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Three-body Thomas-Ehrman shifts of analog states of’Ne and 1'N
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The lowest-lying states of the Borromean nucléiise (°0+p+p) and its mirror nucleus’N (*>N+n
+n) are compared by using the hyperspheric adiabatic expansion. Three-body resonances are computed by use
of the complex scaling method. The measured siz&0fand the low-lying resonances 8F (1°0+p) are
first used as constraints to determine both central and spin-dependent two-body interactions. The interaction
obtained reproduces relatively accurately both experimental three-body spectra. The Thomas-Ehrman shifts,
involving excitation energy differences, are computed and found to be less than 3% of the total Coulomb
energy shift for all states.

DOI: 10.1103/PhysRevC.69.024002 PACS nuner21.45+v, 27.20+n, 21.10.Sf, 21.10.Dr

I. INTRODUCTION We then in Sec. IV compare the properties of the low-lying
o states of these two mirror nuclei. In Sec. V we discuss in
Nuclear halos are expected along the drip lines whergyeiaj| the three-body Thomas-Ehrman shifts for all these

nucleon single-particle or p states occur with sufficiently - giates We close the paper with a summary and conclusions.
small separation energjl,2]. A cluster description of the

nucleus can then be appropriate, being able to visualize the

nucleus as a system made by an ordinary nudthescore Il. THREE-BODY METHOD

surrounded by one or two nucleons. Since the Coulomb in-

teraction works against halo formation the appearance of The three-body wave functions are computed using the

proton halos requires a relatively light cofg,4]. Still the  hyperspheric adiabatic expansion methp#11], which

degrees of freedom describing the core and the surroundirgplves the Faddeev equations in coordinate space. The wave

protons may decoup]e and justify a feW_body treatment. function \P:Ezﬁ, is then written as a sum of three Faddeev
The lightest Borromean proton drip line nucleus iscomponents/”(x;,y;)(i=1,2,3, where{x;,y;} are the three

Ne (%0 +p+p) which has an odd core mass implying finite Sets of Jacobi coordinates defined for instanceﬂgnge

core spin. The low-energy properties of the two-body protonthen introduce the hyperspheric coordinafgs Vx*+y?, «;

core subsystems produce the two sets of known spin-splarctarix/y;), €, and ], and for each value ofp

pairs of resonancdg$]. Dealing with the details of such sys- we expand each componeyit in terms of a complete set of

tems is delicate but analogous to the proper treatmetiLof — angular functions:

[6]. Unfortunately the structure ofNe, even within three-

body models, seems to be very controversial and differing _ 1 _

rather strongly in available publicatiofig,s]. P =52 Fop) ol (0. ) (O = {ai, 0y, Qy}). (1)
Nevertheless’Ne was recently discussg@] as an ex- P

ample revealing new features of the Thomas-Ehrman shift \hen this expansion is introduced in the Faddeev equa-

[10]. This nece;sarily iptroduces the mirror nucleus with lessjons they can be separated into an angular and a radial part.
Coulomb repulsion which then must be more bound and posrhe angular part takes the form

sibly with a different structure. In fact the basic assumptions
of the three-body model could be violated. Still it is interest-

2
ing to push model applications to test its limits. We shall A2¢g>+ me ij(xi)(d,gu V) + M) =N (po?, (2)
therefore try to describé’N with precisely the established h
model parameters and compare effects of(thek of) Cou-
lomb interactions. whereVj is the two-body interaction between particjesnd

The paper is organized as follows. In Sec. Il we describg A2 g an angular operatdf 1], andm is the normalization
very briefly the method used to compute three-body bounghass. The complete set of angular functions used in(Bq.
wave functions as well as three-body resonances. We conyre the eigenvectors of the angular part of the Faddeev equa-
tinue in Sec. Il with the description of the nucIeon—nucIeontions’ which are labeled by the indexand whose eigenval-
and nucleon-core interactions needed to sttitiie and'’N.  es are denoted by, (p).

Finally, the coefficientd, (p) in the expansioril) are ob-
tained after solving the coupled set of equations given by the
*Electronic address: imteg57@pinar2.csic.es radial parts of the Faddeev equations:
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A. Nucleon-nucleon interaction

