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A coupled-channels analysis has been carried out for fusion reactions in the system60Ni+ 89Y. It demon-
strates that conventional coupled-channels calculations are unable to reproduce the unexpected steep falloff of
the recently measured cross sections at extreme sub-barrier energies. Heavy-ion fusion excitation functions are
also analyzed in terms of theS factor, as this offers a pragmatic way to study fusion behavior in the energy
regime of interest. It is shown that the steep falloff in cross section observed in several heavy-ion systems
translates into a maximum of theS factor. The energies where the maximum occurs can be parametrized with
a simple empirical formula. The parametrization, which is derived here for rather stiff heavy-ion systems,
provides an upper limit for reactions involving softer nuclei.
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I. INTRODUCTION

The asymptotic behavior of reaction cross sections at very
low energy is a critical issue for calculating reaction rates of
astrophysical interest. Recently, it was pointed out that fusion
cross sections for several heavy-ion systems show an unex-
pected behavior at very low energies[1], with a much
steeper falloff than obtained in conventional coupled-
channels calculations[2], or from Wong’s formula[3]. In the
present work, we first take a detailed look at the fusion of
60Ni+ 89Y, the system originally reported in Ref.[1], but not
analyzed in terms of coupled-channels calculations. We then
relate the study of fusion reactions at extreme sub-barrier
energies to a representation in terms of theS factor. This
factor, which in the past has been successfully applied to
fusion reactions with lighter ions at low energies, proves to
be an alternative, pragmatic way of characterizing and ex-
ploring the behavior of heavy-ion fusion cross sections in the
energy domain of interest. To our surprise, a maximum ap-
pears systematically in the evolution ofS with the energyE
for all systems exhibiting the steep falloff described above.
This maximum occurs at values ofE corresponding to a
rather high excitation energy in the compound nucleus.

II. COUPLED-CHANNELS CALCULATIONS

The experimental cross sections for60Ni+ 89Y [1] are
compared in Fig. 1(a) with three calculations. The solid and
dotted curves are the results of coupled-channels calculations
which are performed in the rotating target frame approxima-
tion [4] and include the low-lying quadrupole and octupole
excitations of the60Ni projectile and the89Y target, their
mutual excitations, as well as the two-phonon quadrupole
excitation in 60Ni (see Table I). The two approaches differ
only in the way fusion is calculated.

The solid curve is based on a real ion-ion potential and
ingoing-wave boundary conditions, and the fusion is ob-
tained from the ingoing flux inside the Coulomb barrier, near
the local minimum of the interaction potential. This is the
conventional method in coupled-channels calculations of fu-
sion reactions[4]. The Woods-Saxon potential used for the

nuclear part of the real ion-ion potential has the form

Usr, ad =
V0

1 + expF r − R

a
G , s1d

with the following values for the parameters:V0
=77.68 MeV,a=0.63 fm, andR=9.837 fm, and aresulting
Coulomb barrier of132.4 MeV. An effective b value is
introduced in terms of the reduced matrix element of a
deformation amplitudealm sof multipolarity l and projec-
tion m on the quantization axisd as

bl
ef f =Î2l + 1

2I f + 1
kI fialiI il =

Î4ps2l + 1dBW.u.sEld
s3 + ldZ

, s2d

where I i and I f are the spins of the initial and final states.
Here, the result is expressed in terms of the atomic numberZ
and the reduced transition probabilityBsEld sin Weisskopf
unitsd. In this way, it is possible to deal on equal footing with
transitions in odd and even-even mass nuclei. This effective
b value is identical to the usualb value for transitions from
the 0+ ground state of even-even nuclei. From definitions2d
we now obtain the matrix element of the deformation ampli-
tudealm between the initial and final states,

kI fMfualmuI iMil = kI iMilmuI fMfl
kI fialiI il
Î2I f + 1

= kI iMilmuI fMfl
bl

ef f

Î2l + 1
, s3d

whereMi andMf are the magnetic quantum numbers of the
initial and final states, respectively. The two quadrupole
transitions in89Y have been combined into one transition
because the two excitation energies are almost identical.
The same was done for the two octupole transitions.

