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We investigate the use of an operatorial basis in a self-consistent theory of large amplitude collective motion.
For the example of the pairing-plus-quadrupole model, which has been studied previously at equilibrium, we
show that a small set of carefully chosen state-dependent basis operators is sufficient to approximate the exact
solution of the problem accurately. This approximation is used to study the interplay of quadrupole and pairing
degrees of freedom along the collective path for realistic examples. We show how this leads to a viable
calculational scheme for studying nuclear structure, and discuss the surprising role of pairing collapse.
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I. INTRODUCTION

There is a general quest for understanding of complicated
phenomena in terms of a limited set of degrees of freedom,
chosen through some method appropriate for the problem at
hand. Many approaches are available, in areas ranging from
field theories to atomic physics(see, e.g., the reviews in Ref.
[1]). These are typically based on the concept of “relevant
degrees of freedom” or on the introduction of collective mo-
tion and collective paths—which are two ways to express
rather similar principles.

More specific to the nuclear problem studied in this paper,
the old question “what is the correct choice of collective
coordinate in a many-body system?” has had quite a few
partial answers, see the review[2] for a discussion of some
of these. The holy grail of this approach is a method that
determines a collective path self-consistently, based only on
knowledge of the Hamiltonian governing the system. Prefer-
ably the method chosen should allow us to measure whether
the limited dynamics in a few coordinates makes sense at all
or in the language used above, address the question “how
effective are the effective degrees of freedom?”

The constrained Hartree-Fock-Bogoliubov method is
commonly used to describe collective paths in nuclear phys-
ics (see, e.g., Refs.[3,4]). This approach, where the collec-
tive subspace is generated by a small number of one-body
constraints, also goes by the name of generalized cranking.
The one-body constraints usually consist of a few carefully
chosen multipole(particle-hole) operators as well as a few
generalized pairing(particle-particle) ones. For large scale
realistic problems such as the description of nuclear fission
the number of generalized cranking operators needed in or-
der to make a realistic calculation becomes very large. There
is also no reason to limit the constraints to the standard
choices; other degrees of freedom, especially those involving
spin-orbit interactions might also be important. A more sat-
isfactory method should allow the cranking operators to be
determined by the nuclear collective dynamics itself.

One such approach, followed in this paper and set out in

detail in the review paper[2] (a similar approach, plus rel-
evant references, can be found in Ref.[5]), leads to a very
well-defined approach, which can in principle be solved
knowing the Hamiltonian and model space. To find the adia-
batic collective path we use the local harmonic approxima-
tion (LHA ). It consists of a constrained mean-field problem
that needs to be solved together with a local random phase
approximation(RPA), which determines the constraining op-
erator. This approach lacks practicality, since the size of the
RPA problem is, for a system with pairing, proportional to
the size of the single-particle space squared. Even though
enormous matrices can routinely be diagonalized on modern
computer systems, the algorithm requires repeated diagonal-
ization of such a matrix, which makes an implementation in
realistic calculations prohibitively time consuming.

This requires a solution, or at least a good approximation,
and this is the subject of the present paper. A first approach to
solving the problem has been suggested in the work of one of
the authors[6] . The best way to test such ideas is to use a
semirealistic model, where approximations can be tested
against the full method, such as the pairing-plus-quadrupole
model as employed by Barranger and Kumar[7] in their
seminal work. It has been shown in the past[6] that at equi-
librium the RPA can be solved quite efficiently using a
simple basis of operators. Related work by Nesterenkoet al.
[8] may also have some bearing on this problem, but will not
be investigated here. In short, the idea is that the basic op-
erators of the model, weighted by a suitable power of the
quasiparticle energies, give excellent results. The state de-
pendence induced by the quasiparticle energies is crucial to
the success of the approach, and is the main difference with
methods based on “naive” constraints. Since the original
work was only done at equilibrium, we must still check that
such a basis of operators provides a good solution along the
collective path, and we indeed find some important modifi-
cations to the method discussed in Ref.[6] . Once a collec-
tive path has been found we can diagonalize the collective
one-body Hamiltonian along this path, including all the zero
modes arising from broken symmetries. This will give infor-
mation on how the collective motion influences the ground
state properties of the nuclei. In several of the examples dis-
cussed below we find low-lying states with pairing collapse
which influence the collective behavior of the system. If we
now quantize the collective dynamics, wemust include the
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pairing rotations. This is due to the fact that a point with
collapsed pairing behaves similar to the origin in polar coor-
dinates, with the pairing phase playing the role of the polar
angle. In this work we shall only study the effect of the
pairing-rotational modes, ignoring collective rotation for the
time being.

The paper is organized as follows. In Sec. II we briefly
present the basic principles of our approach, to highlight
those issues that will make the results easier to understand.
The practical form of the equations for the type of many-
body problem considered here is also discussed, and the
form of the approximation is introduced. Results are then
given in Sec. III and finally we draw some conclusions in
Sec. IV.

II. FORMALISM

The formalism, as set out in detail in Ref.[2], is based on
time-dependent mean-field theory, and the fact that a classi-
cal dynamics can be associated with it. The issue of selecting
collective coordinates, and determining their coupling to
other degrees of freedom, thus becomes an exercise in clas-
sical mechanics. Furthermore, if we assume adiabaticity, a
slow motion where the Hamiltonian can be expanded to sec-
ond order in momenta, we have a problem that can be
solved. The solution can be stated without any direct refer-
ence to the original nuclear many-body problem and the
choice of the interaction.

A. Local harmonic approximation for the collective path in
the adiabatic limit

We assume a classical Hamiltonian depending on a set of
real canonical coordinatesja sa=1, . . . ,Nd and conjugate
momentapb sb=1, . . . ,Nd of the form(j andp thus param-
etrize uCl [2])

Hsj,pd = kCHuCl. s1d

We shall use a tensor notation, where we use upper indices
for coordinates and lower indices for momenta. When the
same symbol appears as both upper and lower index there is
an implicit sum over that index.

The potentialVsjd=Hsp=0d and the mass matrixBab are
given by an expansion ofHsj ,pd in powers ofp in zeroth
and second order, respectively,

Hsj,pd = Vsjd + 1
2Babpapb + Osp4d. s2d

Terms of higher orderssuch asp4d are supposed to be neg-
ligible. The kinetic energy in the Lagrangian formalism con-

tains the inverseBab of the mass matrix,K= 1/2j̇aBabj̇b,
and can be interpreted as an inner product in the tangent
space to a curved manifold. The inverse of the mass matrix
Bab is thus the metric tensor; in other words the matrixBab

represents the Riemanian geometry in configuration space,
since it measures lengths in the tangent space. This clearly
would not be the case if we had higher-order terms in the
kinetic energy.