&z 2 1 15
{ + ﬁ—T[Vsb(p) -EJ+ ?<)\”(p) + Z) ] fa(p)

dp? For the nucleon-nucleon short-range interaction we use

the operators mentioned above, and in particular the potential

d . )
+3 (‘ 2P -anf)fnf(m =0, (3 givenin Ref.[6],
" ’ V(1) = 37,057 (7130° _ 7 3g5(11.84% _ 53 72511457 . g
whereVy, is a three-body potential used for fine tuning, and +7.16571243°  + (49.40 (1113
the functionsP,,, andQ,,y can be found for instance in Ref. (€Z,)?
[11]. The eigenvalues,(p) are essential in the diagonal part + 29_533—(”1-84)2)51 Sy (5)
r

of the effective radial potentials:

where s=s,+s,,S;, is the usual tensor operatog,is the
2 Nn(p) +15/4 unit electric charge, and,, (=0,1) is the nucleon charge
Veii(p) = om 2 +V3y(p). (4) number. The strengths are given in MeV and the ranges in
P fermi. This potential reproduces the experimental scatter-
The hyperspheric adiabatic expansion method was iniing lengths and effective ranges of th&,, 3Py, 3P, and
tially designed to compute three-body bound state wavéP, waves. We use the same interaction for relative orbital
functions, and therefore the coupled set of radial equationangular momenta larger than 1.
(3) was solved for radial solutions falling off exponentially at
large distances. In principle the method can also be used to . )
calculate continuum and resonance wave functions. Then we B. Nucleon-core interaction
must require the correct asymptotic behavior for the solu- For the nucleon-core interaction we construct an
tions to Eqs(3) as described in Refl12]. ¢-dependent potential of the form
Calculations of resonance wave functions are in practice
significantly simplified by using the complex scaling method \
[13] where the radial coordinates are rotated into the com- V"
plex plane by an arbitrary angke This transformation of the 772
Jacobi coordinategx— xe?, y—ye? implies that only the + == erf(r/b,), (6)
hyperradiusp is transformed(p— pe'?), while the hyper- r

angles remain unchanged. It is therefore known that as soQjhere s, and s, are the spin of the nucleon and the core,
as the scaling anglé becomes larger than the argument of respectively ¢ is the relative orbital angular momentum be-
the resonance, the complex rotated resonance wave functig@jeen the two particleg, =€ +s,, andZ is the proton num-
falls off exponentially, exactly as a bound state. Thereforeper of the core. The error function erf describes the nucleon-
after complex scaling, the resonances can be computed Wihre Coulomb interaction of a Gaussian core-charge
the same numerical techniques as for bound states. distribution whereb,=2.16 fm isfitted to reproduce a rms
charge radius IO of 2.65 fm. This value is obtained
from the measured rms charge radiusi® (2.71 fm[15])
by rescaling it by amAl’® factor.

As discussed in Ref.14] the choice of these spin opera-

tors permits a clear energy separation of the usual mean-field
- 15
needed to compute the three-body systéhe (*°0-+p+p). spin-orbit partnerd ;.1 and€,_/,. In this way it is possible

i ; i 7y (15
The short-range interaction for the mirror nuclet ("N "0 5 ycleon-core interaction such that the low-lying
*+n+n) is then in principle the same although the assumpyates have well-defineé  quantum numbers, such as the
tions of the three-body model are much less convincing du 010 n .16

L : states in“Li or ds;, states in*°F. The use of thes;-
to the larger binding energy. The spin dependence of th 12 502 e Sn

i . . in-spin and( - (s.+s,) spin-orbit operators makes this im-
effective two-body interactions must be carefully chosen a?)[))ssibrl)e since (,[Sﬁe;”)is [r)wot a congerved quantum number

shpwn tI)r']t Ref.[14]t. For.syrrt}r]netry r(Tasons tr|1e spm-.:,pm ?.ndand the states in the two-body system are necessarily mix-

sEm—%rt; opera g;,s( |n+ )e nuc etpn-lnuc Eon in %rac Nures of€ .1, and€,_,,» components. This is especially prob-

SNOUId DES, S, andt - (S, +5,), reSpeclively, Whers, ands, o pmatic in the case that one of these states is forbidden by the

are the spins of the two nucleons afds their relative or- Pauli principle, such as, for instance, thg, waves in1CLi.

bital angular momentum. C . The shapes of the centref "), spin-spin(f“)), and spin-
For the nucleon-core interaction it is necessary to intro- bit () radial ial ¢ Eq(6 Ssh b

duce operators that conserve the usual mean-field quantu% it (fs,) radial potentials in Eq(6) are chosen to be

 id
D)= D + LD o= SGT Fo s,

IIl. TWO-BODY POTENTIALS

In this section we investigate the two-body potentials

[o]

numbers, i.e., the nucleon total angular momentym¢  Woods-Saxon functions, +exp[(r—b,)/a]), with the

+s, and the total two-body angular momentumj,+s., same diffusenesa in all cases. Once the reang@ of{}each
where¢ now is the relative nucleon-core orbital angular mo-radial potential is chosen, the streng®S, 57, ands)) are
mentum, ands, ands, are the core and nucleon spin, respec-adjusted to reproduce the experimental spectrum of
tively. This almost uniquely determines the spin operators a&®N (1N+n). Forswaves the strengtt§” andS are used
the usual fine and hyperfine terriss, ands;-j, [14]. to fit the energies of the(l',zzo) and thesi’,zzl) stateg0” and T
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TABLE |. Range(b,) and strengths of the centrég”), spin- The bound states i*N and low-lying resonances itF
spin (Sg;)), and spin-orbit(S(S?) potentials in Eq(6). The diffuse- with J7=07,17,2",3" are all obtained by coupling;,» and
nessa is 0.65 fm in all the cases. ds;, with the core spin of 1/2. The calculated results are in

Table Il compared with the experimental data for these

¢ b(fm)  S9Mev) S9Mev) 99 (MeVv im?d) states. The procedure of fitting the nuclear potential to repro-
- = = duce simultaneously both tH&N and the!SF spectra is ap-

0 3.00 -53.91 0.92 - parently efficient as the data is rather nicely reproduced. In

1 2.70 -19.99 0.69 -25.0 fact this is not possible with other values foy.