The dotted curve in Fig. 1(a) is based on a similar calcu-
lation, but it includes an additional short-ranged imaginary
potential. The fusion is then obtained as the sum of the ab-
sorbed and ingoing flux. These two methods of simulating
the fusion process produce almost identical cross sections
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near and above the Coulomb barrier, but there are differences
at lower energies, as discussed below. Finally, the dashed
curve in Fig. 1(a) is the result of one-dimensional barrier
penetration calculations with the same ion-ion potential pa-
rametersV0 anda, but with a radiusR=10.26 fm adjusted to
reproduce the measured data in the 122–126 MeV energy
range, resulting in a Coulomb barrier of 127.3 MeV.

The unexpected steep falloff in low-energy fusion cross
sections in Ref.[1] was originally analyzed by plotting the
logarithmic derivative of the measured fusion cross sections
times the center-of-mass energyE, defined as

LsEd = dflnsEsdg/dE=
1

Es

dsEsd
dE

. s4d

Figure 1(b) compares such derivatives obtained from both
the measured fusion cross sections and the three calculations
displayed in Fig. 1(a). As discussed in Ref.[1], the experi-
mental results, shown as closed and open circles, were ob-
tained from consecutive data points and from least-squares
fits to three data points, respectively. The dashed curve, ob-
tained from the one-dimensional barrier penetration calcula-
tion, increases in the vicinity of the Coulomb barrier(set to
127.3 MeV, see above). The rise levels off below the barrier

with a more modest increase at lower energies. It should be
noted that Wong’s formula, used to fit the data in Ref.[1],
produces a constant logarithmic derivative at low energies
with a value around 1.5[not shown in Fig. 1(b)].

The solid curve of Fig. 1(b) was obtained from the
coupled-channels calculations based solely on a real ion-ion
potential. It exhibits an oscillatory behavior below the Cou-
lomb barrier. The oscillations are caused by coupled-
channels effects that are damped out when the short-ranged
imaginary potential is included(dotted line). The solid curve
rises steeply near 115 MeV because of a local minimum in
the Coulomb plus nuclear potential inside the barrier at
Umin=113.3 MeV that sets a limit to the fusion process be-
low this threshold. This value may not be realistic since the
energy of the ground state of the compound nucleus is much
lower, i.e., −Q=90.5 MeV. In contrast to the calculations,
the data points increase continuously below the Coulomb
barrier without any sign of leveling off. The same behavior
was observed for four other systems in Ref.[1].

In Ref. [5], it was pointed out that the large logarithmic
derivatives obtained from the measurements are consistent
with the large diffuseness of the ion-ion potential that these
authors have often used to fit high-precision fusion data
[6,7]. Their calculations with a large diffuseness of 1.3 fm
for the system58Ni+ 58Ni do improve the agreement with the
data at lower energies when compared to results obtained by
using a conventional, more realistic diffuseness of 0.65 fm
(see Fig. 3 in Ref.[5]). However, the calculated logarithmic
derivative does eventually saturate and exhibit a local maxi-
mum. In fact, this maximum may be part of an oscillatory
behavior, as seen in Fig. 1(b). The experimental logarithmic
derivatives, on the other hand, continue to grow with de-
creasing energy.

A possible reason for the fact that a large diffuseness is
sometimes needed to fit high-precision fusion data could be
that the low-energy fusion becomes sensitive to the ion-ion
potential inside the Coulomb barrier. This part of the inter-
action may not be accurately modeled by the conventional
Woods-Saxon parametrization in Eq.(1). In order to investi-
gate this point, we have modified the interaction forr ,R
with a larger diffusenessai, but have kept the interaction(1)

TABLE I. Low-lying states in60Ni and 89Y. In the case of60Ni,
the reduced transition ratesBsEld for the quadrupole transitions are
from Ref.[25] and the values recommended by Spear[26] are used
for the octupole transitions. TheBsEld values for89Y are from Ref.
[27]. The effectiveb value is defined in Eq.(1).

