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We consider two methods to find the effective parameters of the pion traversing a nuclear medium. One is
the first order chiral perturbation theoretic evaluation of the pion pole contribution to the two-point function of
the axial-vector current. The other is the exact, first order virial expansion of the pion self-energy. We find that,
although the results of chiral perturbation theory are not valid at normal nuclear density, those from the virial
expansion may be reliable at such density. The latter predicts both the mass shift and the in-medium decay
width of the pion to be small, of about a few MeV.
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I. INTRODUCTION

A considerable amount of work at finite temperature and
chemical potential has been devoted to determining the ef-
fective parameters of strongly interacting particles in differ-
ent media[1–6]. The results obtained are useful not only in
analyzing the heavy ion collision experiments and properties
of the early universe at different epochs, but also in extract-
ing indications of an eventual phase transition.

The case of pion appears to be the simplest to study. Be-
ing the Goldstone boson of the spontaneously broken chiral
symmetry of QCD, its interactions with itself and other par-
ticles are highly restricted by this symmetry, leading to the
effective theory of QCD, called chiral perturbation theory
sxPTd [7,8]. At finite temperature, one has the further advan-
tage of having again only pions dominating the heat bath.
Thus xPT provides a reliable method to calculate the pion
parameters at finite temperature[1–3].

It is natural to applyxPT to calculate the pion parameters
in nuclear medium[9,10]. Although the method parallels that
followed for the case in a heat bath, the results calculated
here to leading order may have restricted validity, due to the
presence of baryonic resonances close to thepN threshold.
Similar difficulties also appear in determining the nucleon
parameters at finite temperature[4].

In this work we compare thexPT result with that of the
(first order) virial expansion of the pion self-energy
[4,11,12]. The latter gives the shifted pole position in terms
of an integral over the product of the density distribution
function times thepN scattering amplitude obtainable from
experiment. It is thus free from the difficulty encountered in
calculating the amplitude and is valid as long as the nucleon
“gas” is dilute enough.

The virial formula has also been employed earlier to the
same problem, but only in an approximated version[13–15].
But if the amplitude varies appreciably in the range of inte-
gration, in particular, if it changes sign — as is the case here
— this version is not justified.

We first rederive the results ofxPT by evaluating the
axial-vector current correlation function to one loop, using

the in-medium Feynman rules for the original chiral La-
grangian in presence of external fields. Besides complete-
ness, its purpose is to show that this conventional framework
is quite simple, without requiring functional integration over
the nucleon field to produce a “new” effective Lagrangian
[10]. We then derive the exact, first order virial expansion for
the pion self-energy and evaluate it with experimental data.

Section II reviews brieflyxPT, constructing the Lagrang-
ian for thepN system[16,17]. In Sec. III we work out the
shift in the mass and the decay constant of the pion using this
Lagrangian. Next we derive the virial formula and evaluate
the pole shift in Sec. IV. In Sec. V we discuss the limitations
of these methods.

II. CHIRAL PERTURBATION THEORY

The Lagrangian of QCD with two massless quark flavors
is

LQCD
s0d = iqgm]mq + ¯ , q = Su

d
D , s2.1d

where the dots denote terms involving other fields. If we
split the quark field into its right and left handed parts,
qR,L= 1

2s1±g5dq, it is clear thatLQCD
s0d is invariant under the

symmetry groupG=SUs2dR3SUs2dL of independent, glo-
bal SUs2d transformations onqR and qL,

qR → gRqR, qL → gLqL, gR,L P SUs2dR,L. s2.2d

Phenomenology suggests strongly that the symmetry of the
Lagrangian is broken spontaneously by the vacuum state to
the diagonal subgroupH=SUs2dV, giving rise to the pionic
degrees of freedom.