1 292 —54.15 0.35 250 In Table | we also specify @-wave interaction although

5 285 _58.45 0.24 250 these partial waves are expected to have only insignificant

effects. The reason is that the lowesthell is fully occupied
in the core and the unoccupigd,, orbit is above theds,
state$. Ford waves the strengtﬁg provides an appropriate states and even higher than the. Nevertheless, since the
spin-orbit splitting of theds, and theds, states whileS”  calculation will includep-wave components at least an esti-

and 5(525) are used to reproduce the experimental binding enmate of the parameters for the corresponding interaction is
ergies of thedg,zzz) and thed(51/223) states(2” and 3 states. desirable. We do this by using the knowledge of the unbound

The role of the spin-orbit interaction is here only to placel” and 2 states in*N immediately above the bound $tate
the ds, States relatively highithey must remain unbound (with experimental decay energies 0.86 MeV and 1.03 MeV
and the precise energy of these states is not very relevant. [46], respectively. These resonances must arise from the
any case an appropriate estimation of the strength for theoupling of aps;, neutron with the spin 1/2 of the cotan
spin-orbit interaction requires knowledge of td§." and f72 neutron cannot couple to 1 on @r perhaps by core
dg/:ZZ) energies. SN there are two unbound 12~ doublets excitation of ap,, neutron. Agam the potential parameters
that could correspond to these states. Their experimental d8ust be such that after switching on the Coulomb interaction
cay energieg16] (1.90 MeV and 2.58 MeV, or 2.27 MeV the experimental decay energy of 4.30 MeV for tHesfate
and 2.86 MeV are used to estimate the strength of the spinin ‘°F has to be also reproducdthe experimental decay
orbit interaction ford waves. energy of the 2 state of'®F is not availablg The parameters

The value of the range parametgris determined by the fulfilling these conditions are given in the second line of
fact that by switching on the Coulomb potential the experi-Table I. The value 05(;)) has been arbitrarily chosen to be
mental spectrum of®F (0 +p) should be reproduced. In the same as fod waves.

Table | we give the resulting values of the parameters used The lowestp shell is fully occupied in the'>N or %0

for the Woods-Saxon radial form factors in E§). The par- core. We should then apply the same treatment as\i@ves

tial waves with€=0 and{¢=2 are by far the most important to the p-wave nucleon-core interaction, using a potential
in the present context. with deeply bound states that are afterwards removed by the

The s-wave potential has a deeply bound state aicorresponding phase equivalent potentials. For consistency
-31.0 MeV in N and at -26.2 MeV in'F. These states we also tested a degpwave potential as given in Table |
correspond to the,, nucleon states occupied in theN or  with range and strengths comparable to shand d poten-
the 10 core. They are then forbidden by the Pauli principle,tials. The bound states in these desepnd p potentials pro-
and should be excluded from the calculation. This is impleduce a charge distribution with a rms radius i?0 of
mented as in Refs[6,17] by use of the phase equivalent 2.63 fm consistent with the value used in the Coulomb po-
potential which has exactly the same phase shifts as the intential. Furthermore the binding energies of e andps/,
tial two-body interaction for all energies, but the Pauli for- states in'°0 are -7.29 MeV and -11.3 MeV, respectively,
bidden bound state is removed from the two-body spectrunboth consistent with the experimental dfta].

We then use the phase equivalent potential of the central part Nevertheless, since thewaves basically have no effects

of the Woods-Saxos-wave potential in Table I. Thus th® in the three-body calculation we use for simplification the
states actively entering the three-body calculations are thshallow{ =1 potential given in Table | without bound states.
second states of the Woods-Saxon potential. Fodtegtes  In this way the computing time is significantly reduced with-
no Pauli exclusion is necessary. out loss in the computations accuracy.

TABLE II. Four lowest states if®N andF obtained with the nuclear potential specified in Table I. For
16F we give the energies and widths of the two-body resonafiged’). The experimental data are from Ref.
[16]. Error bars are not specified when they are smaller than the last digit. For unbound states the energies are
decay energies above threshold.

J7 16N Expt® 16F Expt?