Nucleus I i I f l EfsMeVd BW.u.sEld bl
ef f

0+ 2+ 2 1.333 13.5 0.208
60Ni 2+ 4+ 2 2.506 61.0 0.442

0+ 3− 3 4.040 13.9 0.208

1/2− 3/2− 2 1.507 2.06 0.058

1/2− 5/2− 2 1.745 2.32 0.062
89Y 1/2− 5/2+ 3 2.222 18.3 0.172

1/2− 7/2+ 3 2.530 19.7 0.178

1/2− 9/2+ 5 0.909 5.14 0.085

FIG. 1. (a) Fusion excitation function for60Ni+ 89Y. The data
are from Ref.[1]. The arrow represents an upper limit;(b) logarith-
mic derivatives for the same system, derived from the data of(a).
The solid and dotted curves are the results of the coupled-channels
calculations discussed in the text. Also shown are the results for a
one-dimensional barrier penetration calculation based on an ad-
justed interaction(see text for details).
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unchanged forr .R, with a diffuseness ofa=0.63 fm. The
specific form for the interior region, in terms of Eq.(1), is

Uintsrd =
ai

a
Usr, aid +

1

2
S1 −

ai

a
DV0 for r , R. s5d

It should be noted that the two interactions, Eqs.s1d ands5d,
match up atr =R with a continuous derivative.

Figure 2(b) compares the results of coupled-channels cal-
culations with ai =2a in Eq. (5) with the conventional
Woods-Saxon parametrization[solid curve in both Figs. 1(b)
and 2(b)]. It is clear that the new approach improves the
agreement with the data in the 122–130 MeV domain. How-
ever, at lower energies, the curve develops a maximum and
starts oscillating. This trend is similar to that calculated in
Ref. [5], but it has been obtained here with a realistic inter-
action outside the Coulomb barrier. Thus, the new calcula-
tions still cannot reproduce the experimental logarithmic de-
rivatives at the lowest energies. For completeness, the total
potentials obtained from the Coulomb and the nuclear ion-
ion interactions in the two calculations are shown in Fig.
2(a). While the new minimum in the potential energy of
Umin=108 MeV is 5 MeV lower than the previous value, it is
still considerably higher than the 90.5 MeV ground state en-
ergy of the compound nucleus. In Ref.[8] it has been argued

that the failure to reproduce the steep falloff in the60Ni
+ 89Y system is caused by the Hill-Wheeler approximation
for the barrier shape used in the Wong formula. However, as
shown in this work and in Ref.[9], coupled-channels calcu-
lations, which do not employ this approximation, are also
unable to reproduce this feature in the data.

III. S FACTOR REPRESENTATION

While the behavior of fusion cross sections at the lowest
beam energies is illustrated well by the logarithmic deriva-
tives introduced in Ref.[1] and used in Figs. 1 and 2, we
shall show below that an alternative, pragmatic representa-
tion is also possible in terms of anS factor. Historically, the
S factor was introduced as a useful way of parametrizing
cross sections for radiative proton capture, and for light-ion
fusion reactions[10,11]. It is defined in terms of the fusion
cross sections as [12]

SsEd = EssEdexps2phd, s6d

whereE is the center-of-mass energy,h=Z1Z2e
2/s"vd is the

Sommerfeld parameter, andv is the beam velocity. The
Gamow factor exps−2phd accounts for the main part of the
strong energy dependence of the fusion cross section in
light-ion reactions, so that theS factor is essentially a
constant or exhibits only a weak dependence on energy far
below the Coulomb barrier. The ground stateQ values for
light-ion reactions are usually positive. The reactions can,
therefore, in principle take place down to zero center-of-
mass energy, and theS factor is often extrapolated toE
=0.

TheS factor for heavy-ion fusion has a very strong energy
dependence just below the Coulomb barrier: it increases
steeply with decreasing energy(see Fig. 3), reflecting the
weaker energy dependence of theEssEd product when com-
pared to that of the Gamow factor. Nevertheless, theS factor
must show a maximum for heavy-ion fusion because it has to
reach zero when the reactionQ value is negative. This occurs
at the positive center-of-mass energyE=−Q, since the
ground state of the compound nucleus is reached at this en-
ergy. At E=−Q, on the other hand, the Gamow factor will
still have a finite value. From the definition of theS factor
[Eq. (6)], it therefore follows that

SsEd → 0 for E → − Q when −Q . 0. s7d

It should be noted that the logarithmic derivatives must even-
tually go to infinity whenE→−Q as mentioned in Ref.f1g.
For light-ion fusion reactions with positive ground stateQ
values, the lowest entrance channel energy where fusion can
take place is evidentlyE=0. At this energy the productEs
will go to zero, whereas the inverse Gamow factor exps2phd
will go to infinity. Their product in Eq.s6d may therefore
reach a finite value atE=0.

