

hkFJ
sintdsn1,n3duH − EuFJ

sintdsn18,n38dljfJsn18,n38d = 0,

s23d

whereH is the total Hamiltonian of theNa-boson system in
Eq. s22d. The coefficientsfJ and eigenenergiesE are ob-
tained by solving the Hill-Wheeler equation. In the numeri-
cal calculation, the Gaussian size parametersn1 and n3 are
discretized and chosen to be of geometric progression,

n1
skd = s1/b1

skdd2, b1
skd = b1

s1dr1
k−1, k = 1 , kmax, s24d

n3
sKd = s1/b3

sKdd2, b3
sKd = b3

s1dr3
K−1, K = 1 , Kmax. s25d

The above choice of the Gaussian range parameters is found
to be suitable for describing the diluteNa states.

The nuclear rms radius measured from the center-of-mass
coordinate in theNa state is expressed as

ÎkrN
2l = Îkra

2lHW + 1.712, s26d

kra
2lHW = kFJ

sintdsNadu
1

N
o
i=1

N

sr i − Rc.m.d2uFJ
sintdsNadl,

s27d

where we take into account the finite size effect of thea
particle. The rms distance between twoa particles is given
as

Îkraa
2 l =K 1

NsN − 1doi,j sr i − r jd2L1/2

= S 2N

N − 1
D1/2

Îkra
2lHW.

s28d

Thus, it is proportional to the rms radius of ana particle
from the center-of-mass coordinate.

C. Effective a-a potentials

In the present paper, we use two kinds of effective poten-
tials: the density-dependent potential and phenomenological
2a plus 3a potential. They are applied to the Gross-
Pitaevskii equation and the Hill-Wheeler equation for the
study of the structure of diluteNa states.

1. Density-dependent potential

The density-dependent potential consists of the Gaussian-
type a-a potential including a density-dependent term,
which is of similar form as the Gogny potential(known as an
effective NN potential) used in nuclear mean-field calcula-
tions,

y2sr,r8d = y0 expf− 0.72sr − r8d2g

− 130 expf− 0.4752sr − r8d2g

+ s4pd2gdsr − r8drS r + r8
2

D + yCoulsr,r8d,

s29d

where the units ofy2 and r are MeV and fm, respectively,
and r denotes the density of theNa system. The folded
Coulomb potentialyCoul is presented as

yCoulsr,r8d =
4e2

ur − r8u
erfsaur − r8ud. s30d

The Gaussian-potential part in Eq.s29d is based on the Ali-
Bodmer potentialf14g, which is known to reproduce well the
elastic a-a scattering phase shift up to about 60 MeV for
y0=500 MeV. On thecontrary, here, the two parametersy0
andg are chosen so as to reproduce well the experimental
energy sE3

expt=0.38 MeVd and the calculated rms radius
s4.29 fm by Tohsakiet al. [10]) for the 02

+ state of12C by
solving the Gross-Pitaevskii equation in Eq.(4). The results
are y0=271 MeV andg=1650 MeV fm6, where the calcu-
lated energy and rms radius for the 3a system are 0.38 MeV
and 4.14 fm, respectively, which are discussed in Sec. III.
Although the choice of the phenomenological potential in
Eq. (29) is rather rough, it is interesting to study systemati-
cally the structure of theNa condensate states as a function
of N.

2. Phenomenological2a and 3a potential

There are many phenomenological 2a potentials proposed
so far. Since thea particle is treated as a pointlike boson in
the present study, we will use a 2a potential taking into
account the Pauli blocking effect. The typical potential is the
Ali-Bodmer one [14], which is used frequently in the
structure calculation; y2sr ,r8d=500 expf−0.72sr −r8d2g
−130 expf−0.4752sr −r8d2g+yCoulsr ,r8d, whereyCoul denotes
the folded Coulomb potential given in Eq.(30). The strong
repulsion in the inner region prevents the 2a particles from
approaching one another. It is, however, found that the po-
tential is not suitable to describe the property of the compact
shell-model-like structure of the12C ground state with the
3a-boson model[15]. However, we may use it for the dilute
Na states. The Ali-Bodmer potential, however, has the fol-
lowing three unfavorable properties for the present calcula-
tion.

First is that the potential does not give the experimental
resonant energy of the8Be ground state(E2a

cal=68 keV vs
E2a

expt=92 keV), although thea-a scattering phase shift is re-
produced nicely up to about 60 MeV. The second is that
applying the potential to the 3a-boson system the lowest
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energy state obtained corresponds to a relatively compact
3a-structure state, although the condensate state appears
around the 3a threshold. According to the stochastic varia-
tional calculation[16], for example, the calculated energy
and rms radius are, respectively,E3a

cal=−0.62 MeV and
ÎkrN

2l=3.15 fm [17]. The results indicate that the Ali-
Bodmer potential is not adequate for describing the dilute
3a-boson state of12C. The third unfavorable point comes
from the fact that the strong repulsive character in the short-
range region of the Ali-Bodmer potentials,400 MeVd leads
us to treat exactly the short-range correlation between the 2a
bosons. The treatment is difficult and needs time-consuming
numerical calculations for solving generalNa-boson sys-
tems, even if employing modern numerical methods for
many-body systems.