In xPT one derives the transformation rules for the ob-
served Goldstone and nonGoldstone fields from the above
symmetry of the underlying QCD theory. It turns out that the
Goldstone fieldspisxd, i =1, 2, 3 are collected in the form of
a unitary matrix
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usxd = eipsxd/2Fp, psxd = o
i=1

3

pisxdti , s2.3d

where the constantFp can be identified with the pion decay
constantFp=92.4 MeV andti are the Pauli matrices. Then
the matrixu transforms underG according to

u → gRuh† = hugL
†, s2.4d

where the group elementhspdPSUs2dV. Notice thath is x
dependent due to its dependence onpisxd. However the
square of this matrixu2=U has the global transformation
rule

U → gRUgL
†. s2.5d

On the other hand, the non-Goldstone, nucleon doublet field
csxd transforms as

c → hc, c = Sp

n
D . s2.6d

There are two Noether currents following from the sym-
metry ofLQCD

s0d , namely, the vector and axial vector currents,

Vm
i sxd = qsxdgm

ti

2
qsxd, Am

i sxd = qsxdgmg5
ti

2
qsxd.

s2.7d

The evaluation of the correlation functions of the currents is
most conveniently carried out in the external field method
f8g. Although we are interested here in such a function of the
axial-vector current only, we couple both the currents to the
external fieldsvm

i sxd andam
i sxd to reveal the full symmetry of

the underlying theory. Thus the original Lagrangian extends
to

LQCD
s0d + vm

i sxdVi
msxd + am

i sxdAi
msxd

= iqRgmh]m − isvm + amdjqR

+ iqLgmh]m − isvm − amdjqL + ¯ , s2.8d

wherevmsxd andamsxd are the matrix valued external vector
and axial vector fields,

vmsxd = o
i=1

3

vm
i sxd

ti

2
, amsxd = o

i=1

3

am
i sxd

ti

2
. s2.9d

The extended Lagrangian is now invariant locally, i.e., under
x-dependent symmetry transformations onqR and qL, if the
external vector and axial-vector fields are also subjected to
the appropriate gauge transformations.

The presence of the external fields in the underlying
theory and the associated gauge invariance can be readily
incorporated in the effective theory. All we have to do is to
replace the ordinary derivatives by the covariant derivatives
[18]. Thus we have forU,

DmU = ]mU − isvm + amdU + iUsvm − amd, s2.10d

and forc,

Dmc = ]mc + Gmc,

Gm = 1
2hu†f]m − isvm + amdgu + uf]m − isvm − amdgu†j.

s2.11d

The building elements for the effective Lagrangian at this
stage are thusU, DmU, c, andDmc.

A simplification in the construction of the effective La-
grangian emerges by noting that the variables(U,DmU) trans-
form under the full groupG, while (c,Dmc) transform only
under the unbroken subgroupH. We may take advantage of
the mixed transformation property ofu to redefine the former
type of variables so as to transform underH only. Thus one
introduces the variable[16],

um = iu†DmUu† = um
† , s2.12d

replacingU andDmU f18g. Any term in the Lagrangian that
is constructed out of these variables so as to be invariant
underH will also be automatically invariant underG.

We now write the effective Lagrangian ofxPT for thepN
system as

Lef f = Lp + LN,

whereLp is the well-known pion Lagrangianf8g, which to
leading order is given by

Lp =
Fp

2

4
hkDmUDmU†l + mp

2kU + U†lj, s2.13d

k¯l denoting trace over the 232 isospin matrices. The
pieces inLN to first and second order,

LN = LN
s1d + LN

s2d, s2.14d

are

LN
s1d = csiD” − mNdc +

gA

2
cu”g5c, s2.15d

and

LN
s2d = c1mp

2kU + U†lcc −
c2

4mN
2 kumunlscDmDnc + H.c.d

+
c3

2
kumumlcc −

c4

4
cgmgnfum, ungc. s2.16d

We shall use vertices inLN
s1d to second order and those in

LN
s2d to first order in our perturbative calculations. HeregA

turns out to be the axial-vector coupling constant appearing
in the neutron beta decay,gA=1.27. Thecoupling constants
c1, c2, and c3 are determined from the experimental data
for pN scattering in the low energy region and its extrapo-
lation inside the Mandelstam triangle, where it is com-
pared with thexPT evaluation, gettingf19,17g,

c1 = − 0.81 ± 0.12 GeV−1, c2 = 3.2 ± 0.25 GeV−1,

c3 = − 4.66 ± 0.36 GeV−1. s2.17d
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Expanding out in the pion field and settingvm=0, we
bring out explicitly the vertices, contributing to the pion pole
diagrams to one loop[20],

