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The lowest-lying states of the Borromean nucleus17Ne s15O+p+pd and its mirror nucleus17N s15N+n
+nd are compared by using the hyperspheric adiabatic expansion. Three-body resonances are computed by use
of the complex scaling method. The measured size of15O and the low-lying resonances of16F s15O+pd are
first used as constraints to determine both central and spin-dependent two-body interactions. The interaction
obtained reproduces relatively accurately both experimental three-body spectra. The Thomas-Ehrman shifts,
involving excitation energy differences, are computed and found to be less than 3% of the total Coulomb
energy shift for all states.
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I. INTRODUCTION

Nuclear halos are expected along the drip lines where
nucleon single-particles or p states occur with sufficiently
small separation energy[1,2]. A cluster description of the
nucleus can then be appropriate, being able to visualize the
nucleus as a system made by an ordinary nucleus(the core)
surrounded by one or two nucleons. Since the Coulomb in-
teraction works against halo formation the appearance of
proton halos requires a relatively light core[3,4]. Still the
degrees of freedom describing the core and the surrounding
protons may decouple and justify a few-body treatment.

The lightest Borromean proton drip line nucleus is
17Ne s15O+p+pd which has an odd core mass implying finite
core spin. The low-energy properties of the two-body proton-
core subsystems produce the two sets of known spin-split
pairs of resonances[5]. Dealing with the details of such sys-
tems is delicate but analogous to the proper treatment of11Li
[6]. Unfortunately the structure of17Ne, even within three-
body models, seems to be very controversial and differing
rather strongly in available publications[7,8].

Nevertheless17Ne was recently discussed[9] as an ex-
ample revealing new features of the Thomas-Ehrman shift
[10]. This necessarily introduces the mirror nucleus with less
Coulomb repulsion which then must be more bound and pos-
sibly with a different structure. In fact the basic assumptions
of the three-body model could be violated. Still it is interest-
ing to push model applications to test its limits. We shall
therefore try to describe17N with precisely the established
model parameters and compare effects of the(lack of) Cou-
lomb interactions.

The paper is organized as follows. In Sec. II we describe
very briefly the method used to compute three-body bound
wave functions as well as three-body resonances. We con-
tinue in Sec. III with the description of the nucleon-nucleon
and nucleon-core interactions needed to study17Ne and17N.

We then in Sec. IV compare the properties of the low-lying
states of these two mirror nuclei. In Sec. V we discuss in
detail the three-body Thomas-Ehrman shifts for all these
states. We close the paper with a summary and conclusions.

II. THREE-BODY METHOD

The three-body wave functions are computed using the
hyperspheric adiabatic expansion method[4,11], which
solves the Faddeev equations in coordinate space. The wave
function C=oci is then written as a sum of three Faddeev
componentscsidsxi ,yidsi =1,2,3d, wherehxi ,yij are the three
sets of Jacobi coordinates defined for instance in Ref.[4]. We
then introduce the hyperspheric coordinates[r=Îx2+y2, ai
=arctansxi /yid, Vxi

, and Vyi
], and for each value ofr

we expand each componentcsid in terms of a complete set of
angular functions:

csid =
1

r5/2o
n

fnsrdfn
sidsr,Vid sVi ; hai,Vxi

,Vyi
jd. s1d

When this expansion is introduced in the Faddeev equa-
tions they can be separated into an angular and a radial part.
The angular part takes the form

L̂2fn
sid +

2mr2

"2 Vjksxidsfn
sid + fn

s jd + fn
skdd = lnsrdfn

sid, s2d

whereVjk is the two-body interaction between particlesj and

k, L̂2 is an angular operatorf11g, andm is the normalization
mass. The complete set of angular functions used in Eq.s1d
are the eigenvectors of the angular part of the Faddeev equa-
tions, which are labeled by the indexn and whose eigenval-
ues are denoted bylnsrd.

Finally, the coefficientsfnsrd in the expansion(1) are ob-
tained after solving the coupled set of equations given by the
radial parts of the Faddeev equations:*Electronic address: imteg57@pinar2.csic.es
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whereV3b is a three-body potential used for fine tuning, and
the functionsPnn8 andQnn8 can be found for instance in Ref.
f11g. The eigenvalueslnsrd are essential in the diagonal part
of the effective radial potentials:

Veffsrd =
"2

2m

lnsrd + 15/4

r2 + V3bsrd. s4d

The hyperspheric adiabatic expansion method was ini-
tially designed to compute three-body bound state wave
functions, and therefore the coupled set of radial equations
(3) was solved for radial solutions falling off exponentially at
large distances. In principle the method can also be used to
calculate continuum and resonance wave functions. Then we
must require the correct asymptotic behavior for the solu-
tions to Eqs.(3) as described in Ref.[12].