0 -2.37 -2.371 (0.53,0.02 (0.535,0.040+0.020

1 -2.09 -2.094 (0.71,0.07 (0.728+0.006 < 0.040

2 -2.49 -2.491 (0.96,0.01 (0.959+0.005,0.040+0.030
3 -2.19 -2.193 (1.23,0.01 (1.256+0.004<0.015

*From Ref.[16].
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IV. RESULTS FOR 1"NE AND 1'N

We use the two-body interactions determined as described
in the preceding section. The low-lying nucleon-core valence
space is expected to consistoondd waves. With spin and
parity of 1/2 for the core and two identical nucleons in the
sd valence space we can construct total angular momentum
and parity states witd™=1/2",3/2°,5/2°,7/2°, and 9/2.

The next shell§f,/5, P32, - ..) May also contribute but signifi-
cant amounts of such components also indicate similar con-
tributions from core excitations. These structures involve
particle-hole excitations either from ttsel to the pf shell or
from thep to thesd shell. We shall neglect these core exci-
tations.

A. Components

To solve the eigenvalue problem given in HQ) we
expand the angular eigenvectors in the basis FG, 1. The four lowest angular eigenvaluegp) for the 1/2,
{y:?(x(fy,L(a'i -Qxi vQyi) ®szsy,s}: where yrliey,L are the hyper- 3/27,5/27, 7/27, and 9/2 states of"Ne as a function op where
spheric harmonics ang is the spin functior{11]. For each the normalization mass equals the nucleon mass.
of the three Jacobi coordinate setthe coordinate; is the
vector connecting particlgsandk, the quantum numbe; is
the relative orbital angular momentum of particjemndk, €,
is the relative orbital angular momentum of partickend the
center of mass of thik two-body system. The spig) is the

lent sswave potential between proton and core where the
deepest state of the initial potential is removed to account for
the Pauli principlg17]. By using the initial deep two-body
potential instead we obtain a function starting at zero for

coupled spin of particlesandk, ands, is the spin of particle  p=0 and diverging to = at large distances. This behavior of
i. Finally L andSare the coupling of, and¢,, and ofs, and the lowest\ characterizes the existence of a bound two-body

s,, respectively, and they couple to the total angular momenstate [11]. This state is actually the Pauli forbidden state
tum J of the system. The hypermomentuhis given by  Which could have been computed and then omitted from the
2n+{,+¢£, wheren is a non-negative integer counting the basis. Instead we suppressed the Pauli forbidden state by
number of nodes in the Jacobi polynomials. using the more consistent procedure with the phase equiva-
The first step in the calculation is then to choose the comlent potential.
ponents to be included in the expansion of the angular eigen- For short-range potentials it is also known that at infinity
vectors. By direct but extensive computations, we havdhe values of the\'s must again follow the hyperspherical
found that the components needed fa¥e are essentiallg, ~ spectrum[11]. However, this behavior is changed for eigen-
p, andd waves. Only for high angular momentu@=7/2  Vvalues corresponding to unbound two-body states as soon as
and 9/3 higher partial waves can be relevant. We then usdong-range interactions such as the Coulomb potential are
the same components f&fiN. present. The reason is that the influence of the short-range
After solving the angular part of the Faddeev equationgnteractions then disappears outsjdealues corresponding
(2) we extract the angular eigenvalukg(p), which deter- to a few times the range of the interaction whereas the Cou-
mine almost entirely the effective potentials entering in theomb potentials multiplied by? give rise to linearly increas-
radial equationg3). For both 1’Ne and’N we also here ing A functions even at asymptotically large distan¢&g].
maintain the same number of lowest-lying adiabatic potenThis linear increase must appear as soon as only the Cou-
tials for use in the radial equatioi8). We compute first the lomb potential has an influence. The slopes depend on the
bound state solutions falling off exponentially at large dis-geometric structure of the three-body system as the size in-
tances. Then the resonance eigenfunctions are found in corRt€ases.
plete analogy as exponentially falling solutions to the similar  The ground state of'Ne is bound, and has a two-proton

equations obtained by complex rotation of the hyperradius.Separation energy of 944 keV. The structure is about equal
amounts of proton-corg’ andd? waves. The computed root

mean square radius is 2.8 fm consistent with the experimen-
tal value of 2.75+0.07 fm{20]. All the excited states are
We show the results in Fig. 1 for the four deepest effectivaunbound and computed by application of the complex scal-

B. Spectrum of 1'Ne

potentials for the 1/2 3/2°,5/27, 7/2°, and 9/2 states in
Ne. It is known that atp=0 the values of the\’s must
reproduce the hyperspherical spectrdK+4) [11]. In our
case of positive total parity in the valence sp&cenust be
even, i.e.K=0,2,4,....

