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In the present study we generalize the self-consistent Hartree-Fock-Bogol(idB8y theory formulated in
the coordinate space to the case which incorporates an arbitrary mixing between protons and neutrons in the
particle-hole(p-h) and particle-particl€p-p or pairing channels. We define the HFB density matrices, discuss
their spin-isospin structure, and construct the most general energy-density functional that is quadratic in local
densities. The consequences of the local gauge invariance are discussed and the particular case of the Skyrme
energy-density functional is studied. By varying the total energy with respect to the density matrices the
self-consistent one-body HFB Hamiltonian is obtained and the structure of the resulting mean fields is shown.
The consequences of the time-reversal symmetry, charge invariance, and proton-neutron symmetry are sum-
marized. The complete list of expressions required to calculate total energy is presented.
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I. INTRODUCTION [3]; it is precisely in those nuclei that the state-of-the-art
) . ) microscopic mass formula needs to be supplemented by a
One of the main goals of nuclear theory is to build thephenomenological Wigner teriil,2].
unified microscopic framework for heavy nuclei in which the * |, spite of an impressive experimental progress in the
bulk nuclear properties, nuclear excitations, and nuclear "&eavy N~Z region, it is still uncleari) what the specific
actions can be _descrlbed on the same footing. M'CrOSCOF’_'ﬁngerprints of thepn pairing are andii) what is the interplay
theory also provides the solid foundation for phenomenologiyetween the like-particle amgh (T=0, 1) p-h, andp-p chan-
cal models and coupling schemes which have been appli§gh|s Before attempting to answer these questions, estab-
SO suc_cessfully to explain s_peC|f|c nuglear_propemes. EXoti§shed theoretical models of nuclear pairing need to be gen-
short-lived nuclei are very important in this quest. The ab-gyaji7e4 to properly account fam correlations. The present
normal neutron-to-proton ratios of these nuclei isolate ang,q is 4 step in this direction. We propose the general HFB
amplify important features, which are not clearly visible in ¢;.maiism which fully incorporates th@n mixing on the
stable systems. . . _mean-field level. The resulting density matrices have a very
For medium-mass and heavy nuclei, a critical challenge igjcy snin-isospin structure, which, in the presence of staic

the quest for the universal energy-density functional, whichyairing - can produce novel mean fields and deformations.
will be able to describe properties of finite nuclei as well as The paper is organized as follows. Section Il contains a
extended asymmetric nucleonic maiter., as found in neu- et review of thepn pairing. Section Il discusses the den-
tron .star$ Self-consistent method§ based on the den.sr[_)éity matriceg(scalar, vector, and tengpboth in thep-n and
functional theory have already achieved a level of sophistiy,  channel. The discussion is based on the coordinate-space
cation and precision which allows analyses of experiment FB formalism[4—6], which was introduced earlier to de-
data for a wide range of properties and for arbitrarily héavyserine pairing correlations between like nucleons. This
nuclei. For instance, self-consistent Hartree-Fock anqathod is the tool of choice when dealing with weakly
Hartree-Fock-BogoliuboyHFB) models are now able to re- 504 heavy nuclei7]. The energy functional is constructed
produce measured nuclear binding energies with an impregy gec. |y, the associated mean fields are derived in Sec. V,
sive rms error 0f~700 keV[1,2]. However, much work ré- an4 gec. V| deals with the resulting coordinate-space HFB
mains to be done. Developing a universal nuclear densityq asions. In the discussion ph pairing, the notion of self-
functional WI||.I’EQUI.I’e a better u_n_derstandmg of the_dens'tyconsistent symmetries, especially those associated with
dependence, isospin effects, pairing, as well as an improvegh,qe invariance and time reversal, is crucial, and we de-

treatment of many-body correlations. All those aspects argqe Sec, VI to this topic. Finally, conclusions are contained
essential for the structure of proton-rich nuclei with=Z, in Sec. VIIL.

which are expected to exhibit proton-neutrgm) pairing

II. PROTON-NEUTRON PAIRING, A CONCISE

. . . . OVERVIEW
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neutron and proton single-particle wave functigmspairing  Pandya transformatiofl24]. This means that the highin-
is expected to be present in those systems. teraction between pairs can translate into the lbimterac-

So far, the strongest evidence for enhangedcorrela-  tion in the p-h channel. It is only in the mean-field theory
tions around thé\=Z line comes from the measured binding that the division into “particle-hole” and “particle-particle”
energies[8-16 and the isospin structure of the low-lying channels appears naturally. One way of translating the shell-
states in odd-odd nucldil6-2§. The pn correlations are  model results into mean-field language is by means of corr-
also expected to play some role in singledecay[29-31,  g|ators, such as the number B0 and T=1 pairs in the
doubles decay [32-38, transfer reactiond39-49 (see, ghell-model wave functiof69,112,120,12F
however, Ref[16]), structure of low-lying collective states The extension of the interacting boson mod@BM) to

[46],  decay anda correlations[45,47-52, structure of o caqe ofn bosons had to wait until 1980, when IBM-3
high spin stateq14,20,53-79 and in properties of low- (only T=1 pairs[126]) and IBM-4 (both (T=1,5=0) and

density nuclear mattgi80-9Q. 7 e .
Actually, thepn pairing is not “the new kid on the block” (T=0,S=1) bosons[127]) were proposed. For recent appli-

but it has a long history and is ultimately connected to thetations of various algebraic models, see REZ6,128-138
charge invariance of the strong HamiltonigRor reference, An altemauve strategy to thpn pairing problem is via
in 1932 Heisenberg introduced isotopic sp#i] and in 1936  the mean-field approach. Here, the major conceptional step
Wigner introduced the nuclear $4) supermultiplet§92].) was the proposition that quasiparticles are mixtures not only
An important step was the adaptation of Racah’s concept dparticles and holes but also protons and neutrons. The result-
seniority by Racah and Talnfi®3], and Flowerg94] in 1952.  ing HFB quasiparticle vacuum is a superposition of wave
In the independent quasipartiQlBCS) picture[95], pairing ~ functions corresponding to even-even and odd-odd nuclei
condensate appears as a result of an attractive interactio¥th different particle numbers. Unlike in the standard
between quasiparticles near the Fermi surface. The ter@nd pp pairing cases, the coefficients of the Bogoliubov
“nuclear superconductivity” was first used by Pines at thetransformation are, in general, complex. Generalized
1957 Rehovot conference to point out that the new BCI3ogoliubov transformation, generalized gap equations,
theory might also apply to nuclg6]. This was formally and pn pairing fields are discussed in Refs.
accomplished in the late 195(97,99 and shortly after- [3,53,55,57,62,65,67,68,101,139-161
wards the importance ofpn pairing was emphasized The problem of the spontaneous isospin breaking in the
[47,99,100 and a number of theoretical papers dealing withmean-field theory was realized soon after the development of
the generalization of the BCS theory to the pairing case the generalized quasiparticle approapgt8,144,148 The
appeared101-103. symmetry is broken by the independéaéparatgtreatment
Independently, group-theoretical methods based on thef T=1 proton and neutron pairing correlations and by the
quasispin formalism were developed. Many insights werdBCS quasiparticle mean fielthe generalized product wave
gained by simple solvable models employing symmetry-function is not an eigenstate of isospiseveral techniques
dictated interactiong§104—11]. Two families of models have been developed to restore isospin. They include the
were used, one based on th¢ coupling with the symmetry generator coordinate method, random phase approximation,
SQ(5) (appropriate for th@=1 pairing and the other based Kamlah expansion, isocranking, and exact projection
on theL-S coupling with the symmetry S@) (appropriate  [15,16,27,37,48,67,144,148,162-16# is fair to say, how-
for the T=0 andT=1 pairing. These models have been con- €ver, that in spite of many attempts to extend the quasiparti-
secutively developed and applied to various physically intercle approach to incorporate the effectyof correlations, no
esting casef36,42,44,45,112—-114Among many techniques Symmetry-unrestricted mean-field calculationgafpairing,
used to solve the problem @i pairing with schematic in- based on realistic effective interaction and the isospin-
teractions, worth mentioning are the exact methodsonserving formalism have been carried out.
[43,115,11% used to describe isovector states of a charge-
independent pairing Hamiltonian. _ o IIl. DENSITY MATRICES IN THE ISOSPIN SPACE
Properties ofpn pairing (at low and high spins, in cold
and hot nuclgihave been studied within the large-scale shell We begin with the discussion of the building blocks of the
model (diagonalization shell-model, variational shell model, HFB theory: one-body density matrices. In the HFB theory,
and Monte Carlo shell mode[20,21,64,69,70,90,117-1p3 expectation values of all observables and, in particular, of the
It was concluded that the isovector pairing in the dominatinghuclear Hamiltonian can be expressed as functionals of the
J=0 channel mainly acts between time-reversed states withidensity matrixp and the pairing tensat defined ag167]
the same shell. On the other hand, isoscalar pairing can also