We construct here an effective 2a potential with a weak
repulsive part (soft core), which overcomes the above-
mentioned three unfavorable properties. The use of such a
soft-core-type 2a potential is suitable in the present study,
because we discuss the gaslikeNa states, where the Pauli
blocking effect between twoa particles is considerably
weakened. The important point for the determination of the
potential parameters, other than the condition of reproducing
the experimental resonant energy for the8Be ground state, is
that thea-a wave function for the resonant state should have
a loosely bound structure of the twoa particles. According to
many structure calculations of8Be, the amplitude of the ra-
dial part of thea-a relative wave function must be small in
the inner region and have a maximum value aroundr
=4 fm (wherer is the relative coordinate between the twoa
particles). This condition ensures that the ground state of8Be
has a dilute 2a structure. With a careful search of the poten-
tial parameters, we determined the effective 2a potential as
follows:

y2sr,r8d = 50 expf− 0.42sr − r8d2g

− 34.101 expf− 0.32sr − r8d2g + yCoulsr,r8d,

s31d

where the units ofy2 and r are MeV and fm, respectively,

and yCoul is the folded Coulomb potential. The calculated
resonant energy of8Be is E2a=92 keV, inagreement with
the experimental datasE2a

expt=92 keVd. Figure 1 shows the
radial part of the relative wave function between the 2a
clusters for the resonant state. We see that the amplitude
is relatively small for r =0–2 fm, and has a maximum
value aroundr =4 fm. In spite of the fact that the Ali-
Bodmer potential gives a wave function which is almost
zero for r =0–1 fm, the small butfinite amplitude around
r =0–2 fmshould hardly give any effect for dilute multi-a
cluster states. Applying this effective potential to the 3a-
and 4a-boson systems indicates that we get the desired
dilute 3a- and 4a-structure states for12C and16O, respec-
tively, within our framework, as shown below.

In the present study, we introduce the phenomenological
3a potential sy3d with repulsive character, as given in Ref.
[18],

y3sr,r8,r9d = 151.5 exph− 0.15fsr − r8d2 + sr8 − r9d2

+ sr9 − rd2gj, s32d

where the units ofy3 and r are MeV and fm, respectively.
This potential has been used in the 3a and 4a orthogonally
condition modelsOCM f19gd for calculations of12C and16O
so as to reproduce the ground-state energies with respect
to the 3a and 4a thresholds, respectivelyf18g. In the
model, the Pauli principle is taken into account in the
relative wave function between twoa particles, and a
deep attractive potential is used for thea-a potential.
Thus, the OCM is able to describe not only the shell-
model-like compact states but also the dilute gaslike
states. According to the results, the repulsive 3a potential
gives a large effect to the ground-state energies of12C and
16O with the compactNa structure, while its effect is very
small for dilute 3a and 4a states. A non-negligible effect,
however, can be expected in large-numberNa dilute sys-
tems, if we take into account the fact that the contribution
of the binding energy from the 3a potential, proportional
to NsN−1dsN−2d /6, raises strongly with increasingN.

The reason of why we introduce the repulsive 3a poten-
tial is given as follows. Let us define here the total kinetic
energy and two-body potential energy in the diluteNa sys-
tem askTl and kV2l, respectively. In case of the8Be ground
state, the experimental energy isE=kTl+kV2l,0.1 MeV
with respect to the 2a threshold, wherekTl skV2ld is positive
(negative). For an arbitrary diluteNa-boson system, the total
kinetic energy and two-body potential energy are given as
kTl,N−1 and kV2l,NsN−1d /2, respectively, where the
center-of-mass kinetic energy is subtracted. Increasing the
number of thea particles, therefore, the potential energy
prevails over the kinetic energy, and then, the system falls
gradually into a collapsed state. This indicates that some-
thing like a density-dependent force with the repulsive char-
acter is needed to avoid the collapse in the large-number
Na-boson system. The present repulsive 3a potential in Eq.
(32) plays a role similar to the density-dependent force. On
the other hand, the density-dependent potential given in Eq.
(29) is also used when solving the Gross-Pitaevskii equation

FIG. 1. Radial part of the relative wave function between the 2a
clusters in theJp=0+ resonant state atE2a=92 keV with use of the
soft-corea-a potential in Eq.(31). The scale ofrfsrd is arbitrary.

DILUTE MULTI- a CLUSTER STATES IN NUCLEI PHYSICAL REVIEW C69, 024309(2004)

024309-5



and the Hill-Wheeler equation. The reason of why the
density-dependent potential is introduced there is the same as
that discussed here.

III. RESULTS AND DISCUSSION

A. Application of the Gross-Pitaevskii equation toNa systems

The Gross-Pitaevskii equation is solved with the two dif-
ferent types of effectivea-a potentials: (1) the density-
dependent potential[see Eq.(29)] and (2) the phenomeno-
logical 2a potential with the 3a potential[see Eqs.(31) and
(32)]. First of all, we will discuss the results with the density-
dependent potential and then those with the phenomenologi-
cal potentials.

