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Towards a practical approach for self-consistent large amplitude collective motion
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We investigate the use of an operatorial basis in a self-consistent theory of large amplitude collective motion.
For the example of the pairing-plus-quadrupole model, which has been studied previously at equilibrium, we
show that a small set of carefully chosen state-dependent basis operators is sufficient to approximate the exact
solution of the problem accurately. This approximation is used to study the interplay of quadrupole and pairing
degrees of freedom along the collective path for realistic examples. We show how this leads to a viable
calculational scheme for studying nuclear structure, and discuss the surprising role of pairing collapse.
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[. INTRODUCTION detail in the review papel2] (a similar approach, plus rel-
) ] ) evant references, can be found in R@&l), leads to a very
There is a general quest for understanding of complicategie|l-defined approach, which can in principle be solved
phenomena in terms of a limited set of degrees of freedonknowing the Hamiltonian and model space. To find the adia-
chosen through some method appropriate for the problem #fatic collective path we use the local harmonic approxima-
hand. Many approaches are available, in areas ranging fromon (LHA). It consists of a constrained mean-field problem
field theories to atomic physigsee, e.g., the reviews in Ref. that needs to be solved together with a local random phase
[1]D). These are typically based on the concept of “relevanapproximation(RPA), which determines the constraining op-
degrees of freedom” or on the introduction of collective mo-erator. This approach lacks practicality, since the size of the
tion and collective paths—which are two ways to expressRPA problem is, for a system with pairing, proportional to
rather similar principles. the size of the single-particle space squared. Even though
More specific to the nuclear problem studied in this paperenormous matrices can routinely be diagonalized on modern
the old question “what is the correct choice of collective COmputer systems, the algorithm requires repeated diagonal-
coordinate in a many-body system?” has had quite a fezation of such a matrix, which makes an implementation in
partial answers, see the revid@] for a discussion of some 'ealistic calculations prohibitively time consuming.
of these. The holy grail of this approach is a method that This requires a solution, or at least a good approximation,

determines a collective path self-consistently, based only ofnd this is the subject of the present paper. Afirst approach to
knowledge of the Hamiltonian governing the system. Prefer-SOIVIng the problem has been suggested in the work of one of

ably the method chosen should allow us to measure Whetha%’r]e authorg] . The best way to test such ideas is to use a

the limited dynamics in a few coordinates makes sense at emirealistic model, where approximations can be tested
: y S ainst the full method, such as the pairing-plus-quadrupole
or in _the language usgd above, address the question “ho odel as employed by Barranger and Kunfid in their
effe(;]twe are thg ef(fjectlve degreeskof freel_dcl))m’? hod i seminal work. It has been shown in the pggtthat at equi-
The constrained Hartree-Fock-Bogoliubov. method ISy ,m the RPA can be solved quite efficiently using a

commonly used to describe collective paths in nuclear physéimple basis of operators. Related work by Nesterestia.
ics (see, e.g., Refd3,4]). This approach, where the collec-

) ) 8] may also have some bearing on this problem, but will not
tive subspace is generated by a small number of one-bo ] may g P

. ) . Pe investigated here. In short, the idea is that the basic op-
constraints, also goes by the name of generalized Crank'”%rators of the model, weighted by a suitable power of the

The one—body constraints usually consist of a few Carem”yquasiparticle energies, give excellent results. The state de-
chosen multipolgparticle-holg operators as well as a few

. - ) ; pendence induced by the quasiparticle energies is crucial to
generalized pairindparticle-particl¢ ones. For large scale

i e ~~ the success of the approach, and is the main difference with
realistic problems such as the description of nuclear fissio

Phethods based on “naive” constraints. Since the original

the number of generalized cranking operators needed in OWork was only done at equilibrium, we must still check that

der to make a realistic calculation becomes very large. Thersuch a basis of operators provides a good solution along the
ollective path, and we indeed find some important modifi-
ations to the method discussed in R@f. . Once a collec-
ive path has been found we can diagonalize the collective
%ne—body Hamiltonian along this path, including all the zero
modes arising from broken symmetries. This will give infor-
"hation on how the collective motion influences the ground
state properties of the nuclei. In several of the examples dis-
cussed below we find low-lying states with pairing collapse
*Electronic address: D.AImehed@umist.ac.uk which influence the collective behavior of the system. If we
"Electronic address: Niels.Walet@umist.ac.uk now quantize the collective dynamics, waustinclude the

is also no reason to limit the constraints to the standar
choices; other degrees of freedom, especially those involving
spin-orbit interactions might also be important. A more sat-
isfactory method should allow the cranking operators to b
determined by the nuclear collective dynamics itself.

One such approach, followed in this paper and set out i
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pairing rotations. This is due to the fact that a point with The central part in our approach to large amplitude mo-
collapsed pairing behaves similar to the origin in polar coor+ion is a search for collectiveand noncollectivecoordinates
dinates, with the pairing phase playing the role of the polaig* which are obtained by an invertible point transformation
angle. In this work we shall only study the effect of the of the original coordinateg®, preserving the quadratic trun-
pairing-rotational modes, ignoring collective rotation for the cation of the momentum dependence of the Hamiltonian

time being. [17], by
The paper is organized as follows. In Sec. Il we briefly P N B
present the basic principles of our approach, to highlight =19, &=9%@ (ma=1,...n), 3)

those issues that will make the results easier to understangng the corresponding transformation relations for the mo-
The practical form of the equations for the type of many-mentap and
" @

body problem considered here is also discussed, and the

fqrm o_f the approximgtion is introduced. Results are thgn pM:gfLTra, 7o =0, (4)
given in Sec. Il and finally we draw some conclusions in . —_—
Sec. IV, where we use a standard notation for the derivatiggs,

= (d/9g*)g* andf¥, = (d/ 9¢*)f#. The adiabatic Hamiltonian,

Eq. (2), is then transformed into
Il. FORMALISM

" —\/( 1nuw 4
The formalism, as set out in detail in R¢2], is based on H(@,p) =V(q) + ;B*"p,p, + O(P") (5)

time-dependent mean-field theory, and the fact that a classjy the new coordinates. The new coordinatésare now to
cal dynamics can be associated with it. The issue of selectinge djvided into three categories: the collective coordimgte
collective coordinates, and determining their coupling tothe zero-mode coordinatel 1=2, ... M+1, which describe
other degrees of freedom, thus becomes an exercise in Clagmotions that do not change the energies, and finally the non-
sical mechanics. Furthermore, if we assume adiabaticity, go|lective coordinateg? a=M+2, ... n. (The approach can
slow motion where the Hamiltonian can be expanded t0 SeGsasijly be generalized to include more than one collective
ond order in momenta, we have a problem that can b@gordinate, but that will not be discussed hgre.
solved. The solution can be stated without any direct refer- The collective coordinate is determined by means of the
ence to the original nuclear many-body problem and theojution to the local harmonic approach, which consists of a
choice of the interaction. set of self-consistent equations. These are the following.
(1) The force equations
A. Local harmonic approximation for the collective path in _ |
the adiabatic limit Ho= A+ AT, (6)