~ Tl — T
involve coupling(mainly J=1) between spin-orbit partners. prst r's't’) =(Vla,, gy arsl V), (1a)
Consequently, spin-orbit splitting plays a crucial role in un-
derstanding th@=0 pairing[20]. k(rstr's't’) =(¥|a;gpra V), (1b)

It is to be noted that it is by no means obvious how to " . )
extract “pairing correlations” from the realistic shell-model Whereayy; anda, create and annihilate, respectively, nucle-
calculations. The “pairing Hamiltonian” is an integral part of ONS at point, spins=+3; and isospirt= 3, while [¥) is the
the residual shell-model interaction. The shell-model Hamil-HFB independent-quasiparticle state. Instead of using the an-
tonian is usually written in the-p representation, but it also tisymmetric pairing tensor it is more convenient to introduce

can be transformed to theh representation by means of the the p-p density matrices that can be defined in two forfas,
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or p, denoted by “tilde” and “breve,” respectively, For |¥) being an independent-quasiparticle state the den-
. sity matrices fulfill the following kinematical conditions:
Plrst r's't') = - 28 (W]ay gy a V), (2a) o
pep=p+p'c (7a)
p(rst r's't’) = 4s't'(¥|a, _g_pars| V). (2b) o
p=peptpep’, (7b)

In Ref. [5], p-p density matrixp was used to treat the-n

andp-p pairing correlations without the proton-neutron mix- where « stands for integration over spatial coordinates and
ing. It was then shown that for conserved time-reversal symsummation over spin and isospin indices, denotedtiy,
metry 5 is Hermitian, and leads tp-p local densities that €:9-

have the structure which is analogous to that ofgHelocal s s R .

densities. However, in the case of the proton-neutron mixing (P * P)(r1Suty, F282t2) = (B * p) (X1, Xp) = T dxp(x, X)H(X, Xo)
studied here, we decided to use thg density matrixf),

1 . — 3 ~ <
because it allows a more transparent treatment of the iso- = | & X p(rysity, rsHPrst rSyty),
scalar and isovector pairing channels. Detailed discussion of st
this point will be presented in Sec. Ill C below. (8)

With each of density matrices of Eqd.a and(2b) three

other matrices are associated: the Hermitian conjugate matr\(‘—’her_e we also al_)brewated the Space-spin-isospin variables
ces defined as by x={rst}. Equationq7) secure the projectivity of the gen-

eralized density matrix
pr(rstr's't’) =p'(r's't’, rsy), (3a) A .
< A A A P 0
R=WRW"= <A P ) ) 9
~TC

prrstr's't))=p'(r's't’, rst), (3b) pt1-p

the time-reversed mairices defined as where Alzb‘(x—x’)::é(r—r’)ésg Sy and the unitary matrix

pl(rstr's't’) =4ssp’(r—str' —s't'), (48 W,

°T 1ol = Sx L I ol I 1 0

p'(rstr's't’y=4ssp (r—str’' -s't'), (4b) W= , (10
the charge-reversed matrices defined as 0 ~om

pC(rst r's't) = 4t p(rs—t,r's’ —t'), (5a) transforms the standard generalized density maRixcf.

Ref.[167]) to the breve representation.
oc o o L, When the pairing correlations of only like nucleons are
p-(rstr's't’) =4tt’p(rs—t,r's' —t'), (5b)  taken into account, none but the diago¢aff-diagona) ma-

where the asterisk stands for the complex conjugation.  trix elements of density matrig(p) in isospin indices are
Here and below we present full sets of expressions evefonsidered. However, in a general case of pairing correla-

in those cases when they could, in principle, be replaced by’ons between both, like and unlike nucleons, the remaining

verbal descriptions. We do so in order to avoid possible conmatrix elements become relevant as well. Therefore, in the

fusion at the expense of a slight increase in the length of théllowing sections we specify the spin-isospin structure of

paper. We think that such an approach is highly beneficial téhe p-h and p-p density matrices explicitly.

the reader, because in many cases small but significant dif-

ferences appear in expressions that otherwise could have A. Nonlocal densities

seemed analogous to one another. . ) . . . .
The charge-reversal operatid® defined in Eq.(5) ex- The density matrices in the spin and isospin spaces can be

changes the neutron and proton charges, or equivalently, flig&Pressed as linear combinations of the unity and Pauli ma-
their isospin projections. Note that the time reversal is anti/iC€S. To write the corresponding formulas the following no-
linear while the charge reversal is a linear operation, and th4ion is assumed. Vectors and vector operators in the physi-
they commute with one another. Symmetries of the densitf@l three-dimensional space are denoted with boldface

matrices can be conveniently expressed in terms of just theYMPols, e.g.r or V, and the second rank tensors with sans
Hermitian conjugation, and time and charge reversals,se”f symbols, e.g.J. Scalar products of three-dimensional

namely, it follows from definitiong1a) and(2b) that space vectors are, as usual, denoted with the central db_t, _
The components of vectors and tensors are labeled with in-
p =0, (6a) dicesa, b, c and the names of axes axey, andz e.g.,r
=(rw Iy, r,). In order to make a clear distinction, vectors in
Sr=—pTC, (6b) isospace are denoted with arrows and scalar products of them

with the circle:oow. The components of isovectors are la-
where the superscripiC denotes superposition of the time beled with indices, k, and the names of isoaxes are 1, 2, and
(4) and chargd5) reversals. 3, e.9.,0=(vq, vy v3). Finally, isoscalars are marked with

014316-3



PERLINSKA, ROHOZINSKI, DOBACZEWSKI, AND NAZAREWICZ PHYSICAL REVIEW C69, 014316(2004

subs_cript “0,” and we_often cpm_bine formulas for isoscalars &(r 1) = S A(rst, 'Sy, (153
and isovectors by letting the indices run through all the four <t
values, e.g.k=0,1, 2, 3.

With this convention the density matrices have the follow-

ing form: &r,r)= 2 prstr's't) &gsr. (15b)
sstt’
plrstr's't’) = }Po(f, ') Ssg Oy + l5S§5(r, r')o Ty Since thep-h density matrix and the Pauli matrices are both
4 4 Hermitian, all thep-h densities are Hermitian too,
1 1 ~ AN
+ZSO(I’,r’) -&Sgé}l,+z§(r,r')-6'33/07_%1/, pO(rvr )—Po(r 1r)1 (163)
(118 pr, e =p(r',r), (16b)
° Il ! 1" ’ 1 4 ’ = (rv r,) = *(r,v r): (16C)
p(rstr's't’) = Zpo(r, r') Oy O + Zésgp(r, r')o 7y a Y
1 Sr,r')=s(r',r), (160)
* Zéf’(r’ M) Osy b + Z§(r’ M) Oss© T, and hence, their real parts are symmetric, while the imagi-

11b nary parts are antisymmetric, with respect to transposition of
(11b) spatial arguments andr’.
~ . ST ~0

where ;n,:(;tlt” ATtZw »Tt3t,) and ;,.Ss,:(a.zg, ;,35/5” 6-;) are the On the other hand, the unity matnce.gs,—ﬁs.g and 7,
isospin and spin Pauli matrices, respectively, which are ac= éw (Scalar and isoscalpare TC symmetric, while the vec-
companied by the corresponding unity matric“é’fs,: Sy and tor and isovector Pauli matrices af€ antisymmetric, i.e.,
0.y = 5. The density matrices defined in Eqsa) and(2b) G =—4ss a.is_s” (179
are now expressed by several functions of the pair of position
vectorsr andr’. To avoid confusion, the functions appearing
on the right-hand sides of Eggll) will be called the(non-
local) density functions or, simply, densities, unlike the den-
sity matrices of Eq1a) and(2b) appearing on the left-hand
sides. : . .