The calculated total energies of theNa systems measured
from theNa threshold are demonstrated in Fig. 2 as well as
the calculated nuclear rms radii defined in Eq.(11), where
the density-dependenta-a potential is used. The total energy
and the rms radius are getting larger with increasingN. This
means that the system is expanding steadily with increase of
N. In comparison with the rms radius of the ground state of
each nucleus with the empirical formulasÎkrN

2l
=1.2A1/3 fmd, the results from the Gross-Pitaevskii equation
are much larger than those for the ground states. Thus, the

states obtained here can be identified with the diluteNa
states. It is noted that they are obtained naturally from the
Gross-Pitaevskii equation with the density-dependenta-a
potential, whose parameters were determined so as to repro-
duce well the experimental energysE3a

expt=0.38 MeVd and the
calculated rms radius by Tohsakiet al. s4.29 fmd [10] for the
02

+ state of12C.
In order to study the structure of the diluteNa states, it is

instructive to see the single-a potential defined in Eq.(5).
Figures 3(a)–3(e) show the ones for the 3a–10a systems.
Let us first discuss the 3a and 4a cases. The remarkable
characteristics of the potentials can be presented as follows:
(1) the almost flat behavior of the potential in the inside
region, and(2) the Coulomb-potential barrier in the outer
region. The appearance of the flat potential region is very
impressive, if one takes into account the fact that the two-
range Gaussian term(attractive), density-dependent term(re-
pulsive), and the Coulomb-potential term(repulsive) contrib-
ute significantly to the singlea potential in the inside region
[see Figs. 3(a) and 3(b)]. Table I shows the calculated single-
a-particle energy and contributions from the kinetic energy,
two-range-Gaussian term in Eq.(29), density-dependent
term in Eq.(29), and the Coulomb potential. It is found that
the kinetic energy in the 3a and 4a systems is not negligible
but small in comparison with the two-range-Gaussian term
and/or Coulomb-potential energy. This indicates that the
Thomas-Fermi approximation, neglecting the kinetic energy
term, is roughly realized in the system. Consequently, there
appears the flat potential region in the singlea potential,
whose behavior is similar to the dilute atomic condensate
state trapped by the magnetic fields at very low temperature
[7]. On the other hand, the appearance of the Coulomb-
potential barrier plays an important role in confining thea
bosons in the inside region. It is noted that the barrier comes
out naturally from the self-consistent calculation of the
Gross-Pitaevskii equation. The single-a-particle energies for
the 3a and 4a systems are smaller than the Coulomb-
potential barrier. This means that the dilute states are quasis-
table againsta decay.

Increasing the number ofa bosons beyondN=5, the fol-
lowing interesting features can be seen in the single-
a-particle potentials:(1) the depth of the flat potential be-
comes shallower, and its range is expanding to the outer
region faster than~N1/3, and(2) the height of the Coulomb-
potential barrier is getting lower and almost disappears at
aroundN=10. The first behavior of the potentials means that
the Na system is inflating with increase ofN, as inferred
from the behavior of the rms radius shown in Fig. 2. The
reason of why the depth of the potential becomes shallower
is related to the fact that the single-a-particle energy is get-
ting larger. It is given as follows: From Table I, the contri-
bution from the kinetic energy to the single-a-particle energy
becomes smaller with increase ofN, reflecting the inflation
of the diluteNa system. This fact indicates that the Thomas-
Fermi approximation is getting better, and then, the single-
a-particle energy is given approximately as the contribution
from only the potential energies. The potential energies con-
sist of three contributions, namely, the two-range-Gaussian
term, density-dependent term, and Coulomb potential[see
Eq. (29)], where the first and second ones are short range,

FIG. 2. (a) Total energies for the diluteNa states measured from
eachNa threshold, and(b) their nuclear rms radii, which are ob-
tained by solving the Gross-Pitaevskii equation with the density-
dependent potential.
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and the third is long range. When the diluteNa system is
inflating with N and the distance between twoa bosons is
getting larger, the contribution from the long range potential
should overcome steadily the one from the short-range one.
Consequently, the potential depth(single-a-particle energy)
becomes gradually shallower(larger) and the height of the
Coulomb barrier is getting lower, with increase ofN. The
increase of the single-a-particle energy means that the total

energy of the diluteNa system becomes larger withN. The
present results are consistent with the behavior of theN de-
pendence of the total energy(see Fig. 2).

The second interesting behavior of the single-a-particle
potential withNù5 is that there exists a critical number ofa
bosons,Ncr, beyond which the system is not confined any-
more, as mentioned in Sec. I. AroundN=10, the Coulomb
barrier has almost disappeared, and the single-a-particle po-

FIG. 3. Single-a-particle potentialsUasRd (solid line) which are obtained by solving the Gross-Pitaevskii equation with the density-
dependent potential;(a) 3a, (b) 4a, (c) 5a, (d) 8a, and(e) 10a systems. The dashed, dot-dashed, and dotted lines demonstrate, respectively,
the contribution from the two-range-Gaussian term, density-dependent term, and Coulomb potential.
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tential is nearly flat up to the outer region, although the most
outer region, dominated by only the Coulomb potential, is
falling to zero (not illustrated in Fig. 3). Thus, we can
roughly estimate the critical number asNcr,10, namely,
40Ca.

