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Pion parameters in nuclear medium from chiral perturbation theory and virial expansion
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We consider two methods to find the effective parameters of the pion traversing a nuclear medium. One is
the first order chiral perturbation theoretic evaluation of the pion pole contribution to the two-point function of
the axial-vector current. The other is the exact, first order virial expansion of the pion self-energy. We find that,
although the results of chiral perturbation theory are not valid at normal nuclear density, those from the virial
expansion may be reliable at such density. The latter predicts both the mass shift and the in-medium decay
width of the pion to be small, of about a few MeV.
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[. INTRODUCTION the in-medium Feynman rules for the original chiral La-
grangian in presence of external fields. Besides complete-
A considerable amount of work at finite temperature andness, its purpose is to show that this conventional framework
chemical potential has been devoted to determining the efs quite simple, without requiring functional integration over
fective parameters of strongly interacting particles in differ-the nucleon field to produce a “new” effective Lagrangian
ent media[1-6]. The results obtained are useful not only in [10]. We then derive the exact, first order virial expansion for
analyzing the heavy ion collision experiments and propertieshe pion self-energy and evaluate it with experimental data.
of the early universe at different epochs, but also in extract- Section Il reviews brieflyPT, constructing the Lagrang-
ing indications of an eventual phase transition. ian for the wN system[16,17. In Sec. Il we work out the
The case of pion appears to be the simplest to study. Beshift in the mass and the decay constant of the pion using this
ing the Goldstone boson of the spontaneously broken chirdlagrangian. Next we derive the virial formula and evaluate
symmetry of QCD, its interactions with itself and other par-the pole shift in Sec. IV. In Sec. V we discuss the limitations
ticles are highly restricted by this symmetry, leading to theof these methods.
effective theory of QCD, called chiral perturbation theory
(xPT) [7,8]. At finite temperature, one has the further advan-
tage of having again only pions dominating the heat bath.
Thus xPT provides a reliable method to calculate the pion  The Lagrangian of QCD with two massless quark flavors
parameters at finite temperatyre-3. is
It is natural to applyyPT to calculate the pion parameters
in nuclear mediun{9,10. Although the method parallels that (u)
4/

II. CHIRAL PERTURBATION THEORY

followed for the case in a heat bath, the results calculated ES’)CD iqy“d,q+ - q= (2.1
here to leading order may have restricted validity, due to the

presence of baryonic resonances close tosthkethreshold.
Similar d|ff|cult|gs_ also appear in determining the nucleonsp"t the quark field into its right and left handed parts,
parameters at finite temperat . 1 _ (0) S .

In this work we compare thgPT result with that of the drL=32(1+75), it is clear thatlycp, is invariant under the
(first ordep virial expansion of the pion self-energy Symmetry groupG=SU(2)gX SU(Z)L of independent, glo-
[4,11,13. The latter gives the shifted pole position in termsbal SU2) transformations omg andqy,
of an integral over the product of the density distribution
function times therN scattering amplitude obtainable from OrR— OrOrR  OL—00L, OrL € SU2)RL. (2.2
experiment. It is thus free from the difficulty encountered in
calculating the amplitude and is valid as long as the nucleof’henomenology suggests strongly that the symmetry of the
“gas” is dilute enough. Lagrangian is broken spontaneously by the vacuum state to

The virial formula has also been employed earlier to thethe diagonal subgroud=SU(2)y, giving rise to the pionic
same problem, but only in an approximated verdibB-15.  degrees of freedom.