The interesting question now is at which energy will theS
factor for heavy-ion fusion reach a maximum when theQ
value is negative? The examples shown in Fig. 3(a), 58Ni
+ 58Ni [13], 60Ni+ 89Y [1], 90Zr+ 89Y, 90Zr+ 90Zr, and 90Zr
+ 92Zr [14], are the five systems that were discussed in Ref.

FIG. 2. (a) Ion-ion potentials used in the coupled-channels cal-
culations for60Ni+ 89Y. (b) Logarithmic derivatives for the same
system. The solid curve is the same as in Fig. 1(b). The dashed
curve is the coupled-channels calculations withai =2a. The dotted-
dashed line corresponds to a constantS factor (see text for details).
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[1]. They all exhibit a steep falloff in the fusion cross section
at low energies. The solid curves are the results of coupled-
channels calculations discussed in Ref.[1] and above(for the
system60Ni+ 89Y calculations withai =2a are shown). The
dashed curves are fits to the data at higher energies based on
Wong’s formula which was used in Ref.[1] for those sys-
tems where coupled-channels calculations are not available.
It is seen in Fig. 3(a) that the data for these systems all
develop a maximum in theS factor at low energies. For the
system90Zr+ 90Zr, there appears to be a steep increase at the
lowest energies, below the local maximum. This behavior
might be caused by a small target contamination from
heavier Zr isotopes as discussed in Ref.[1]. According to Eq.
(7), the maximum of theS factor has to occur at a definite
energy, but it is again surprising that it corresponds to a
rather large excitation energy in the compound nucleus, in
the range of 20–30 MeV, where the associated level density
remains very large. There is evidently some mechanism that

hinders the fusion process at these high excitation energies.
In Ref. [1], it was suggested that, because of the high exci-
tation energy, the hindrance might be an entrance channel
phenomenon rather than a compound nucleus effect. How-
ever, to the best of our knowledge, a model calculation re-
sulting in a maximum of theS factor at these high excitation
energies in the compound nucleus has not yet been proposed.

IV. SYSTEMATICS OF LOW-ENERGY DATA

The relation between the two representations of the low-
energy fusion data, namely, theS factor and the logarithmic
derivative, can be understood by looking at the derivative of
theS factor. From Eqs.(4) and(6), one obtains the following
expression:

dS

dE
= SsEdFLsEd −

ph

E
G . s8d

A maximum in theS factor implies thatdS/dE=0. This is
fulfilled when the logarithmic derivative is

LCSsEd =
ph

E
=

pZ1Z2e
2

E3/2 ÎmN

2

A1A2

A1 + A2
, s9d

whereA1 andA2 are the mass numbers of the reaction part-
ners andmN is the nucleon mass. This function, which is the
logarithmic derivative for a constantS factor, is shown by
the dotted-dashed curve in Fig. 2sbd. The logarithmic deriva-
tive LsEd extracted from the experimental data will intersect
the curveLCSsEd exactly at the energy where the experimen-
tal S factor exhibits a maximum in Fig. 3sad. Let us denote
the energy and logarithmic derivative where this intersection
occurs byEs andLs=LsEsd, respectively. These two quanti-
ties are then related by the equation