In the figure we observe that the function starting at

ing method. The excitation energies of the two lowest ex-
cited states are 128818 keV for the 3/Xtate and
1764+12 keV for the 5/2 state[5]. For both these states
proton-cores—d mixed components are dominating. In Ref.
[5] also 7/Z and 9/2 states are reported with excitation
energies 2997+11 keV and 354820 keV, respectively.

zero(K=0) does not appear. This is due to the phase equivathese four excitation energies correspond to the decay ener-
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TABLE lIl. The second and third columns give the experimental ~ TABLE IV. N spectrum obtained using the same nuclear two-
and computed bound stat&/2") and decay energig8/2°, 5/2, body interactions as fot’Ne, and the effective three-body force
7127, and 9/2) in ¥Ne (in MeV). The fourth column gives the given in Table lll. The third column gives the results obtained with
strengthsS (in MeV) of the Gaussian three-body forces that for a the Argonne(A) nucleon-nucleon potential plus the Woods-Saxon
range of 4.0 fm give rise to energies matching the experimenta{\WS) nucleon-core interactiofifable l). The last column gives the
values. The fifth column gives the expectation value of the threeexperimental datl6].
body force for the correspondirigNe solutions. The last column is

the contribution to the norm of the first three terms in the expansion — J7 E (MeV) Earws (MeV) Expt.
@ 112 -8.54 -8.31 -8.374
J7 Eexpt. Ecomp S (Vap) An=1,2,4%) -3.72 -3.66 —4.711
1/  -094 -079 -06 -02 885, 111, 0.4 81z ~6.63 ~6.80 ~7.000
3/ 034 063 -14 -03 907,89 02 ~383 503 o7
5/ 082 091 -04 -01 77.2,16.9 56 52 ~6.32 ~6.36 ~6.467
7/ 205 224 -08 -02 975,23, 02 1z .24 -7 70245
P e 9/2 -4.58 -4.59 ~4.745

9/2" 2.60 2.70 -0.1 -0.1 91.9,4.2,38

gies (energies above threshgldiven in the second column correspondingl™ solutions. In Table Il we also give this
of Table Ill. For these states th# waves dominate. More quantity which measures the contribution of the three-body
details about the structure are available in R21]. force to the energy of the three-body system. A variation of
The resonances obtained fbiNe are extremely narrow the range of the three-body force within reasonable limits is
with widths much smaller than the accuracy of our calcula-not modifying the results.
tions. Thus, application of the complex scaling method al- In the last column of Table Il we give the contribution to
lows the use of very small scaling angles. Typically Comp|exthe norm of the wave function of the first three terms in the
scaling angles of9=10" are able to find the'’Ne reso- €xpansion(1). Typically only two terms are enough to get an
nances. For these scaling angles the complex seadedan  accuracy of 99%, and only for the 572nd 9/2 states the
hardly be distinguished from the nonrotated functions in Figthird term is giving a sizable contribution.
1. The imaginary parts are very small and would appear on The spectrum of’Ne has been previously investigated in
the zero line if plotted in the figure. Refs.[7,8]. In both works the 3/2and 5/Z levels are re-
Using the\ functions in Fig. 1 we obtain th&Ne ground ~ Vversed compared to the experimental data, although in Ref.
state binding energy and the decay energy of the exciteli’] this deficiency is corrected by use of an appropriate three-
states shown in the third column of Table IIl. As seen in thebody interaction. In the present work these problems are not
table the computed states are systematically less bound th&fcountered. When only the two-body forces describing
the experimental value. This fact is actually expected, sinc@roperly the'®F spectrum are used, the ordering in the com-
three-body calculations using pure two-body interactionuted!’Ne spectrum is correct, as seen in the third column of
typically underbind the system. This problem is solved byTable lll. Then, the use of a small effective three-body force
inclusion of the weak effective three-body potentig}, in IS enough to fit the experimental data.
Eq. (3), which accounts for three-body polarization effects
arising when the three particles all are close to each other.
Therefore the three-body potential has to be of short range,
while the three-body structure essentially is independent of Interchanging all neutrons and protons lifNe leads to
the precise shape. This construction furthermore ensures théite mirror system!’N which then analogously should be
the two-body resonances remain unaffected within the threedescribed as a three-body system with # core sur-
body system after this necessary fine tuning. The effectivéounded by two neutrons. The structure should then be ob-
total potential entering is then given by Ed). tained simply by switching off the Coulomb interaction for
The precise range of the three-body interaction also play$’Ne, since the strong interaction is precisely the same due to
a limited role. This is because the three-body force is vercharge symmetry. In this way we can compute the properties
weak compared to the depth of the full potential and furtherof 1'N.
more it is largest for smap values, where the total potential ~ The results are listed in column two of Table IV and not
is highly repulsive. It is then clear that the main structure ofsurprisingly stronger binding is obtained. FirsfiN is not a
the system cannot be significantly modified by the choice oBorromean system. The number of three-body bound states
one or another of such three-body interactions. In Table Ilhas also increased substantially, i.e., we find two bound
we give the strengths of the Gaussian three-body potentialtates both for 1/2and 3/2, and one for 5/2, 7/2°, and
which for range equal to 4 fm are needed to match the ex9/2 . The computed energies of these states agree pretty well
perimental energies of all thegground angl excited states. with the experimental valugd.6]. The discrepancy with the
One way to measure and compare the effect of the threeexperiment is always smaller than 5%. Only for the excited
body force in the different calculations is to compute thel/2” and 3/2 states a larger disagreement with the mea-
expectation valu€Vs,(p)) of the three-body potential for the sured energies appears. In the third column of the table the

