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The self-consistent random phase approximation(SCRPA) is applied to the exactly solvable model with
fermion-boson coupling proposed by Schütte and Da Providencia. Very encouraging results in comparison with
the exact solution of the model for various observables are obtained. The transition from the normal phase to
the phase with a spontaneously broken symmetry is carefully investigated. The strong reduction of the variance
in SCRPA vs Hartree-Fock is pointed out.
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During the last decade the so-called self-consistent ver-
sion of the random phase approximation(SCRPA) has seen
very encouraging successes in a number of nontrivial model
cases(see, for example, Ref.[1] for a detailed description of
the method and Ref.[2] for the application of SCRPA to the
many-level pairing model). In spite of these performances of
the theory, there are remaining problems. In first place this
concerns situations with spontaneously broken symmetries.
Such situations were treated in Refs.[1,3,4]. Whereas in the
Lipkin model [3] the symmetry broken(“deformed”) phase
caused no problem because the broken symmetry is discrete
(parity), in the other two cases[1,4], with a continuous bro-
ken symmetry, problems appeared with the low-lying mode
known to be exactly at zero energy in the standard HF-RPA
approach(the spurious or Goldstone mode), where HF stands
for Hartree-Fock. In the two cases cited[1,4] the low-lying
mode does not appear at zero energy in SCRPA because the
RPA operator does not contain the symmetry operator as a
limit case. Indeed, e.g., the number operator in quasiparticle
(BCS) representation contains a purely Hermitian pieceak

†ak
which cannot be incorporated in the RPA operator which by
definition is non-Hermitian. The same situation is present in
the Schütte-Da-Providenica boson-fermion model[5] where
the symmetry operator contains the boson and fermion num-
ber operators. The violation of the Goldstone theorem signi-
fies that the Ward identities and conservation laws are not
respected. Though this violation seems relatively mild and to
go away in macroscopic systems(the Hermitian pieces be-
coming of zero weight), the situation remains annoying for
finite systems.

In this paper which can be considered as a sequel of Ref.
[4] we want again to investigate the Schütte–Da Providenica
model:

H = n + ab†b + Gst+b† + t−bd s1d

with b†, b ideal boson operators and
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N
a0i
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where thea†, a are fermion operators. In analogy to the work
in Ref. f4g we will introduce the more general RPA operator

Qn
† = Xnt

+ − Ynt
− + lnB

† − mnB + Unb†b† − Vnbb,

n = 1, 2, 3, s2d

where

t± =
T±

Î− 2kT0l
and b†b† =

B†B†

Î2s1 + 2kB†Bld
. s3d

The operatorsT±, T0 are obtained fromt±, t0, by writing the
latter ones in the deformed basis

Sa1k
†

a0k
D = Su − v

v u
DSa1k

†

a0k
† D, u2 + v2 = 1. s4d

The bosons operatorsB† andB are obtained from the original
ones by a shift transformationB→b−s, wheres is ac num-
ber characterizing the appearance of the Bose condensate.
The introduction of the boson pair operatorsb†b† is moti-
vated by the fact that otherwise there exists a certain dissym-
metry between fermions and bosons, the fermions being in
any case bilinear whereas the bosons are otherwise only con-
tained to linear order in Eq.s2d. Also the symmetry operator
P=b†b−n contains the bosons quadratically and the ex-
tended ansatzs2d may therefore show improved behavior
with respect to the Goldstone mode. The formalism goes
exactly in the same way as in Refs.f1,2,4g using the equation
of motion method

kfdQ, fH8, Qn
†ggl = VnkfdQ, Qn

†gl s5d

to determine the amplitudes in Eq.s2d. As in Ref. f4g, in
order to fix the valueL=kPl, we use in Eq.s5d the cranked
HamiltonianH8=H−mP in the symmetry broken phase, oth-
erwise H8=H. The mean-field amplitudesu, v, and s are
readily obtained from a minimization of the ground-state en-
ergy, leading tokfH8, t+gl=kfH8, B†gl=0. The amplitudes in
Eq. s2d form a complete orthonormal set when calculated
from Eq.s5d. Then Eq.s2d can be inverted and with the usual
condition for the RPA ground state*Electronic address: rabhi@ipnl.in2p3.fr
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QnuRPAl = 0, n = 1, 2, 3. s6d