Ls =
pZ1Z2e

2

Es
3/2 ÎmN

2

A1A2

A1 + A2
, s10d

since they fall on the curve defined in Eq.s9d.
There is nothing particularly special about theS factor,

nor about the valuesEs andLs where the logarithmic deriva-
tive extracted from measurements intersects with the loga-
rithmic derivative for a constantS factor. It is simply an
alternative, convenient way of characterizing the unexpected
steep falloff of the measured fusion cross sections. Thus,
when theS factor reaches a maximum, the logarithmic de-
rivative will have reached a value that exceeds the expecta-
tions based on the coupled-channels calculations. The values
E0 obtained in Ref.[1] are close to the corresponding values
of Es. The advantage of theS factor is that it gives a simple
and direct representation of the fusion cross section, whereas
the logarithmic derivatives[Eq. (4)] and also the so-called
barrier distributions[15] are more indirectly derived quanti-
ties. Moreover, the energyE0, which was defined in Ref.[1],
is model dependent, whileEs and Ls are obtained without
free parameters.

It turns out that the value ofLs is nearly identical for all
five systems shown in Fig. 3(a), with an average value of
2.33 MeV−1 (see Table II, category I). Assuming that

FIG. 3. Plots of theS factors vsE−Eof f. The parametersh0 and
Eof fsMeVd are used to conveniently place many colliding systems
on the same plot. The solid curves are results of coupled-channels
calculations, and the dashed curves are fits to the fusion data based
on Wong’s formula.(a) For systems that have a clear maximum in
the S factor at low energy, values ofh0 andEof f are 69.26, 26 for
58Ni+ 58Ni, 92.98, 50 for 60Ni+ 89Y, 126.02, 92 for 90Zr+89Y,
130.00, 87 for90Zr+92Zr, 128.24, 84 for90Zr+90Zr; (b) for systems
where theS factor has not quite developed a clear maximum, values
of h0 and Eof f are 40.10, −11 for16O+144Sm, 48.41, −3 for16O
+208Pb, 56.30, −3 for19F+208Pb, 74.20, 7 for64Ni+ 64Ni, 126.80,
92 for 50Ti+ 208Pb, respectively.
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2.33 MeV−1 is a “universal” value, Eq.(10) can be used to
derive an analytic expression for the energyEs. Thus, insert-
ing the valueLs=2.33 MeV−1 into Eq. (10), we obtain

Es = 0.356FZ1Z2Î A1A2

A1 + A2
G2/3

sMeVd. s11d

This expression is given by the solid curve in Fig. 4. The
solid points are the valuesEs obtained for the five systems
mentioned above. A common feature of these five systems is
that the reacting nuclei are all rather stiff.

There are other measurements in the literature where theS
factor has not quite reached a well-defined maximum, but
starts to deviate at the lowest energies from the calculations
based on coupled-channels or on Wong’s formula. There is
even some evidence for a maximum in one or two cases.
Examples are50Ti+ 208Pb [16], 19F+208Pb [17], 64Ni+ 64Ni
[18], 16O+208Pb [19], 16O+144Sm [6] and 40Ca+90Zr [20].
These systems are also included in Table II under category II,
and some are displayed in Fig. 3(b) as well. The solid curves
represent the coupled-channels calculations reported in the
original references. The behavior for16O+144Sm and40Ca
+ 90Zr at the lowest energies is similar to that seen for90Zr

+ 90Zr which, as mentioned before, might be due to small
contaminations by heavier isotopes in the target. The tri-
angles in Fig. 4 are estimated values ofEs obtained by ex-
trapolating the logarithmic derivatives of the measurements
to the point where they intersect the curveLCS for a constant
S factor, defined in Eq.(9). The estimated values ofEs are in
reasonable agreement with the solid curve, except perhaps
for the system64Ni+ 64Ni [18], where the estimated value is
below the curve. It is worth noting that this system is softer
than the one studied via the58Ni+ 58Ni reaction.