Calculations of resonance wave functions are in practice
significantly simplified by using the complex scaling method
[13] where the radial coordinates are rotated into the com-
plex plane by an arbitrary angleu. This transformation of the
Jacobi coordinatessx→xeiu ,y→yeiud implies that only the
hyperradiusr is transformedsr→reiud, while the hyper-
angles remain unchanged. It is therefore known that as soon
as the scaling angleu becomes larger than the argument of
the resonance, the complex rotated resonance wave function
falls off exponentially, exactly as a bound state. Therefore,
after complex scaling, the resonances can be computed with
the same numerical techniques as for bound states.

III. TWO-BODY POTENTIALS

In this section we investigate the two-body potentials
needed to compute the three-body system17Ne s15O+p+pd.
The short-range interaction for the mirror nucleus17N s15N
+n+nd is then in principle the same although the assump-
tions of the three-body model are much less convincing due
to the larger binding energy. The spin dependence of the
effective two-body interactions must be carefully chosen as
shown in Ref.[14]. For symmetry reasons the spin-spin and
spin-orbit operators in the nucleon-nucleon interaction
should bes1·s2 andø ·ss1+s2d, respectively, wheres1 ands2

are the spins of the two nucleons andø is their relative or-
bital angular momentum.

For the nucleon-core interaction it is necessary to intro-
duce operators that conserve the usual mean-field quantum
numbers, i.e., the nucleon total angular momentumjn=ø
+sn and the total two-body angular momentumj = jn+sc,
whereø now is the relative nucleon-core orbital angular mo-
mentum, andsc andsn are the core and nucleon spin, respec-
tively. This almost uniquely determines the spin operators as
the usual fine and hyperfine termsø ·sn andsc·jn [14].

A. Nucleon-nucleon interaction

For the nucleon-nucleon short-range interaction we use
the operators mentioned above, and in particular the potential
given in Ref.[6],

VNNsrd = 37.05e−sr/1.31d2 − 7.38e−sr/1.84d2 − 23.77e−sr/1.45d2ø ·s

+ 7.16e−sr/2.43d2S12 + s49.40e−sr/1.31d2

+ 29.53e−sr/1.84d2ds1 ·s2 +
seZnd2

r
, s5d

where s=s1+s2,S12 is the usual tensor operator,e is the
unit electric charge, andZn s=0,1d is the nucleon charge
number. The strengths are given in MeV and the ranges in
fermi. This potential reproduces the experimental scatter-
ing lengths and effective ranges of the1S0,

3P0,
3P1, and

3P1 waves. We use the same interaction for relative orbital
angular momenta larger than 1.

B. Nucleon-core interaction

For the nucleon-core interaction we construct an
,-dependent potential of the form

VN−core
s,d srd = Sc

s,dfc
s,dsrd + Sss

s,dfss
s,dsrdsc · jn − Sso

s,d1

r

d

dr
fso

s,dsrdø ·sn

+
ZcZne

2

r
erfsr/bcd, s6d

where sn and sc are the spin of the nucleon and the core,
respectively,ø is the relative orbital angular momentum be-
tween the two particles,jn=ø+sn, andZc is the proton num-
ber of the core. The error function erf describes the nucleon-
core Coulomb interaction of a Gaussian core-charge
distribution wherebc=2.16 fm isfitted to reproduce a rms
charge radius in15O of 2.65 fm. This value is obtained
from the measured rms charge radius in16O s2.71 fmf15gd
by rescaling it by anA1/3 factor.

As discussed in Ref.[14] the choice of these spin opera-
tors permits a clear energy separation of the usual mean-field
spin-orbit partners,,+1/2 and,,−1/2. In this way it is possible
to use a nucleon-core interaction such that the low-lying
states have well-defined, jn

quantum numbers, such as the
p1/2 states in10Li or d5/2 states in16F. The use of thesc·sn
spin-spin andø ·ssc+snd spin-orbit operators makes this im-
possible, since thenjn is not a conserved quantum number
and the states in the two-body system are necessarily mix-
tures of,,+1/2 and,,−1/2 components. This is especially prob-
lematic in the case that one of these states is forbidden by the
Pauli principle, such as, for instance, thep3/2 waves in10Li.

The shapes of the centralsfc
s,dd, spin-spinsfss

s,dd, and spin-
orbit sfso

s,dd radial potentials in Eq.(6) are chosen to be
Woods-Saxon functions, 1/(1+expfsr −b,d /ag), with the
same diffusenessa in all cases. Once the rangeb, of each
radial potential is chosen, the strengthsSc

s,d ,Sss
s,d, andSso

s,d are
adjusted to reproduce the experimental spectrum of
16N s16N+nd. Fors waves the strengthsSc

s0d andSss
s0d are used

to fit the energies of thes1/2
s j=0d and thes1/2

s j=1d states(0− and 1−
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states). For d waves the strengthSso
s2d provides an appropriate