But if the amplitude varies appreciably in the range of inte- In xPT one derives the transformation rules for the ob-
gration, in particular, if it changes sign — as is the case herserved Goldstone and nonGoldstone fields from the above
— this version is not justified. symmetry of the underlying QCD theory. It turns out that the

We first rederive the results ofPT by evaluating the Goldstone fieldsr'(x),i=1, 2, 3 are collected in the form of

axial-vector current correlation function to one loop, usinga unitary matrix

where the dots denote terms involving other fields. If we
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3 D y=a.p+T i,
U= m0=S 27, (23 A
i=1

r,=%u'To,-iw,+a)Ju+ud,—i(w,-a,)]u'}.
where the constarf,, can be identified with the pion decay p= 20, i+ )it uld, =i, ~a,) iy
constant~,=92.4 MeV and? are the Pauli matrices. Then (2.19

the matrixu transforms unde according to The building elements for the effective Lagrangian at this
stage are thus), DU, ¢, andD .

A simplification in the construction of the effective La-
where the group elemeiif ) e SU(2)y. Notice thath is X grangian emerges by noting that the varialgled ,U) trans-
dependent due to its dependence @iix). However the form under the full groups, while (¢,D,4) transform only
square of this matrix’>=U has the global transformation ynder the unbroken subgroth We may take advantage of
rule the mixed transformation property ofto redefine the former

type of variables so as to transform undeionly. Thus one
U — grUg!. (2.5 izﬁoduces the variablgL6], g
On the other hand, the non-Goldstone, nucleon doublet field
#(x) transforms as

u— gruh’=hug/, (2.4

—it t— ot
u,=iu'D,Uu'=u,, (2.12

replacingU andD,U [18]. Any term in the Lagrangian that
b hy, g= (p) (2.6) Is constructed out of these variables so as to be invariant
n underH will also be automatically invariant und&.
We now write the effective Lagrangian §PT for thenrN

There are two Noether currents following from the sym-
system as

metry of/jg)g:D, namely, the vector and axial vector currents,
Lett= L+ Ly,

w9 =) yﬂzq(x)’ w00 =) 7“752q(x)' where £ is the well-known pion Lagrangiaf8], which to

(2.7 leading order is given by

2

The evaluation of the correlation functions of the currents is L= Z”{(DMUD"UU + mi(U +UM, (2.13

most conveniently carried out in the external field method
[8]. Although we are interested here in such a function of the ] ] ] ]
axial-vector current only, we couple both the currents to thd""*) denoting trace over the 22 isospin matrices. The
external fieldw),(x) andal,(x) to reveal the full symmetry of ~Pl€ces inCy to first and second order,

the underlying theory. Thus the original Lagrangian extends

to Ly=LP+ L2, (2.14
Lo+ vl (OVEX) +a, ()AH(X) are
= 1Gry"{0, ~ 1(v, + 8,)}0e L0 = pip-mgu+ Siep, (219
+iguy{d, —ilv,—a)lg + -, (2.9

. and
wherev,,(x) anda,(x) are the matrix valued external vector

and axial vector fields, — c —
£? = c;m?(U + UMy - —4;2 (U, (YDHD"+ H.c)
N

3 R 3 R
B R
v,0=2v,X0>, aM=2ax-. (29 c -
= = + XU = T, U]y (2.1
The extended Lagrangian is now invariant locally, i.e., under . ) .
x-dependent symmetry transformations gpandg, if the ~ We shall use vertices iffy’ to second order and those in
external vector and axial-vector fields are also subjected tail(N2> to first order in our perturbative calculations. Hegg

the appropriate gauge transformations. turns out to be the axial-vector coupling constant appearing
The presence of the external fields in the underlyingin the neutron beta decag,=1.27. Thecoupling constants
theory and the associated gauge invariance can be readigy, c,, andc, are determined from the experimental data
incorporated in the effective theory. All we have to do is tOfor N Scattering in the low energy region and its extrapo-
replace the ordinary derivatives by the covariant derivativesation inside the Mandelstam triangle, where it is com-

[18]. Thus we have fotJ, pared with theyPT evaluation, getting19,17,
pU=9U-i,+a,)U+iU(w,-a,), (2.10 c;=-0.81+0.12 GeW, ¢,=3.2+0.25 GeV?,
and for i, C3=—4.66+0.36 GeV~. (2.17
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FIG. 1. Feynman diagrams for the two-point
function to one loop. Only loops with nucleons

@ "N D --- NN @ NN are considered.