We assume a classical Hamiltonian depending on a set afheref' are the zero mode&lso called Nambu-Goldstone
real canonical coordinate§” (a=1,... N) and conjugate or spurious modgsandA, represents a set of Lagrange mul-
momentam; (8=1, ... N) of the form(¢ and 7 thus param- tipliers (which in nuclear physics are usually called cranking
etrize|W¥) [2]) parameters A is a Lagrange multiplier for the collective

mode, stabilizing the system away from equilibriuiwe
H(E ) =(VH|P). (1 shall often denote it as the generalized cranking parameter
(2) The local RPA equation
We shall use a tensor notation, where we use upper indices _
for coordinates and lower indices for momenta. When the V.., B 5= (hQ)%f ,, (7)
zir?ri;?/crﬁt;ﬂrﬁp&ee?rfhzts ilralgtehx.upper and lower index there\;vshere the covariant derivativé,,; is defined in the usual

The potentiaV(¢)=H(7w=0) and the mass matrig*# are way [V,o=(V.o) g,
given by an expansion (ﬁ'll(f,rr) in powers of in zeroth Vip=Vs=T2V,, (8)
and second order, respectively,

H(g, ’77) = V(g) + %Baﬂﬂ_aﬂ_ﬂ + 0(774) . (2) I‘g,}/: 875(B5ﬁ,y+ Bﬁ)/,ﬁ - Blg'}’v&), (9)
] Zero modes correspond to zero eigenvalues of the RPA. In
Terms of higher ordefsuch asn?) are supposed to be neg- principle great care needs to be taken to have zero modes
ligible. The kinetic energy in the Lagrangian formallsm CON-pehave correctly away from equilibrium. The symplectic
tains the inverseé,; of the mass matrixkK= 1/2§“BQB§5, RPA[2] is the correct way to do so; unfortunately it is rather
and can be interpreted as an inner product in the tangemumbersome, and as a practical approximation we shall ig-
space to a curved manifold. The inverse of the mass matrirore the corrections arising from this approach here. In this
B*# is thus the metric tensor; in other words the maBjy  paper we will also neglect the covariant corrections to the
represents the Riemanian geometry in configuration spac&PA, since they are time consuming to calculate. This means
since it measures lengths in the tangent space. This cleartjiat we do not treat the zero modes absolutely correctly.
would not be the case if we had higher-order terms in the The collective path is found by solving Eq®) and(7)
kinetic energy. self-consistently, i.e., we look for a path consisting of a series
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of points where the lowest nonspurious eigenvector of the AQ=(f +{O) . (R(M - R(©) (13)
local RPA equations also fulfils the force condition. In the

minimum of the potential the spurious solutions decoupleds fixed (dot represents a scalar producthe initial values
from the other collective and noncollective solutions. Whenf® and R'? are the results obtained at the previous self-
we are following the collective path away from the minimum consistent point on the collective pathQ is a measure of
one can use special techniques, called the symplectic versidhe step length in the collective coordinate and Edp) is

of the theory, to avoid mixing of the spurious solution andactually a linear approximation to the integral definition of
the physical solutionf9]. This has the disadvantage that it is the change in collective coordinate

numerically much more difficult to implement. In this paper Ry
we have chosen to ignore the effects of the spurious admix- AQ= Tr(f6R). (14)
tures to the RPA wave functions, but these are expected to be R

small, at least close to the minimum. As a result there will be o
a finite overlap between the collective coordinate and thed N value ofAQ depends on the normalization &fIn the

spurious operators. The price paid for these approximationt@!lowing we choose the normalization in such a way that the
is that at points where RPA frequencies should cross we ge&llective mass is position independent,

narrow avoided crossings. The narrowness is a measure of _

the severity of the truncation errors. One way to bypass such B=f,B*fz=1. (15

problems, is to use a basis of operators, where such crossings .. . . . . .
are extremely rare guation(12) is solved iteratively by a constrained minimi-

zation, where the change of the generalized density itthe
step of the mean-field iteration is given by
B. Large amplitude collective motion with local

harmonic approximation f

(M = AN () m____r
Ai R= Ai—lR + € f(”) ] f(n) + E Tz N20(n) . N20(n)
7=N,p 17 I

N
The local harmonic approximation has been described in

Ref. [2]. There the structure is discussed in great detail, as is + AT.)R (16)

the transition between nuclear physics and classical mechan-

ics. Here the formalism is extended to include pairing and ) , 20

constraints on particle number. We start with the time- ATiRzﬂn){Hio(n)—)\i(n)f(n)‘ >IN n)}, (17)

dependent Hartree-Fock-Bogoliubov equations; in this case =np

one finds that a natural choice for the coordindtesd are .whereAf“)R:Rf”)—R(‘”. The step length in the mean-field

the real and imaginary parts of the generalized density mat”ﬁeration 57 is chosen to be small for smallto make sure
|

in its locally diagonal form[18], where the change in the that the iterations converge, but can be chosen larger as the
paifing den5|ty,Iqu,:<d>aq,aq|<I>>, can be parametrized as iteration approaches the minimum of the constrained mean

[2] field. The parameters, 7, \, andw, are calculated from the
1 set of conditions discussed below. For eadheiiteration is
Ko=—=(&+im,). (10) initiated by choosing
V2
i i i (V= T o N
We want to find a solution of the local RPA equati6ff", AY'R = ¢ P +> 7707 [ @om) , 2o (19
at the generalized densitR"" satisfying the generalized T ir ir

cranking equatiori6), There are two types of constraints that give the undeter-

ew ew mined parameters in the method described above: the fixed
HIR™gq ~ Mg = 2 uNgy =0, (1) size of the steps in the collective coordindfs) and the
=np constraint on particle number. The particle numbers are con-

new : . ) strained by requiring thaA’R does not change the expecta-
wheref"*"is also an eigenvector of the RPA equatiol o valuesN.. Such a constraint can be written in differen-
at R"™" and N,, are the particle number operators for 5| form as

neutrons and protons, respectively. We tisg the previ-

ous point as input, and try to find a point a fixed length Ai(n)R . NiZT()(n) =0, (19)
AQ further along the path, which satisfies E41) for the

“old” value of f. Subsequently, a neWis found by solv- wherer=n,p. We also have to constra'm(fi)R in a similar
ing the RPA equations, and this procedure is repeated urway

til Egs. (7) and (11) are satisfied simultaneously.