All expectation values appearing in Eq.s5d, for example,
kt+B†l, kt+Bl, andkB†Bl can directly be expressed in terms of
the RPA amplitudes. The only unknown quantity at this
point preventing a fully self-consistent solution of the
SCRPA equations, Eq.s5d, is the expectation valuekT0l.
However, in analogy to our previous study for the two-level
pairing modelf1g this quantity can be expressed as an ex-
pression in the operatorsT+ andT− up to any order in a fast
converging series according to

T0 = −
N

2
+

1

N
T+T− +

1

N2sN − 1d
T+2T−2 + ¯ . s7d

With this relation the SCRPA equations are completely
closed and we can proceed to the numerical solution. We
notice that with respect to Ref.f4g the SCRPA, Eq.s5d, is a
s636d-dimensional problem whereas before it was 434.

We now come to the presentation and discussion of the
results. In what follows, SCRPA(6) refers to the SCRPA
method with RPA excitation operator quadratic in the bosons
operators i.e., Eq.(2), while SCRPA(4) refers to the same
method but with RPA excitation operator linear in the bosons
operators, i.e.,Un=Vn=0. In the following we also use the
set of parametersa=3,N=30 as in Ref.[4], for which in this
model the phase transition point is localized atx=1.0, where
x=GÎN/a. SCRPA always shows a clear superiority over the
standard RPA, though, besides some quantities, the differ-
ences are not very pronounced. Concerning the ground-state
energy we do not give results but we only notice that we
arrive practically at the same interpretations as in Ref.[4].
However, in order to test the accuracy of our approach it is
instructive to calculate the differences of energies of the
ground-state band withL values just one unit away from the
absolute ground state. One such quantity is the “chemical
potential” which should be identified with the Lagrange pa-
rameter used for restoring the symmetry,

m = 1
2sEL+1

0 − EL−1
0 d. s8d

In Table I we showm when we calculate separatelyEL±1
0 sin

the standard RPA and SCRPAd and then take the difference.
We also give in Table I theL values which correspond for a
givenx value to the absolute ground state. In Table I we see
a strong improvement of SCRPAs6d and SCRPAs4d over the

standard RPA and the high quality of the results in compari-
son with the exact values in the region around the phase
transition point. Also SCRPAs6d is still improved over
SCRPAs4d. We could also have taken them values found
from adjusting the correctL=kPl values in the standard RPA
and SCRPA calculations; we have checked numerically that
the results are always practically identical.

Two other interesting quantities to be calculated within
the SCRPA formalism and closely related to the chemical
potential are the energy differences of the absolute ground
state with its “left” and “right” neighbors just one unit away
in L,

DE±1 = ± sEL±1
0 − EL

0d. s9d

These quantities are interesting because, as we will explain
below, they should be closely related to the lowest RPA
eigenvalueV1 in the symmetry broken phase. Because we
obtain similar interpretation and conclusions for bothDE±1,
we will present and discuss only the result forDE−1. In Fig.
1 we see a very good agreement with the exact results of
both SCRPAs6d and SCRPAs4d. However, we note that in
this quantity no clear superiority of SCRPAs6d over
SCRPAs4d can be detected, the results being at times in favor
of the one or the other. The good quality of the results for
DE±1 shows that the SCRPA method is able to reproduce the
full spectrum. We also should notice that the smallness of
DE±1 means that two neighboring ground states withL and
L±1, respectively, are almost degenerate which indicates
that the system is in the phase of spontaneously broken sym-
metry. Furthermore, one can check that in the largeN limit
DE±1 tends to zero. The zero eigenvaluesGoldstone moded
which is one of the solutions of the standard RPA in the
deformed region corresponds to this degeneracy of the
neighboring ground-state energies in the largeN limit.