spin-orbit splitting of thed3/2 and thed5/2 states whileSc
s2d

andSss
s2d are used to reproduce the experimental binding en-

ergies of thed5/2
s j=2d and thed5/2

s j=3d states(2− and 3− states).
The role of the spin-orbit interaction is here only to place

the d3/2 states relatively high(they must remain unbound),
and the precise energy of these states is not very relevant. In
any case an appropriate estimation of the strength for the
spin-orbit interaction requires knowledge of thed3/2

s j=1d and
d3/2

s j=2d energies. In16N there are two unbound 1−/2− doublets
that could correspond to these states. Their experimental de-
cay energies[16] (1.90 MeV and 2.58 MeV, or 2.27 MeV
and 2.86 MeV) are used to estimate the strength of the spin-
orbit interaction ford waves.

The value of the range parameterb, is determined by the
fact that by switching on the Coulomb potential the experi-
mental spectrum of16F s15O+pd should be reproduced. In
Table I we give the resulting values of the parameters used
for the Woods-Saxon radial form factors in Eq.(6). The par-
tial waves with,=0 and,=2 are by far the most important
in the present context.

The s-wave potential has a deeply bound state at
−31.0 MeV in 16N and at −26.2 MeV in16F. These states
correspond to thes1/2 nucleon states occupied in the15N or
the 15O core. They are then forbidden by the Pauli principle,
and should be excluded from the calculation. This is imple-
mented as in Refs.[6,17] by use of the phase equivalent
potential which has exactly the same phase shifts as the ini-
tial two-body interaction for all energies, but the Pauli for-
bidden bound state is removed from the two-body spectrum.
We then use the phase equivalent potential of the central part
of the Woods-Saxons-wave potential in Table I. Thus thes
states actively entering the three-body calculations are the
second states of the Woods-Saxon potential. For thed states
no Pauli exclusion is necessary.

The bound states in16N and low-lying resonances in16F
with Jp=0−,1−,2−,3− are all obtained by couplings1/2 and
d5/2 with the core spin of 1/2. The calculated results are in
Table II compared with the experimental data for these
states. The procedure of fitting the nuclear potential to repro-
duce simultaneously both the16N and the16F spectra is ap-
parently efficient as the data is rather nicely reproduced. In
fact this is not possible with other values forb,.

In Table I we also specify ap-wave interaction although
these partial waves are expected to have only insignificant
effects. The reason is that the lowestp shell is fully occupied
in the core and the unoccupiedp3/2 orbit is above thed3/2
states and even higher than thef7/2. Nevertheless, since the
calculation will includep-wave components at least an esti-
mate of the parameters for the corresponding interaction is
desirable. We do this by using the knowledge of the unbound
1+ and 2+ states in16N immediately above the bound 1− state
(with experimental decay energies 0.86 MeV and 1.03 MeV
[16], respectively). These resonances must arise from the
coupling of ap3/2 neutron with the spin 1/2 of the core(an
f7/2 neutron cannot couple to 1 or 2) or perhaps by core
excitation of ap1/2 neutron. Again the potential parameters
must be such that after switching on the Coulomb interaction
the experimental decay energy of 4.30 MeV for the 1+ state
in 16F has to be also reproduced(the experimental decay
energy of the 2+ state of16F is not available). The parameters
fulfilling these conditions are given in the second line of
Table I. The value ofSso

s1d has been arbitrarily chosen to be
the same as ford waves.

The lowestp shell is fully occupied in the15N or 15O
core. We should then apply the same treatment as fors waves
to the p-wave nucleon-core interaction, using a potential
with deeply bound states that are afterwards removed by the
corresponding phase equivalent potentials. For consistency
we also tested a deepp-wave potential as given in Table I
with range and strengths comparable to thes and d poten-
tials. The bound states in these deeps andp potentials pro-
duce a charge distribution with a rms radius in15O of
2.63 fm consistent with the value used in the Coulomb po-
tential. Furthermore the binding energies of thep1/2 andp3/2
states in15O are −7.29 MeV and −11.3 MeV, respectively,
both consistent with the experimental data[18].

Nevertheless, since thep waves basically have no effects
in the three-body calculation we use for simplification the
shallow,=1 potential given in Table I without bound states.
In this way the computing time is significantly reduced with-
out loss in the computations accuracy.

TABLE I. Rangesb,d and strengths of the centralsSs
s,dd, spin-

spin sSss
s,dd, and spin-orbitsSso

s,dd potentials in Eq.(6). The diffuse-
nessa is 0.65 fm in all the cases.

, b, sfmd Sc
s,d sMeVd Sss

s,d sMeVd Sso
s,d sMeV fm2d

0 3.00 −53.91 0.92 –

1 2.70 −19.99 0.69 −25.0

1 2.92 −54.15 0.35 −25.0

2 2.85 −58.45 0.24 −25.0

TABLE II. Four lowest states in16N and16F obtained with the nuclear potential specified in Table I. For
16F we give the energies and widths of the two-body resonancessER,Gd. The experimental data are from Ref.
[16]. Error bars are not specified when they are smaller than the last digit. For unbound states the energies are
decay energies above threshold.