® "S- AN @ noroons-------0
Expanding out in the pion field and setting,=0, we <O|-|-é'fd4xaiﬂ(x>Aiﬂ(x>|O> (3.3
bring out explicitly the vertices, contributing to the pion pole '
diagrams to one loof20], is represented iyPT by
‘Cw = E(ﬂ(?) - F‘rr(?,uﬂ . aM' <O|Téfd4xﬁim(77,¢/,a)|o>, (34)

9 — gam whereL;,; is obtained from Eqs2.17). Since the two-point
ﬁ(Nl) = E(r\?) - by ysd Tt _AIJI')’M'YSaIU, 2 function(3.2) is the coefficient of the term quadratic & (x)
2F 2 . . . . :
& in the expansion of the generating functiofal3), we find

) these quadratic terms from the functiorial4) of the effec-
2mec, — C

1 .
r@-_ =l _ _2<_(9 9 tive theory.
N F2 w Y me, \ F2 N Figure 1 shows the free pion pole diagraay giving the
2 gm-a )@aﬂﬁvmc ( SR ameude
-—d,m-a, —d, @ M ., ] . .
Pt AR ' 40,F2A@), A =ilcP-mE+ie, (3.5
_= » together with all one loop corrections to it, relevant in the
d,m-a . 2.18
F. i ") 44 (2.18 nuclear medium. Let us calculate the self-energy diagitam

to illustrate the method. Its contribution may be written in

where the superscript “0” indicates free Lagrangian densitiesme form

Ill. MASS AND COUPLING SHIFTS 8" o\, iF2AQ){= iTI(Q)}A(q), (3.6)

The two point correlation function of the axial vector cur- \hich modifies the free pion pole terf8.5) to

rent in a medium is given by the ensemble average,
2

. . , i’ I S
i f AT e PH-Al () AT (0)/Tr[e BH#N] T2 i) S

(3.2 To calculate the self-energy functidih(g) of the pion in

] o ] ] the nuclear medium, we first write it in vacuum,
HereH is the QCD Hamiltoniang is the inverse tempera-

ture, andN is the number operator for nucleons with chemi- © igi d*p
cal potential. Our aim is to find the corrections to the pion ~ 11"(Q) = 272 ) (2n 2t ys(b+ Mg ys(p -4 +my)]
pole in this correlation function due to interaction of pion g
with nucleons in medium at zero temperature. xAN(p)AN(p-q), (3.9

We shall work in the real time formulation of the field Ny
theory in mediun{21]. Here the perturbation expansion pro- WhereA™(p) is the vacuum nucleon pzropagator after extract-
ceeds as in the conventionalacuum field theory, except ing the factor(p+my), AN(p)=i/(p?~my+ie). Following our
that the propagators assume the form of 2 matrices. For discussion above, we now replace the vacuum nucleon
the pole term to one loop, it however suffices to work as inPropagator in Eq(3.8) by its 11-component in nuclear me-
the vacuum field theory, only replacing the vacuum propagadium (E,=jp?+my),
tors by the 11-component of the corresponding propagators

in medium. N i +
, . . A = —2 E
So we first calculate the vacuum correlation function, ulP) P> - Mg +ie i (Ep) Blpo)

+n7(Ep) (= po)}8(p* — Ny, (3.9

where ni(Ep) are the distribution functions for the nucleon
in xPT. We recall that the generating functional of QCD, and the antinucleon, respectively,

i f d*xda%(0|TA, () Al (0)[0), (3.2
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+ _ 1 _ g,ZA n
n (Ep)_m- (3.10 FfT—FW{1+(—cz+c3—8—nm>F—i}. (3.20
As the temperature goes to zero, we get/or 0, These results were obtained earlier in this form in Ré&@]
. ~ by integrating out the nucleon field in the generating func-
n"(Ep) — 6(u—Ep), n(Ep)— 0. (31D tional in presence of the external fied. We postpone dis-