The central part in our approach to large amplitude mo-
tion is a search for collective(and noncollective) coordinates
qm which are obtained by an invertible point transformation
of the original coordinatesja, preserving the quadratic trun-
cation of the momentum dependence of the Hamiltonian
[17], by

qm = fmsjd, ja = gasqd sm,a = 1, . . . ,nd, s3d

and the corresponding transformation relations for the mo-
mentapm andpa,

pm = g,m
a pa, pa = f ,a

m pm, s4d

where we use a standard notation for the derivatives,g,m
a

;s] /]qmdga and f ,a
m ;s] /]jadfm. The adiabatic Hamiltonian,

Eq. s2d, is then transformed into

H̄sq,pd = V̄sqd + 1
2B̄mnpmpn + Osp4d s5d

in the new coordinates. The new coordinatesqm are now to
be divided into three categories: the collective coordinateq1,
the zero-mode coordinatesqI, I =2, . . . ,M +1, which describe
motions that do not change the energies, and finally the non-
collective coordinatesqa, a=M +2, . . . ,n. sThe approach can
easily be generalized to include more than one collective
coordinate, but that will not be discussed here.d

The collective coordinate is determined by means of the
solution to the local harmonic approach, which consists of a
set of self-consistent equations. These are the following.

(1) The force equations

H̄,a = Lf ,a + LI f ,a
I , s6d

where f I are the zero modessalso called Nambu-Goldstone
or spurious modesd andLI represents a set of Lagrange mul-
tipliers swhich in nuclear physics are usually called cranking
parametersd. L is a Lagrange multiplier for the collective
mode, stabilizing the system away from equilibriumswe
shall often denote it as the generalized cranking parameterd.

(2) The local RPA equation

V̄;agBgbf ,b = s"Vd2f ,a, s7d

where the covariant derivativeV;ab is defined in the usual
way fV,ab=sV,ad,bg,

V;ab ; V,ab − Gab
g V,g, s8d

Gbg
a = BgdsBdb,g + Bdg,b − Bbg,dd. s9d

Zero modes correspond to zero eigenvalues of the RPA. In
principle great care needs to be taken to have zero modes
behave correctly away from equilibrium. The symplectic
RPA f2g is the correct way to do so; unfortunately it is rather
cumbersome, and as a practical approximation we shall ig-
nore the corrections arising from this approach here. In this
paper we will also neglect the covariant corrections to the
RPA, since they are time consuming to calculate. This means
that we do not treat the zero modes absolutely correctly.

The collective path is found by solving Eqs.(6) and (7)
self-consistently, i.e., we look for a path consisting of a series
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of points where the lowest nonspurious eigenvector of the
local RPA equations also fulfils the force condition. In the
minimum of the potential the spurious solutions decouples
from the other collective and noncollective solutions. When
we are following the collective path away from the minimum
one can use special techniques, called the symplectic version
of the theory, to avoid mixing of the spurious solution and
the physical solutions[9]. This has the disadvantage that it is
numerically much more difficult to implement. In this paper
we have chosen to ignore the effects of the spurious admix-
tures to the RPA wave functions, but these are expected to be
small, at least close to the minimum. As a result there will be
a finite overlap between the collective coordinate and the
spurious operators. The price paid for these approximations
is that at points where RPA frequencies should cross we get
narrow avoided crossings. The narrowness is a measure of
the severity of the truncation errors. One way to bypass such
problems, is to use a basis of operators, where such crossings
are extremely rare.

B. Large amplitude collective motion with local
harmonic approximation

The local harmonic approximation has been described in
Ref. [2]. There the structure is discussed in great detail, as is
the transition between nuclear physics and classical mechan-
ics. Here the formalism is extended to include pairing and
constraints on particle number. We start with the time-
dependent Hartree-Fock-Bogoliubov equations; in this case
one finds that a natural choice for the coordinatesj andp are
the real and imaginary parts of the generalized density matrix
in its locally diagonal form[18], where the change in the
pairing density,Kqq8=kFaq8aquFl, can be parametrized as
[2]

Ka =
1
Î2

sja + ipad. s10d

We want to find a solution of the local RPA equation,fnew,
at the generalized densityRnew satisfying the generalized
cranking equation(6),

HfRnewgqq8 − lfqq8
new− o

t=n,p
mNtqq8

new = 0, s11d

where fnew is also an eigenvector of the RPA equations7d
at Rnew and Nn,p are the particle number operators for
neutrons and protons, respectively. We usef at the previ-
ous point as input, and try to find a point a fixed length
DQ further along the path, which satisfies Eq.s11d for the
“old” value of f. Subsequently, a newf is found by solv-
ing the RPA equations, and this procedure is repeated un-
til Eqs. s7d and s11d are satisfied simultaneously.

The cranking equation

HfRsndgqq8 − lsndfqq8
sn−1d − o

t=n,p
mNtqq8

snd = 0 s12d

is solved with the additional constraint that

DQ = sf snd + f s0dd · sRi
snd − Rs0dd s13d

is fixed sdot represents a scalar productd. The initial values
f s0d and Rs0d are the results obtained at the previous self-
consistent point on the collective path.DQ is a measure of
the step length in the collective coordinate and Eq.s13d is
actually a linear approximation to the integral definition of
the change in collective coordinate

DQ =E
R0

R1

TrsfdRd. s14d

The value ofDQ depends on the normalization off. In the
following we choose the normalization in such a way that the

collective massB̄ is position independent,

B̄ = faBabfb = 1. s15d

Equations12d is solved iteratively by a constrained minimi-
zation, where the change of the generalized density in theith
step of the mean-field iteration is given by

Di
sndR = Di−1

snd R + ei
snd f snd

f snd · f snd + o
t=n,p

hit
snd Nit

20snd

Nit
20snd ·Nit

20snd

+ D'i
sndR, s16d

D'i
sndR = di

sndHHi
20snd − li

sndf snd − o
t=n,p

mit
sndNit

20sndJ , s17d

whereDi
sndR=Ri

snd−Rs0d. The step length in the mean-field
iterationdi

snd is chosen to be small for smalli, to make sure
that the iterations converge, but can be chosen larger as the
iteration approaches the minimum of the constrained mean
field. The parameterse, h, l, andmt are calculated from the
set of conditions discussed below. For eachn the i iteration is
initiated by choosing

D0
sndR = e0

snd f snd

f snd · f snd + o
t

h0t
snd Nit

20snd

Nit
20snd ·Nit

20snd . s18d

There are two types of constraints that give the undeter-
mined parameters in the method described above: the fixed
size of the steps in the collective coordinate(13) and the
constraint on particle number. The particle numbers are con-
strained by requiring thatDR does not change the expecta-
tion valuesNt. Such a constraint can be written in differen-
tial form as