Jp 16N Expt.a 16F Expt.a

0− −2.37 −2.371 (0.53,0.02) s0.535,0.040±0.020d
1− −2.09 −2.094 (0.71,0.07) s0.728±0.006,,0.040d
2− −2.49 −2.491 (0.96,0.01) s0.959±0.005,0.040±0.030d
3− −2.19 −2.193 (1.23,0.01) s1.256±0.004,,0.015d

aFrom Ref.[16].
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IV. RESULTS FOR 17NE AND 17N

We use the two-body interactions determined as described
in the preceding section. The low-lying nucleon-core valence
space is expected to consist ofs andd waves. With spin and
parity of 1/2− for the core and two identical nucleons in the
sd valence space we can construct total angular momentum
and parity states withJp=1/2−,3/2−,5/2−,7/2−, and 9/2−.
The next shellssf7/2,p3/2, . . .d may also contribute but signifi-
cant amounts of such components also indicate similar con-
tributions from core excitations. These structures involve
particle-hole excitations either from thesd to thepf shell or
from thep to thesd shell. We shall neglect these core exci-
tations.

A. Components

To solve the eigenvalue problem given in Eq.(2) we
expand the angular eigenvectors in the basis
hY,x,y,L

K sai ,Vxi
,Vyi

d ^ xsxsy,Sj, where Y,x,y,L
K are the hyper-

spheric harmonics andx is the spin function[11]. For each
of the three Jacobi coordinate setsi the coordinatexi is the
vector connecting particlesj andk, the quantum number,x is
the relative orbital angular momentum of particlesj andk, ,y
is the relative orbital angular momentum of particlei and the
center of mass of thejk two-body system. The spinsx is the
coupled spin of particlesj andk, andsy is the spin of particle
i. Finally L andSare the coupling of,x and,y, and ofsx and
sy, respectively, and they couple to the total angular momen-
tum J of the system. The hypermomentumK is given by
2n+,x+,y where n is a non-negative integer counting the
number of nodes in the Jacobi polynomials.

The first step in the calculation is then to choose the com-
ponents to be included in the expansion of the angular eigen-
vectors. By direct but extensive computations, we have
found that the components needed for17Ne are essentiallys,
p, andd waves. Only for high angular momentum(J=7/2
and 9/2) higher partial waves can be relevant. We then use
the same components for17N.

After solving the angular part of the Faddeev equations
(2) we extract the angular eigenvalueslnsrd, which deter-
mine almost entirely the effective potentials entering in the
radial equations(3). For both 17Ne and 17N we also here
maintain the same number of lowest-lying adiabatic poten-
tials for use in the radial equations(3). We compute first the
bound state solutions falling off exponentially at large dis-
tances. Then the resonance eigenfunctions are found in com-
plete analogy as exponentially falling solutions to the similar
equations obtained by complex rotation of the hyperradius.

B. Spectrum of 17Ne

We show the results in Fig. 1 for the four deepest effective
potentials for the 1/2−, 3/2−, 5/2−, 7/2−, and 9/2− states in
17Ne. It is known that atr=0 the values of thel’s must
reproduce the hyperspherical spectrum,KsK+4d [11]. In our
case of positive total parity in the valence spaceK must be
even, i.e.,K=0,2,4, . . ..

In the figure we observe that thel function starting at
zerosK=0d does not appear. This is due to the phase equiva-

lent s-wave potential between proton and core where the
deepest state of the initial potential is removed to account for
the Pauli principle[17]. By using the initial deep two-body
potential instead we obtain al function starting at zero for
r=0 and diverging to −̀ at large distances. This behavior of
the lowestl characterizes the existence of a bound two-body
state [11]. This state is actually the Pauli forbidden state
which could have been computed and then omitted from the
basis. Instead we suppressed the Pauli forbidden state by
using the more consistent procedure with the phase equiva-
lent potential.

For short-range potentials it is also known that at infinity
the values of thel’s must again follow the hyperspherical
spectrum[11]. However, this behavior is changed for eigen-
values corresponding to unbound two-body states as soon as
long-range interactions such as the Coulomb potential are
present. The reason is that the influence of the short-range
interactions then disappears outsider values corresponding
to a few times the range of the interaction whereas the Cou-
lomb potentials multiplied byr2 give rise to linearly increas-
ing l functions even at asymptotically large distances[19].
This linear increase must appear as soon as only the Cou-
lomb potential has an influence. The slopes depend on the
geometric structure of the three-body system as the size in-
creases.