The densities are traces in spin and isospin indices of thglrdeeism(gglizr?assn’ although only the Pauli matrices, and,
following combinations of the density and the Pauli matrices. Since thep-p density matrix transforms und&iC as in

(1) Scalar densities are the following. Eq. (6b), the p-p densities are either symmetriscalar-

-hi lar and isov r densiti . X . i
(&) p-hrisoscalar and isovector densities isovector and vector-isoscajaor antisymmetric (scalar-
isoscalar and vector-isovecjounder the transposition of

Fo=-At'T . (17b

We should stress here again that operafi@his antilinear,
and therefore, complex conjugation appears in all right-hand

poll, 1) = % plrstr'sy, (129 their arguments, namely,
A Po(r, 1) ==po(r", 1), (18a
Br,r') = p(rst r'st) 7. (12b)
st pr 1) =pr',r), (18b)
(b) p-p isoscalar and isovector densities
. o So(r, 1) =5(r', 1), (180
po(r, 1) =2 p(rst r'sy), (133
* &r,r')=-¥r',r). (18d)
A r’):EfJ(rst F'st) 3. (13h) Equations(16) and (18) are fulfilled independently of any

other symmetries conserved by the system; they result from

stt’ s
general propertie&) of density matriceg and p.

(2) Vector densities are the following.

(&) p-h spin isoscalar and isovector densities B. Local densities

so(r, 1) = > plrst, r's't)ogs, (148 In the HFB theory with the zero-range Skyrme interaction
sSt [168,169 or in the local density approximatiof DA) (cf.

Refs.[167,17Q), the energy functional depends only on local

densities and on local densities built from derivatives up to

Sr.r) = 5'2 prst IS t) Gy stn. (14b) the second order. These local densities are obtained by set-
sstt ting r’'=r in Egs. (1215 after the derivatives are per-
(b) p-p spin isoscalar and isovector densities formed. They will be denoted by having one spatial argu-
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ment to distinguish them from the nonlocal densities thaimetric nonlocal densities contribute, while for the current
have two. Moreover, for local densities the spatial argumenand spin-current densities only antisymmetric ones contrib-

will often be omitted in order to lighten the notation.

Following the standard definitiorjd 71,173, a number of

local densities are introduced.

(1) Scalar densities are the following.
(a) Particle and pairing densities

Pr) = pilr, )=y, (193
HOE () (19b)
(b) p-h and p-p kinetic densities
(1) =[(V - V)pilr, 1) =1, (209
Hr) =[(V -V, 1) = (20b)
(2) Vector densities are the following.
(&) p-h and p-p spin (pseudovectgrdensities
SN =81, 1), (219
éO(r) = éo(l', r’)r=r’- (Zlb)

(b) p-h and p-p spin-kinetic(pseudovectgrdensities

T(r) =[(V - V)sdr, 1) =, (229
Tor) = [(V - V)%(r, 1) ]e=re. (22b)
(c) p-h and p-p current(vectol densities
1
jkl(r) = 5[(V— Vpilr, 1) ]i=r, (233
v 1 .
Jo(r) = E[(V_ V)po(r, 1) J=r. (23b)

(d) p-h andp-p tensor-kinetiqpseudovectgrdensities

FUN=((V 8V + V' @ V) 51,1}, (240

Fo(r) = %[(v V' +V' ® V) -%(r ). (24b

(3) Tensor densities are the following.
p-h and p-p spin-currentpseudotensgrdensities

1
Ju(r) = E[(V-V') ® (1, 1) =1, (252
Z 1 ~
J(r) = E[(V—V') ®@8(r, 1) =, (25b)

ute. It is then clear that for eaqith density there exist both
isoscalar and isovector component, while for the densi-
ties, the isovector component exists only for the pairing, ki-
netic, and spin-current densities, while the isoscalar one ex-
ists only for spin, spin-kinetic, tensor-kinetic, and current
densities.

We note here in passing that the complete list of all local
densities(up to the derivatives of the second ordalso in-
cludes the kinetic and spin-kinetic densities in which the two
derivatives are coupled to a tensor, i€® V’. The resulting
local densities are usually disregarded, because they do not
have counterparts to form useful terms in the local energy
density. There is one set of exceptions, which has been over-
looked in the systematic construction presented in Ref.
[173], and appears in the averaging of a zero-range tensor
force [171], namely, the set of the tensor-kinetic local densi-
ties (24). In Sec. IV we define terms in the energy density
that depend on the tensor-kinetic densities.

All tensor densitieg25) can be decomposed into trace,
antisymmetric, and symmetric parts, giving the standard
pseudoscalar, vector, and pseudotensor components that we
show here to fix the notation

Jdr) = g’yyzakaam, (263

0= 3 3.0, (26b)

Jialr) = bEy €abIknd 1), (273

30 = 3 €andocl1), (27b)

D) = 5Fal0) + 53l = 3K 0, (282
Jas1) = 530+ 3000 = SH0 0 (280)

wherek=0, 1, 2, 3.

It follows from Eqgs.(16) and (18) that thep-h densities
are all real whereas the p densities are in general complex
and thus the complex-conjugate densities are relevant. The
p-p densities become real or imaginary only when the time-
reversal symmetry is conserved, see Sec. VII.

Instead of the isoscalar and the third component of is-
ovectorp-h density one can always use the neutron and the

wherek=0, 1, 2, 3, and® stands for the tensor product of proton one, e.g.,
vectors in the physical space, e.@®w),,=v,wW, and[(v

®w)-z],=v,(w-2). Note that for particle, pairing, kinetic,
spin, spin-kinetic, and tensor-kinetic densities only the sym-

pul1) = 310+ 1] (29
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LA r) = Fos(r 32¢
1) = Sl0(r) = (0], (29b) o1 = F (1), (329
= 5
and just the same for all othgrh densities. Similarly, in- S(r, 1) = £8,(r.1") (32
stead of thek=1, 2 isovectomp-p densities one can use the and
neutron and proton pairing density, i.e., . . s ,
1 poi(r! r ) == pOi(r! r )! (33a)
pn(r) = S[pa(r) +ipa(r)], (303 -
T Pl r) = = Bt 1), (33b)
. 1. o % N= 7% !
polr) = S[pa(r) = ipo(0)], (30b) 1,12 ¥ 511, (339
and just the same for all oth@rp densities. S(r,r')= +8(r,r). (330

This result shows that real and imaginary parts of nonlo-
cal densities(12—(15) have oppositeTC transformation
When constructing the energy-density functiori®ec. properties. From Eqg32) one then obtains classification of
IV) from the local densitie619)—(25) one should ensure that local p-h densities, namely, the isoscalar densitjgs$r),
it is invariant with respect to the following: 1° spatial rota- 7,(r), and Jy(r) are TC symmetric andsy(r), To(r), Fo(r),
tions, 2° isospin rotations, 3° space inversion, and 4° timeynd;j(r) areTC antisymmetric, while the isovector densities

reversal. All the local densities of Sec. Il B have definite -
transformation properties with respect to the first three of)(r) ir), andJ(r) are TC antisymmetric and(r), T(r)

those, 1°—3°, so one can easily construct the correspondirfg("): andj(r) are TC symmetric,

invariants by multiplying densities of the same type by one The rules of constructing the-h energy density are thus

another. For examp|e, a product of any pseudovectori.dentica| to those valid in the case of no proton-neutron mix-

isoscalar density with itself, or with any other pseudovectoring [172. On the other hand, from Eq$33) one obtains

isoscalar density, is an invariant. classification of locap-p densities, namely, real parts of all
The time-reversal symmetry cannot be immediatelyP-p densities arer C antisymmetric and imaginary parts are

treated on the same footing, because the time-reversal afdc symmetric. Thep-p energy density must therefore be

the isospin rotations do not commute. However, as noted iRuilt by multiplying real parts of different densities with one