Di
sndR ·Nit

20snd = 0, s19d

wheret=n,p. We also have to constrainD
'i
sndR in a similar

way

D'i
sndR · f snd = 0, s20d

D'i
sndR ·Nit

20snd = 0. s21d

The six conditionsfEqs. s13d and s19d–s21dg give a set of
equations which can be solved for the six parametersei

snd,
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hit
snd, li

snd, andmit
snd for eachi andn. The expressions fore, h,

l, andm can be found in the Appendix.
The quality of the collective coordinate found above can

be quantified and calculated. This is done by calculating the
decoupling measureD derived in Ref.[2]. One way of cal-
culatingD is by computing the inverse mass matrixBab and
then calculate

B̆11 =
dja

dQ
Bab

djb

dQ
, s22d

where we can approximate the derivative by the finite differ-
ences

dja

dQ
= Î2

DRa

DQ
. s23d

The decoupling measure is then calculated to be

D = B̆11 − 1, s24d

where we have used the normalization equations15d. This
quantity is straightforward to evaluate, but it is easier to un-
derstand from an alternative expression forD, which is based
on the generalization of Eq.s13d to all coordinates

Dqm = Î2DR · fm. s25d

This leads to

D = o
m.1

SDqm

DQ
D2

, s26d

i.e., D is the sum of squares of the change of the noncollec-
tive coordinates with the collective coordinate. This is
clearly zero for exact decoupling.

C. Projection basis for the LHA

One of the main difficulties of applying the LHA method
to realistic nuclear problems is the effort required in diago-
nalizing the large-dimensional RPA matrix repeatedly within
the double iterative process. To limit the computational effort
we use the method presented in Ref.[6] to reduce the size of
the RPA matrix. There it was shown that the RPA equation
can be solved with good accuracy by assuming that the RPA
eigenvectors can be described as a linear combination of a
small number of state-dependent one-body operators. The
quality of the results and the number of operators needed
depends strongly on the choice of the set of operators. How
to choose these operators is a longstanding problem in
nuclear physics[8,10].

We select a small number of one-body operatorsFskd, k
=1, . . . ,n, assuming that the RPA eigenvectors can be ap-
proximated as linear combinations ofFskd. The approximate

RPA vector f̄ ,a is then given by

f ,a < f̄ ,a = o
k=1

n

ckF,a
skd, s27d

whereFskd is the expectation value ofFskd. To determine the
coefficientsck the RPA matrices are projected onto the sub-
spacehF,a

skdj:

M kl = F,a
skdBabV;bgBgdF,d

sld, s28d

Nkl = F,a
skdBabF,b

sld. s29d

The RPA equation can then be expressed as

M klcl = s"V̄d2Nklcl , s30d

where "V̄ is a eigenfrequency of the projected RPA. The
rank of the matrix we need to diagonalize to solve the RPA
problem has been reduced from the number of two-
quasiparticle degrees of freedom to the number of one-body
operators chosen.

D. Schrödinger equation on the collective path

After having made a semiclassical approximation, which
leads to a classical Hamiltonian, we need to remember that
we are studying a quantum system. The standard technique
to deal with this is to treat the classical Hamiltonian as a
quantum one and to calculate the eigenfunctions and ener-
gies. This is superficially similar to the generator coordinate
method, especially in the Gaussian overlap approximation
[4], but it is actually rather different. The key point is the
appearance of the kinetic terms, which correspond to time-
odd generator coordinates(usually not included in the gen-
erator coordinate method).

As discussed in Ref.[2], we can include all manner of
quantum corrections to the potential energy, especially if we
are interested inabsolutevalues of the energy eigenvalues.
On the other hand, shape mixing—a spread of the wave
function along the collective path—is rather insensitive to
these quantum corrections. Therefore, we shall consider the
Hamiltonian along the collective path without further quan-
tum corrections.

One must include the zero modes when quantizing the
Hamiltonian, since they describe rotational and other excita-
tions. Quantization of the Hamiltonian in a metric coordinate
space turns the kinetic energy into a Laplace-Beltrami opera-
tor (see, e.g., Ref.[11]) in the relevant space,

HsXd = −
Dg

2
+ VsXd. s31d

The collective Schrödinger equation can then be written as

HsXdCsXd = ECsXd. s32d

In this paper we discuss calculations with one true collective
coordinate and a number of additional momenta for the zero
modessdenoted aspi

ZMd: two or three angular momenta,
depending on whether the state is axial or not, and two
operators connected to a change of phase of the proton
and neutron pairing gap, associated with pairing rotation.
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These latter quantize ass1/ids] /]fNd and s1/ids] /]fPd.
The potentialV is invariant under all the zero modes, and

only depends on the collective parameter,

VsXd = VsQd. s33d

The Laplace-Beltrami operatorDg with variablesbut diago-
nald mass matrix, where the zero-mode masses are given by
Bi =BisQd, can then be written as

Dg = g−1/2 ]

] Q
S 1

BQ
g1/2 ]

] Q
D − o

i

g−1/2pi
ZMS 1

Bi
g1/2pi

ZMD ,

s34d

whereg=BQpiBi, andBQ is identical toB in Eq. s15d, and
thus equals 1. Below we shall writeBfN,fP

for the neutron
and proton pairing-rotational masses. These are calculated as

BfN
= Nna

20VabNnb
20, s35d

BfP
= Npa

20VabNpb
20 , s36d

and the rotational moments of inertia are defined in the usual
way.

Since the potential and the masses are independent of the
zero-mode coordinates the wave functionC can be separated
into various pieces

CsQ,fN,fP,Vd = g−1/4UsQd
1

Î2p
eimfN

1
Î2p

eikfPDMK
I sVd* ,

s37d

where m and k are the quantum numbers for neutron and
proton pairing rotation, andI ,M ,K are the usual rotator
quantum numbers. We shall be looking at ground states
sbandheadsd only, and therefore we shall now useI =M =K
=0, and since pairing rotational excitation corresponds to a
change in particle number, we shall usem=k=0 as well.
Equations34d acting onC can now be rewritten as

g1/4Dg2pC = g−1/4 ]

] Q
Sg1/2 ]

] Q
g−1/4UsQdD

= U9sQd +
3g82 − 4gg9

16g2 UsQd. s38d

Here we see the typical reason to absorb the factorg1/4 into
the wave function: it removes the linear derivative term, and
we obtain a “centrifugal” potential in its place. This is fully
consistent with the standard procedure for separation of vari-
ables in radially symmetric problems in two and three di-
mensions as can be found in any quantum mechanics text-
book. Using Eq.s37d to separate variables, the Schrödinger
equations32d can be written as

− g−1/4 ]

] Q
Sg1/2 ]

] Q
g−1/4UsQdD + VsQdUsQd = EUsQd.

s39d

Since we wish the wave functionC to be normalizable we
require it to be finite, and we must then insist thatUsQd goes

to zero wheng does. In the present work that only occurs
when either of the pairing gaps collapses and thusBfP,N

=0 is
zero, and we shall ignore the rotational moments of inertia,
which do not change very quickly. Below we solve Eq.(39)
on a grid with the boundary condition thatUsQmaxd
=UsQmind=0. At points whereBf=0 the conditionU=0
holds exactly; for other cases applying this boundary condi-
tion will only give an upper limit on energy.