The ground state of17Ne is bound, and has a two-proton
separation energy of −944 keV. The structure is about equal
amounts of proton-cores2 andd2 waves. The computed root
mean square radius is 2.8 fm consistent with the experimen-
tal value of 2.75±0.07 fm[20]. All the excited states are
unbound and computed by application of the complex scal-
ing method. The excitation energies of the two lowest ex-
cited states are 1288±8 keV for the 3/2− state and
1764±12 keV for the 5/2− state[5]. For both these states
proton-cores−d mixed components are dominating. In Ref.
[5] also 7/2− and 9/2− states are reported with excitation
energies 2997±11 keV and 3548±20 keV, respectively.
These four excitation energies correspond to the decay ener-

FIG. 1. The four lowest angular eigenvalueslnsrd for the 1/2−,
3/2−, 5/2−, 7/2−, and 9/2− states of17Ne as a function ofr where
the normalization massm equals the nucleon mass.
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gies (energies above threshold) given in the second column
of Table III. For these states thed2 waves dominate. More
details about the structure are available in Ref.[21].

The resonances obtained for17Ne are extremely narrow
with widths much smaller than the accuracy of our calcula-
tions. Thus, application of the complex scaling method al-
lows the use of very small scaling angles. Typically complex
scaling angles ofu=10−5 are able to find the17Ne reso-
nances. For these scaling angles the complex scaledl’s can
hardly be distinguished from the nonrotated functions in Fig.
1. The imaginary parts are very small and would appear on
the zero line if plotted in the figure.

Using thel functions in Fig. 1 we obtain the17Ne ground
state binding energy and the decay energy of the excited
states shown in the third column of Table III. As seen in the
table the computed states are systematically less bound than
the experimental value. This fact is actually expected, since
three-body calculations using pure two-body interactions
typically underbind the system. This problem is solved by
inclusion of the weak effective three-body potentialV3b in
Eq. (3), which accounts for three-body polarization effects
arising when the three particles all are close to each other.
Therefore the three-body potential has to be of short range,
while the three-body structure essentially is independent of
the precise shape. This construction furthermore ensures that
the two-body resonances remain unaffected within the three-
body system after this necessary fine tuning. The effective
total potential entering is then given by Eq.(4).

The precise range of the three-body interaction also plays
a limited role. This is because the three-body force is very
weak compared to the depth of the full potential and further-
more it is largest for smallr values, where the total potential
is highly repulsive. It is then clear that the main structure of
the system cannot be significantly modified by the choice of
one or another of such three-body interactions. In Table III
we give the strengths of the Gaussian three-body potentials
which for range equal to 4 fm are needed to match the ex-
perimental energies of all these(ground and) excited states.
One way to measure and compare the effect of the three-
body force in the different calculations is to compute the
expectation valuekV3bsrdl of the three-body potential for the

correspondingJp solutions. In Table III we also give this
quantity which measures the contribution of the three-body
force to the energy of the three-body system. A variation of
the range of the three-body force within reasonable limits is
not modifying the results.

In the last column of Table III we give the contribution to
the norm of the wave function of the first three terms in the
expansion(1). Typically only two terms are enough to get an
accuracy of 99%, and only for the 5/2− and 9/2− states the
third term is giving a sizable contribution.

The spectrum of17Ne has been previously investigated in
Refs. [7,8]. In both works the 3/2− and 5/2− levels are re-
versed compared to the experimental data, although in Ref.
[7] this deficiency is corrected by use of an appropriate three-
body interaction. In the present work these problems are not
encountered. When only the two-body forces describing
properly the16F spectrum are used, the ordering in the com-
puted17Ne spectrum is correct, as seen in the third column of
Table III. Then, the use of a small effective three-body force
is enough to fit the experimental data.

C. Spectrum of 17N

Interchanging all neutrons and protons in17Ne leads to
the mirror system17N which then analogously should be
described as a three-body system with the15N core sur-
rounded by two neutrons. The structure should then be ob-
tained simply by switching off the Coulomb interaction for
17Ne, since the strong interaction is precisely the same due to
charge symmetry. In this way we can compute the properties
of 17N.

The results are listed in column two of Table IV and not
surprisingly stronger binding is obtained. First,17N is not a
Borromean system. The number of three-body bound states
has also increased substantially, i.e., we find two bound
states both for 1/2− and 3/2−, and one for 5/2−, 7/2−, and
9/2−. The computed energies of these states agree pretty well
with the experimental values[16]. The discrepancy with the
experiment is always smaller than 5%. Only for the excited
1/2− and 3/2− states a larger disagreement with the mea-
sured energies appears. In the third column of the table the

TABLE III. The second and third columns give the experimental
and computed bound states1/2−d and decay energies(3/2−, 5/2−,
7/2−, and 9/2−) in 17Ne (in MeV). The fourth column gives the
strengthsS (in MeV) of the Gaussian three-body forces that for a
range of 4.0 fm give rise to energies matching the experimental
values. The fifth column gives the expectation value of the three-
body force for the corresponding17Ne solutions. The last column is
the contribution to the norm of the first three terms in the expansion
(1).