The cranking equation ANR £ =0, (20)
HIR ]y ~\PFY - gp pNO =0 (12 AR NP =0. (21)

The six conditiondEgs. (13) and (19—(21)] give a set of

is solved with the additional constraint that equations which can be solved for the six parameters
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7", A", and " for eachi andn. The expressions for, 7, _ N )
\, and . can be found in the Appendix. fo=~fo=2 CF%, (27)
The quality of the collective coordinate found above can k=1

be quantified and calculated. This is done by calculating thgnere 7% is the expectation value &, To determine the
decoupling measur® derived in Ref[2]. One way of cal-  cpefficientsc, the RPA matrices are projected onto the sub-
culatingD is by computing the inverse mass mati; and space{]—'(k)}'
then calculate at”
MK = FK¥BBY. 5 BYFY, (28)
o dee déep
B = iB :

dQ aﬁ%l (22)

NM = FBerF)). (29)

where we can approximate the derivative by the finite differ-The RPA equation can then be expressed as

ences M, = (RQ)2NNg, (30)
d¢* AR where Q) is a eigenfrequency of the projected RPA. The
E =v\2 AQ (23 rank of the matrix we need to diagonalize to solve the RPA

problem has been reduced from the number of two-

The decoupling measure is then calculated to be quasiparticle degrees of freedom to the number of one-body
operators chosen.

D=By-1, (24) D. Schrodinger equation on the collective path

where we have used the normalization equalib®). This After having made a semiclassical approximation, which
quantity is straightforward to evaluate, but it is easier to unleads to a classical Hamiltonian, we need to remember that
derstand from an alternative expression@omwhich is based Wwe are studying a quantum system. The standard technique

on the generalization of E413) to all coordinates to deal with this is to treat the classical Hamiltonian as a
quantum one and to calculate the eigenfunctions and ener-
Agt= V’EAR o (25) gies. This is superficially similar to the generator coordinate

method, especially in the Gaussian overlap approximation
[4], but it is actually rather different. The key point is the
appearance of the kinetic terms, which correspond to time-
N\ 2 odd generator coordinatgasually not included in the gen-
D= (ﬂ) , (26) erator coordinate methad
AQ As discussed in Refl2], we can include all manner of
quantum corrections to the potential energy, especially if we

i.e., D is the sum of squares of the change of the noncollec@'® interested imbsolutevalues of the energy eigenvalues.

tive coordinates with the collective coordinate. This is©On the other hand, shape mixing—a spread of the wave
clearly zero for exact decoupling. function along the collective path—is rather insensitive to

these quantum corrections. Therefore, we shall consider the
Hamiltonian along the collective path without further quan-
C. Projection basis for the LHA tum corrections.
One must include the zero modes when quantizing the
_Hamiltonian, since they describe rotational and other excita-

to realistic nuclear problems is the effort required in diago tions. Quantization of the Hamiltonian in a metric coordinate
nalizing the large-dimensional RPA matrix repeatedly within ) A . :
space turns the kinetic energy into a Laplace-Beltrami opera-

the double iterative process. To limit the computational effortt Ref11]) in th | t

we use the method presented in Réi.to reduce the size of or (see, e.g., Ref11]) in the relevant space,

the RPA matrix. There it was shown that the RPA equation A

can be solved with good accuracy by assuming that the RPA H(X) =~ f +V(X). (31

eigenvectors can be described as a linear combination of a

small number of state-dependent one-body operators. ThEhe collective Schrédinger equation can then be written as

quality of the results and the number of operators needed

depends strongly on the choice of the set of operators. How HX)W(X) = EV(X). (32)

to choose these operators is a longstanding problem it this paper we discuss calculations with one true collective

nuclear physic$8,10. coordinate and a number of additional momenta for the zero
We select a small number of one-body operaféf$, k  modes(denoted ag?™): two or three angular momenta,

=1,....n, assuming that the RPA eig)envectors can be apgepending on whether the state is axial or not, and two
proximated as linear combinations Bf¢. The approximate operators connected to a change of phase of the proton

RPA vectorf , is then given by and neutron pairing gap, associated with pairing rotation.

This leads to

u>1

One of the main difficulties of applying the LHA method
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These latter quantize d4/i)(d/ d¢py) and (1/i)(d/ d¢pp). to zero wheng does. In the present work that only occurs
The potentiaV is invariant under all the zero modes, and when either of the pairing gaps collapses and By, =0 is
only depends on the collective parameter, zero, and we shall ignore the rotational moments of inertia,
which do not change very quickly. Below we solve E89
VIX) =V(Q. (33 e boundary .

on a grid with the boundary condition that(Qma
The Laplace-Beltrami operatay, with variable (but diago- ~ =U(Qmin)=0. At points whereB,=0 the conditionU=0
nal) mass matrix, where the zero-mode masses are given dyolds exactly; for other cases applying this boundary condi-

B;=B;(Q), can then be written as tion will only give an upper limit on energy.
The scaling of the wave function removggrom expec-
A = -1/2i(igl/2i> = g—l/zpzm<lg1/zpzm> tation values, and the expectation value of any local operator
9 dQ\Bg~ 4dQ i '\ B ) A(Q) can evaluated as

(34)
whereg=Bgll;B;, and By, is identical toB in Eq. (15), and

thus equals 1. Below we shall wrig,, ,, for the neutron \ nich shows that) must be normalized according to
and proton pairing-rotational masses. These are calculated as

(A= f U(QAQU(QQ, (40)

By, = NZOVAN2, (35) J U(Q?’dQ=1. (42)
— n120y s 20
By = NpaV/ BNPB‘ (36)
and the rotational moments of inertia are defined in the usual ll. RESULTS

To test the projection basis discussed in Sec. Il C we

plement our method for an interaction and configuration

space that is where the approximation can be compared with
exact results.