The scaling of the wave function removesg from expec-
tation values, and the expectation value of any local operator
AsQd can evaluated as

kAl =E UsQdAsQdUsQddQ, s40d

which shows thatU must be normalized according to

E UsQd2dQ= 1. s41d

III. RESULTS

To test the projection basis discussed in Sec. II C we
implement our method for an interaction and configuration
space that is where the approximation can be compared with
exact results.

A. Pairing+quadrupole model

We apply the LHA to the pairing+quadrupole Hamil-
tonian as described in Ref.[7]. With a constraint on both
neutron and proton numbers the Hamiltonian can be written
as

H8 = H − o
t=n,p

mtNt, s42d

H = o
k

ekck
†ck − o

t=n,p

Gt

2
sPt

†Pt + PtPt
†d −

k

2 o
M=−2

2

Q2M
† Q2M ,

s43d

whereek are spherical single-particle energies,Nt is the par-
ticle number operator,Q2M is the dimensionless quadrupole
operator,

Q2M =
1

Î2b0
2o

kl

kkur2Y2Mullck
†cl , s44d

whereb0=1/Îv0 is the standard oscillator length andPt
† is

the sdimensionlessd pairing operator

Pt
† = o

k.0
ck

†c−k
† . s45d

This Hamiltonian is treated in the Hartree-Bogoliubov ap-
proximation and it has been shown that at the minimum the
local RPA for this Hamiltonian is equivalent to the quasipar-
ticle RPA. ForM =1,2 werewrite the quadrupole operators
of Eq. s44d as sums and differences,
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Q2M
s±d =

1
Î2

sQ2M ± Q2−Md sM = 1,2d, s46d

and the pairing operator of Eq.s45d as

Pt
s±d =

1
Î2

sPt ± Pt
†d, t = p,n. s47d

The pairing and quadrupole operators can then be arranged
into five Hermitian,Ri, and four anti-Hermitian,Sj, opera-
tors:

Ri = sPn
s+d,Pp

s+d,Q20,Q21
s−d,Q22

s+dd, s48d

Sj = sPn
s−d,Pp

s−d,Q21
s+d,Q22

s−dd. s49d

The Hamiltonian of Eq.s43d can then be written as

H = o
k

ekck
†ck −

1

2o
i

kiRiRi +
1

2o
j

k jSjSj , s50d

with kis jd=Gt for Pt
s±d andkis jd=k for the Q operators. After

solving the mean-field problem within the Hartree-
Bogoliubov approximation the mass matrix and RPA poten-
tial around the minimum can be calculated as

Bab = Eadab − 2o
j

k jsSjdasSjdb, s51d

V;ab = Eadab − 2o
i

kisRidasRidb, s52d

whereEa=eq+eq8 is the two-quasiparticle energy anda and
b label two-quasiparticle states.Oa is the two-quasiparticle
matrix element of the operatorO, which can also be written
asOqq8

20 with a=qq8.
The spherical single-particle energies are taken from Ref.

[7]. Our model space consists of two major shells. We follow
Ref. [7] and multiply all quadrupole matrix elements with
the factor

z =
NL + 3

2

NH + 3
2

, s53d

whereNL is the harmonic oscillator quantum number of the
lower major shell andNH that of the higher one. To achieve
the same root-mean-square radii for protons and neutrons
different harmonic oscillator frequencies are adopted for

each type of nucleons. As a result the proton and neutron
quadrupole operators are multiplied by the factors

an =Î2N

A
and ap =Î2Z

A
, s54d

whereNsZd is the neutronsprotond number andA=N+Z.
We have chosen a set of representative isotopes for the

examples shown in this paper. For54Cr, 58Fe, and62Zn the
interaction strengths are chosen to reproduce the ground state
deformation listed in Ref.[12] and the pairing strengths are
chosen to approximately reproduce the relation given in Ref.
[13]. The interaction strengths for the isotopes66Zn and70Zn
are chosen to be the same as for62Zn. The quadrupole and
pairing strengths,k andGt, are listed in Table I together with
the corresponding deformations and pairing gaps. Since no
single-particle energies are given in Ref.[7] for this mass
region we use energies calculated with the modified oscilla-
tor [14] using parameters taken from Ref.[15].

B. Improved approximate representation
of the normal-mode operators

The quality of the results achieved by the projection
method described in Sec. II C strongly depends on the choice
of the single-particle operator basis. In Ref.[6] it was dem-
onstrated that a basis set consisting of pairing, multipole, and
spin dependent one-body operators are not able to reproduce
the results of a full RPA calculation. On the other hand if the
basis is chosen to be a set of state-dependent Hermitian one-
body operators of the structure

F̃k ; o
a

sFkda

Ea
2 sa†a†da + H.c. s55d

good agreement can be achieved with a small set of opera-
tors. The suppression factorEa

−2 can be understood if one
looks at a simple examplef6g . With the basis of Eq.s55d
good results can be achieved for the low-lyingb and g vi-
brationsf6g, as can be seen in Table II, with a small set of
operators consisting of the eight pairing and quadrupole op-
erators

F̃k = sP̃t
s+d,P̃t

s−d,Q̃20t,Q̃22t
s+d d, t = n,p. s56d

Even though theb andg vibrations are well described with
this basis set, the higher-lying solutions of pairing-
vibrational character are not well described. A couple of ex-
amples are listed in Table II. These results are not signifi-

TABLE I. The quadrupole and pairing interaction strengths,k andGt, used for the examples discussed in
this section. The deformation and pairing gap calculated for those interaction strengths are also listed.

k (MeV) Gn (MeV) Gp (MeV) e g Dn (MeV) Dp (MeV)

54Cr 0.201367 0.525586 0.485390 0.167 0.0 1.60 1.60
58Fe 0.122188 0.379609 0.478824 0.213 0.0 1.60 1.60
62Zn 0.113687 0.375498 0.411877 0.192 0.0 1.63 1.70
66Zn 0.113687 0.375498 0.411877 0.286 60.0 1.95 1.74
70Zn 0.113687 0.375498 0.411877 0.772 0.0 0.63 0.96
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cantly improved by including higher-order multipole or
quadrupole-pairing operators in the basis.