Jp Eexpt. Ecomp S kV3bl ln=1,2,3s%d

1/2− −0.94 −0.79 −0.6 −0.2 88.5, 11.1, 0.4

3/2− 0.34 0.63 −1.4 −0.3 90.7, 8.9, 0.2

5/2− 0.82 0.91 −0.4 −0.1 77.2, 16.9, 5.6

7/2− 2.05 2.24 −0.8 −0.2 97.5, 2.3, 0.2

9/2− 2.60 2.70 −0.1 −0.1 91.9, 4.2, 3.8

TABLE IV. 17N spectrum obtained using the same nuclear two-
body interactions as for17Ne, and the effective three-body force
given in Table III. The third column gives the results obtained with
the Argonne(A) nucleon-nucleon potential plus the Woods-Saxon
(WS) nucleon-core interaction(Table I). The last column gives the
experimental data[16].

Jp E sMeVd EA+WS sMeVd Expt.

1/2− −8.54 −8.31 −8.374

−3.72 −3.66 −4.711

3/2− −6.63 −6.80 −7.000

−3.83 −5.03 −5.174

5/2− −6.32 −6.36 −6.467

7/2− −5.24 −5.17 −5.245

9/2− −4.58 −4.59 −4.745
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calculations labeled by A+WS(Argonne+Woods-Saxon) use
the accurate Argonne nucleon-nucleon potential denoted in
Ref. [22] by y18 and the Woods-Saxon nucleon-core potential
in Table I.

The relatively small differences between the mirror nuclei
are perhaps not as self-evident if we consider the behavior of
the angular eigenvalues shown in Fig. 2. We plot only the
three lowest functions used to compute the different states in
17N. As for 17Ne there is nol function starting at zero due to
the removal of the Pauli forbiddens state by use of the phase
equivalent potential. The main difference compared to Fig. 1
is the divergence towards −̀of all thel functions. This is a
reflection of corresponding bound states in the two-body
subsystems consistent with the quantum numbers of the
three-body system. This underlines that17N cannot be a Bor-
romean nucleus[11]. The qualitatively different behavior
seen in Figs. 1 and 2 also emphasizes that the agreement
with measurements for both nuclei is not a trivially build-in
property of the present description. The model is consistent
in a more profound way.

The spatial structure of17N is less extended than that of
17Ne because of its larger binding energy. The length scale as
defined in Ref.[23] is r0<5.5 fm (r0<5 fm for 17Ne) and
the dimensionless measures of size and binding energy are
ksr /r0d2l<0.9 andmBr0

2/"2<6.0. The ground state of17N
is located in the same region as ordinary nuclei. Among the
excited states shown in Table IV the less bound is the second
1/2− state. For this state the corresponding dimensionless
size and binding are 1.9 and 3.4, respectively, still located in
the region of ordinary nuclei. The three-body structure is
further illustrated in Fig. 3, where we show the square of the
three-body wave function integrated over the directions of
the Jacobi coordinates and multiplied by the volume element.
The structure resembles that of17Ne with two similar domi-
nating peaks.

The known properties of17N seem to be rather well re-
produced with the model parameters for17Ne. An additional
very small retuning of the strength of the effective three-

body interaction could fit the lowest of eachJp states. How-
ever, this would not improve the agreement of the second
1/2− and 3/2− states which then move into the positions
−3.62 MeV and −4.14 MeV, respectively. This is probably
because other effects are important, e.g., different compo-
nents could now contribute both from valence space and
from excitations. This is equivalent to an attempt to describe
higher-lying resonances in17Ne. They may also require an-
other and perhaps enlarged Hilbert space. Further investiga-
tions of these well bound excited states are beyond the scope
of the present paper.

V. THOMAS-EHRMAN SHIFTS

The only difference in the computations of the two mirror
nuclei is omission of the Coulomb interaction for17N. This
similarity is assumed inherently to describe the fundamental
charge symmetry of the strong interaction. The immediate
implication is that the differences in the spectra entirely must
be produced by the Coulomb potential. The obvious differ-
ence is the shift of all energies towards stronger binding
when the Coulomb potential is suppressed. However, this
trivial overall shift is accompanied by a modified structure of
the states. This is especially seen for thes-wave components
which are less influenced by centrifugal barrier effects. The
Coulomb repulsion tends to increase the size of a given state
simply by minimizing the energy. Thes waves are here more
influenced than higher partial waves and the shifts are then
larger. This double difference in energy(excitation energy
difference) is for single-particle energies called the Thomas-
Ehrman shift[10]. It is due to the Coulomb interaction but
not necessarily in a straightforward way. In a recent work[9]
the Thomas-Ehrman shift was investigated in the three-body
systems12O and16Ne.