Lp = Lp
s0d − Fp]mp ·am,

LN
s1d = LN

s0d −
gA

2Fp

cgmg5]mp · tc +
gA

2
cgmg5am · tc,

LN
s2d = −

2mp
2c1

Fp
2 p · pcc −

c2

mN
2 S 1

Fp
2 ]mp · ]np

−
2

Fp

]mp ·anDc]m]nc + c3S 1

Fp
2 ]mp · ]mp

−
2

Fp

]mp ·amDcc. s2.18d

where the superscript “0” indicates free Lagrangian densities.

III. MASS AND COUPLING SHIFTS

The two point correlation function of the axial vector cur-
rent in a medium is given by the ensemble average,

i E d4xeiq·xTrfe−bsH−mNdAl
i sxdAs

i8s0dg/Trfe−bsH−mNdg.

s3.1d

Here H is the QCD Hamiltonian,b is the inverse tempera-
ture, andN is the number operator for nucleons with chemi-
cal potentialm. Our aim is to find the corrections to the pion
pole in this correlation function due to interaction of pion
with nucleons in medium at zero temperature.

We shall work in the real time formulation of the field
theory in medium[21]. Here the perturbation expansion pro-
ceeds as in the conventional(vacuum) field theory, except
that the propagators assume the form of 232 matrices. For
the pole term to one loop, it however suffices to work as in
the vacuum field theory, only replacing the vacuum propaga-
tors by the 11-component of the corresponding propagators
in medium.

So we first calculate the vacuum correlation function,

i E d4xeiq·xk0uTAl
i sxdAs

i8s0du0l, s3.2d

in xPT. We recall that the generating functional of QCD,

k0uTeied4xam
i sxdAi

msxdu0l, s3.3d

is represented inxPT by

k0uTeied4xLintsp,c,adu0l, s3.4d

whereLint is obtained from Eqs.s2.17d. Since the two-point
functions3.2d is the coefficient of the term quadratic inamsxd
in the expansion of the generating functionals3.3d, we find
these quadratic terms from the functionals3.4d of the effec-
tive theory.

Figure 1 shows the free pion pole diagram(a) giving the
amplitude,

dii8qlqsiFp
2Dsqd, Dsqd = i/sq2 − mp

2 + ied, s3.5d

together with all one loop corrections to it, relevant in the
nuclear medium. Let us calculate the self-energy diagramsbd
to illustrate the method. Its contribution may be written in
the form

dii8qlqsiFp
2Dsqdh− iPsqdjDsqd, s3.6d

which modifies the free pion pole terms3.5d to

dii8qlqs

− Fp
2

q2 − mp
2 − Psqd

. s3.7d

To calculate the self-energy functionPsqd of the pion in
the nuclear medium, we first write it in vacuum,

Ps0dsqd =
igA

2

2Fp
2 E d4p

s2pd4trfq”g5sp” + mNdq”g5sp” − q” + mNdg

3DNspdDNsp − qd, s3.8d

whereDNspd is the vacuum nucleon propagator after extract-
ing the factorsp” +mNd, DNspd= i/sp2−mN

2 + ied. Following our
discussion above, we now replace the vacuum nucleon
propagator in Eq.s3.8d by its 11-component in nuclear me-
dium sEp=ÎpW2+mN

2d,

D11
N spd =

i

p2 − mN
2 + ie

− 2phn+sEpdusp0d

+ n−sEpdus− p0djdsp2 − mN
2d, s3.9d

wheren±sEpd are the distribution functions for the nucleon
and the antinucleon, respectively,

FIG. 1. Feynman diagrams for the two-point
function to one loop. Only loops with nucleons
are considered.