To improve the results for the pairing vibrations we in-
clude a pairing operator only active close to the Fermi sur-
face. To avoid the problem of having to select by hand which
levels that would have a nonzero matrix element we simply
divide the standard pairing operatorP± with a large power of
Ea. If the suppression factorEa

k is chosen with a large
enoughk all matrix elements except the ones withEa close
to zero will become negligible and the result will not depend
on k. The basis set is now

F̃k = SP̃t
s+d,P̃t

s−d,Q̃20t,Q̃22t
s+d ,

P̃t
s+d

Ea
k ,

P̃t
s−d

Ea
k D, t = n,p. s57d

We have chosenk=10. From Table III we can see that
almost all the low-lying vibrational modes are now de-
scribed with a very high accuracy.

To check if the wave functions are described as well as
the RPA energies by the projection method we also calculate
the overlap of the full RPA vectorf and the projected RPA

vector f̄. As criteria for good projection we use smallness of
the following quantities:

dB = 1 − f ,aBab f̄ ,b, s58d

d1 = 1 −
sf, f̄d

Îsf, fds f̄, f̄d
, s59d

where

sf, f8d = o
a

f ,af ,a8 . s60d

If d=0 the projection corresponds to an exact result. The
difference betweendB andd1 is that an admixture of a spu-
rious solution will contribute tod1 and not dB; dB is the
consistent quantity from the topological analysis. In Table II
we can see thatd has a relative small value for theb andg
vibration but, as expected, a substantially larger value for the
pairing vibrations. The new projection basis does systemati-
cally improve the wave function as well as the energy, as can
be seen in Table III where the values ofd are much smaller.
The exception being the second pairing vibration in66Zn.
This is due to the fact that ordering of the RPA solutions
in the full RPA relative to the projected RPA is different
in this case. Since the improved basis for the projected
RPA gives energy spectra and wave functions that are

TABLE II. Comparing the full RPA energy"V, the projected

RPA energy"V̄, anddB,1 for theb, g, Ds1d andDs2d vibrations using
the projection basis of Ref.[6] . The energies are in units of MeV.

"V "V̄ dB d1

b vibration
54Cr 1.216 1.246 0.0013 0.6528
58Fe 2.511 2.656 0.0282 0.0910
62Zn 1.966 2.033 0.0053 0.3593
66Zn 2.117 2.188 0.0050 0.3117
70Zn 1.029 1.068 0.0014 0.2146

g vibration
54Cr 2.289 2.386 0.0103 0.0085
58Fe 1.971 2.049 0.0090 0.0076
62Zn 1.284 1.298 0.0010 0.0010
66Zn 1.280 1.289 0.0003 0.0002
70Zn 3.166 3.348 0.0563 0.0511

Ds1d vibration
54Cr 3.208 3.894 0.1591 0.1496
58Fe 3.239 3.935 0.2712 0.2534
62Zn 3.383 4.173 0.5220 0.5107
66Zn 3.661 5.161 0.5171 0.4618
70Zn 1.814 2.052 0.0085 0.0105

Ds2d vibration
54Cr 3.449 4.505 0.5237 0.5113
58Fe 3.549 4.824 0.6442 0.6060
62Zn 3.537 4.797 0.7934 0.7751
66Zn 4.255 5.493 0.7827 0.7977
70Zn 3.573 4.824 0.6801 0.6809

TABLE III. Comparing the full RPA energy"V, the projected

RPA energy"V̄, anddB,1 for theb, g, Ds1d andDs2d vibrations using
the new projection basis(57). The energies are in units of MeV.

"V "V̄ dB d1

b vibration
54Cr 1.216 1.225 0.0003 0.6633
58Fe 2.511 2.537 0.0030 0.0630
62Zn 1.966 2.004 0.0023 0.3613
66Zn 2.116 2.131 0.0010 0.3156
70Zn 1.029 1.031 0.0001 0.2110

g vibration
54Cr 2.289 2.386 0.0103 0.0085
58Fe 1.971 2.049 0.0090 0.0076
62Zn 1.284 1.298 0.0010 0.0010
66Zn 1.280 1.289 0.0003 0.0002
70Zn 3.166 3.348 0.0363 0.0311

Ds1d vibration
54Cr 3.208 3.212 0.0008 0.0022
58Fe 3.239 3.247 0.0021 0.0039
62Zn 3.383 3.392 0.0055 0.0099
66Zn 3.661 3.664 0.0005 0.0037
70Zn 1.814 1.815 0.0001 0.0088

Ds2d vibration
54Cr 3.449 3.596 0.0426 0.0370
58Fe 3.549 3.647 0.0176 0.0309
62Zn 3.537 3.621 0.0210 0.0201
66Zn 4.254 4.767 0.9355 0.9286
70Zn 3.573 4.039 0.1649 0.1855
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much better than the set used in Ref.f6g, we will use the
new set in the following calculations.

Calculating the collective path using the projection basis
has an advantage besides reducing the rank of the RPA ma-
trix. We do not have any spurious solutions in the projected
RPA calculations since we have not included angular mo-
mentum and particle number operators in the basis. We can
therefore avoid problems due to crossings between the spu-
rious modes and the physical modes along the collective
path. Away from the minimum there is still an admixture of
the spurious solution into the collective coordinate.(As
stated above, we should use a symplectic RPA to resolve this
problem, but will not do so here due to its complexity.)

C. Representative case for large amplitude
collective motion

We would like to perform as simple a test of our method
as possible, especially, we would like the model space to be
small. We decided to concentrate on58Fe; since this nucleus
is g soft, it should provide a demanding testing ground for
our methodology. We have calculated the collective path us-
ing both the full RPA and the projected RPA.

The results are shown in Figs. 1–4. There is good agree-
ment between the projected and full RPA results along the

collective path in all cases. This provides a further confirma-
tion of the quality of our projection basis and shows that the
basis works well, also away from the mean-field minimum.
The collective path is found in a smaller range of the collec-
tive coordinate when we are using the full RPA compared to
the results for the projected RPA. This is due to the fact that
the collective coordinate mixes with our spurious modes,
which leads to problem with convergence in our double it-
erative method, due to the approximations made in the deri-
vation. The mixing of the collective coordinate and the spu-
rious solution remains small as long as the spurious mode is
almost orthogonal to the collective solution. When the en-
ergy of the spurious solution is similar to the collective so-
lution the denominator in the expression for the overlap be-
comes small which causes the overlap to become large. In
the projected RPA calculation we do not have any spurious
solutions since we have not included any of the operators
connected with the spurious motion in our basis. Therefore
we do not get a large spurious contribution to our collective
coordinate and we have better numerical stability of our cal-
culation.