We compare in Table V the spectrum of excitation ener-
gies for the two mirror nuclei. The second and third columns
give the experimental excitation energies for the different
states in17Ne and17N, respectively. The Gaussian nucleon-

FIG. 2. The three lowest effective potentialslnsrd for the 1/2−

and 3/2− (upper part), and 5/2−, 7/2−, and 9/2− (lower part) states
of 17N.

FIG. 3. Contour diagram for the probability distribution of the
1/2− ground state of17N. The square of the three-body wave func-
tion is integrated over the directions of the two Jacobi coordinates.
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nucleon interaction in Eq.(5) and the Woods-Saxon nucleon-
core potential in Table I together with the three-body forces
in Table III reproduce the experimental17Ne excitation ener-
gies. This calculation is denoted by G+WS(Guassian +
Woods-Saxon). As in Table IV the calculation denoted by
A+WS uses the Argonne nucleon-nucleon potential and the
Woods-Saxon nucleon-core potential in Table I. A small
three-body force also permits to reproduce the experimental
17Ne spectrum.

When these interactions are used for17N the energies in
Table IV and in the fourth column of Table V are obtained.
The computed excitation energiess17Ndth of 17N are system-
atically higher than those measured. Still the agreement is
surprisingly good in view of the fact that each state is com-
puted independently by expansion on individual basis com-
ponents without any parameter adjustment. This agreement is
especially good for the A+WS calculation, where the short
distance properties of the nucleon-nucleon interaction are
carefully treated. Furthermore the states in17N are well
bound and the assumptions of independent degrees of free-
dom in the three-body cluster model cannot be very well
fulfilled.

The experimental shiftssDed are given in the fifth column
of Table V. The total Coulomb shift(given by the energy
difference between a17Ne state and the corresponding17N
state) is of around 7.4 MeV. The values ofDe are then re-
markably small compared to the 10% of the total Coulomb
shift for the classical example of the single-particles andd
states in17O and17F. It is tempting to conjecture that this is
due to the stronger effect of the centrifugal barrier in the
three-body system where even thes states feel a barrier. The
Coulomb repulsion effect is then less pronounced than for a
two-body system where the absence of the centrifugal barrier
is the basic explanation.

The computed shiftssDthd are shown in the sixth column
of the table. For the G+WS calculation they are clearly
larger than the measured values, but also in these cases the
computation represents an accuracy better than 10% of the
Coulomb shift. In the A+WS computationDth is no more
than 3% of the Coulomb shift, and shows a better agreement
with the experiment.

However, thes17Ndth values given in the fourth column of
Table V are obtained by comparison to the computed ground
state 1/2− energy for each calculation. This energy differs
from the experimental value by 170 keV and −60 keV for
the G+WS and A+WS calculations, respectively(see last
column in Table V). These numbers do not enter when com-
paring to the total two-nucleon separation energy, but they do
enter in the computed shiftssDthd in the sixth column of
Table V. Therefore the uncertainty reflected in these com-
puted ground state energies is comparable to the experimen-
tal Thomas-Ehrman shiftDe we are trying to reproduce. A
dedicated effort is needed to reduce these uncertainties.

In these comparisons the measured values include all
many-body effects while the computations are within the
three-body model. To estimate effects of structure changes
we can compare the properties of these mirror nuclei through
direct computations of Coulomb energies with the model
wave functions. Following Ref.[24] we consider the first-
order perturbative contribution to the17N energy from the
Coulomb potential, i.e.,

Dc
s1d = kCs17NduVcouluCs17Ndl, s7d

where C is the three-body17N wave function obtained
without Coulomb interaction between core and valence
particles and reproducing the experimental17N spectrum.
Then the valence neutrons are substituted by protons in
precisely the same configurations arriving at an artificial
17Ne wave function. ThenVcoul is the resulting Coulomb
interaction between the three pairs of charged particles.
ThusDc

s1d is the diagonal contribution to the Coulomb shift
if the wave function remains unchanged. In Ref.f24g the
difference

DTE = Dc − Dc
s1d s8d

is referred to as the Thomas-Ehrman shift, whereDc is the
experimental shift between the17N and17Ne energies. Then
DTE represents the reduction in the Coulomb energy in
17Ne produced by the modified structure in the single-
particle states.

In Table VI we give these Thomas-Ehrman shiftssDTEd
arising from experimentalsDcd and computedsDc

s1dd Cou-
lomb shifts between the mirror nuclei17Ne and17N. We also
give DS, which is an estimate of the Coulomb shifts due to
changes of structure included in the three-body model. Again
we give the results for the G+WS and A+WS. All theDTE
are less than 3% of the diagonal Coulomb shift.