The density dependent part of the self-energy in the mediurg->5"Y the validity of these results until Sec. V.
is then obtained as

m? J d*p 8(p? - md) 6w — Po) B(Po)
(

IV. VIRIAL EXPANSION

11" (q) = - 893 > "

2 We next turn to a different approach to the problem,
m

2m)° ~4(p-q°+q namely, the virial expansion for the self-energy of the par-
(3.12 ticle in question4,11,13. The resultingfirst ordeyp formula

_ ) ) ) _is valid, if the medium is sufficiently dilute. As we shall

Consider the pion to be at regf=0) in the medium, when it giscuss below, its range of validity is, in general, different

simplifies to from that calculated above usingT.
m & 8o - |6 ITet us derive th_e formula fo_r the case at hand. A simple
1™(qo, G=0) = 89A N g P Pe— 1P derivation follows, if we recognize that the self-energy func-
F2 (2m)%2E, - 4E,2J + 0 tion is anS-matrix elemen{12]. Consider first the process in
gAn vacuum. Just as the amplitudefor the two bodyzN scat-
tering,
4F2qu°’ (3.13 g

a(k, i)+ N(p,s) — @(k’,i") + N(p’, '),

wheren is the nucleon number density in symmetric nuclear,
is given by theS-matrix element,

matter,
dSp 2p§ i(277)454(p +k- p, - k’)Ti’i;s’s
n=4| — -p)) =— .14 IileA! of 8
f(27r)30(pF P)=5 19 =(K',i";p", s'[S= 1]k, i;p, 5)

pe being the Fermi momentunpe= \,u m2 Assuming = (Ofa(k’, i")b(p’, $')(S~ 1)bT(p, s)aT(k,|)|0>,
that the vacuum part has already been ‘taken care of to (4.7)
define the physical parameters, itiE™(q,) which is rel-
evant in Eq.(3.7).

It is now simple to calculate the remaining self-energy
and vertex diagrams. A special feature is presented, howeverr i(2m)*8*(k - k') 8, T1O(k) = (K, i’|S- 1]k, i)
by the constant vertex diagrar(fsg) arising from the vertex o o
proportional toc,: While all other contributions are propor- =(0fa(k’, i")(S=1)a'(k, )[0),
tional to g, q,, this one is not, being given by (4.2

we may express the self-enerbi® of the pion(in vacuum
by the one-body matrix element,

gi'iA(q)(qqu(SUOJr 0o %05,0) 2CoN. (3.15 whereS is the familiar scattering matrix operator,

It reflects the fact that our treatment breaks Lorentz invari-

ance t00(3). Thus while the matrix element Herei(i’) ands(s’) are indices denoting the pion isospin and
the nucleon spin projection in the initifinal) state respec-

S= @/d™Lin)

a|,_b — i <ab
(OlAlm(@) =15%1.(a), (3.16 tively. Following the usual practice, the amplitudeis re-
is defined in vacuum a$,=q,F, it must be expressed in garded as a 22 matrix in the nucleon isospin space. The
medium ag22,9| operatorsa(k, i) andb(p, s) annihilate respectively a pion of
momentumk and isospini and a nucleon of momentum
f,= 8,000F, + 8uGF;,  1=1,23. (3.17  and spins.

The corresponding self-energdi(k) in nuclear medium is
obtained simply by replacing the vacuum expectation value
in Eq. (4.2 by the ensemble average defined in Eg1),
which is denoted now by the angular bracket,

m@:mw{“(ml_%_wg_i)iz}, a1y -i@@SKk-K)5IK) = (ak',i")(S- Dalk,i).
8my/ F 4.3

The results of calculating all the diagrams of Fig. 1 with
vertices given by2.18 may now be expressed in terms of .
the effective parameters,