Let us now discuss the eigenvalues of RPA and SCRPA
matrices. As it is well known[4,5], in the standard RPA the
lowest eigenvalue corresponds in the symmetry broken(de-
formed) region to the spurious modeV1=0, whereas the sec-

TABLE I. Chemical potential: exact, SCRPA(6), SCRPA(4), and
standard RPA;L values, in the deformed region for different values
of the interaction strengthx.

x L msexactd ms6d ms4d msRPAd

1.1 −1 −0.0131 −0.0485 −0.0485 0.1160

1.4 −3 0.0325 0.0348 0.0405 0.1303

1.8 −3 −0.0341 −0.0315 −0.0329 0.0060

2.2 0 0.0320 0.0300 0.0240 0.0345

2.6 4 0.0305 0.0285 0.0221 0.0207

3.0 9 0.0204 0.0195 0.0135 0.0071

FIG. 1. Comparison between the exact, SCRPA(6), and
SCRPA(4) results for the excitation energyDE−1=EL

0−EL−1
0 in the

deformed region.
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ond eigenvalue gives the excitation of the intrinsic system.
Before coming to this point we should mention again that the
RPA eigenvalues in the deformed region are calculated with
the “intrinsic” HamiltonianH8=H−mP. Therefore, when the
symmetry is restored due to the appearance of the Goldstone
mode, the RPA eigenvalues give the excitation energies of
the system. The results for the modeV2 are not shown in a
figure because we obtain the same interpretation as already
given in Ref.[4], however, with still improved results from
SCRPA(6).

Concerning the low-lying eigenvalue of SCRPA which in
the standard RPA corresponds to the zero-energy eigenvalue
(Goldstone or spurious mode) in the deformed region, we
present in Fig. 2 a comparison between the standard RPA,
SCRPA(4), and SCRPA(6) with exact results. In the “spheri-
cal” phase we notice that the eigenvalueV1 is identified with
the exact “intraband” excitationDE−1. Furthermore, we see
the important improvement of the SCRPA results in both
cases SCRPA(4) and SCRPA(6) with respect to the standard
RPA result. After the phase transitionDE−1 remains finite but
very small, slowly decreasing for increasingx, while the
lowest eigenvalue in the standard RPA corresponds to the
spurious modeV1=0. Concerning the low-lying eigenvalue
in SCRPA calculation we see that SCRPA(6) improves the
result with respect to SCRPA(4) but it is still quite far from
the exact result. We can notice that the Goldstone theorem is
not correctly fulfilled in this case. Therefore, the problem of
the identification of the low-lying eigenvalue is not yet
solved in SCRPA in spite of the introduction of the quadratic
boson terms in Eq.(2).

From the presence of the quadratic boson terms in the
RPA excitation operator the SCRPA method produces a
supplementary eigenvalue which is denoted asV3. Let us
now discuss the results for this mode, i.e., the third eigen-
value RPA of the SCRPA(6) which is presented in Fig. 3. In
the spherical region we notice that this mode is identified
with very good accuracy to the exact intraband excitation
DE+2. However, in the deformed region(not shown), the
result obtained for this mode cannot be identified with one of
the exact excitations of the system. At present we do not

have an explanation of this fact. It is likely to be related to
the failure of the Goldstone theorem mentioned above. See
also further discussion of this point at the end of this paper.
The difficulty may be of the same origin as with theV1
mode.

A quantity which is particularly sensitive to the correct
treatment of correlations in the ground state is the mean bo-
son number(not shown in Ref.[4]). This expectation value
can be obtained in terms of the RPA amplitudes according to

Nb = kb†bl = kB†Bl + s2, s10d

wherekB†Bl is given, in SCRPAs6d, by kB†Bl=m1
2+m2

2+m3
2.