It is interesting to compare the above results with those
obtained by using the Gross-Pitaevskii approach with the
phenomenological 2a and 3a potentials given in Eqs.(31)
and (32), respectively. The calculated total energies and rms
radii for Na systems are shown in Fig. 4. We find that they
are in good agreement with those of the case with the
density-dependent potential in the Gross-Pitaevskii equation
within about 10% except for theN=3 and 4 cases. Table II
shows the single-a-particle energies and contributions from
the kinetic energy and potential energies. Comparing them
with those in Table I, theN dependence of the kinetic energy,
Coulomb-potential energy, and the sum of other potential
energies is rather similar to the one with the density-
dependent potential in the Gross-Pitaevskii equation except
for the N=3 and 4 systems. This is surprising if taking into
account the fact that the forms of the two kinds of the effec-
tive a-a potentials are quite different from one another.
These results might indicate that the diluteNa systems with
Nù5 do not depend strongly on the details of the effective
a-a potential, while those with a small-numberNa (N=3
and 4) are sensitive to the potential.

The single-a-particle potentials are shown in Fig. 5. For
the 3a and 4a systems, we see the almost flat potential be-
havior in the inside region, and the Coulomb-potential bar-
rier in the outer region, while increasing the number ofa
bosons fromN=5, the depth of the flat potential becomes
shallower, and its range is expanding to the outer region, and
the height of the Coulomb-potential barrier is getting lower
and almost disappears at aroundN=10. The qualitative po-
tential behaviors are almost the same as those in case of the
density-dependent potential with the Gross-Pitaevskii equa-
tion (see Fig. 3). In fact, the behavior of the single-a-particle
potential in Fig. 5 is in good agreement with that in Fig. 3
within about 10%. On the other hand, we can conjecture the
critical number Ncr from the behavior of the single-
a-potentials in Fig. 5, which is estimated roughly asNcr
,10, the result being the same as that of the case with the
density-dependent potential.

B. Na systems in the Hill-Wheeler-equation approach

The Gross-Pitaevskii equation is simple and useful for the
study of the structure of the diluteNa system, as seen in the
preceding section. The center-of-mass motion in theNa sys-
tem, however, is not completely removed in this framework.
The Hill-Wheeler-equation approach is free from the center-

TABLE I. Calculated results of the Gross-Pitaevskii equation with the density-dependenta-a potential in Eq.(29); single-a-particle
energy« and contributions from the kinetic energyktl, two-range-Gaussian termky2Gl, density-dependent termkyDl, and Coulomb potential
kyCl in Eq. (29). The total energy and nuclear rms radius for theNa system are denoted asE andÎkrN

2l, respectively. All energies and rms
radii are given, respectively, in units of MeV and fm.

N Nucleus « ktl ky2Gl kyCl kyDl E ÎkrN
2l

3 12C 0.18 0.38 −3.42 2.31 0.91 0.38 4.14

4 16O 0.78 0.32 −3.74 3.04 1.16 1.44 4.91

5 20Ne 1.32 0.28 −3.90 3.69 1.25 2.97 5.53

6 24Mg 1.82 0.25 −3.95 4.25 1.26 4.94 6.07

7 28Si 2.28 0.22 −3.91 4.76 1.21 7.36 6.58

8 32S 2.72 0.20 −3.80 5.20 1.20 10.2 7.05

9 36Ar 3.13 0.19 −3.65 5.59 1.00 13.4 7.51

10 40Ca 3.51 0.18 −3.45 5.93 0.86 17.0 7.98

11 44Ti 3.87 0.18 −3.19 6.19 0.69 21.0 8.46

FIG. 4. (a) Total energies for the diluteNa states measured from
eachNa threshold, and(b) their nuclear rms radii, which are ob-
tained by solving the Gross-Pitaevskii equation with the phenom-
enological 2a and 3a potentials.
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of-mass motion of theNa system. The effect of the center-
of-mass motion is expected to be non-negligible for the total
energy and rms radius, etc., in small-numbera-boson sys-
tems, in particular,N=3 and 4. Thus, it is important to study
the diluteNa systems with the use of the Hill-Wheeler equa-
tion. The two approaches should give the same results for
dilute Na systems with rather large number ofN. In this
section, we first demonstrate that the Hill-Wheeler-equation
approach is useful to describe the diluteNa states with the
spherical shape, and the results are briefly compared with
those from the Gross-Pitaevskii equation. Then, the approach
is applied to the deformedNa systemssJp=0+d with axial
symmetry. We use the phenomenological 2a and 3a poten-
tials of Eqs.(31) and (32) as the effectivea-a potential.