We first investigate axial collective motion(see also Ref.
[16]), by following theb vibration (even though this is not
the lowest eigenvalue at equilibrium, it is the lowest one of
axial symmetry). From Fig. 1 we can see that the quadrupole
moment is approximately proportional to the collective coor-
dinateQ in the region −2,Q,0, which is an indication that
we have a path relative close to what we would obtain from
a mean-field calculation with a constraint on the quadrupole
moment. At larger and smaller values ofQ the deformation
kQ0l remains almost constant. Instead, the collective coordi-
nate is now dependent on the pairing fields, for largeQ pro-
ton pairing and for smallQ neutron pairing. AtQ<1.1 the
proton pair field collapses to zero. Our collective path ends at
this point, since the singularity at zero pairing is similar to
the origin in polar coordinates, withQ playing the role of
radial coordinate and the pairing phasef the role of polar
angle. The change from quadrupole to pairing mode is domi-
nated by a narrowly avoided crossing with the lowest pairing
vibration atQ<0.2. After this crossing the quadrupole mo-
ment kQ0l saturates and thekPpl starts changing. This
avoided crossing shows that more than one collective coor-
dinate would be needed for an accurate description of the
collective dynamics. The RPA frequency of theb vibration is
as expected proportional to the derivative of the cranking
parameterL.

We have also looked at the potential energy, simply cal-
culated as the expectation value of the Hamiltonian at each
point. In Fig. 1(a) we see that the potential has a local energy
maximum atQ<−1, which corresponds to a spherical shape
and a shallow oblate minimum atQ<−1.6. The potential
around the minimum shows a quadratic behavior which in-
dicates that the harmonic approximation in RPA is well ful-
filled for small amplitude collective motion, but obviously
fails for wave functions that have substantial support away
from the minimum. It can easily be seen that the regions
where the potential energy has a positive derivative are the
regions where the cranking parameterL has negative value
and the converse.

The key to the whole approach is the decoupling param-
eter D which is plotted in Fig. 1(f). It has a small value

FIG. 1. (Color online) Large amplitude collective motion in58Fe
with axial symmetry(following the b vibration, the second lowest
RPA solution at equilibrium). (a) Energy along the collective path.
(b) The square of the lowest RPA frequencies.(c) The dimension-
less quadrupole momentkQ0l and the hexadecapole moment
kr4Y40l. (d) The dimensionless pairing operatorskPtl. (e) The
cranking parameterL and the chemical potentialm. (f) The decou-
pling measureD. The dotted line represents the numerically over-
complete decoupling measure and the solid line the correct calcu-
lation where the contribution due to overcompleteness of the
projection basis has been removed. The gray(green online) curves
represent the results for the projected RPA and the black curves are
for the full RPA.
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indicating a good decoupling of the collective mode from all
the noncollective modes. The exceptions are atQ<0.2 and
Q,−2 which is due to two avoided crossings of theb vi-
bration with the pairing vibrations, as can be seen in Fig.
1(b). The large peak in Fig. 1(f) at Q.0.5 is due to an
approximate numerical overcompleteness in the basis on
which we have projected the RPA vectors. The overcom-
pleteness comes when a pair field is zero and the projected
mass matrix has a zero eigenvalue. This is due to the extra
pairing term included in the basis in Sec. III B. The over-
completeness appear near the collapse of the proton pairing
field, as can be seen in Fig. 1(d). Even though the basis only
becomes exactly overcomplete at the point of pairing col-
lapse the calculation ofD is already influenced when the pair
field is small, due to the fact thatD is calculated from an
inverse of the mass matrix[see Eq.(24)] which becomes ill
defined. We should of course remove such a spurious contri-
bution; this can be done quite easily, and leads to the result
plotted as a solid curve in Fig. 1(f). From now on we will
only plot the value ofD where the contribution from over-
completeness has been removed. The collapse of the pair
field has a surprisingly strong influence on the collective
path. Whether this is a result of the approximations we made,
our choice of force or a general feature is not clear at this
point.

In Sec. II D it was described how to solve the one-body
Schrödinger equation for the collective path. In the case dis-
cussed above the proton pair field collapses atQ<1.1. We
can therefore expect that proton pairing rotation will play a
key role for the excitation spectrum of our system. The pro-
ton pairing mass is plotted in Fig. 2. We can see that close to

FIG. 2. The upper panel shows the proton rotational mass along
the collective path for projected axial large amplitude collective
motion in 58Fe (following the second RPA solution). The lower
panel shows energy and the radial wave function for the large am-
plitude collective motion in58Fe, following the second RPA solu-
tion. The thick solid line is the potential energy, the thin horizontal
line gives the position of the lowest eigenvalue. The energy scale is
on the left side. The wave function is shown as well(dotted line),
with the scale on the right side.

FIG. 3. (Color online) Large amplitude collective motion in58Fe
(following theg vibration, the lowest RPA solution at equilibrium).
(a) Energy along the collective path.(b) The square of the lowest
RPA frequencies.(c) The dimensionless quadrupole momentskQ0l,
kQ2l and the hexadecapole momentkr4Y40l. (d) The dimensionless
pairing operatorskPtl. (e) The cranking parameterL and the chemi-
cal potentialm. (f) The decoupling measureD. The gray(green
online) curves are the results for the projected RPA and the black
curves are for the full RPA.

FIG. 4. The upper panel shows the proton rotational mass along
the collective path for projected large amplitude collective motion
in 58Fe (following the lowest RPA solution). The lower panel shows
energy and the radial wave function for the large amplitude collec-
tive motion in 58Fe, following the lowest RPA solution. The thick
solid line is the potential energy, the thin horizontal line gives the
position of the lowest eigenvalue. The energy scale is on the left
side. The wave function is shown as well(dotted line), with the
scale on the right side.
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the collapse of the proton pairingBfP
~ sQ−Qmaxd2 which is

what we expect when the collective coordinate is approxi-
mately kPPl. For negativeQ, BfP

has a nontrivial behavior.
In Fig. 2 we also show the lowest eigenvalue and radial

wave function of the collective Hamiltonian includingk=0
proton pairing rotation. AtQ=Qmax where Bfp=0 the
ground-state wave function goes to zero linear inQ as ex-
pected at the origin in polar coordinates. AtQ=Qmin we have
made the approximation thatUsQmind=0. There is no bound
state supported by the shallow oblate minimum and the low-
est excited state is 1.30 MeV above the collective ground
state. This excitation energy is substantially smaller than the
RPA harmonic approximation energy of 2.54 MeV and re-
flects the anharmonic nature of the large amplitude excita-
tion. In Table IV we can see that the large component of the
wave function at small and negativeQ gives rise to a reduc-
tion of the expectation value ofQ0 by almost 30% relative to
the mean-field results.