Since the potential and the masses are independent of trﬂ%
zero-mode coordinates the wave functircan be separated
into various pieces

V(Q, b, bp Q) = g‘““U(Q)V,%Te"“‘le 1—ék"’PD'MK(n)* :

W A. Pairing+quadrupole model

(37) We apply the LHA to the pairing+quadrupole Hamil-

wherem and k are the quantum numbers for neutron andtonian as described in Ref7]. With a constraint on both
proton pairing rotation, and,M,K are the usual rotator neutron and proton numbers the Hamiltonian can be written
quantum numbers. We shall be looking at ground state8S

(bandheadsonly, and therefore we shall now use M=K L

=0, and since pairing rotational excitation corresponds to a H'=H- 2 uN,
change in particle number, we shall use=k=0 as well. T
Equation(34) acting on¥ can now be rewritten as

(42)

2
G, K
H=2 ecloc— > 3(PIPT+ P.PH-= > Q5uQau,
k

Jd J
gl/4Agz7T\I, - g l/4_<gl/2_g 1/4u(Q)> =np 2 M==2
dQ\" 4Q
(43)
vy . 392~ 499’ o . .
=U"(Q + ngU(Q)' (38)  whereg are spherical single-particle energidk,is the par-

ticle number operatoiQ,,, is the dimensionless quadrupole
Here we see the typical reason to absorb the fagtdrinto  operator,

the wave function: it removes the linear derivative term, and 1

we o.btam a' centrifugal” potential in its place. Th|§ is fully . Qo = __22 <k|r2Y2M|I>clc|, (44)
consistent with the standard procedure for separation of vari- V205 ki

ables in radially symmetric problems in two and three di- . . .
mensions as can be found in any quantum mechanics tex _herde.bo—l/.\ew? IS the.s'tandard oscillator length aﬁﬂ 1S
book. Using Eq(37) to separate variables, the Schrodinger® (dimensionlesspairing operator

equation(32) can be written as PI: D Cldk- (45)

k>0

—1/4i 1/21 —1/4 —
g aQ(g &Qg U(Q)> +VIQUQ =EUQ. This Hamiltonian is treated in the Hartree-Bogoliubov ap-
(39) proximation and it has been shown that at the minimum the

local RPA for this Hamiltonian is equivalent to the quasipar-

Since we wish the wave functioh to be normalizable we ticle RPA. ForM=1,2 werewrite the quadrupole operators

require it to be finite, and we must then insist thQ) goes  of Eq. (44) as sums and differences,
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TABLE I. The quadrupole and pairing interaction strengthandG,, used for the examples discussed in
this section. The deformation and pairing gap calculated for those interaction strengths are also listed.

k (MeV) Gy (MeV) G, (MeV) € y A, (MeV) A, (MeV)
Scr 0.201367 0.525586 0.485390 0.167 0.0 1.60 1.60
58re 0.122188 0.379609 0.478824 0.213 0.0 1.60 1.60
627n 0.113687 0.375498 0.411877 0.192 0.0 1.63 1.70
667n 0.113687 0.375498 0.411877 0.286 60.0 1.95 1.74
79Zn 0.113687 0.375498 0.411877 0.772 0.0 0.63 0.96
@ 1 each type of nucleons. As a result the proton and neutron
oM = T(sz +Qw) (M=1,2, (46)  quadrupole operators are multiplied by the factors
and the pairing operator of E45) as de= [2N and a.= 1 /g (54)
L " A P A’
P = ,—E(Pfi Ph, r=p,n. (47)  whereN(2) is the neutron(proton number andA=N+Z.
N

We have chosen a set of representative isotopes for the
The pairing and quadrupole operators can then be arrang&kamples shown in this paper. FCr, *8Fe, and®?zn the
into five Hermitian,R;, and four anti-Hermitians;, opera- interaction strengths are chosen to reproduce the ground state
tors: deformation listed in Ref{12] and the pairing strengths are
chosen to approximately reproduce the relation given in Ref.
R =(P{”.PY,Qx0.Q5.Q%), (48 [13]. The interaction strengths for the isotofé&n and’°Zn
are chosen to be the same as %&n. The quadrupole and
S= (pg‘{ pé‘{ g?Qgg) (49) pairing strengthsx andG,, are listed in Table | together with
o ] the corresponding deformations and pairing gaps. Since no
The Hamiltonian of Eq(43) can then be written as single-particle energies are given in RgT] for this mass
1 1 region we use energies calculated with the modified oscilla-
H= % €C1Ck — 52 KRR + 5; 5SS, (50)  tor [14] using parameters taken from REL5].
B. Improved approximate representation

; — (%) —
with «;;=G, for P.™" and ;)= « for the Q operators. After of the normal-mode operators

solving the mean-field problem within the Hartree- ) ) o
Bogoliubov approximation the mass matrix and RPA poten- 1 ne quality of the results achieved by the projection

tial around the minimum can be calculated as method described in Sec. Il C strongly depends on the choice
of the single-particle operator basis. In R(§] it was dem-
BB = Eudap— 22 K(S)a(S) g, (51) onstrated that a basis set consisting of pairing, multipole, and
j

spin dependent one-body operators are not able to reproduce
the results of a full RPA calculation. On the other hand if the
basis is chosen to be a set of state-dependent Hermitian one-

Viap=Eadap~ 22 Ki(R)a(R)g, (52) body operators of the structure
whereE,=eq+ey is the two-quasiparticle energy aadand Fe=> @(afaf)a +Hec. (55)
B label two-quasiparticle state®,, is the two-quasiparticle « Eq

matrix element of the operat@®, which can also be written . .
as 0% with a=qq good agreement can be achieved with a small set of opera-
qq' : . . . ors. The suppression factcﬁ;2 can be understood if one

The spherical single-particle energies are taken from ReI

. i ooks at a simple examplgs] . With the basis of Eq(55)
[7]. Our model space consists of two major shells. We follow : i -
Ref. [7] and multiply all quadrupole matrix elements with good results can be achieved for the low-lyifgand y vi

brations[6], as can be seen in Table II, with a small set of

the factor operators consisting of the eight pairing and quadrupole op-
N+ 2 erators
= t72 (53) C e = =
Ny +3 Fi= (PP, Qa0 Q520 7=, (56)

whereN_ is the harmonic oscillator quantum number of the Even though the3 and y vibrations are well described with

lower major shell andNy that of the higher one. To achieve this basis set, the higher-lying solutions of pairing-
the same root-mean-square radii for protons and neutrongbrational character are not well described. A couple of ex-
different harmonic oscillator frequencies are adopted foramples are listed in Table Il. These results are not signifi-
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TABLE II. Comparing the full RPA energyi(}, the projected TABLE Ill. Comparing the full RPA energyi{}, the projected

RPA energyh(), anddg ; for the B, y, A andA@ vibrations using ~ RPA energyi(), and s ; for the 8, v, AY) andA®@ vibrations using
the projection basis of Ref6] . The energies are in units of MeV. the new projection basi&7). The energies are in units of MeV.