PION PARAMETERS IN NUCLEAR MEDIUM FROM… PHYSICAL REVIEW C 69, 015204(2004)

015204-3



n±sEpd =
1

ebsEp7md + 1
. s3.10d

As the temperature goes to zero, we get form.0,

n+sEpd → usm − Epd, n−sEpd → 0. s3.11d

The density dependent part of the self-energy in the medium
is then obtained as

Psndsqd = − 8gA
2 mN

2

Fp
2 q4E d4p

s2pd3

dsp2 − mN
2dusm − p0dusp0d

− 4sp ·qd2 + q4 .

s3.12d

Consider the pion to be at restsqW =0d in the medium, when it
simplifies to

Psndsq0, qW = 0d = − 8gA
2 mN

2

Fp
2 q0

2E d3p

s2pd32Ep

uspF − upW ud
− 4Ep

2 + q0
2

=
gA

2n

4Fp
2mN

q0
2, s3.13d

wheren is the nucleon number density in symmetric nuclear
matter,

n = 4E d3p

s2pd3uspF − upW ud =
2pF

3

3p2 , s3.14d

pF being the Fermi momentum,pF=Îm2−mN
2. Assuming

that the vacuum part has already been taken care of to
define the physical parameters, it isPsndsq0d which is rel-
evant in Eq.s3.7d.

It is now simple to calculate the remaining self-energy
and vertex diagrams. A special feature is presented, however,
by the constant vertex diagrams(f,g) arising from the vertex
proportional toc2: While all other contributions are propor-
tional to qlqs, this one is not, being given by

dii8iDsqdsqlq0ds0 + qsq0dl0d2c2n. s3.15d

It reflects the fact that our treatment breaks Lorentz invari-
ance toOs3d. Thus while the matrix element

k0uAm
a upbsqdl = idabfmsqd, s3.16d

is defined in vacuum asfm=qmFp, it must be expressed in
medium asf22,9g

fm = dm0q0Fp
t + dmiqiFp

s , i = 1,2,3. s3.17d

The results of calculating all the diagrams of Fig. 1 with
vertices given by(2.18) may now be expressed in terms of
the effective parameters,

mp
snd = mpH1 +S2c1 − c2 − c3 +

gA
2

8mN
D n

Fp
2J , s3.18d

Fp
t = FpH1 +Sc2 + c3 −

gA
2

8mN
D n

Fp
2J , s3.19d

Fp
s = FpH1 +S− c2 + c3 −

gA
2

8mN
D n

Fp
2J . s3.20d

These results were obtained earlier in this form in Ref.f10g
by integrating out the nucleon field in the generating func-
tional in presence of the external fieldam. We postpone dis-
cussing the validity of these results until Sec. V.

IV. VIRIAL EXPANSION

We next turn to a different approach to the problem,
namely, the virial expansion for the self-energy of the par-
ticle in question[4,11,12]. The resulting(first order) formula
is valid, if the medium is sufficiently dilute. As we shall
discuss below, its range of validity is, in general, different
from that calculated above usingxPT.

Let us derive the formula for the case at hand. A simple
derivation follows, if we recognize that the self-energy func-
tion is anS-matrix element[12]. Consider first the process in
vacuum. Just as the amplitudeT for the two bodypN scat-
tering,

psk, id + Nsp, sd → psk8, i8d + Nsp8, s8d,

is given by theS-matrix element,

is2pd4d4sp + k − p8 − k8dTi8i;s8s

= kk8, i8;p8, s8uS− 1uk, i ;p, sl

= k0uask8, i8dbsp8, s8dsS− 1db†sp, sda†sk, idu0l,

s4.1d

we may express the self-energyPs0d of the pionsin vacuumd
by the one-body matrix element,

− is2pd4d4sk − k8ddi8iP
s0dskd = kk8, i8uS− 1uk, il

= k0uask8, i8dsS− 1da†sk, idu0l,

s4.2d

whereS is the familiar scattering matrix operator,

S= eied4xLintsxd.

Hereisi8d andsss8d are indices denoting the pion isospin and
the nucleon spin projection in the initialsfinald state respec-
tively. Following the usual practice, the amplitudeT is re-
garded as a 232 matrix in the nucleon isospin space. The
operatorsask, id andbsp, sd annihilate respectively a pion of
momentumk and isospini and a nucleon of momentump
and spins.