1. Spherical Na systems

The calculated total energies and rms radii for spherical
Na states are illustrated in Fig. 6, in which we show those
obtained by solving the Gross-Pitaevskii equation with the
same effectivea-a potential for comparison. We found that
the calculated total energies in the Hill-Wheeler approach are
almost the same as those in the Gross-Pitaevskii approach.
This indicates that the center-of-mass kinetic energy correc-
tion in Eq. (4) is a very good approximation to remove the
effect in the total energy. The non-negligible deviation be-
tween the two frameworks, however, can be seen in the rms
radii, in particular, we have about 20% deviation for the 3a
system, although that is getting smaller with increasingN
and it is almost zero in the 7a–9a systems(the discrepancy
in the 10a and 11a systems will be discussed later). The
results tell us that the center-of-mass correction for the rms
radius in the Gross-Pitaevskii-equation approach[see Eqs.
(11) and (12)] is not very good for the 3a and 4a systems,
while it is relatively good for theNaù5a systems, and the
difference between the two approaches is less than about
10%, and it is diminishing with increasingN.

In Fig. 6 we see that the deviation of the rms radius ap-
pears again in the 10a and 11a systems. The reason of why
this deviation occurs can be understood, recalling the follow-
ing facts: According to the results of the Gross-Pitaevskii

equation with the phenomenological 2a and 3a potentials,
the 10a system is the critical one which cannot exist as a
nuclear state, as mentioned in the preceding section. In such
a critical system, the behavior of the wave functions in the
outer (inner) region is very sensitive(not very sensitive) to
how to solve the equations and to obtain the wave functions.
The value of the rms radius(total energy) is generally sensi-
tive (not very sensitive) to the behavior of the wave function
in the outer region. Thus, the reoccurrence of the deviation in
the rms radii indicates that the 10a system is critical in the
Hill-Wheeler-equation approach.

The above results show us that the Hill-Wheeler-equation
approach is very useful to describe the diluteNa states as
well as the Gross-Pitaevskii-equation approach. Thus, we
can apply the approach to the deformedNa system with the
axial deformation.

2. Deformed Na systems with Jp=0+

The Na statessJp=0+d with the axial deformation are
obtained by solving the Hill-Wheeler equation in Eq.(23)
with the Gaussian size parameter setA given in Table III.
Figure 7 illustrates the calculated energies, nuclear rms radii
defined in Eq. (11), and the rms distances between 2a
bosons. The detailed values are shown in Table IV. The rms
distance between 2a bosonss6–11 fmd for N=3–12 iscon-
siderably larger than that of the8Be ground states,4 fmd.
The result indicates that theNa states obtained here are of
very diluteNa structure.

The total energy of theNa state increases gradually with
N, although those forN=3 and 4 are not changed very much.
The latter is in contrast to the results of the spherical case
together with those for the Gross-Pitaevskii-equation ap-
proach(see Figs. 2, 4, and 6). In the 3a and 4a systems, the
total energies and nuclear rms radii are, respectively, given as
follows: E=−0.01 and 0.13 MeV, andÎkrN

2l=3.73 and
3.90 fm. The values are in good correspondence to those for
the condensatea-cluster states discussed by Tohsakiet al.
[10], where their calculated results areEcal=0.5 and
−0.7 MeV (vs Eexpt=0.38 and −0.44 MeV) andÎkrN

2l=4.29
and 3.97 fm, respectively, for the dilute 3a and 4a states. It

TABLE II. Calculated results of the Gross-Pitaevskii equation with the phenomenological 2a and 3a potentials in Eqs.(31) and (32);
single-a-particle energy« and contributions from the kinetic energyktl, 2a potentialky2l in Eq. (31), 3a potentialky3l in Eq. (32), and
Coulomb potentialkyCl. The total energy and nuclear rms radius for theNa system are denoted asE andÎkrN

2l, respectively. All energies
and rms radii are given, respectively, in units of MeV and fm.

N Nucleus « ktl ky2l kyCl ky3l E ÎkrN
2l

3 12C 0.45 0.25 −1.90 1.96 0.14 0.98 4.87

4 16O 0.76 0.27 −2.71 2.86 0.33 1.84 5.23

5 20Ne 1.12 0.27 −3.36 3.68 0.53 3.04 5.55

6 24Mg 1.51 0.26 −3.89 4.44 0.70 4.63 5.85

7 28Si 1.91 0.26 −4.31 5.13 0.84 6.61 6.13

8 32S 2.31 0.24 −4.64 5.78 0.94 8.99 6.40

9 36Ar 2.73 0.23 −4.89 5.37 1.02 11.8 6.68

10 40Ca 3.13 0.22 −5.06 6.91 1.60 15.0 6.95

11 44Ti 3.53 0.20 −5.15 7.40 1.70 18.6 7.24
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is instructive here to compare the present results with those
in the sphericalNa states in order to estimate the effect of
deformation. The comparison of the total energy and rms
radius is given in Table IV. The energy gains(reductions of
rms radius) due to the deformation in the 3a, 4a, and 5a
systems are, respectively, 0.6, 1.5, and 1.7 MeV(11%, 18%
and 19%), while this is getting smaller forNù6. Thus, we
found that the deformation effect is significant for relatively
small-numbera systems, and shows a good correspondence
of our results for the 3a and 4a states with those by Tohsaki
et al. [10]. The present result that the diluteNa statessJp

=0+d may be deformed is natural if taking into account the
fact that a gaslikeNa state with relatively small number can
easily be deformed. If it is right, there may exist diluteNa
nuclear states withJp=2+ and 4+, etc. In fact, a candidate of
the dilute 3a state withJp=2+ is observed atE=3.3 MeV
measured from the 3a threshold[20]. The dilute multi-a
cluster states with nonzero angular momentum will be dis-
cussed elsewhere.