rQ 1Q 85 5 1Q 1Q 5 5
B vibration B vibration
S4cr 1.216 1.246 0.0013 0.6528 S4cr 1.216 1.225 0.0003 0.6633
58re 2.511 2.656 0.0282 0.0910  S%re 2.511 2.537 0.0030 0.0630
627n 1.966 2.033 0.0053 0.3593 6271 1.966 2.004 0.0023 0.3613
667n 2.117 2.188 0.0050 0.3117 667n 2.116 2.131 0.0010 0.3156
79Zn 1.029 1.068 0.0014 0.2146 07n 1.029 1.031 0.0001 0.2110
v vibration v vibration
SCr 2.289 2.386 0.0103 0.0085 S4Cr 2.289 2.386 0.0103 0.0085
58re 1.971 2.049 0.0090 0.0076  SfFe 1.971 2.049 0.0090 0.0076
627n 1.284 1.298 0.0010 0.0010 627n 1.284 1.298 0.0010 0.0010
667n 1.280 1.289 0.0003 0.0002 667n 1.280 1.289 0.0003 0.0002
79Zn 3.166 3.348 0.0563 0.0511 0Zn 3.166 3.348 0.0363 0.0311
AW® vibration AW vibration
Scr 3.208 3.894 0.1591 0.1496 Scr 3.208 3.212 0.0008 0.0022
58re 3.239 3.935 0.2712 0.2534  SfFe 3.239 3.247 0.0021 0.0039
627n 3.383 4.173 0.5220 0.5107 627n 3.383 3.392 0.0055 0.0099
667n 3.661 5.161 0.5171 0.4618 667n 3.661 3.664 0.0005 0.0037
70Zn 1.814 2.052 0.0085 0.0105 70Zn 1.814 1.815 0.0001 0.0088
A®@ vibration A@ vibration

S4cr 3.449 4.505 0.5237 0.5113 S4Cr 3.449 3.596 0.0426 0.0370
58re 3.549 4.824 0.6442 0.6060  SfFe 3.549 3.647 0.0176 0.0309
627n 3.537 4.797 0.7934 0.7751 627p 3.537 3.621 0.0210 0.0201
667n 4.255 5.493 0.7827 0.7977 667n 4.254 4.767 0.9355 0.9286
70Zn 3.573 4.824 0.6801 0.6809 07n 3.573 4.039 0.1649 0.1855
cantly improved by including higher-order multipole or Ss=1-1 Bt (59)

quadrupole-pairing operators in the basis.
To improve the results for the pairing vibrations we in-

clude a pairing operator only active close to the Fermi sur- S=1- (f,f_) (59)
face. To avoid the problem of having to select by hand which = /(f f)(f_f),

levels that would have a nonzero matrix element we simply

divide the standard pairing operat®y with a large power of  where

E,. If the suppression factoE'; is chosen with a large

enoughk all matrix elements except the ones wit) close f,f)=> fof,. (60)
to zero will become negligible and the result will not depend a

onk. The basis set is now If 5=0 the projection corresponds to an exact result. The

difference betweerdz and &, is that an admixture of a spu-
- e e PW PO rious solution will contribute tos; and not 8, & is the
Fy= (P(:),P(T_),onw (zJ'z)TE_l ETk ) 7=n,p. (57)  consistent quantity from the topological analysis. In Table II
a Ta we can see thaf has a relative small value for th@and y
vibration but, as expected, a substantially larger value for the
We have choserk=10. From Table IIl we can see that pajring vibrations. The new projection basis does systemati-
almost all the low-lying vibrational modes are now de- ca|ly improve the wave function as well as the energy, as can
scribed with a very high accuracy. _ be seen in Table Ill where the values ®are much smaller.
To check if the wave functions are described as well asrpe exception being the second pairing vibration®$an.
the RPA energies by the projection method we also calculatghis js due to the fact that ordering of the RPA solutions
the overlap of the full RPA vectof and the projected RPA i the full RPA relative to the projected RPA is different
vectorf. As criteria for good projection we use smallness ofin this case. Since the improved basis for the projected
the following quantities: RPA gives energy spectra and wave functions that are
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L LI A I I U 1 N I W S N N ) collective path in all cases. This provides a further confirma-

_ 4 e b ] tion of the quality of our projection basis and shows that the

2 -49.5 - o basis works well, also away from the mean-field minimum.
2 . S The collective path is found in a smaller range of the collec-
M 501 — - tive coordinate when we are using the full RPA compared to
- T the results for the projected RPA. This is due to the fact that

-50.5 C)I I B e o e the collective coordinate mixes with our spurious modes,
o - which leads to problem with convergence in our double it-

‘2‘: erative method, due to the approximations made in the deri-

Py SR vation. The mixing of the collective coordinate and the spu-
2b rious solution remains small as long as the spurious mode is
4 almost orthogonal to the collective solution. When the en-

6t ergy of the spurious solution is similar to the collective so-
1.5 lution the denominator in the expression for the overlap be-
= - comes small which causes the overlap to become large. In
2 05 the projected RPA calculation we do not have any spurious
= o= solutions since we have not included any of the operators
05 o connected with the spurious motion in our basis. Therefore
] IR O ST we do not get a large spurious contribution to our collective
25-2-1.5-1-050 05 125-2-1.5-1-0.50 05 1 coordinate and we have better numerical stability of our cal-

Q Q culation.

We first investigate axial collective motiqsee also Ref.
[16]), by following the B vibration (even though this is not
the lowest eigenvalue at equilibrium, it is the lowest one of
axial symmetry. From Fig. 1 we can see that the quadrupole
moment is approximately proportional to the collective coor-
dinateQ in the region —2< Q< 0, which is an indication that

FIG. 1. (Color onling Large amplitude collective motion f¥Fe
with axial symmetry(following the B vibration, the second lowest
RPA solution at equilibrium (a) Energy along the collective path.
(b) The square of the lowest RPA frequencigy. The dimension-
less quadrupole momen{Qg, and the hexadecapole moment

(r*Y,p. (d) The dimensionless pairing operato(B,). (e) The . .
cranking parametefk and the chemical potential. (f) The decou- we have a path relatl_ve clqse to what we would obtain from
a mean-field calculation with a constraint on the quadrupole

pling measureD. The dotted line represents the numerically over- £ ALl d I | fthe def fi
complete decoupling measure and the solid line the correct calcyntoment. arger and smaller values Qfthe deformation

lation where the contribution due to overcompleteness of the<QO> r_emams almost constant. Ins_t_ead,_the collective coordi-
projection basis has been removed. The ggrgen onlingcurves ~ Nate is now dependent on the pairing fields, for letgpro-

represent the results for the projected RPA and the black curves af@" Pairing and for smalQ neutron pairing. AQ~1.1 the
for the full RPA. proton pair field collapses to zero. Our collective path ends at

this point, since the singularity at zero pairing is similar to
. . the origin in polar coordinates, witl) playing the role of
much better than the set used in R}, we will use the  5jq goordin%te and the pairing phagetze g3ole of polar
new set in the following calculations. o _angle. The change from quadrupole to pairing mode is domi-
Calculating the collective path using the projection basisyated by a narrowly avoided crossing with the lowest pairing
has an advantage besides reducing the rank of the RPA maipration atQ=0.2. After this crossing the quadrupole mo-
trix. We do npt hav_e any spurious solu_tions in the projectednent (Qp) saturates and théP,) starts changing. This
RPA calculations since we have not included angular mogyoided crossing shows that more than one collective coor-
mentum and particle number operators in the basis. We caglinate would be needed for an accurate description of the
therefore avoid problems due to crossings between the spuollective dynamics. The RPA frequency of tAeibration is
rious modes and the physical modes along the collectivas expected proportional to the derivative of the cranking
path. Away from the minimum there is still an admixture of parameterA.