Ref.[174], for problems involving the isospin symmetry it is another, and separately imaginary parts also with one an-

more convenient to use tiEC symmetry instead of the time other. These rules are at the base of the energy-density func-

reversal. Indeed, since the charge reve@a equivalent to  tional constructed in Sec. IV.

a rotation by the angler about the isoaxik=2, for con-

served isospin the conservation BE is equivalent to con- IV. THE ENERGY-DENSITY FUNCTIONAL

servation of T alone. Therefore, in order to construct the

energy density which is also time-reversal invariant, we

should classify the local densities according to Ti&sym-

C. The TC symmetry

In the HFB theory the expectation value of Hamiltonian
in state|¥) is a functional of the density matrices, and reads

metry and then multiply by one another only densities with Enrg = (W[H[¥) = H[f), 5, 51
the sameT C transformation properties. 1
To this end, we split the-h andp-p density matrices into T e A 4 ST e a b OF
parts that are symmetric and antisymmetric with respect to Tr(T=p)+ 2Tr(I‘ prIep), (34)

the TC reversal, i.e., explicitly, . . , .
PHctly where Trdenotes integration over spatial coordinates and

R R S sk summation over spin and isospin indices. Nuclear many-
p=(x,x') = E[p(x’ x)+16sstt’p (X, X)],  (31d oy HamiltonianH,

1 H= i:dx’dx:l'(x’, x)a;i,aX
(X, x'):E[f,(x, x') +16sStt’p (X, X')],  (31b) 1 )
+ 7 i dxq dx5dx dX V(X1 X5, xlxz)agt,al,axzaxl (35
where we used a short-hand notation af {r, —s, —t}. In roe
conjunction with theTC transformation properties of the is composed of one-body kinetic energyand two-body

Pauli matriceg(17), one then immediately obtains that the |nteract|0nV being expressed in E¢35) by matrle(x X)
corresponding nonlocal densities of Sec. Il A are either rea
or imaginary, i.e. and the antlsymmetnzed matrix elemet’vt&lxz, X1Xp), re-

/ * / spectively. Matriced” andT are the single-particlé-h) and
Pos(r, 1) = £ po,(r, 1), (329 P y gle-particlép-h)

pairing (p-p) self-consistent potentials, respectively,
pa(r, 1) = F py(r, 1), (32b) l:(xi,xl) :idxédxz\A/p_h(xixé,xlxz)f)(xz, Xy),  (36)
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I'(xy, %) = idxldszzvp-p(Xi)?éa X1X)p(X1, Xo),  (37) Xolr) = C3l%|? + C5° Re(%, - A%) + Cj Re(% - To) + Chljol?
~Vi < . H NER VAR A

whereF,=8s,s,t)t, andx={r, -s, -t}. In Egs.(36) and(37) +Co! RS- (V X jo)]+CoT V - 5

we have indicated that thp-h and p-p potentials can be +ég Re(‘ég.'zo), (413

determined bydifferenttwo-body interactionsy,., andV,.p,

called effective interactions in the-h and thep-p channel, . . o o o e

respectively. This places further derivations in the frame- Xi(r) = C§lp|>+ C1” Re(p" o Ap) + CT Re(p o 7) + C°|J?

work of the energy-density formalism that is not based on a IR T . e

definite Hamiltonian(35). Moreover, effective interactions, +CJIF+ CyI*+C{" Re(p = V - J). (41b)

Vi andVp,, are supposed to be, in general, density depenp, gqq (40) and(41) squares always denote total lengths in

dent. o . space and/or isospace, for complex densities taken in the
In the case of the Skyrme effective interaction as well as >

in the framework of the LDA, the energy functional of Eq. complex sense, e.gl(r)[?=2uJyJac In the p-p energy
(34) is a three-dimensional spatial integral, density (41) we show only terms in which the products of
real parts are added to products of imaginary parts. Accord-
_ ing to the rules based on tA&C symmetry, Sec. lll C, similar
H= f d*rH(r), (38) terms with both products subtracted from one another are
also allowed. We do not show them explicitly, because they
have exactly the form of Eq41), but without complex con-
of local energy density(r) that is a real, scalar, time-even, jygations and with absolute values replaced by real parts of
and isoscalar function of local densities and their first andproducts.

second derivatives(Isospin-breaking terms, such as those When the effective interaction is density dependent all

resulting from different neutron and proton masses and fro”&oupling constant<C’s andC’s may also depend on density
the Coulomb interaction, can be easily added and, for Simp g is the case, however, terms that can be transformed
Plicity, are not conS|der¢q in the present stgdy. the case into one another by integration by parts are not anymore
of no proton-neutron mixing, the construction of the mostgy iy alent. Then, five more types of terms may appear in the
gene_rgl energy density th_at IS qL_Ja_dranc n one-_body loc nergy density, see Reff173]; we do not consider such a
densities was presented in detail in REL73]. With the | nsqinility in the present study. Note that in thé channel
proton-neutron mixing included, the construction can be pery coupling constants appear in two flavors, fer0 and 1

formed analogically by including the additional nonzero Io'while in thep-p channel each one appears exclusively either
cal dgnsitigs derived in' Sec. lll. Then the energy density Calyr t=0 or fort=1.

be written in the following form: The expressiof39) is fairly general. In particulait is not
based on any particular two-body interactioHlowever, if

one assumes that the underlying two-body potential is local
and momentum independent, the form of E§9) can be
simplified and the number of coupling constants can be re-
adrgced. Two particular cases of practical interest are discussed
in"the following.

ﬁZ
H(r) = E]TO(r) + EOl[Xt(r) + X1, (39
t=0,

where we assumed that the neutron and proton masses
equal.

The p-h andp-p interaction energy densitieg,(r) andy;,
for t=0 depend quadratically on the isoscalar densities, and
for t=1 on the isovector ones. Based on general rules of Under a local gauge transformatida75], many-body
constructing the energy density, Sec. Ill C, one obtains wave function is multiplied by position-dependent phase fac-

tor

A. Local gauge invariance

Xo(r) = Chp§ + Co”polpo + Ciporo + C3 05 + C§HI5 + CFI9

A
+CopoV - Jo+ C355+ Coso - Ao + Coso - To [b7)=ex ']51 ¢(ry) (1¥), (42)

| 2. Vi . - VS'w . o124 Fa .
+Colo* Co'so (VX jo) + Co (V- 50)°+ Coo - Fo, which induces the following gauge transformations of den-
(409  sity matrices(1a) and (2b):

pl(rstr's't’) = M7 5(rst r's't’), (433
xa() = Ci” + Ci?fe Aj + Cije 7+ CPP + CIHJ% + CFJ ) o
p'(rstr's't’) = ¥+ 5(rst r's't’). (43b)
vi - ve . F - The Galilean transformation is a local gauge transformation
+Cy'S- o (VX [j)+C{(V-9°+Ci8- oF, (40D  for ¢(r)=p-r, wherep is a constant boost momentum. In
analogy to that one can introduce the local momentum field
where X stands for the vector product, and defined by

+CV%5o V - J+C2+CM%. 0 AS+CI5- o T + Clj2
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p(r) =V o(r). (44)