The values ofDTE obtained are again highly influenced by
the structure of the17N states with the different calculations.
As mentioned above, the agreement between computed and
experimental two-neutron separation energies in17N can be
considered rather good(see Table IV). The experimental en-

TABLE V. The first column indicates the different states and
calculations performed. The initials refer to the nucleon-nucleon
+nucleon-core interactions used(G: Gaussian, WS: Woods-Saxon,
A: Argonne). The second column gives the measured excitation
energies of low-lying states in17Ne. The computed17Ne spectrum
is identical. The measured and computeds17Ndth spectra in the mir-
ror nucleus17N are given in the third and fourth columns. The fifth
and sixth columns contain the experimentalsDed and computed
sDthd Thomas-Ehrman shifts. The seventh column shows the differ-
enceDe−th between experimental and computed energies for17N
(see Table IV). All the energies are given in MeV.

Jp 17Ne 17N s17Ndth De Dth De-th

1/2− G+WS 0.0 0.0 0.0 0.0 0.0 0.17

1/2− A+WS 0.0 0.0 0.0 0.0 0.0 −0.06

3/2− G+WS 1.29 1.37 1.91 0.08 0.62 −0.37

3/2− A+WS 1.29 1.37 1.51 0.08 0.22 −0.20

5/2− G+WS 1.76 1.91 2.22 0.15 0.46 −0.15

5/2− A+WS 1.76 1.91 1.95 0.15 0.19 −0.11

7/2− G+WS 3.00 3.13 3.30 0.13 0.30 −0.01

7/2− A+WS 3.00 3.13 3.14 0.13 0.14 −0.08

9/2− G+WS 3.55 3.63 3.96 0.08 0.41 −0.17

9/2− A+WS 3.55 3.63 3.72 0.08 0.17 −0.16
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ergy is recovered for the calculations in Table VI by includ-
ing in each case the appropriate three-body interaction,
which as we know keeps almost unchanged the three-body
structure. From Table IV we observe that in some cases the
17N states are up to 0.2 MeV more bound in one of the
computations compared to the other. These states are then
more compact, and the Coulomb repulsion should in prin-
ciple be larger. This is clearly seen in Table VI, where the
larger values forDc

s1d for the 1/2−, 3/2−, 5/2−, 7/2−, and
9/2− states are, respectively, the G+WS, A+WS, A+WS,
G+WS, and A+WS calculations, which are precisely the
computations giving the more bound state for each level. In
the 9/2− case, since the binding energy with the G+WS and
A+WS calculations is pretty much the same, then also the
Dc

s1d value is the same in both cases.
The main conclusion after analysis of Tables V and VI is

that the computed Thomas-Ehrman shifts are highly deter-
mined by the detailed structure of the17N states(for in-
stance, different three-body forces can significantly change
the results). The small change in the structure from calcula-
tion to calculation is in our case important enough to produce
large uncertainties in the computed Thomas-Ehrman shifts.
These uncertainties are probably much smaller for a system,
which in contrast to17N undoubtedly can be described as a
three-body system.

VI. SUMMARY AND CONCLUSIONS

The Borromean nucleus17Ne and its non-Borromean mir-
ror 17N are investigated in a three-body model where two
nucleons surround cores of15O and 15N, respectively. We
employ the well tested hyperspheric adiabatic expansion
method. Then the two-body interactions must first be deter-
mined to reproduce the properties of the two-body sub-
systems. We carefully choose a spin-dependent form of the
nucleon-core interaction such that the orbits of both the core
and the valence nucleons can be treated consistently to low-

est order in the mean-field approximation. Then we are guar-
anteed that the fundamental assumption in the three-body
model of decoupled motion of core and valence nucleons is
fulfilled as well as possible. We then proceed to determine
parameters of the interactions such that the lowest four reso-
nance energies of16F are reproduced. For this we use the
Coulomb energy of a Gaussian charge distribution of mea-
sured root mean square radius. The computed rms radius of
the core is in agreement with the measured size.

The three-body ground state and four measured excited
states of17Ne are then computed. The computed states are
systematically slightly underbound compared to the experi-
mental energies, but reproducing properly the experimental
angular momentum ordering. Agreement with the experi-
mental energies is obtained by use of a weak attractive short-
range effective three-body interaction.

We then turned to the mirror nucleus17N which is well
bound and with a number of bound excited states. They are
also computed in the three-body model although the basic
assumptions cannot be expected to hold. Still the energies are
close to the observed values. We therefore continued to com-
pute the Coulomb energy and the three-body Thomas-
Ehrman shifts, which are as double energy differences very
sensitive to inaccuracies and model assumptions. In general
sufficient accuracy cannot be reached within three-body
models applied to well bound systems such as17N. The rea-
son is that neglected degrees of freedom now can contribute
with similar small amounts.

In conclusion, the three-body model describes efficiently
the cluster structure of17Ne and in addition also surprisingly
well the well bound mirror nucleus17N. The computed three-
body Thomas-Ehrman shifts are then meaningful although
relatively inaccurate.
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