the spurious solution into the collective coordinatés We have also looked at the potential energy, simply cal-
stated above, we should use a symplectic RPA to resolve thisulated as the expectation value of the Hamiltonian at each
problem, but will not do so here due to its compleity. point. In Fig. Xa) we see that the potential has a local energy

maximum atQ= -1, which corresponds to a spherical shape
and a shallow oblate minimum &=~-1.6. The potential
around the minimum shows a quadratic behavior which in-
dicates that the harmonic approximation in RPA is well ful-

We would like to perform as simple a test of our methodfilled for small amplitude collective motion, but obviously
as possible, especially, we would like the model space to bfails for wave functions that have substantial support away
small. We decided to concentrate &ifFre; since this nucleus from the minimum. It can easily be seen that the regions
is y soft, it should provide a demanding testing ground forwhere the potential energy has a positive derivative are the
our methodology. We have calculated the collective path usregions where the cranking parameteias negative value
ing both the full RPA and the projected RPA. and the converse.

The results are shown in Figs. 1-4. There is good agree- The key to the whole approach is the decoupling param-
ment between the projected and full RPA results along theter D which is plotted in Fig. @f). It has a small value

C. Representative case for large amplitude
collective motion
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Q Q FIG. 4. The upper panel shows the proton rotational mass along

the collective path for projected large amplitude collective motion

FIG. 3. (Color onling Large amplitude collective motion itfFe  in 58re (following the lowest RPA solution The lower panel shows
(following the v vibration, the lowest RPA solution at equilibrigm  energy and the radial wave function for the large amplitude collec-
(a) Energy along the collective patlb) The square of the lowest tive motion in 58Fe, following the lowest RPA solution. The thick
RPA frequencies(c) The dimensionless quadrupole mome{@s),  solid line is the potential energy, the thin horizontal line gives the
(Q2) and the hexadecapole moméntY,g). (d) The dimensionless position of the lowest eigenvalue. The energy scale is on the left
pairing operator¢P.). (e) The cranking parametey and the chemi-  side. The wave function is shown as wetlotted ling, with the
cal potentialu. (f) The decoupling measur®. The gray(green  scale on the right side.
online) curves are the results for the projected RPA and the black

curves are for the full RPA. indicating a good decoupling of the collective mode from alll

the noncollective modes. The exceptions ar€at0.2 and
Q< -2 which is due to two avoided crossings of tBevi-
bration with the pairing vibrations, as can be seen in Fig.
1(b). The large peak in Fig. (L) at Q>0.5 is due to an
approximate numerical overcompleteness in the basis on
which we have projected the RPA vectors. The overcom-
pleteness comes when a pair field is zero and the projected
mass matrix has a zero eigenvalue. This is due to the extra
pairing term included in the basis in Sec. Ill B. The over-
completeness appear near the collapse of the proton pairing
field, as can be seen in Fig(d). Even though the basis only
becomes exactly overcomplete at the point of pairing col-
lapse the calculation d is already influenced when the pair
field is small, due to the fact thd& is calculated from an
inverse of the mass matrisee Eq(24)] which becomes ill
defined. We should of course remove such a spurious contri-
bution; this can be done quite easily, and leads to the result
: plotted as a solid curve in Fig.(f). From now on we will
Ssosle b L L 1 L1 Ly only plot the value oD where the contribution from over-
’ completeness has been removed. The collapse of the pair
Q field has a surprisingly strong influence on the collective

FIG. 2. The upper panel shows the proton rotational mass annBath' Whether this is a result of the approx_lmatlons we mad_e,
the collective path for projected axial large amplitude collectiveOUr choice of force or a general feature is not clear at this
motion in 58Fe (following the second RPA solutionThe lower ~ POINt. _ .
panel shows energy and the radial wave function for the large am- !N Sec. 11 D it was described how to solve the one-body
plitude collective motion irf8Fe, following the second RPA solu- Schrodinger equation for the collective path. In the case dis-
tion. The thick solid line is the potential energy, the thin horizontalcussed above the proton pair field collapseQat1.1. We
line gives the position of the lowest eigenvalue. The energy scale i€an therefore expect that proton pairing rotation will play a
on the left side. The wave function is shown as wdbtted ling,  key role for the excitation spectrum of our system. The pro-
with the scale on the right side. ton pairing mass is plotted in Fig. 2. We can see that close to

UQ

~ 4005
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TABLE IV. The expectation values of the quadrupole and pair- TABLE V. The expectation values of the quadrupole and pairing
ing operators fok=0 collective Hamiltonian along the axial collec- operators fom=0 collective Hamiltonian along the nonaxial col-

tive path in®%Fe and at the mean-field minimum. lective path in°®Fe and at the mean-field minimum.
Collective Mean field Collective Mean field
(Qu 8.98 12.37 (Qo 12.63 12.37
(Pn) 4.36 4.21 (Pn) 3.53 4.21
(Pp) 3.25 3.34 (Pp) 3.31 3.34

the collapse of the proton paifi@P“(Q-Qmax)z which is D. Realistic application of large amplitude collective motion