Local and momentum-independent interaction is invariant

PHYSICAL REVIEW C69, 014316(2004

sities, while only specific combinations of kinetic, spin-
kinetic, and tensor-kinetic densities are gauge invariant.
Complete list of allp-h and p-p gauge-invariant combi-

with respect to local gauge transformation, and hence energy,iions of local densities reads

densitieg40) and(41) must then also be independent of the

local gauge. The question whether it is possible to model GHr) = peric— J, (479
nuclear effective interactions in theeh andp-p channels by
a local and momentum-independent interaction is open. 1 1
Therefore, gauge transformation of the energy density can, in Gir)=sc-T—J2=s-T— =2 -Z32-22, (47b
principle, be respected or not, depending on a choice of dy- 3 2
namics one makes.
It is easy to tell when the local energy densitié§) and GZJ(r) =V - +5.-(V Xy, (470
(41) are local gauge invariant, because properties of local
densities(19)—25) under gauge transformation read explic- . 1 , 1
itly Gk(r) =5 Fg- 5(2 Jkaa) - 52 \]kakaba
a ab
- =s.-Fy 3Jk+4Jk 2; , (47d
T} = T+ 2D i+ Ppr, (45h)
wherek=0, 1, 2, 3, and
S = Sk (450 } L
Go(r) =Re® - To) - ;Re%-A%), (483
Ti=T+ 2p - I+ P, (45d)
Jk=lk* Pox (45¢ 200y - REE L E ) 4 1 2|2
' G(r) =Re(% - Fo) + 2|V &%, (48b)
Fr=Fi+pd+Jdc-p+pp-sd, (45f)
N N
N=dpes, 459 G{(r) = Reljn) — JReBARY. (480
wherek=0, 1, 2, 3, and wherek=1, 2, 3. Note that terms of the-p energy density
5=} (468 that depend oV xfo andV-J are not gauge invariant.
’ Finally, energy density given by Eq$40) and (41) is
- . - gauge invariant provided the coupling constants fulfill the
7 =e?%7+ip- Vp-p’p), (46b)  following constraints:
g = ?9%,, (460) cl=-cj, (49a)
i i hd H - - 1 2
To=e?[To+i(p- V)% - pSl, (460 cl=- écj - écf, (49b)
i6= €%, (460
J1 1,1
. . G =- Ect + th , (490
-, e . i . .
Fo=92'¢(|:0+ SV -Sp+(Vesk) p- (p-SO)p),
1
(46f) c?=-¢l - ch : (49d)
:)/ — '(/)J) .
J =e??], (469 cYl=+CY, (499
Since all localp-p densities(46) are multiplied under the for t=0. 1. and
gauge transformation by phase factef$'”), products of lo- o
cal p-p densities are not gauge invariant. Therefore, all terms vas Lo
not shown explicitly in thep-p energy densitysee discus- Co'==7,Co (509
sion below Eq.(41)] violate the gauge invariance. On the
other hand, products of complex-conjugate densities and
p-p densities may be gauge invariant. This obviously is the CVs= 4+ }éF (50b)
case for the pairing, spin, current, and spin-curemt den- 0 47"
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Vi _

Cli=o, (500 = (V-2 (554
~Ap _ 1- T
Cl —_ZCl, (50d) A, 1 , ,

c’=o. (508 act on thes functions indy,

Sia(rr5, 1) = 8(ry=r)8(rs—r5)8(r = ry)

The Skyrme interactiori168,169 is a zero-range local = Ar =) =r)drz=ry). (56

force that depends on relative momenta up to the seconghjs action has to be understood in the standard sense of
order. The complete list of terms giving its matrix element ingerivatives of distributions.

the position-spin-isospin representation, including the tensor Whenever the Skyrme interactigfl) is inserted into in-

B. Skyrme interaction energy functional

component§171,174, reads tegrals, such as in Eq$35)—37), the integration by parts
transfers the derivatives onto appropriate variables in the re-
V(rlsltirésétz- r1S1tal2Soto) maining parts of integrands.
R R 1 - R 1 NumbersP™ are equal to +1 or -1 depending on whether
=1 to(8” +%P7) + ét3(8‘7+x3P")p§[5(rl+ rz)] in a given term the power of momentuknis even or odd,

respectively. Skyrme interaction written in the form of the

integral kernel(51) is explicitly antisymmetric with respect

to exchanging left or right pairs of variables pertaining to

particles 1 and 2.

+}te[|‘(/* Sk +k-S -IA<] _ Th_e Skyrme HFB energy _density can be_ calculated by
2 inserting the Skyrme interactio(b1) directly into expres-

1 - " -
+ Etl(&w X P7)[k'? + k2]

- A A A A A sions(36), (37), and(34). Results for thex-h channel were
(87 + XP7)K" K+ k" - S -k published by many authors, see, e.g., Refs.
P . [169,172,175,17]7 although often some terms of interaction
+iWoS - [k"" X K] (878" = PTPPM) 55, (51)  (51) were neglected and/or restricted symmetries were used.
Results for thep-p channel were previously published with
where tensor terms and the proton-neutron mixing negledtid
Here we aim at presenting the complete set of results.
D s Sure (529 Calculations leading to expressions for the Skyrme energy
Ssas - 10 density are tedious, but can be efficiently performed by not-
ing two simplifying facts. First, the two-body spin operators

5 - obey conditions
Sty = Pt (52b) y
and SPe = é, (57)
LT T T SP7=$ (58)
Psss, = 5 %5sss, * Fsis Ogs) = dys,055,, (533 =S,

and hence only terms up to linear in spin and isospin Pauli

matrices appear in the antisymmetrized interaction. Second,
( ttt1t2+ ?—titlo%étz) = Byt Oy, (53b)  the Pauli matrices in Eq51) pertain to thep-h coupling

channel, while the momenta to thep coupling channel.
tlence, calculations may become very easy once a common,

p-h or p-p, coupling channel is used for all the elements of

interaction. This requires either recoupling momenta to the
p-h channel or recoupling the Pauli matrices to fhp chan-

t 1Utt,

are the spin and isospin unity and exchange operators, r
spectively, and

Ssisyss, = Osis, 05y, + 05y, 06y (548 Lol To this end, we separately consider {1 and p-p
energy densities.
Sab _§ ~a Ab ~b ~a = 8506 N
515, 2( sis, 5252 0'31310'3552) ab¥ss, " Os)s, 1. The ph channel
(54b) In the p-h energy density, indices of the Pauli matrices are

contracted directly with density matrices of particles 1 and 2,
are two-body vector and tensor spin operators, respectivelyand immediately give nonlocal densities through appropriate
The relative momentum operators traces in Eqs(12)—<15). However, the relative momentum
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operators(55) affect both particles at the same time, and TABLE I. Second-order coupling constants of then energy
hence have to be first recoupled to forms where the twalensity (40) as functions of parameters of the Skyrme interaction

particles are acted upon independently, i.e., (51), expressed by the formul@=(A/192)(at; +bt;x; +Cty+dipx,
+ete+fto +gWo).
Lo a Lay op o o o oa
Z(k2+K2) = Z(K2+ K2 = Ky - K, — 4K -
2(k +k?) 8(K1+ K5 - Ky Ky =4k - ky) A a b ¢ d e f g
1 , , Cy” 3 -9 0 5 4 0 0 o0
* 3V V1t V2 Vo), % o 3 0 5 4 0 0 0
cY -4 -1 2 1 2 10 30 0
K k= LR, Ry ks R+ v, VA,V G, ozt z s s o
' ‘8( 1Kz =4k k) 4( 1 V14V, V), c?  -12 -1 2 1 2 1 3 0
VJ
59 S 48 0 0 0 0 0o -3
Co® 3 3 6 1 2 6 -6 0
A, A 1A oA -~ A T - - -
K™ X k=2 (Ky - Ky) X (kp—ky), (599 Co 12 to2 12 2 60
4 ch -12 3 0 5 4 0 0 0
cys 18 0o 0 o0 0O 3 -3 0
T L T S S S S S ') 72 o o o0 o 1 3 o0
kK" @k +kok=-(K®@ Ki+K, ® Ky) = =(K; ® K, +K 0
4( 1 1T K2 2) 8( 1@ K+ Ky cyl 48 0 o 0 0 0 0 -3
S D (o 3 3 6 1 2 0 0 0
® Ky —Z(ki @ ky+ky ® k !
V- kekrkook) cl 12 -1 -2 1 2 0 0 0
Jo
1 , 1 cf -4 -1 0 1 0 -10 10 ©
+ ‘—1(V1 @Vi+V,® V) + Z(Vl ®V; ct -6 -1 0 1 0 5 -5 0
cP  -12 -1 0 1 o0 -1 1 0
+V,© V), (59d W 48 o o o o o0 0 -1
R T e, o 3 3 0 1 0o -6 -2 0
k o k+k®k :E(K1®K2+K2®Kl)—é(k1®k2+k2 cl 12 -1 0 1 o0 2 -2 0
ch -12 -1 -2 1 2 0 0o o0
A 1 v
®ky)+=(V,©@ V] +V,2 V) c;® 18 0 0 0O O -3 -1 0
4 ct 72 o 0 o0 0 -1 1 0
1 cy' 48 o 0 0 0 O -1
+ Z(Vi @V, +V,0V,), (59¢
where 3 3, .
ng gto"' ZBtspo(r), (628)
A1
ki==(V,=-VY, (603
2i 1 1
L Co= éto(zxo -1+ 4_8t3(2X3 = Dpg(r), (62b)
kp= E(Vz_ V2) (60b)
1 1
and Cf =~ glo(2Xo+ 1) = Joti(@a + Dpg(r), (629
Ki==i(V;+V)), (61a
1 1
. Ci=—=tg— —=tzp5(r), 62
Ro=—i(V,+V)). (61b 177 g7 g o2d