C. Spectrum of I'N
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FIG. 2. The three lowest effective potentialg(p) for the 1/2 FIG. 3. Contour diagram for the probability distribution of the
and 3/2 (upper pait, and 5/2, 7/2°, and 9/2 (lower par) states  1/2” ground state of’N. The square of the three-body wave func-
of I7N. tion is integrated over the directions of the two Jacobi coordinates.

calculations labeled by A+ W@\rgonne+Woods-Saxomuse  body interaction could fit the lowest of eadh states. How-
the accurate Argonne nucleon-nucleon potential denoted iaver, this would not improve the agreement of the second
Ref.[22] by v, and the Woods-Saxon nucleon-core potentiall/2” and 3/2 states which then move into the positions
in Table 1. -3.62 MeV and -4.14 MeV, respectively. This is probably
The relatively small differences between the mirror nucleibecause other effects are important, e.g., different compo-
are perhaps not as self-evident if we consider the behavior afents could now contribute both from valence space and
the angular eigenvalues shown in Fig. 2. We plot only thefrom excitations. This is equivalent to an attempt to describe
three lowest functions used to compute the different states ihigher-lying resonances itfNe. They may also require an-
1N. As for 1'Ne there is no\ function starting at zero due to other and perhaps enlarged Hilbert space. Further investiga-
the removal of the Pauli forbiddesstate by use of the phase tions of these well bound excited states are beyond the scope
equivalent potential. The main difference compared to Fig. Iof the present paper.
is the divergence towards=of all the A functions. This is a
reflection of corresponding bound states in the two-body
subsystems consistent with the quantum numbers of the
three-body system. This underlines th&t cannot be a Bor- The only difference in the computations of the two mirror
romean nucleug1l]. The qualitatively different behavior nuclei is omission of the Coulomb interaction foiN. This
seen in Figs. 1 and 2 also emphasizes that the agreemegimilarity is assumed inherently to describe the fundamental
with measurements for both nuclei is not a trivially build-in charge symmetry of the strong interaction. The immediate
property of the present description. The model is consisteniinplication is that the differences in the spectra entirely must
in a more profound way. be produced by the Coulomb potential. The obvious differ-
The spatial structure of'N is less extended than that of ence is the shift of all energies towards stronger binding
1"Ne because of its larger binding energy. The length scale aghen the Coulomb potential is suppressed. However, this
defined in Ref[23] is py=~5.5 fm (py=5 fm for 1’Ne) and trivial overall shift is accompanied by a modified structure of
the dimensionless measures of size and binding energy atRe states. This is especially seen for $h@ave components
((p! pp)®)=0.9 andmBp3/%2~6.0. The ground state 3N which are less influenced by centrifugal barrier effects. The
is located in the same region as ordinary nuclei. Among théCoulomb repulsion tends to increase the size of a given state
excited states shown in Table IV the less bound is the secorgelmply by minimizing the energy. Thewaves are here more
1/2 state. For this state the corresponding dimensionleswfluenced than higher partial waves and the shifts are then
size and binding are 1.9 and 3.4, respectively, still located itarger. This double difference in energgxcitation energy
the region of ordinary nuclei. The three-body structure isdifferencg is for single-particle energies called the Thomas-
further illustrated in Fig. 3, where we show the square of theEhrman shift[10]. It is due to the Coulomb interaction but
three-body wave function integrated over the directions ofhot necessarily in a straightforward way. In a recent wWéik
the Jacobi coordinates and multiplied by the volume elementhe Thomas-Ehrman shift was investigated in the three-body
The structure resembles that BNe with two similar domi-  systems*?0 and®Ne.
nating peaks. We compare in Table V the spectrum of excitation ener-
The known properties of’N seem to be rather well re- gies for the two mirror nuclei. The second and third columns
produced with the model parameters féKe. An additional give the experimental excitation energies for the different
very small retuning of the strength of the effective three-states in*’Ne and*’N, respectively. The Gaussian nucleon-