2\ It is here that we make use of the virial expansion in powers
|:1w: F. 1 +<C2+c3- —A>—2 , (3.19 of the distribution function. We expand the ensemble aver-
8my/ F7 age of any operato® as
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d3p 10 —
O:OOO+ At , O, +...’ ///
(0)=(00|0) EN‘, f 2my2E," PP slOlp, s) -
(4.4 s ,
where the sum is over the nucleon spin and isospin states. 2 //
Applying this expansion to the right-hand side of £4.3), g //
we get z =
g 0
—i(2m)*8* (k- k)T (k)
=3 f 9P oy, dalk, i)S- Da'(k, Dlp, 9
N J (2m)%2E, ' ’ o o 1 2 3
(4.5) ',
where H(”)(k) stands as before for the differendd(k) FIG. 2. Shift in pion mass in nuclear medium. The solid curve

~TIO(k). Note that there is no sum over the pion isospinresults from the exact, first order virial formula, while the dashed
. A . line follows from the approximate virial formula.

indexi. We now use Eq(4.1) to express the self-energy in

terms of the forward scattering amplitudep, k),

—

3 pion energyw,=\ K2+ mf, in the nucleon restiab) frame. The
(k) = _f d—3pn+(p)2 T(p,k), (4.6 two variables are related by the equatiom,E,=myey E,
(2m)°2E, N =\p2+m?. We thus have finally the complex pole position in

the pion propagator as
taking the summation inside the integral, as the distribution pion propag

function is the same for all the four nucleon states. w1 m 1™ (m,)

Equation(4.6) is the desired first order virial expansion M, — -y, =M;+

X 2 2m,

formula for the pion self-energy. Although such formulas
have been used to find the mass shifts in different cases, its . 1 (my 8 wkd e D" ()
application to pion in nuclear medium does not exist in the T 2\m ) ), W\ @y = My L0
literature. What has been utilized earlier is an approximation
to the above formuldl4] (4.1

— n where D*(w,) =A"+wB", is the isospin even forwargrN
(k) = - gz Ti(k). (4.7 scattering amplitude. The upper lirai, is determined by the
NN nucleon number density
But if the amplitude is not constant, even approximately, oTe
within the interval of integration in Eq(4.6), this formula — (37’2ﬁ>
.. w=m, 1+ .
cannot clearly be trusted. As we shall see below, this is in- 2m~°,(I
deed the situation for the case at hand.
To evaluate the self-energiat threshold using the ex- The imaginary part of the pole position represents the damp-
perimental dat23], we first carry out the indicated sum in a ing rate of pionic excitations in the medium.

(4.12

general kinematic situation. The matrix structure ofin The numerical evaluations are shown in Figs. 2 and 3,
nucleon isospin space may be written as where the pion mass shift and its imaginary part are plotted
N ., as a function of the nucleon number density in units of the
Ti’i;S’S:TS/Sﬁi'i+T5's§[7-i’l 7-Ijli (48)
15
where each of thd* has the invariant spin decomposition,
TS = U(p', $){A* + 3(k+ KBt u(p, 5). (4.9
10 -
Taking the amplitude for any one of the charged stat&$ ~
for the pion, we can readily carry out the sum over the &
nucleon states, g:_
5 [ 4
> Ti(p, k) = 8(myA" + p - kB"), (4.10
N
in terms of the isospin even amplitude only. 0 .
As given by Eq.(4.6), II™(m,) is an integral over the 0 1 2 3

. . - n/n,
three-momentum of the nucleon in the pion rest fratke

=0), while the experimental data is given as a function of the FIG. 3. Damping rate of pionic excitations in nuclear medium.
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normal densityn,=(110 Me\)3. Our result for the pion mass

PHYSICAL REVIEW C 69, 015204(2004

the region of nuclear density in which the results may be

shift in nuclear medium may be compared with that for thevalid, is expected to shrink considerably.

nucleon mass shift in pionic medium, calculated in Réf.