Final results can now be easily obtained by noting that relaand the second-order coupling constants are given in Table I.
tive momenta(60) lead to the current densitig®3a and One can immediately see that the gauge-invariance condi-
(253, total momentg61) lead to derivatives of local densi- tions (49) are fulfilled. This is so because the momentum-

ties, and the scalar and tensor products of individual modependent terms of the Skyrme interaction obey the Galilean

menta lead to kinetic densiti€20a), (223, and(243). invariance[172,175

The zero-order(density-dependeptp-h coupling con- Since seven Skyrme force parameters define 24 second-
stants of the energy densi#@0) are expressed by the Skyrme orderp-h coupling constants, in the resulting Skyrme energy
force parameters as density there is a high degree of dependency. First, as is well
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known [178], a single spin-orbit parametat/, determines TABLE II. Second-order coupling constants of thep energy
all four spin-orbit coupling constanl@tw and ctVJ, for t=0 density (41) as functions of parameters of the Skyrme interaction
and 1. Second, four Skyrme parametess,x;, t,, and X, (51), expressed by the formul&=(A/96)(at;+btyx; +ct,+dt,x,
uniquely determine four coupling constar@s” andC/, for — +et+fto+gWp).

t=0 and 1. Third, two tensor Skyrme parametégsandt,,

uniquely determine either isoscalar or isovector coupling A a b c d e f g
constants(:tVS andC{. Once such a role of the seven Skyrme N 3 1 1 o ) 0 0
parameters is flxed values of the remaining coupling conCo’ -
stants are also uniquely fixed. cl 12 1 1 0 2 0 0
é{) 12 0 0 1 -1 0 0 0
2. Th h I
€ Pp channe cve -18 o 0o 0o 0 1 o0 0
In the p- p energy density, each operator of the relat|veé0 —72 0 0 0 0 1 0 0
momentum k’ andk acts on variables ahe samedensity <] 0 0 0 0 0 0 0 0
matrix, and thus no recoupling is necessary. Terms of th&o’
interaction that are linear in momenta then lead to curren&Ap -3 1 -1 o0 0 0 0 0
densities(23b) and (25b), while terms that are quadratic in
momenta lead to derivatives of local densities and to kinetic] 12 1 -1 0 0 0 0 0
densities(20b), (22b), and(24b), because éio 0 0 1 1 0 -10 4
1 e 6 o o 1 1 o0 5 2
k2= =2 (V1+ Vo) 4V, - ¥y, (633 g2 12 o o 1 1 0 -1 -2
(;YJ 0 0 0 0 0 0 0 0
A A 1 1
k® k:_Z(V1+V2) & (V1+V2)+§(V1®V2+V2®Vl).
b 4Sészéab =- §(0' (rb o))
(630 KR e LR L N
However, in thep-p energy density, indices of Pauli ma- oo o (650)
trices couple together the two density matrices, and hence do abTss) - T8

require recoupling to the-p channel. These recoupling for-
mulas can be obtained by means of the standard algebra opd the forn:ulas similar to Eqe658 and(65b) are obtained
angular momentum. A sum of the three Clebsch-Gordan cof©r & andP7, respectively.

Table Il. Similar to thep-h case, the gauge-invariance con-
A ditions (50) are met.
XA =T = m\ ). (64) Equivalently, the density-dependent zero-range pairing
force Vpq can be used in thp-p channel[180-183,

efficients appropriate to the present case rgaads] The two zero-order(density-dependentp-p coupling
constants of the energy densig/l) are related to the Skyrme
4ss, > <%51)\1ﬂ1|%31><% _ 52)\2/-LZ|% _ sﬁ) parameters in the following way:
Map2 - 1 1
X (N = il = pol A ) 0~ éto(l +Xo) + 4_8t3(1 +X3)po (1), (663
2 M@+ 1 1
Ve fm Ch = “to(1 —Xg) + ~=ta(1 —Xg)pl(r), (66b)
11 8 48
2 2 A
X@+1D13 2N, x Gsl'm|3s)(3simi3s,) and the second-ordes-p coupling constants are given in
"

Taking relevant combinations of;, A,=0, 1 and\=0, 1, 2,

one obtains Vpail I, 1) = fpaidr) or —r'), (67)
1 1 for
432525‘5 TS)TSS, 255&5' O, F 2% Tosy (653 R pol) |
foaill) = Vo) 1 +X%P7 - (1 +x3P") (68)
Pc
1 1 * s .
4SZSQP e o0ss -0, O, (65D  whereP? is the spin-exchange operai@®33. In such a case,
S 2 521 = 27%% A coupling constant$66) read
I & _1 po(r) |
45,55, -sjs,,~s, = ~ 'Usés X Osys (650 Vo(l +Xo) = _Vo(l + 3)[ ° ] , (693
C
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Ct=

po(r) |* V. THE P-H AND P-P MEAN FIELDS
(69b)

1
Vo(1 =Xo) = gVo(l ‘Xs){ _ ) _
Pc By varying the energy function&B4) with respect to the
density matrices one obtains theh and p-p mean-field

Note that when only the isovector pairing is used, as in mosﬁamlltonlans

LDA applications to date, the exchange parametgiandx;
are redundant in the definition of the isovector coupling con-

stantC%, and hence are usually set to 0. However, if one h(r's't’, rst) = M

wants to independently model the isoscalar and isovector op(rst,r's't’)
pairing intensity, one has to use nonzero values,andXxs. 72 .
For the Gogny interactiofil67], the zero-range density- =—=—8r-r'")V - V&S +I'(r's't', rst
dependent ternty with «=1/3 was used in order to enforce 2m
proper saturation properties. The corresponding exchange +f‘r(rrsrtr,rst), (733

parameterx;=1 was used to prevent this zero-range force
from contributing to the isovector pairing channel. However,

such a choice, when applied literally to the proton-neutron . A o o
- . L ° SH[p, p. p']
mixing case, might lead to a very strong repulsive isoscalar h(r's't’, rst) = DT
pairing interaction. Sp(rstr's't’)
The term ofy coming from the spin-orbit interaction con- o o
tains the combination of components of g spin-current =L(r's't’, rs) + I (r's't’, rs).  (73b)
densityj,

The rearrangement potentidls and I, result from the den-
A < sity dependence of effective interactions on b and
> (Jaa® Job = Jan® Ipa) = §|‘J|2 2|‘]|2 -l (70 p-p densities, respectively. Usually effective interactions are
ab . .
assumed to depend only on tipeh density matrix(most
often, only on the isoscalar particle densigy). In that case
the p-p rearrangement potential vanishes. However, one can-
e v 3o o 30 o not forget that the dependence of the interaction on the
> (J;bo Jap— —J;ao Jbp— —J;bo Jba) particle density results in a corresponding contribution to the
ab 2 2 p-h rearrangement potential. In what follows, to simplify the
5+, 5o 1o presentation we do not show the rearrangement terms explic-
== SPE+ 3P - S1P Ty iy
3 4 2 Within the LDA, the mean-field Hamiltonians being origi-
) nally, such as the Skyrme interaction of K1), either dis-
and from that coming from the centrgl term, tributions or derivatives of distributions can, when acting as
the integral kernels, be expressed as local, momentum-

o o, > 1= 1< > .
3[2= (e Jap) = §|J|2+ 5|J|2+ 2. (72) dependent operators, i.e.,

that is different from that coming from the tendgrterm,

Therefore, by setting appropriate values of th@ +x,), W, h(r's't’,rsf = r ~r)h(r;s't’, sy, (743

and t, parameters, one can obtain arbitrary values of the

spin-current coupling constan®’, CJ*, andCj2. Similarly, h(r's't’ rsth = & — rR(r: st s (74b)
parametet,(1-x,) allows for fixing an arbitrary value of the ' RS

current coupling constarttJ On the other hand, parameter The kinetic energy term in Eq734 is already expressed in
t;(1+x,) defines two isoscalar coupling constarﬂ%S and such a form. The mean-fields Hamiltonians are the second-