From Fig. 7(a), we notice that the gaslikeNa states with
Nù5 appear above theNa threshold, not close to it, in con-
trast to the fact that the dilute 3a and 4a states are located in

FIG. 5. Single-a-particle potentialsUasRd (solid line) which are obtained by solving the Gross-Pitaevskii equation with the phenom-
enological 2a and 3a potentials;(a) 3a, (b) 4a, (c) 5a, (d) 8a, and(e) 10a systems. The dashed, dot-dashed, and dotted lines demonstrate,
respectively, the contribution from the 2a potential, 3a potential, and Coulomb potential.
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the vicinity of their respective thresholds. This is a nontrivial
result of the present calculation. The reason of why the en-
ergy of the diluteNa states increases withN is given as
follows. Let us consider the effective energy of the “2a”
system in the diluteNa state, which corresponds to the quan-
tity of the total energy of theNa state divided by the number
of a pairs which is given in Table IV. Since the dilute char-
acter allows us to neglect approximately the kinetic energy,
the effective energy of the 2a system could be given mainly
as the sum of the 2a nuclear potential energy and its
Coulomb-potential energy(the contribution from the 3a po-
tential may be neglected approximately because of the very
small amount). Figure 8 shows the 2a potential used in the
present study, where we also show the 2a nuclear potential
[see Eq.(31)] and its Coulomb potential[see Eq.(30)]. The

attraction of the former is largest around 4 fm and is negli-
gible beyond about 7 fm, while the Coulomb potential is
long ranged and its repulsion is substantial even beyond
7 fm. Increasing the number of thea particles, the gaslike
Na system is expanding and the rms distance between twoa
particles is also becoming largers6–10 fmd in the case of
Nù5, as shown in Fig. 7. Then, the attractive contribution
from the 2a nuclear potential to the effective 2a energy
should become noticeably smaller with increasingN, reflect-
ing the short-range(attractive) behavior of the potential. The
repulsive contribution from the Coulomb potential, however,
should not be much smaller than in the case of the 2a
nuclear potential, and dominate over the contribution from
the nuclear potential, because of the long-range(repulsive)
behavior. These facts explain the rise of the effective 2a
energy withN, which means that the energy of the diluteNa

FIG. 6. (a) Total energies for the diluteNa states(spherical
case) measured from eachNa threshold(solid line), and (b) their
nuclear rms radii(solid), which are obtained by solving the Hill-
Wheeler equation with the phenomenological 2a and 3a potentials.
For comparison, we also give the corresponding values obtained by
solving the Gross-Pitaevskii equation with use of the same poten-
tials (dotted lines).

TABLE III. Gaussian size parameter setsA andB used to obtain the deformedNa states with the axial
symmetry by solving the Hill-Wheeler equation. The unit ofb1 andb3 is femtometer.

Set kmax b1
s1d b1

skmaxd Kmax b3
s1d b3

sKmaxd

A 12 0.4 9.0 12 0.5 9.5

B 12 0.4 11.0 12 0.5 10.5

FIG. 7. (a) Total energies for the diluteNa states with the axial
deformation measured from eachNa threshold(solid line), and(b)
their nuclear rms radii(solid) and rms distance between 2a particles
(dotted), which are obtained by solving the Hill-Wheeler equation
with the phenomenological 2a and 3a potentials.
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states increases withN and does not stay around the thresh-
old energy. In Table IV we can find quantitatively the in-
crease of the effective 2a system withN. The gradual domi-
nance of the total Coulomb-potential energy over the total 2a
nuclear potential energy in theNa system can be also seen in
Table IV.

It is interesting to see the role of the 3a potentials in the
dilute Na system. From Table IV, the contribution to the
total energy is small in the case of12C and16O, while it gives
a non-negligible effect with increasingN, as seen in Table
IV, because it is proportional to the number ofNsN−1dsN
−2d /6. In fact, the energykV3l becomes steadily larger with
the number ofa bosons, although the quantity of the energy
divided by the number of trios of thea bosons is decreasing
with N, reflecting the fact that theNa system is expanding
with N. It is instructive to study the case of no 3a potentials
within the present framework. The calculated results show
that theNa system gradually falls into a collapsed state with
increasing N as discussed before; for example,E
,−55 MeV andÎkrN

2l=4.77 fm for N=40. The result tells

us that the dilutea-boson states appear under the cooperative
work between the two-body and three-body potentials in the
present model.