The corresponding self-energyPskd in nuclear medium is
obtained simply by replacing the vacuum expectation value
in Eq. (4.2) by the ensemble average defined in Eq.(3.1),
which is denoted now by the angular bracket,

− is2pd4d4sk − k8ddi8iPskd = kask8, i8dsS− 1da†sk, idl.

s4.3d

It is here that we make use of the virial expansion in powers
of the distribution function. We expand the ensemble aver-
age of any operatorO as

S. MALLIK AND SOURAV SARKAR PHYSICAL REVIEW C 69, 015204(2004)

015204-4



kOl = k0uOu0l + o
N
E d3p

s2pd32Ep
n+spdkp, suOup, sl + ¯ ,

s4.4d

where the sum is over the nucleon spin and isospin states.
Applying this expansion to the right-hand side of Eq.s4.3d,
we get

− is2pd4d4sk − k8dPsndskd

= o
N
E d3p

s2pd32Ep
n+spdkp, suask8, idsS− 1da†sk, idup, sl,

s4.5d

where Psndskd stands as before for the differencePskd
−Ps0dskd. Note that there is no sum over the pion isospin
index i. We now use Eq.s4.1d to express the self-energy in
terms of the forward scattering amplitudeTfsp, kd,

Psndskd = −E d3p

s2pd32Ep
n+spdo

N

Tfsp, kd, s4.6d

taking the summation inside the integral, as the distribution
function is the same for all the four nucleon states.

Equation(4.6) is the desired first order virial expansion
formula for the pion self-energy. Although such formulas
have been used to find the mass shifts in different cases, its
application to pion in nuclear medium does not exist in the
literature. What has been utilized earlier is an approximation
to the above formula[14]

Psndskd = −
n

8mN
o
N

Tfskd. s4.7d

But if the amplitude is not constant, even approximately,
within the interval of integration in Eq.s4.6d, this formula
cannot clearly be trusted. As we shall see below, this is in-
deed the situation for the case at hand.

To evaluate the self-energy(at threshold) using the ex-
perimental data[23], we first carry out the indicated sum in a
general kinematic situation. The matrix structure ofT in
nucleon isospin space may be written as

Ti8i;s8s = Ts8s
+ di8i + Ts8s

− 1
2fti8, tig, s4.8d

where each of theT± has the invariant spin decomposition,

Ts8s
± = usp8, s8dhA± + 1

2sk” + k”dB±jusp, sd. s4.9d

Taking the amplitude for any one of the charged statesp±,0

for the pion, we can readily carry out the sum over the
nucleon states,

o
N

Tfsp, kd = 8smNA+ + p ·kB+d, s4.10d

in terms of the isospin even amplitude only.
As given by Eq.(4.6), Psndsmpd is an integral over the

three-momentum of the nucleon in the pion rest frameskW
=0d, while the experimental data is given as a function of the

pion energyvk=ÎkW2+mp
2 in the nucleon rest(lab) frame. The

two variables are related by the equation,mpEp=mNvk, Ep

=ÎpW2+mN
2. We thus have finally the complex pole position in

the pion propagator as

mp
snd −

i

2
gp

snd = mp +
Psndsmpd

2mp

= mp −
1

p2SmN

mp
D3E

1

vk

dvk
Îvk

2 − mp
2 D+svkd,

s4.11d

where D+svkd=A++vkB
+, is the isospin even forwardpN

scattering amplitude. The upper limitvk is determined by the
nucleon number density

vk = mpÎ1 +S3p2n

2mN
3 D2/3

. s4.12d

The imaginary part of the pole position represents the damp-
ing rate of pionic excitations in the medium.

The numerical evaluations are shown in Figs. 2 and 3,
where the pion mass shift and its imaginary part are plotted
as a function of the nucleon number density in units of the

FIG. 2. Shift in pion mass in nuclear medium. The solid curve
results from the exact, first order virial formula, while the dashed
line follows from the approximate virial formula.

FIG. 3. Damping rate of pionic excitations in nuclear medium.
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normal densityn0=(110 MeV)3. Our result for the pion mass
shift in nuclear medium may be compared with that for the
nucleon mass shift in pionic medium, calculated in Ref.[4].
It will be observed that while both the shifts are given essen-
tially by integrals over the samepN amplitude times the
corresponding distribution functions, the curves bend in op-
posite directions. The reason is that as the pion energy in-
creases, there is a change in sign in the real part of the
amplitude, which is weighted differently by the distribution
functions in the two cases.