CT, parametet, defines another two isoscalar coupling con- order operators in momentum and matrices in the spin and
i in The i in structure of the | n
stants, CVs and CO, and parametetl(l X1) defines two is- sospin spaces. The isospin structure of the lqedl and

p-p mean-field Hamiltonians reads
ovector coupling constant@,lf’ andCl, hence, these pairs of
coupling constants are not independent from one another. N > N
These three pairs of dependencies reflect, in fact, the three h(r;s't’, st =hg(r;s’, s)& + h(rs', ) o 7y, (758
gauge invariance conditior{d¢8). In this way, seven Skyrme
force parameters determine ten coupling constants in the R -
p-p channel. Finally, the Skyrme interaction does npt give F](r;s’t’,st) :ﬁo(r;s’,s)al,t+ﬁ(r;s',s)o%t,t, (75b)
any nonzero values for the spin-orbit coupling constﬂgﬂs

and E:f“". Therefore, up to the gauge invariance conditionsyespectively. The isoscalar and isovector parts of phe
the Skyrme interaction fully determines the energy density irmean-field Hamiltonian can be presented in the compact
the p-p channel. form
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! hz 2 ~ 1
h(r;s’, s)=- Eﬂv FssOko+ Uidss+ 2+ Ogrs+ Z[I kOs's

R 1 R
+(Bx-0g9]- V +EV [Nkdss+ (By- g9 ]

- V '[Mk(ssrs+ Ck-&SIS]V— V -Dk&S/S-V
(76)

for k=0, 1, 2, 3, and where
(B &)a= 2 Bapo” (77
b

for a=x,y, z is the ath component of a space vector. The

names of symbols are inspired by those introduced in Ref.

[172]. Since thep-h density matrix is Hermitian, the-h

PHYSICAL REVIEW C 69, 014316(2004)

thus, in accordance with Eq&4), again act as local differ-
ential operators. They read

sy 1, «
op(rst r's't’) - 2i ' =nLVir) + f(r)v]as,STt't’

mean-field Hamiltonian is also Hermitian and, thus, all the

potentials,M,, Uy, By, Cy, Dy, |, andX, are real.
The general form of the mean-field Hamiltoniéf6) can
be constructed from the momentumV-and sping opera-

(81a
% = S DIV + OV I 3,

(81b)

% == 81~ N)VLf(N)Vpouek,, (823

AVaVoSI _ s v veet i, (820

Sp(rstr's't’) -

tors, based only on the symmetry properties. Apart from the

one-body kinetic energjthe first term in Eq(76)], the ex-
pansion in momentum give$) zero-order terms with scalar
(Up) and pseudovecta®,) potentials,(ii) first-order terms
with vector (I,) and pseudotensofB,) potentials, (iii)
second-order-scalar terms with scalst,) and pseudoscalar
(Cy) effective masses, an/) second-order-tensor terms. In

for k=0, 1, 2, 3 andh, b, c=X, y, z. Calculations of the func-
tional derivatives over the density matrix are equivalent to
the rules for variations over single-particle wave functions
given by Engelet al. [172]. Using formulas given above,
Egs.(80—«(82), one obtains the following relations between
the potentials defining thp-h mean field(76) and the local

principle, the most general form of the last category should®-N densities defining the energy densigp),
involve tensor and third-order-pseudotensor potentials. How-

ever, in Eq.(76) we show only the particular form of it that
corresponds to the energy densiép).

According to Egs(73) the p-h mean-field Hamiltonian is
the functional derivative of the energy functional over the
Hermitian p-h density matrix. Functional derivatives of inte-
grals of type

@:f 8(ry = rp)f(r)p(ry, 1) dr iy, (78)

where functionf is treated as independent of densities and
represents @-h nonlocal density, can easily be calculated
using Egs(12) and(14). Bearing in mind that

Op(riSity, roStp)

5ﬁ(l’$t, F’S't') = 5(I’l - r)5(r2 - r,)aslsaszs’ 5tlt5t2t'u (79)
one has
5<fpk> ~k
-, .= "=0)f(r) Sy T, 80
5f)(r5t. rrslt/) §(r r) (r) S STt t ( a)
& f
U0 _ s -ntneed,  (80b

Mprstr's't’)

for k=0, 1, 2, 3. The functional derivatives of integrals of
local differential densities are obtained from Eq80)

U(r) = 2Cfpy + 2C*Ap + Clr+ CY°V -J,, (834

3)(r) = 235+ 2(C° - CY9)As — 2CF°V X (V X 5
+CIT+ CIF+ CYV X i, (83b)
(N =2Clj+CY'V X5, (830

By(r) = 2C°3,6- 2Ce - 3+ 2C23, + Ce - V py,

(83d)
My(r) = C{px, (83¢
Culr) =C{sq, (83f)
D(r) = Cis, (839

for k=0, 1, 2, 3. All coupling constant§; in Egs. (83) are
taken witht=0 for k=0 (isoscalars and with t=1 for k

=1, 2, 3(isovector$. Symbol s is the unit space tensor, and
e-J stands for the antisymmetric space tensor with compo-
nents(e-J)p==c €acle, SO that, according to Eq77), its
action on a vector is obviously the vector prodgetd) - o
=JIX&.

through integration by parts. Then, the functional derivatives The p-p mean-field Hamiltonian has the following iso-

become dependent on derivatives of the Difdanction and

scalar and isovector components:
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O g = )W) + D)V J0D

1 . .
E{V ’ |055’s+ IOés’s
Spt(rstr's't’)

ﬁo(r;s’,s):io-&s,s+ -V}

— V [CO &S'S]V_ V . DO&S'S' V, (87b)

(848

V.V )
VYD) o V() Vet (88
Spt(rst,r's't’)

(18,9 = 000y {7 -[B) - 0yl +[B1) 3] - )

-V -Mé&V. (84b)

AL
pt(rstr's't’ )

~C ~0
15Tt

=258(r" = 1)V f(r)Vyo (88b)

Contrary to thep-h Hamiltonian(76), the p- p Hamiltonian

84) can be - hon- Hermitian, because potent D ,I ) 20
ok potentisDo, lo. %o for a, b, c=x,y,z

M, U andB are, in general, complex quantities. This is so, Using Eqs.(86) and (87) one obtains the following rela-
because the-p density matrix is, in general, not Hermitian. tions between the potentials defining tipep mean-field
Therefore, the energy functional should be treated as a fung4amiltonian (84) and the localp-p densities defining the

tional of bothp and p*.

The p-p mean-field Hamiltonian is the functional deriva-
tive of the energy functional over', whereas the Hermitian
conjugate Hamiltonian is the functional derivative over
The p-p densities are, according to Eq43) and(15), func-
tions of p, while the complex-conjugate densities are func-
tions of p*.

When calculating th@-p functional derivatives, one can-
not forget that the-p density matrix fulfills symmetry con-
dition (6b), implying that thep-p densities are either sym-
metric or antisymmetric functions, Eq&l8). Therefore, the
calculation of functional derivatives over eithgror p* is
similar to that leading to Eq$80)—82), however, instead of
EqQ. (79) one has

5P (rySity, 2St,) _

— ar
Spt(rstr's't’)

17 I’)5(I’2 - r,)5slsaszs' 5t1t5t2t’

- 16sstt’S(ry—r')
I’)5 —5’5 —sétl—t’atz—t-

X 8(ry— (85

In the expressions for functional derivatives, this gives eithe
cancellation or addition of terms coming from the two com-
ponents of the right-hand side of E@5). Finally, the non-

vanishing derivatives are

A(SL = 25([' r)f(r) S’STt't’ (868)
5b+(r5t! r/Srtr)
X% s - ninee, (86D

Spt(rstr's't’)

Sfig)

— ———=-idr’
Spt(rstr's't’)

-n[Vf(r)+ f(r)V](SS,srt,t,

(874

energy density41):

34(r) = 2C58+ 2(C5° - CT)A% - 2CT°V X (V X &)

+CiTo+CEFo+CYI V X o, (89a)
To(r) =2Chjo+ CYI V X &, (89b)

Co(r) = Cl%, (899

Do(r) = Ch, (89d)

O(r) = 2Cp + 2CYAp + CT7+CTV - Jo (899

B(r) = 2CPJ5- 2C1e - J+ 2CR2 + CV- V j, (891)

; M(r) = Cip (899

In the case of the zero-range pairing fo(6&), the isovector
p-p potential is proportional to the-p isovector density
while the isoscalar field has a very different structure, i.e.,

is proportional to the scalar product of spinand thep-p

spin density§,. This immediately suggests that there exists a

connection between the isoscalar pairing and phe spin
saturation, which is influenced by the spin-orbit splitting. In
this context, let us remind the shell-model sty@@] which
discusses the relation between the magnitude ofTth@®
pairing and the spin-orbit splitting.