In the case where we follow the path emerging from the
lowest mode, theg vibration, we can obtain similar results. A
number of results identifying the collective path are shown in
Fig. 3, where we have linear change ofkQ2l with the collec-
tive coordinate, while all other expectation values remain
relatively unchanged foruQu ,0.5. At larger values of the
collective coordinate we see a saturation inkQ2l and a strong
reduction in the neutron pair field, which finally collapses to
zero. Once again, this is mediated by an avoided crossing
between quadrupole- and pairing-vibration modes. The de-
coupling measureD in Fig. 3(f) has a similar behavior as for
the b vibration. The crossing with the pairing vibration is
visible as an increase inD at aroundQ<0.6. At largerQ we
have a large contribution toD due to overcompleteness of
the basis this time caused by the strongly reduced neutron
pairing field. By mirroring the potential to negativeQ (and
negativekQ2l we get a closed collective path from the neu-
tron pairing collapse atQ<1.6 to the mirrored neutron pair-
ing collapse atQ<−1.6. The neutron rotational pairing mass
in Fig. 4 shows the expected quadratic behavior inuQu close
to Qmax.

In Fig. 4 we also show the eigenvalues and wave func-
tions of the collective Hamiltonian includingm=0 neutron
pairing rotation. The lowest excited state is at 1.49 MeV
above the collective ground state. This excitation energy is
substantially smaller than the corresponding RPA excitation
energy of 2.05 MeV. This again is a result of the anharmonic
nature of the collective potential. In Table V we can see that
the lowest state has a substantially reduced value ofkPNl
compared to the mean-field value at the minimum.

D. Realistic application of large amplitude collective motion

The case of58Fe has the advantage that the configuration
space is relatively small and therefore there are no big com-
putational problems, and we could compare exact and ap-
proximate solutions. It still allows us to explore several key
features of our method and test its feasibility and the quality
of the results. To test the method in more realistic circum-
stances we decided to apply our method to the rare-earth
region. We have chosen156Gd and 182Os since the gado-
linium nucleus is known to beb soft, whereas the osmium
isotope isg soft. Both nuclei are situated in a region which is
rich in nuclear structure phenomena.

The calculations for156Gd and182Os are done in a con-
figuration space consisting of theN=5s4d and 6s5d neutron-
(proton) shells. The spherical single-particle energies and
suppression factors of Eqs.(53) and (54) are again taken
from Ref. [7]. We compare the RPA energies and the RPA
vectors calculated with the full RPA and using the projected
approximation in Table VI.

We find a good agreement for the low-lying solutions. The
second pairing vibration is somewhat too high in energy
which is also reflected in a small overlap of the RPA vectors.
The projection basis seems to work very well in the cases of
heavier nuclei and larger configuration spaces examined
here.

In Figs. 5–7 we can see the results of the large-amplitude
collective motion following the lowest axial symmetric solu-
tion. We have included both the results obtained with the full
RPA as well those employing the RPA projected on a basis.

TABLE IV. The expectation values of the quadrupole and pair-
ing operators fork=0 collective Hamiltonian along the axial collec-
tive path in58Fe and at the mean-field minimum.

Collective Mean field

kQ0l 8.98 12.37

kPNl 4.36 4.21

kPPl 3.25 3.34

TABLE V. The expectation values of the quadrupole and pairing
operators form=0 collective Hamiltonian along the nonaxial col-
lective path in58Fe and at the mean-field minimum.

Collective Mean field

kQ0l 12.63 12.37

kPNl 3.53 4.21

kPPl 3.31 3.34

TABLE VI. Comparison of the full RPA energy"V, the pro-

jected RPA energy"V̄, anddB,1 for the b, g, Ds1d and Ds2d vibra-
tions in case of156Gd and182Os using the new projection basis(57).
The energies are in units of MeV.

"V "V̄ dB d1

156Gd

b vibration 0.8850 0.9224 0.0040 0.5138

g vibration 1.6860 1.8490 0.0366 0.0325

Ds1d vibration 1.8089 1.8147 0.0049 0.0042

Ds2d vibration 1.9923 2.2256 0.9409 0.9339
182Os

b vibration 1.5704 1.5851 0.0058 0.0087

g vibration 1.1208 1.1458 0.0016 0.0010

Ds1d vibration 1.6690 1.6776 0.0106 0.0147

Ds2d vibration 1.8476 2.0673 0.2165 0.2826
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In 156Gd the lowest solution is theb vibration but it also
has quite large pairing components, as can be seen in Fig. 5
in the change in strength of the pair fields. There is in general
a nontrivial structure of the collective path close to the mean-
field minimum which also can be seen in Fig. 5(a) where the
energy shows anharmonic behavior around the minimum.
Figure 5(f) shows a good decoupling of the collective de-
grees of freedom from the noncollective degrees of freedom
in the region close to the minimum.

In Fig. 6 we can see that there is one low-lying solution of
the collective Hamiltonian. The fact the lowest eigenvalue is
situated high in energy, relative to the range in which we
have found the collective potential, tells us that the assump-
tion that UsQd=0 at the ends of the collective path is not
justified in this case. One can expect that the correctU would
stretch substantially outside the range on which we have cal-
culated the collective path.

182Os is ag soft nucleus and we show the result following
the two lowest normal modes.

In Fig. 7 we can see that the lowest axial RPA solution is
mainly of proton pairing nature. The strength of the proton
pair field is proportional to the collective coordinate and that
the pair field collapses atQ<1.6 which leads to a jump in
the chemical potential. For small negative values ofQ there
is an avoided crossing with a mode that is dominantly a
shape vibration, which leads to a reduction ofkQ0l. The en-
ergy along the collective path in Fig. 7(a) shows a maximum
when kPPl→0 and a approximately harmonic behavior
around the minimum. Figure 7(f) shows a good decoupling
of the collective degrees of freedom from the noncollective
degrees of freedom in the region close to the minimum. At
large negative values ofQ we have a crossing with a proton
paring vibration which gives large state mixing and therefore
no decoupling of the collective solution.

Figure 8 shows the results when following the collective
path defined by the lowestg vibration in 182Os.