what we expect when the collective coordinate is approxi- The case ngFe has the advantage that the configuration
mately(Pp). For negativeQ, B¢p has a nontrivial behavior. Space is relatively small and therefore there are no big com-
In Fig. 2 we also show the lowest eigenvalue and radiaPutational problems, and we could compare exact and ap-
wave function of the collective Hamiltonian includidg=0 ~ Proximate solutions. It still allows us to explore several key
proton pairing rotation. AtQ=Qpa, where B,,=0 the features of our method and test its feasibility and the quality
ground-state wave function goes to zero lineaQiras ex- of the results. To test the method in more realistic circum-
pected at the origin in polar coordinates.@&Q,,;, we have ~ Stances we decided to apply our methoq to the rare-earth
made the approximation that(Q,,;;)=0. There is no bound egion. We have choset?®Gd and **?0s since the gado-
state supported by the shallow oblate minimum and the lowlNium nucleus is known to b@ soft, whereas the osmium
est excited state is 1.30 MeV above the collective groundSCtOPe iSy soft. Both nuclei are situated in a region which is
state. This excitation energy is substantially smaller than th&Ch in nuclear §tructures phenomlegna. .
RPA harmonic approximation energy of 2.54 MeV and re- 1he calculations for*Gd and*®Os are done in a con-
flects the anharmonic nature of the large amplitude excitafiguration space consisting of té=5(4) and &5) neutron-
tion. In Table IV we can see that the large component of théProton shells. The spherical single-particle energies and
wave function at small and negatiGgives rise to a reduc- Suppression factors of Eq53) and (54) are again taken
tion of the expectation value @, by almost 30% relative to  from Ref.[7]. We compare the RPA energies and the RPA
the mean-field results. vectors calculated with the full RPA and using the projected
In the case where we follow the path emerging from the@PProximation in Table V. _ .
lowest mode, they vibration, we can obtain similar results. A~ e find a good agreement for the low-lying solutions. The
number of results identifying the collective path are shown inS€cond pairing vibration is somewhat too high in energy

Fig. 3, where we have linear change(a,) with the collec-  Which is also reflected in a small overlap of the RPA vectors.

tive coordinate, while all other expectation values remain! N€ Projection basis seems to work very well in the cases of

relatively unchanged fofQ| <0.5. At larger values of the heavier nuclei and larger configuration spaces examined
collective coordinate we see a saturatiof@3) and a strong herle.F. 5 7 h its of the | litud
reduction in the neutron pair field, which finally collapses to N FIgs. 5=/ We can see he results of the large-amplitude
zero. Once again, this is mediated by an avoided crossin ollective motion following the lowest axial symmetric solu-

. : : . We have included both the results obtained with the full
between quadrupole- and pairing-vibration modes. The de2o" . . !
coupling measur® in Fig. 3f) has a similar behavior as for RPA as well those employing the RPA projected on a basis.

the g vibration. The crossing with the pairing vibration is g E v Comparison of the full RPA energ#Q, the pro-
isi i P ~0.6. , IO @y
visible as an increase i at aroundQ = 0.6. At largerQ we ( Jected RPA energy€, and gy  for the 6, , AD and A® vibra-

have a _Iargt_a Cc_)ntrlbutlon tD due to overcompleteness o tions in case ot°%Gd and'®?0s using the new projection bagiy).
the basis this time caused by the strongly reduced neutrop, energies are in units of MeV.

pairing field. By mirroring the potential to negati@ (and
negative(Q,) we get a closed collective path from the neu- —

tron pairing collapse &= 1.6 to the mirrored neutron pair- hQd hQ % )

ing collapse aQ=-1.6. The neutron rotational pairing mass 156G

in Flg 4 shows the eXpeCted quadratic bEhaVtihdose B vibration 0.8850 0.9224 0.0040 0.5138

° %m?:xl 4 we also show the eigenvalues and wave funcy\/ibraltion 1.6860 1.8490 0.0366 0.0325
9 9 A® vibration 1.8089 18147 00049  0.0042

tions of the collective Hamiltonian includingp=0 neutron

pairing rotation. The lowest excited state is at 1.49 Me\A®? vibration 1.9923 2.2256 0.9409 0.9339

above the collective ground state. This excitation energy is 1%20s

substantially smaller than the corresponding RPA excitatiorg vibration 1.5704 1.5851 0.0058 0.0087
energy of 2.05 MeV. This again is a result of the anharmonicy vibration 1.1208 1.1458 0.0016 0.0010
nature of the collective potential. In Table V we can see that\(® yipration 1.6690 1.6776 0.0106 0.0147
the lowest state has a substantially reduced valuéPRf A yipration 1.8476 20673 0.2165 0.2826

compared to the mean-field value at the minimum.
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FIG. 5. (Color onling Axial collective motion in*>%Gd. See Fig. FIG. 7. (Color onling Axial collective motion in'®0s. See Fig.
1 for more detalils. 1 for more details.
In *%%Gd the lowest solution is thg vibration but it also In Fig. 7 we can see that the lowest axial RPA solution is

has quite large pairing components, as can be seen in Fig.rainly of proton pairing nature. The strength of the proton
in the change in strength of the pair fields. There is in generabair field is proportional to the collective coordinate and that
a nontrivial structure of the collective path close to the meanthe pair field collapses @~ 1.6 which leads to a jump in
field minimum which also can be seen in Figapwhere the  the chemical potential. For small negative valueQathere
energy shows anharmonic behavior around the minimumis an avoided crossing with a mode that is dominantly a
Figure %f) shows a good decoupling of the collective de-shape vibration, which leads to a reduction(@). The en-
grees of freedom from the noncollective degrees of freedomggy along the collective path in Fig(a] shows a maximum
in the region close to the minimum. _ __when (Pp)—0 and a approximately harmonic behavior
In Fig. 6 we can see that there is one low-lying solution of ;.5 \nd the minimum. Figure(fj shows a good decoupling
the collective Hamiltonian. The fact the lowest eigenvalue iS¢ the collective degrees of freedom from the noncollective
situated high in energy, relative to the range in which Weyeqrees of freedom in the region close to the minimum. At
have found the collective potential, tells us that the assUMPy,rge negative values @ we have a crossing with a proton

tion that U(Q)=0 at the ends of the collective path iS ot 4 ring vibration which gives large state mixing and therefore
justified in this case. One can expect that the cofdestould |, decoupling of the collective solution.

stretch substantially outside the range on which we have cal- Figure 8 shows the results when following the collective

CU'?;%j the collective path. _path defined by the lowest vibration in 1820s.
s is ay soft nucleus and we show the result following *  The calculation shows that the collective path is mainly
the two lowest normal modes. dominated by the increase of t@,) triaxial deformation.

At Q>0.8 we see an avoided crossing of fhand y vibra-

‘110.0 T | T T | T T | T . . . . e . .
. tion which causes a numerical instability in our calculations.

1102 102 This also signals the need for more than one collective coor-
i~ 102 _ dinate. Even though there are numerical difficulties in imple-
g -110.4 . 015% menting our method in some cases we can see that our pro-
i Jo1 jection method works very well in the larger configuration

-110.6 Joos spaces employed here and it is practically implementable.