V. THOMAS-EHRMAN SHIFTS
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TABLE V. The first column indicates the different states and  The computed shift¢A,) are shown in the sixth column
calculations performed. The initials refer to the nucleon-nucleongf the table. For the G+WS calculation they are clearly
*+nucleon-core interactions use@: Gaussian, WS: Woods-Saxon, |arger than the measured values, but also in these cases the
A: Argonne. The second column gives the measured excitationcomputation represents an accuracy better than 10% of the
energies of low-lying states i'Ne. The computed’Ne spectrum  coylomb shift. In the A+WS computatiody, is ho more
is identical. The measured and computét);, spectra in the mir- — yhan 304 of the Coulomb shift, and shows a better agreement
ror nucleus'’N are given in the third and fourth columns. The fifth with the experiment '

and sixth columns contain the experimen(al,) and computed 17 . .
(Ayy) Thomas-Ehrman shifts. The seventh column shows the differ;l_ kl)-:on//evrer, tgte( szthbvalues gl\{en mt tht?] fourth cotlu(;nn of d
enceA., between experimental and computed energies!fisr able v are obtained by comparison 1o th€ computed groun

(see Table IV All the energies are given in MeV. state 1/2 energy for each calculation. This energy differs
from the experimental value by 170 keV and -60 keV for
the G+WS and A+WS calculations, respectivébee last
column in Table V. These numbers do not enter when com-
1/2 G+WS 0.0 0.0 0.0 0.0 0.0 0.17  paring to the total two-nucleon separation energy, but they do
1/2 A+WS 0.0 0.0 0.0 00 00 -006 enter in the computed shift&d,,) in the sixth column of
3/27 G+WS 1.29 1.37 1.91 0.08 062 -0.37 Table V. Therefore the Uncertainty reflected in these com-
3/ A+WS 129 137 151 008 022 -020 Putedground state energiesis comparable to the experimen-
5/ G+WS 176 191 292 015 046 -0.15 tal 'I_'homas-Ehrman shifA, we are trying to reprodgcg. A
dedicated effort is needed to reduce these uncertainties.
5/ A+WS 176 191 195 015 019 -011 In these comparisons the measured values include all
7122 G+WS 300 313 330 013 030 -0.01 many-body effects while the computations are within the
7/27 A+WS  3.00 313 314 013 014 -0.08 three-body model. To estimate effects of structure changes
9/2 G+wWS 355 363 396 0.08 041 -0.17 we can compare the properties of these mirror nuclei through
9/ A+WS 355 3.63 3.72 0.08 0.17 -0.16 direct computations of Coulomb energies with the model
wave functions. Following Ref[24] we consider the first-

. S order perturbative contribution to th€N energy from the
nucleon interaction in Eq5) and the Woods-Saxon nucleon- Coulomb potential, i.e.,

core potential in Table | together with the three-body forces
in Table Il reproduce the experimentdNe excitation ener- AD = (W (N Voo [T (YN)) (7)
gies. This calculation is denoted by G+WSuassian + ¢ coul ’
Woods-Saxop As in Table IV the calculation denoted by where ¥ is the three-body'’N wave function obtained
A+WS uses the Argonne nucleon-nucleon potential and thevithout Coulomb interaction between core and valence
Woods-Saxon nucleon-core potential in Table 1. A'Sma"particles and reproducing the experimerﬂtﬁ{] spectrum.
tlgree-body force also permits to reproduce the experimentathen the valence neutrons are substituted by protons in
Ne spectrum. precisely the same configurations arriving at an artificial
When these interactions are used 1@ the energies in  17\e wave function. The,, is the resulting Coulomb
Table 1V and in the fourth column of Table V are obtained.jyteraction between the three pairs of charged particles.
The computed excitation energi€eN),, of ’N are system- .ThusA(cl) is the diagonal contribution to the Coulomb shift

atically higher than those measured. Still the agreement i% the wave function remains unchanged. In REf4] the
surprisingly good in view of the fact that each state is COM-yitference ' '

puted independently by expansion on individual basis com-
ponents without any parameter adjustment. This agreement is Arg=Ac— A(cl) (8)
especially good for the A+WS calculation, where the short
distance properties of the nucleon-nucleon interaction aré referred to as the Thomas-Ehrman shift, whageis the
carefully treated. Furthermore the statesfiN are well experimental shift between tHé&N and'/Ne energies. Then
bound and the assumptions of independent degrees of fredse represents the reduction in the Coulomb energy in
dom in the three-body cluster model cannot be very well'’Ne produced by the modified structure in the single-
fulfilled. particle states.