The calculation shows that the collective path is mainly
dominated by the increase of thekQ2l triaxial deformation.
At Q.0.8 we see an avoided crossing of theb andg vibra-
tion which causes a numerical instability in our calculations.
This also signals the need for more than one collective coor-
dinate. Even though there are numerical difficulties in imple-
menting our method in some cases we can see that our pro-
jection method works very well in the larger configuration
spaces employed here and it is practically implementable.

IV. CONCLUSIONS AND SUMMARY

We have extended the method of calculating the self-
consistent collective path presented in Ref.[2] to include
constraints on the particle number and implemented it for the
quadrupole+pairing Hamiltonian[7]. The method consists of
finding a series of points fulfilling the force equation, where
the local direction of the collective path is determined in
each point by the local normal modes. The local RPA equa-

FIG. 5. (Color online) Axial collective motion in156Gd. See Fig.
1 for more details.

FIG. 6. The energy along the collective path for projected axial
large amplitude collective motion in156Gd (following the first RPA
solution) is drawn with the thick solid line with the energy scale on
the left side. The lowest eigenvalue of the Hamiltonian is drawn as
a thin horizontal line. The corresponding eigenfunction has the
scale on the right side.

FIG. 7. (Color online) Axial collective motion in182Os. See Fig.
1 for more details.
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tions and the force equation are solved in a double iterative
process with constraints on the particle numbers and the step
length along the collective path. The method allows us to
determine the collective coordinate from the Hamiltonian
without having to assumea priori which are the relevant
degrees of freedom.

To implement this method in heavier systems and for
more realistic nuclear forces we need to truncate the RPA
calculation in a way that will give an accurate approximation
of the low-lying RPA solutions. We have improved the pro-
jection method originally presented in Ref.[6] in such a way
that we are able to describe all low-lying states including
pairing vibrations. This is done by expanding the state-
dependent basis suggested in Ref.[6] to include a pairing
term, which is only active around the Fermi surface. The new
basis set gives RPA energies very close to the exact solu-
tions. The calculation of the overlap of the wave functions
between the full and our approximate RPA solution shows
that the wave functions are almost identical. We can there-
fore expect our method to give a good approximation to the
collective path.

Our method of calculating the collective path has been
implemented for the cases of58Fe, 156Gd, and 182Os. We
have chosen to follow the lowest axially symmetric and tri-
axial solutions. The decoupling of our collective coordinate
from all the noncollective coordinates can be quantified in
the decoupling measureD. This is found to be small along
the collective path with the exception of regions of avoided
crossings where the system undergoes configuration mixing.
In such regions one collective coordinate is not sufficient to
describe the system accurately. In regions where the projec-
tion basis gets overcompleteD has to be calculated with
special care. This happens when the proton and/or the neu-
tron pairing collapses.

We see that the collective path goes through avoided
crossings with pairing solutions in most cases in both58Fe
and 182Os. This leads to collapses of the pair fields and an

end of the collective path. These avoided crossings also show
that more than one collective coordinate would be needed for
a accurate description of the collective motion. In theb-soft
nucleus156Gd the collective coordinate is of a more compli-
cated structure which can also be seen in the nonharmonic
shape of the potential energy. Our projected local RPA
method for calculating the collective path gives very good
agreement with the results obtained using the full RPA. The
method is very useful when calculating self-consistent large-
amplitude collective motion in large a configuration space.

By solving the one-dimensional “radial” Schrödinger
equation along the collective path we are able to examine the
effect of the collective motion on ground state properties. In
cases where the collective path ends with a collapse of the
pair field we must include the effect of pairing rotations on
the low energy spectrum. It is surprising that almost all our
calculations are dominated by states with collapsing pairing;
there may well be important lessons in this feature. The rea-
son they occur so frequently is the presence of low-lying
configurations without pairing. One might ask whether this is
an artifact of our model, and whether larger configuration
spaces with more complicated interactions would behave dif-
ferently. Such calculations are clearly called for, but we do
not expect dramatically different results, since pairing mainly
acts in a small region around the Fermi surface. There is also
a slight possibility that the approximations we made in our
treatment of spurious admixtures contributes to these effects.
The surprising importance of the pairing collapse is the main
result of our calculations that is usually not seen in a stan-
dard constrained mean-field calculation.

In this paper we have implemented a method to find the
adiabatic self-consistent collective path for a nuclei. A tech-
nique to truncate the basis in which the RPA equations are
solved has been improved and a good agreement between the
full and truncated RPA is found. To solve the RPA equations
in a limited basis has proven to be a useful and practical way
of calculating the collective path within the local harmonic
approximation. We intend to apply similar techniques to the
interesting problem of collective motion at finite rotational
frequency in the near future. It remains to be investigated
how we can include the covariant terms in the RPA in a
suitable approximation.
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APPENDIX

The six conditions[Eqs.(13) and(19)–(21)] gives a set of
equations which can be solved for the six parametersei

snd,
hit

snd, li
snd, andmit

snd for eachi andn. For i =0 we get

FIG. 8. (Color online) Nonaxial collective motion in182Os. See
Fig. 3 for more details.
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e0
snd =

DQ

1 +
f s0d · f snd

f snd · f snd − ot

Nit
20snd · f snd

f snd · f sndNit
20snd ·Nit

20snd sf s0d + f sndd ·Nit
20snd

, sA1d

h0t
snd = − e0

snd f snd ·Nit
20snd

f snd · f snd . sA2d

For all otheri Eqs.s16d and s17d together with the constraintss13d–s21d give

ei
snd =

− di
sndf s0d · D'i

sndR + ot

Nit
20snd · Di−1

snd R
Nit

20snd ·Nit
20snd sf s0d + f sndd ·Nit

20snd

1 +
f s0d · f snd

f snd · f snd − ot

Nit
20snd · f snd

f snd · f sndNit
20snd ·Nit

20snd sf s0d + f sndd ·Nit
20snd

, sA3d

hit
snd = − ei

snd f snd ·Nit
20snd

f snd · f snd − Nit
20snd · Di−1

snd R, sA4d

li
snd =

Hi
20snd · f snd − ot

Hi
20snd ·Nit

20sndNit
20snd · f snd

Nit
20snd ·Nit

20snd

f snd · f snd − ot

sNit
20snd · f sndd2

Nit
20snd ·Nit

20snd

, sA5d

mit
snd =

Hi
20snd ·Nit

20snd − li
sndf snd ·Nit

20snd

Nit
20snd ·Nit

20snd . sA6d

These equations can easily be generalized to incorporate ad-
ditional constraint operators such as angular momentum.
They are slightly more complicated than those shown in
other workf2g, since we have chosen to fix the step size in
the collective coordinate.
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