Experiments with “softer” or well-deformed nuclei have
usually not been performed at sufficiently low energies to
extend into the region where theS factor exhibits a maxi-
mum. This may not be so surprising since the strong
coupled-channels effects, typical for softer or well-deformed
nuclei, tend to broaden the effective barrier distribution[15]
and push the energy where the steep rise in the logarithmic
derivative occurs down to even lower energies. Examples of
systems where stronger couplings play a role are19F
+ 232Th [21], 40Ca+96Zr [20], 64Ni+ 74Ge [22], 40Ar+ 116Sn,
40Ar+ 148Sm, 40Ar+ 154Sm [23], and 86Kr+ 76Ge, 86Kr
+ 100Mo, 86Kr+ 104Ru [24]. These systems are also included
in Table II under category III. The open circles in Fig. 4 are

TABLE II. The parameterz=Z1Z2ÎA1A2/sA1+A2d, the energyEs, and the logarithmic derivativeLs, which
characterize the maximum of theS factor for different systems. Also given are the lowest measured energy
sEmind and the corresponding cross sectionssmind. The first category of systems exhibits a clear maximum in
the S factor. In the second category, a maximum has not quite been reached, but can be estimated by
extrapolating the logarithmic slope to the value for a constantS factor. In the third category, there is no clear
sign of a maximum in theS factor.

System z EssMeVd Lss/MeVd EminsMeVd sminsDsdsmbd Ref.

Category I
58Ni+ 58Ni 4222 94.0 2.29 93.3 49(20) [13]
60Ni+ 89Y 6537 122.9 2.37 121.4 ,0.09 [1]
90Zr+89Y 10436 170.8 2.31 168.7 0.34(0.07) [14]
90Zr+90Zr 10733 175.2 2.29 172.1 0.08(0.07) [14]
90Zr+92Zr 10792 170.7 2.40 169.6 0.12(0.05) [14]

Category II
16O+144Sm 1882 57.7 2.13 56.6 150(80) [6]
16O+208Pb 2529 69.6 2.15 70.0 240(10) [19]
19F+208Pb 3079 75.5 2.32 75.1 23(4) [17]
40Ca+90Zr 4210 93.2 2.32 93.4 840(160) [20]
64Ni+ 64Ni 4435 89.0 2.61 89.2 16.8(4.0) [18]
50Ti+ 208Pb 11454 181.2 2.32 179.8 0.00001 [16]

Category III
19F+232Th 3394 70.5 0.58(0.08) [21]
40Ca+96Zr 4251 91.7 41(6) [20]
40Ar+ 116Sn 4908 95.7 3.8(1.1) [23]
64Ni+ 74Ge 5249 97.5 13.3(3.3) [22]
40Ar+ 148Sm 6262 112.7 0.8(0.5) [23]
40Ar+ 154Sm 6289 108.8 1.6(0.9) [23]
86Kr+ 76Ge 7317 120.7 6.8(5.5) [24]
86Kr+ 100Mo 10281 155.4 14.4(1.5) [24]
86Kr+ 104Ru 10868 162.4 4.9(0.8) [24]
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upper limits for the correspondingEs values and represent
the lowest energy where measurements have been per-
formed.

The experimental data referenced in the discussions above
and in Ref.[1] are mostly cross sections for fusion evapora-
tion. For the19F+208Pb [17] and 16O+208Pb reactions[19],
total fusion cross sections are available. Fission is the main

contributor to fusion for these two systems even at lowest
energies. It thus appears that the behavior discussed above is
present for both fusion-evaporation and fusion-fission reac-
tions.

V. CONCLUSIONS

To summarize, our investigations show that theS factor is
a convenient representation of fusion cross sections for
heavy-ion systems at extreme sub-barrier energies. TheS
factor reveals through the presence of a maximum in theSvs
E curve the unexpected steep falloff in cross section reported
previously. By combining the two representations, the loga-
rithmic derivative and theS factor, we were able to derive a
simple empirical formula for the energy where theS factor
develops its maximum for reactions with stiff partners.

The coupled-channels calculations presented here demon-
strate that the low-energy behavior of heavy-ion fusion cross
sections is sensitive to the way fusion is defined, with or
without an imaginary potential. Moreover, the low-energy
behavior is also sensitive to the parametrization of the ion-
ion potential inside the Coulomb barrier, and the conven-
tional Woods-Saxon form may not be best suited for a real-
istic description. At present, coupled-channels calculations
have not been able to reproduce the data down to the lowest
energies. On the experimental side, it is clearly of interest to
measure fusion cross sections down to even lower energies,
especially for softer colliding systems, in order to investigate
whether the experimental logarithmic derivative keeps in-
creasing, exhibits a maximum, or starts oscillating.
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