In Fig. 4 we show the results of the SCRPAs6d, SCRPAs4d,
standard RPA, and mean-field methods for this quantity.
Again with SCRPAs6d one notices a significant improvement
over the standard RPA and HF method for which the agree-
ment with the exact result is not satisfying. Also, we note in
Fig. 4 that the SCRPAs6d improves slightly the result over

FIG. 2. The standard RPA, SCRPA(4), and SCRPA(6) results for
the spurious modeV1 compared with the exact energy of the exci-
tation DE−1.

FIG. 3. The SCRPA(6) results of the energy of the excitation
modeV3 compared with the exact energy of the excitationDE+2 in
the spherical region.

FIG. 4. The differencefNb−Nb
exactg calculated with SCRPA(6),

SCRPA(4), RPA, and mean-field methods as a function of the inter-
action strengthx.
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the SCRPAs4d specially in the deformed region. Further-
more, we note that in standard RPA method, because we
have a Goldstone mode in the deformed region, we cannot
calculate this quantity.

Another quantity which is very interesting to investigate
in the SCRPA method is the variance of the symmetry op-
eratorP given by

DP2 = kP2l − kPl2. s11d

In Fig. 5 we present the results corresponding to this quantity
calculated with SCRPA and HF methods. This is a new re-
sult which was not elaborated in Ref.f4g. We see that the
variance is strongly reduced compared to HF values. We,
however, see thatDP even in the SCRPA acquires sizable
nonvanishing values. This simply means that the symmetry
P, broken at the level of the mean-field theory, is not com-
pletely restored. Furthermore, we do not present the standard
RPA results concerning this quantity in Fig. 5 because the
RPA amplitudes originating from the Goldstone mode are
divergent. This constitutes the same kind of situation as that
for the boson number in the ground-state calculation for
which we also have not given the standard RPA results in the
deformed region.

In conclusion we reconsidered the work of Bertrandet al.
[4] who treated the schematic Schütte-Da-Providencia model
for interacting bosons and fermions within the SCRPA
scheme. In Ref.[4] the RPA operator consisted only of one
boson and fermions pair. Here we extended this configura-
tion space and included in addition bosons pairs. One of the
motivations to do this was to see whether the Goldstone
theorem which was quite strongly violated in Ref.[4] is im-
proved. It was found that the low-lying mode in the de-
formed zone, i.e., symmetry broken region, indeed is low-
ered by,30% when boson pair terms are added to the RPA
operator. However, with respect to the first physical state, the
position of the spurious mode is still too high and one there-
fore cannot say that it decouples to a good approximation
from the physical spectrum. However, in spite of this some-
what disappointing result, the introduction of the extra terms
allowed to reproduce very well a further excited state of the
spectrum in the symmetry conserved phase and additionally
the quantities which had already been calculated in Ref.[4]
without the boson pair operators are still improved. We also
calculated further quantities as the number of bosons in the
ground state and the fluctuation of the symmetry operator.
For instance the latter becomes strongly reduced with respect
to its mean-field value. However, also for this quantity a
substantial nonvanishing value remains. All in all we can say
that the inclusion of the extra two boson pieces to the RPA
operator allowed to calculate one more state in the spherical
region, improve existing results from calculations without
these terms, and lower the spurious state. However, with re-
spect to the latter feature no real breakthrough could be ob-
served and further ideas are needed to substantially improve
the situation in the symmetry broken region whereas the
“spherical” region seems to be well under control. In this
respect this may be similar with other approaches treating
correlations beyond mean-field-like coupled cluster theory,
Jastrow, correlated basis function, etc.
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FIG. 5. Variance as a function of the interaction strengthx.

BRIEF REPORTS PHYSICAL REVIEW C69, 017306(2004)

017306-4