Finally, we estimate the critical numberNcr of the dilute
Na state beyond which the system is unbound. Since the
critical state should be very unstable, it is difficult to deter-
mine it exactly with the present Hill-Wheeler-equation ap-
proach. However, we can deduce it approximately from
studying the stability of the calculated eigenenergies and rms
radii against changing the model space determined by the
Gaussian size parameters in Eqs.(24) and (25). The proce-
dure is as follows. The present framework is able to describe
dilute states trapped by the Coulomb barrier under the con-
dition that we choose the range of the Gaussian size param-
eters wide enough to cover a configuration space over the
whole rms radius of the states. If the state is stable or rela-
tively stable, the calculated energies and rms radii are not
changed very much against the variation of the Gaussian size
parameters. Otherwise, those depend sensitively on the
choice of the parameters. Using the wide model space, how-
ever, special attention must be paid to investigate the eigen-
states obtained from the Hill-Wheeler equation, because a
discretized continuum state, which is unphysical, has a
chance to become the lowest state in energy in the present
variational calculation. We can easily identify it by investi-
gating the behavior of its energy and/or rms radius against
changing the Gaussian size parameters. The unphysical state
usually has an abnormally long rms radius, which is a little
smaller than or almost the same as the value ofb1

skmaxd or
b3

sKmaxd in Eqs. (24) and (25). Table V shows the calculated
results for the two parameter setsA and B (see Table III).
The calculated energies and rms radii for the diluteNa states
with N=3–10 arealmost the same for both the parameter
setsA andB, while we see some discrepancies in those with
Nù11, in particular, in the rms radii, for the two parameter
sets. Even if we use other Gaussian size parameter sets
which cover the configuration space over the rms radius for
the dilute states, the results obtained are found to be similar
to those mentioned above. Thus, the critical number of the

TABLE IV. Calculated total energyE, total kinetic energykTl, total 2a nuclear potential energykV2l, total Coulomb potential energy
kVCl, total 3a potential energykV3l, and nuclear rms radiusÎkrN

2l for each diluteNa state. The effective energy of the “2a” system in the
Na system is denoted as«2 (see text). All energies and rms radii are given in units of MeV and fm, respectively.

Deformed case Spherical case

N Nucleus kTl kV2l kVCl kV3l E s«2d ÎkrN
2l E ÎkrN

2l

3 12C 2.24 −5.95 3.62 0.09 −0.01 s−0.00d 3.73 0.64 4.18

4 16O 3.74 −11.31 7.21 0.42 0.11 (0.02) 3.90 1.58 4.74

5 20Ne 4.32 −15.92 11.58 1.13 1.11 (0.11) 4.20 2.83 5.19

6 24Mg 3.71 −18.78 16.05 2.15 3.13 (0.21) 4.69 4.47 5.64

7 28S 3.13 −21.03 20.58 2.90 5.58 (0.27) 5.24 6.48 5.99

8 32Si 2.77 −23.16 25.31 3.38 8.30 (0.30) 5.79 8.93 6.33

9 36Ar 2.52 −25.11 30.22 3.68 11.31 (0.31) 6.34 11.81 6.90

10 40Ca 2.35 −26.76 35.21 3.82 14.62 (0.32) 6.90 14.98 7.26

11 44Ti 2.26 −28.52 40.58 3.96 18.27 (0.33) 7.38 18.53 7.54

12 48Cr 2.21 −30.43 46.37 4.12 22.27 (0.34) 7.78 22.44 8.62

FIG. 8. Phenomenological 2a potential (solid line), where the
2a nuclear potential[Eq. (31)] and its Coulomb potential[Eq. (30)]
are drawn by the dashed and dotted lines, respectively.
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dilute Na-boson systems is estimated roughly to beNcr
,10, namely,40Ca, in the present study. It is noted that the
number is the same as that in the spherical case as well as in
the Gross-Pitaevskii-equation approach.

IV. SUMMARY

The diluteNa-cluster condensate states withJp=0+ have
been studied with the Gross-Pitaevskii(GP) equation and the
Hill-Wheeler (HW) equation, where thea cluster is treated
as a structureless boson. Two kinds of effectivea-a poten-
tials were used: the density-dependent(DD) a-a potential
and the phenomenological 2a potential plus three-bodya
potential (PP), and we also included the folded Coulomb
potential between the 2a bosons. Both potentials(only the
latter) were(was) applied to study the structure of the spheri-
cal (spherical and axially deformed) dilute Na states with the
Gross-Pitaevskii equation(Hill-Wheeler equation). Thus, we
have studied the dilute multi-a cluster states with the four
different frameworks: (equation, potential, shape)
5(GP, DD, S), (GP, PP, S), (HW, PP, S) and (HW, PP, D),
where S and D denote the spherical and deformed shapes,
respectively.

The main results to be emphasized here are as follows.
(1) All of the Na states obtained show the diluteNa struc-

ture. They are common to all of the four different frame-
works. The reason of why the total energy of the gaslikeNa
state increases gradually withN and does not remain around
their Na threshold values is understood as the competition
between the nucleara-a nuclear potential(attractive) and its
Coulomb potential(repulsive). In fact, increasing the number
of N, the a-a distance is becoming larger(6–12 fm for N
=3–12), and then the contribution from thea-a nuclear po-
tential per 2a pair in the diluteNa state is decreasing rapidly
because of the short-range character, while that from the
Coulomb one is decreasing very slowly and remains almost
constant forN=5–12, reflecting the 1/r character of the
Coulomb potential.