For comparison we also show in Fig. 2 the mass shift
following from the approximate virial formula(4.7), which
at threshold is simply given by

Psndsmpd = − nD+smpd. s4.13d

Our exact, first order formula(4.6) for the pion self-
energy function may find another application to the long-
standing problem of “missing repulsion” in the potential
[24], needed to reproduce the accurate data on the energy
levels of negatively charged pions bound to heavy nuclei
[25]. As may be seen from Fig. 2, the difference at threshold
Psndsmpd−Psndsmpd, has indeed a large negative value at nor-
mal nuclear density(and beyond). It is thus of interest to see
if this is so also at higher energies, when one may hope to
find the required repulsion, at least in part, in the potential
given by the exact formula(4.6), which appears missing in
its approximate version(4.7) used in the literature so far.

Finally a comparison with the mass shift obtained from
xPT in the preceding section is in order. Instead of using the
values of the constantsc1,2.3as given by Eqs.(2.17) to evalu-
ate this shift from Eq.(3.18), we may calculate the amplitude
sum oN Tfsmpd in xPT, when the latter will be seen to con-
tain exactly the combination of constants,c1,2,3 andgA as in
Eq. (3.18). Eliminating this combination in terms of the am-
plitude sum, we get the same formula as given by Eq.(4.7) at
threshold.

V. DISCUSSION

Having derived the effective parameters of the pion in
nuclear medium by two different methods, we first discuss
the validity of the results. ConsideringxPT, the region in
which the leading correction term may represent a meaning-
ful approximation to a quantity depends on the proximity of
the resonances in the relevant channel. In the present case, a
number of resonances, particularly theDs1232d, lie close to
the threshold, making the values of the coupling constants
c1, c2, andc3 in the effective Lagrangian rather large. Then

the region of nuclear density in which the results may be
valid, is expected to shrink considerably.

The calculated results follow this expectation. In the ex-
pression(3.18) for the effective mass, there is, however, a
large cancellation among the contributions of the different
vertices, making the mass shift to be only a few MeV atn
=n0, the normal nuclear density. But in the expression(3.20)
for Fp

s the contributions of the vertices add up, making the
“correction” at this density overwhelm the unit term. Clearly,
the first orderxPT results for the pion traversing nuclear
matter at normal density are unacceptable.

On the other hand, in the virial expansion formula we
may avoid any inaccuracy in calculating the scattering am-
plitude by taking it from experiment. We point out that we
use the exact formula, rather than its approximate version
used so long by different authors. However, the nuclear me-
dium must be dilute enough for an expansion of the self-
energy function in powers of nuclear density to be valid. At
normal nuclear densityn0=s110 MeVd3 , the mean distance
between the nucleons is about 2 fm. Thus our first order
virial formula, where the pion propagation is perturbed by a
single interaction with one of the nucleons in the medium,
should be a reasonable approximation up to about this den-
sity. Of course, we are treating the medium as a Fermi gas of
noninteracting nucleons. The many-body effects in real
nuclear matter and the absorption channels may give rise to
important contributions to the self-energy at higher order.

At normal nuclear density, the prediction of our first order
virial formula for the mass-shift and the decay width of the
pion is that both are small, being only a few MeV.(The virial
expansion does not say anything about the residues,Fp

t and
Fp

s .) We also point out a possible important application of
this formula to the calculation of the energy levels of pionic
atoms.

We conclude with a comment on determining the mass
shift in the more interesting case of the nucleon in nuclear
medium. Here the simple chiral Lagrangian for theNN sys-
tem[26] is not expected to apply, as it does not take properly
into account the presence of bound or virtual two nucleon
states close to theNN threshold. In fact, it produces an ab-
surdly large value for the nucleon mass shift[27]. But the
virial expansion formula for the nucleon self-energy should
apply here, at least in the neighborhood of the nuclear satu-
ration density[28].
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