L I 1 | 1 I 1 | 1 I .’J
-0.5 0 0.5 1 1.5 20 IV. CONCLUSIONS AND SUMMARY

We have extended the method of calculating the self-

FIG. 6. The energy along the collective path for projected axialconsistent collective Path presented in Red] to |nC|}Jde
large amplitude collective motion i%Gd (following the first RPA  Constraints on the particle number and implemented it for the
solution) is drawn with the thick solid line with the energy scale on quadrupole+pairing HamiltoniafY]. The method consists of
the left side. The lowest eigenvalue of the Hamiltonian is drawn adinding a series of points fulfilling the force equation, where
a thin horizontal line. The corresponding eigenfunction has the¢he local direction of the collective path is determined in
scale on the right side. each point by the local normal modes. The local RPA equa-
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oy T T T 7 T §~5 end of the collective path. These avoided crossings also show
et i T that more than one collective coordinate would be needed for
C 7 a accurate description of the collective motion. In Bisoft
e e o115 2 nucleus'®%Gd the collective coordinate is of a more compli-
vty 2(1)5 cated structure which can also be seen in the nonharmonic
-d)~,~~|r~, iy L 140 shape of the poteptlal energy. Qur prOJegted local RPA
Frasaemeanaan 7 method for calculating the collective path gives very good
R | agreement with the results obtained using the full RPA. The
P Yy T -4 method is very useful when calculating self-consistent large-
5 _._’_‘...L’;_____—'_ ....... <P > M amplitude collective motion in large a configuration space.
0 | T N N P e o PO " By solving the one-dimensional “radial” Schrédinger
p o ol Ll g T 0 7 1T 71 equation along the collective path we are able to examine the
_ D Feres T 08 effect of the collective motion on ground state properties. In
> 021 T 0.6 a cases where the collective path ends with a collapse of the
2 04 — i o 104 pair field we must include the effect of pairing rotations on
:g.gz o u: E._ 0.2 the low energy spect'rum. Itis surprisin.g that almpst aII. our
) = 0'2 : 0'4 ' 0'6 ' 0'80 : 0'2 L 011 : 6*6 ‘—6‘;; 0 calculations are do_mmated by states _W|th_ collapsing pairing;
T T B T there may well be important lessons in this feature. The rea-

son they occur so frequently is the presence of low-lying
FIG. 8. (Color onling Nonaxial collective motion it%?0s. See  configurations without pairing. One might ask whether this is
Fig. 3 for more details. an artifact of our model, and whether larger configuration

tions and the force equation are solved in a double iterativjp"’lCes with more complicated interactions would behave dif-
process with constraints on the particle numbers and the stdfrently: Such calculations are clearly called for, but we do
length along the collective path. The method allows us tghot expect dramatically different results, since pairing mainly
determine the collective coordinate from the Hamiltonianacts in a small region around the Fermi surface. There is also
without having to assuma priori which are the relevant a slight possibility that the approximations we made in our
degrees of freedom. treatment of spurious admixtures contributes to these effects.
To implement this method in heavier systems and forThe surprising importance of the pairing collapse is the main
more realistic nuclear forces we need to truncate the RPAesult of our calculations that is usually not seen in a stan-
calculation in a way that will give an accurate approximationdard constrained mean-field calculation.
of the low-lying RPA solutions. We have improved the pro-  |n this paper we have implemented a method to find the
jection method originally presented in Rg] in such away  adiabatic self-consistent collective path for a nuclei. A tech-
that we are able to describe all low-lying states includingnique to truncate the basis in which the RPA equations are
pairing vibrations. This is done by expanding the statesolved has been improved and a good agreement between the
dependent basis suggested in Ré}. to include a pairing || and truncated RPA is found. To solve the RPA equations

term, which is only active around the Fermi surface. The newy, 4 jimited basis has proven to be a useful and practical way

?isr?s,s ﬁ'?ltegcl:\glecsuIlz:iagnec?fetrr?(leeZv\:aerlr;/ng)fs';éowtg\(/aeiﬁiittigggﬁf calculating the collective path within the local harmonic
: . . approximation. We intend to apply similar techniques to the
between the full and our approximate RPA solution shows bp PPl g

: . . interesting problem of collective motion at finite rotational
that the wave functions are almost identical. We can there; . : . .
fore expect our method to give a good approximation to th frequency in Fhe near future. lt. remains tq be mvestlg.ated
P 9 g PP $ow we can include the covariant terms in the RPA in a

collective path. . o

Our method of calculating the collective path has beer‘?u'table approximation.
implemented for the cases 6fFe, 1°6Gd, and®%0s. We
have chosen to follow the lowest axially symmetric and tri-
axial solutions. The decoupling of our collective coordinate ACKNOWLEDGMENT
from all the noncollective coordinates can be quantified in
the decoupling measur@. This is found to be small along ] . )
the collective path with the exception of regions of avoided This work was supported by the UK Engineering and
crossings where the system undergoes configuration mixingZhysical Sciences Research Cour&PSRQG under Grant
In such regions one collective coordinate is not sufficient tdNo. GR/N15672.
describe the system accurately. In regions where the projec-
tion basis gets overcomple® has to be calculated with
special care. This happens when the proton and/or the neu-
tron pairing collapses. ] . APPENDIX )

We see that the collective path goes through avoided The six conditiongEqgs.(13) and(19)-21)] gives a set of
crossings with pairing solutions in most cases in b&fre  equations which can be solved for the six parame#its

and 18%0s. This leads to collapses of the pair fields and any”, \\", and w." for eachi andn. Fori=0 we get
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AQ
(n) —
TN N2 £() : (A1)
1+ _ i (f(O) + f(n)) . N2Am)
fm . §( T f(n) f(”)NiZTO(”) . NiZTO(n) I
£ N_ZB(”)
767 == &' i (A2)
For all otheri Egs.(16) and(17) together with the constraintd3)—(21) give
N2 . AN R
- MO AR + 27 IZTO(m—Iqun)(f(O) + () . N2
6-(n) - NiT ) NiT (A3)
! £0) . N2AM) , §(n) ’
1+ - L (O + f(m) . N2
f(n) i f(n) T f(n) . f(n)Ni2:)(n) . NiZ;)(n) iT
[
fo N2 200 N20) _ ) (W), 20(0)
== e N AR, (Ad) e = T (A6)

2 2 2 . . . .
Hi . Nifo(n)NiTO(n) - These equations can easily be generalized to incorporate ad-

ditional constraint operators such as angular momentum.

, (A5) They are slightly more complicated than those shown in
other work[2], since we have chosen to fix the step size in
the collective coordinate.

HE 10 =3 20(n) | \20(n)
)\I(n) — NiT ) NiT

(NiZTO(n) . f(n))2

M, §) _ ~r 7
RN i T
T |7
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