(2) The N dependence of the behavior of the calculated

single-a potentials obtained by solving the Gross-Pitaevskii
equation within the(GS, DD, S) and (GW, PP, S) frame-
works is impressive. For the 3a and 4a systems, we see an
almost flat potential behavior in the inside region, and the
Coulomb-potential barrier in the outer region, while increas-
ing the number ofa bosons fromN=5, the depth of the flat
potential becomes shallower, and its range is expanding to
the outer region, while the height of the Coulomb-potential
barrier is decreasing and almost disappears at aroundN=10.
The origin of the appearance of the flat region is mainly due
to the validity of the Thomas-Fermi approximation, namely,
the neglect of the contribution from kinetic energy because
of the dilute character of theNa system. The result is analo-
gous to the dilute atomic condensate state trapped by the
magnetic fields at very low temperature. On the other hand,
the results for the total energy and rms radius were quite
similar for the above-mentioned two frameworks except for
N=3 and 4. The result might indicate that the diluteNa
states withNù5 are not very sensitive to the details of the
effectivea-a potential(DD or PP).

(3) Comparing the results from the GP equation and HW
equation, we could see the effect of the neglect of the center-
of-mass motion in the Gross-Pitaevskii equation and also the
usefulness of the Hill-Wheeler-equation approach for de-
scribing the diluteNa system. In the small-numberNa sys-
tems, the effect was found to be non-negligible, in particular,
for the rms radius, while there is less than about 10% devia-
tion for theNaù5a systems.

(4) The axial deformation effect in the diluteNa systems
is substantial for the small-numbera systems, but it is get-
ting smaller forNù6. In fact, the energy gain and reduction
of the rms radius due to the deformation are 0.6–1.7 MeV
and 11–19 %, respectively, for the former system. Due to
the effect, the calculated results of the total energy and rms
radius for N=3 and 4 in the(HW, PP, D) framework are
improved from those in the(HW, PP, S) framework, and give
a good correspondence with those for the condensate
a-cluster states discussed by Tohsakiet al. [10]. The present
result that the diluteNa statessJp=0+d may be deformed is
natural, taking into account the fact that a gaslikeNa state

TABLE V. Calculated energiesE of dilute Na states(Jp=0+) together with the nuclear rms radiiÎkrN
2l and rms distances between 2a

bosonsÎkraa
2 l, where we use the two Gaussian size parameter setsA and B, shown in Table III. The energyE is measured from the

respectiveNa threshold. The units of energy and rms radius(distance) are MeV and fm, respectively.

Set A Set B

N Nucleus E ÎkrN
2l Îkraa

2 l E ÎkrN
2l Îkraa

2 l

3 12C −0.01 3.73 5.73 −0.01 3.72 5.72

4 16O 0.11 3.90 5.72 0.11 3.90 5.72

5 20Ne 1.11 4.20 6.06 1.13 4.20 6.06

6 24Mg 3.13 4.69 6.76 3.13 4.68 6.75

7 28Si 5.58 5.24 7.57 5.59 5.24 7.57

8 32S 8.30 5.79 8.36 8.30 5.78 8.35

9 36Ar 11.31 6.34 9.16 11.31 6.35 9.17

10 40Ca 14.62 6.90 9.97 14.61 7.03 10.58

11 44Ti 18.27 7.38 10.65 18.22 7.89 11.42

12 48Cr 22.27 7.78 11.21 22.10 8.81 12.77
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with relatively small number ofa’s could easily be de-
formed.

(5) We estimated the critical number of thea bosons,Ncr,
beyond which the system is unbound for the four frame-
works (GP, DD, S), (GP, PP, S), (HW, PP, S), and(HW, PP,
D). All of the frameworks indicated that the number is
roughly Ncr,10, which is not strongly dependent on the
frameworks. Thus, we concluded that the diluteNa-cluster
states could exist in the12C to 40Ca systems withJp=0+,
whose energies vary from threshold up to about 20 MeV in
the present calculation.

The estimate ofNcr,10 is of course subject to the valid-
ity of our phenomenological approach treating thea particles
as ideal bosons. We, however, believe, for reasons outlined
in the paper, that our estimate forNcr may be correct to
within ±20%. In any case the value forNcr, i.e., the maxi-
mum ofa particles in the condensate state, is relatively mod-
est. A very interesting question in this context is whether
adding a few neutrons may stabilize the condensate and thus
allow for much higher numbers of condenseda’s. One
should remember that8Be is (slightly) unbound whereas9Be
and 10Be are bound. Let us also mention that the use of the
GP equation for the description ofa-condensates on top of

an 16O core has been proposed by Gridnevet al.21

Concerning experimental detection of thea condensates,
the decay scheme of the diluteNa state is conjectured to
proceed mainly viaa decay. This indicates that such systems
may be observed through the following sequentiala decays:
[dilute Na state] → [dilute sN−1da state]1a, [dilute sN
−1da state] → [dilute sN−2da state]1a ,¯. Therefore, the
sequentiala decay measurement is expected to be one of the
promising tools to search for the dilute multi-a cluster states,
produced via thea inelastic reaction, heavy-ion collision re-
action, and so on. It is highly hoped that such experiments
will be performed in near future.
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