The experimental shifté\,) are given in the fifth column In Table VI we give these Thomas-Ehrman shiftsrg)
of Table V. The total Coulomb shiftgiven by the energy arising from experimenta(A.) and ComputedAgl)) Cou-
difference between &’Ne state and the correspondifN  lomb shifts between the mirror nuclé&iNe and*’N. We also
statg is of around 7.4 MeV. The values d, are then re- give Ag, which is an estimate of the Coulomb shifts due to
markably small compared to the 10% of the total Coulombchanges of structure included in the three-body model. Again
shift for the classical example of the single-partislandd  we give the results for the G+WS and A+WS. All theg
states int’O and’F. It is tempting to conjecture that this is are less than 3% of the diagonal Coulomb shift.
due to the stronger effect of the centrifugal barrier in the The values oA obtained are again highly influenced by
three-body system where even thstates feel a barrier. The the structure of thé’N states with the different calculations.
Coulomb repulsion effect is then less pronounced than for &s mentioned above, the agreement between computed and
two-body system where the absence of the centrifugal barriegxperimental two-neutron separation energie$’ih can be
is the basic explanation. considered rather gog@dee Table IV. The experimental en-

Jm I'Ne TN (17N)th A An Aeth
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TABLE VI. Experimental Coulomb shiftA.), first-order contribution[A(cl), Eq. (7)], Thomas-Ehrman shiftArg), and Ag=A+rg
—Agyn forthe 1/2, 3/27,5/27, 7/27, and 9/2 states. G+WS and A+WS refer to the nucleon-nucleon+nucleon-core interactions used in
the different calculation$G: Gaussian, WS: Woods-Saxon, A: Argonngll the energies are given in MeV.

Jm 1/ 3/ 5/2 712 9/2"

G+WS A+WS G+WS A+WS G+WS A+WS G+WS A+WS G+WS A+WS
Ac 7.43 7.34 7.29 7.30 7.35
A(cl) 7.64 7.53 7.45 7.60 7.44 7.51 7.58 7.56 7.53 7.53
Ate -0.21 -0.10 -0.11 -0.26 -0.15 -0.22 -0.28 -0.26 -0.18 -0.18
Ag -0.38 -0.04 +0.26 -0.06 0.00 -0.11 -0.27 -0.18 -0.01 -0.02

ergy is recovered for the calculations in Table VI by includ- est order in the mean-field approximation. Then we are guar-
ing in each case the appropriate three-body interactioranteed that the fundamental assumption in the three-body
which as we know keeps almost unchanged the three-bodyodel of decoupled motion of core and valence nucleons is
structure. From Table IV we observe that in some cases thiilfilled as well as possible. We then proceed to determine
1N states are up to 0.2 MeV more bound in one of theparameters of the interactions such that the lowest four reso-
computations compared to the other. These states are theance energies of°F are reproduced. For this we use the
more compact, and the Coulomb repulsion should in prin-Coulomb energy of a Gaussian charge distribution of mea-
ciple be larger. This is clearly seen in Table VI, where thesured root mean square radius. The computed rms radius of
larger values forA(Cl) for the 1/, 3/2°, 5/2°, 7/2°, and the core is in agreement with the measured size.
9/2 states are, respectively, the G+WS, A+WS, A+WS, The three-body ground state and four measured excited
G+WS, and A+WS calculations, which are precisely thestates of'’Ne are then computed. The computed states are
computations giving the more bound state for each level. Iisystematically slightly underbound compared to the experi-
the 9/2 case, since the binding energy with the G+WS andmental energies, but reproducing properly the experimental
A+WS calculations is pretty much the same, then also th@ngular momentum ordering. Agreement with the experi-
A(cl) value is the same in both cases. mental energies is obtained by use of a weak attractive short-
The main conclusion after analysis of Tables V and VI isrange effective three-body interaction.
that the computed Thomas-Ehrman shifts are highly deter- We then turned to the mirror nucled&N which is well
mined by the detailed structure of tH&\N states(for in- bound and with a number of bound excited states. They are
stance, different three-body forces can significantly chang@!so computed in the three-body model although the basic
the results The small change in the structure from calcula-assumptions cannot be expected to hold. Still the energies are
tion to calculation is in our case important enough to producélose to the observed values. We therefore continued to com-
large uncertainties in the computed Thomas-Ehrman shiftgute the Coulomb energy and the three-body Thomas-
These uncertainties are probably much smaller for a systenfshrman shifts, which are as double energy differences very
which in contrast to"’N undoubtedly can be described as asensitive to inaccuracies and model assumptions. In general
three-body system. sufficient accuracy cannot be reached within three-body
models applied to well bound systems suchas The rea-

son is that neglected degrees of freedom now can contribute
VI. SUMMARY AND CONCLUSIONS with similar small amounts.

The Borromean nucleud€Ne and its non-Borromean mir- In conclusion, the three-body model describes efficiently
ror 1N are investigated in a three-body model where twothe cluster structure d_f7Ne and in addition also surprisingly
nucleons surround cores 6fO and N, respectively. We well the well bound mirror nucleu’s7N. The computed three-
employ the well tested hyperspheric adiabatic expansioR©dy Thomas-Ehrman shifts are then meaningful although
method. Then the two-body interactions must first be deterelatively inaccurate.
mined to reproduce the properties of the two-body sub- ACKNOWLEDGMENT
systems. We carefully choose a spin-dependent form of the
nucleon-core interaction such that the orbits of both the core We want to thank Hans Fynbo for useful suggestions and
and the valence nucleons can be treated consistently to lovdiscussions.
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