It will be observed that while both the shifts are given essen
tially by integrals over the sameN amplitude times the
corresponding distribution functions, the curves bend in op

The calculated results follow this expectation. In the ex-
pression(3.18 for the effective mass, there is, however, a
large cancellation among the contributions of the different
vertices, making the mass shift to be only a few MeVhat

posite directions. The reason is that as the pion energy ir=No, the normal nuclear density. But in the expresgi®120)

creases, there is a change in sign in the real part of th
amplitude, which is weighted differently by the distribution
functions in the two cases.

tor > the contributions of the vertices add up, making the
“correction” at this density overwhelm the unit term. Clearly,
the first orderyPT results for the pion traversing nuclear

For comparison we also show in Fig. 2 the mass shiftnatter at normal density are unacceptable.

following from the approximate virial formulé4.7), which
at threshold is simply given by

m™(m_) = -AD*(m.). (4.13

Our exact, first order formulg4.6) for the pion self-
energy function may find another application to the long-
standing problem of “missing repulsion” in the potential
[24], needed to reproduce the accurate data on the ener
levels of negatively charged pions bound to heavy nucle
[25]. As may be seen from Fig. 2, the difference at threshol
™ (m,)-I1M(m,), has indeed a large negative value at nor-
mal nuclear densityand beyond It is thus of interest to see
if this is so also at higher energies, when one may hope t

find the required repulsion, at least in part, in the potentiaﬁ

given by the exact formuléd.6), which appears missing in
its approximate versio.7) used in the literature so far.

Finally a comparison with the mass shift obtained from
xPT in the preceding section is in order. Instead of using th
values of the constants , zas given by Eqs(2.17) to evalu-
ate this shift from Eq(¢3.18, we may calculate the amplitude
sum =y Ti(m,) in xPT, when the latter will be seen to con-
tain exactly the combination of constants,, 3 andg, as in
Eq. (3.18. Eliminating this combination in terms of the am-
plitude sum, we get the same formula as given by(E() at
threshold.

V. DISCUSSION

Having derived the effective parameters of the pion in

d

On the other hand, in the virial expansion formula we
may avoid any inaccuracy in calculating the scattering am-
plitude by taking it from experiment. We point out that we
use the exact formula, rather than its approximate version
used so long by different authors. However, the nuclear me-
dium must be dilute enough for an expansion of the self-
energy function in powers of nuclear density to be valid. At

rmal nuclear densityi,=(110 MeV)? , the mean distance
etween the nucleons is about 2 fm. Thus our first order
irial formula, where the pion propagation is perturbed by a
single interaction with one of the nucleons in the medium,
should be a reasonable approximation up to about this den-
sity. Of course, we are treating the medium as a Fermi gas of
oninteracting nucleons. The many-body effects in real
uclear matter and the absorption channels may give rise to
important contributions to the self-energy at higher order.

At normal nuclear density, the prediction of our first order
virial formula for the mass-shift and the decay width of the

%ion is that both are small, being only a few Mé&Vhe virial

expansion does not say anything about the residelesind
F°.) We also point out a possible important application of
this formula to the calculation of the energy levels of pionic
atoms.

We conclude with a comment on determining the mass
shift in the more interesting case of the nucleon in nuclear
medium. Here the simple chiral Lagrangian for thbl sys-
tem[26] is not expected to apply, as it does not take properly
into account the presence of bound or virtual two nucleon
states close to thBIN threshold. In fact, it produces an ab-
surdly large value for the nucleon mass sk#¥]. But the

nuclear medium by two different methods, we first discussvirial expansion formula for the nucleon self-energy should

the validity of the results. ConsideringPT, the region in

apply here, at least in the neighborhood of the nuclear satu-

which the leading correction term may represent a meaningration density{28].

ful approximation to a quantity depends on the proximity of

the resonances in the relevant channel. In the present case, a

number of resonances, particularly thé1232), lie close to
the threshold, making the values of the coupling constant
Cy, Cp, andcs in the effective Lagrangian rather large. Then
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