VI. THE HFB EQUATIONS

Minimization of the energy functional of Eq34) with
respect to thg-h andp-p density matrices, which fulfill Egs.
(7) under auxiliary conditions

014316-14
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f d*rpn(r) =N, (909
Jd3l’pp(l’) =Z, (90b)

leads to the HFB equation of the form
[761, 73%] =0. (91)

The generalized density matrR is given by Eq(9) and the
generalized mean-field Hamiltonian is defined as

=)

h-x

H=wHW'=| (92)
ht  —h™C+X
with the Lagrange multiplier given by
~ 1 1 R
:E(xn+>\p)+5(>\n—>\p)r3, (93

where \, and \, are the neutron and proton Fermi levels,

respectively.
The usual method of solving the HFB equati®1) is to
solve in a self-consistent way the eigenvalue problem,

(X' X) * D(XE) = ED(X E), (94)

for the generalized mean-field Hamiltonian, and then to con-

struct the generalized density matrix,

Rx,x)= S &(x;E)D (X E),
Ee&

(95)

as a projection operator onto the set of the quasihmieu-
pied statesd belonging to a subset of energy spectruin,
For a local mean-field Hamiltonian, E¢Q4) is a system of

eight second-order differential equations, in general Withd
complex coefficients. Usual four dimensions correspondinq_|
to upper and lower HFB components and to two spin projec-

tions are here multiplied by another factor of 2 due to the?
isospin projections. Altogether, Eq94) corresponds to a

PHYSICAL REVIEW C 69, 014316(2004)

)

belonging to energy E. In the case of the absence of exter-
nal fields, bound state@vhen ¢ and ¢ are both localized
exist only when both Fermi levely,, and\,, are negative.
Discrete quasihole energy levels lie within the range
L<E<-L, where L=max\p, \p)<0. The ground-state
solution corresponds to occupying states having negative
energies; then the s&t consists of a number of discrete
levels lying inside segmentZ,0) and the continuous
spectrum with «o<E<L.

Traditionally, one solves Eq94) for the quasiparticle
states of positive energies rather than for the negative ones.
Then, the discrete spectrum is within the segmertBE)
<-L and energieE>-L belong to the continuum. Having
found the wave function®(rst;E) for E>0 one uses Eq.
(97) to construct the density matrix, i.e.,

there exists a quasiparticle state

¥ (r=s-tE)

@ (r-s-tE) 7

O(rst;—E) = 4st<

7c2(x, x')= D, d(x;- E)d*(X';— E).

E>0

(98)

The p-h and p-p density matrices are then expressed as

p(rstr's't’) = 16sstt’ >, ' (r—s—t;E)y(r’' —=s' —t';E),

E>0

(993

f)(rst, r's't’) = 16ss'tt’ E J(r-=s-t;E)e(r' —s-t";E).
E>0

(99b)

VII. CONSERVED SYMMETRIES

Conserved and broken symmetries are one of the most
important elements of description of many-body systems.
Within the mean-field approach, the theorem about self-
consistent symmetriegl67] tells us that mean-field states
may or may not have all the symmetries of the Hamiltonian,
epending on interactions and the system studied. Within the
FB approach, the symmetry is conserved when the gener-

alized density matrixR and the generahzed Hamiltonid
both commute with the symmetry operaﬂdr ie., [R u]

system of 16 equations within the domain of real numbers=q and[H,u]—O or
When specific symmetry conditions are imposed on solu-

tions, this number can be reduced in a standard way, see Ref.

[184] for the analysis pertaining to spherical symmetry.

The energy spectrum of generalized mean-field Hamil- Aaa A

tonian has been discussed in RE]. The only difference

with the present case is that here the eigenvalue problems fgy

neutrons and protons in E@4) cannot be separated. It is

well known that the eigenvalues ot appear in pairs of
opposite signs. For each quasihole state of enkrgy

(rst,E) )

(rstE) (%6)

O(rstE) = (

RU =R, (1003
UHU ="H, (100b
here
. (0 0 )
U= 1, (101
0 U

and U is a unitary matrix of the single-particle symmetry
operator. For the breve representation used in the present
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study, the symmetry operator is givey [cf. Eq. (9)] s(r,r’)=(- 1)ks;(r, r') (1060
& mn u o
U=WUW" = R , (102
0 (Tc
and
and then
URU=TR, (1033 *
bO(rv r,) = bo(rv r’)! (1073
UHU =H. (103b
In the previous sections we have presented the most general
set of expressions pertaining to the situation when no sym- P 1) == (= D¥pi(r, "), (107b

metries werea priori conserved. Below we discuss conse-
guences of conserved symmetries.

A. Proton-neutron symmetry

- So(r, 1) = =Fy(r, 1), (1079
The standard case of no proton-neutron mixing can be
described by the conserved proton-neutron symmetry given
by
- - i & 1 — (_ 1\k&* ’
Upn=i exp(=imTy) =i exp(—éwﬁ-s):a-a_ (104) S(r, 1) =(=1D§(r,r'), (1079

In other words, the iso-3 signatuteultiplied by i) is then

the conserved symmetry. Note that conservation of projecyherek=1, 2, 3. Due to the fact that the=2 Pauli matrix3?

tion of the i_sospin on the third ax_[me charge cons_ervatih)n is imaginary, the time reversal acts differently on #we2
would require that_the |so_—3 rotayon about an arbitrary anglqSovector components than on tke 1, 3 components of all
be conserved, while the iso-3 signature corresponds only Rovector densities. At the first sight, this seems to be a bi-

rotation aboutr. Within the HFB approach, the charge sym- zarre property. Indeed, the isospin quantum number is intro-

gengr%;?r}?roken in the same way as is the particle numbe(rjuced to take into account the fact that there are two kinds of

. ~ e nucleons in nature, and each kind has its own, apparently
Since theTC-transformed symmetry operator redd5s  ynrelated to one another, time-reversal operation.

=~T5, we obtain from Eq(1033 that However, the use of the standard isospin formalism im-
TP =P, (1059  Plies something more, namely, the neutron wave function
(isospin up can be obtained from the proton wave function
(isospin down by an action of thereal) 7 Pauli matrix.
Therefore, the relative phases of the neutron and proton wave
and analogous properties hold for the mean-field Hamiltofunctions are fixed by the phase convention that has been
nians,h andh, respectively. It is then clear that without the US€d 0 choose the isospin Pauli matrices. As a consequence,
proton-neutron mixing the-h density matrices and Hamil- the t|me—re_versal properties of neutrons and protons are npt
tonians have only th&=0 and 3 isospin components, while @ny more independent from one another. Of course, this is
the p-p ones have(in the breve representatiponly thek  Nnota spurious quirk of the mathematics we use, but a reflec-

=1 and 2 isospin components, cf. E¢89) and (30). tion of a deeper fact that by mixing the neutron and proton
wave functions we introduce complex mixing coefficients

that do affect the time-reversal properties of the mixed wave
o function. Conservation of the time reversal means that these
In the case of time-reversal invariang€=p andp'=p,  mixing coefficients must follow rules dictated by the time
see Eqs(4), the p-h andp-p densities fulfill additional con-  reversal, which implies differences between #we2 andk
ditions =1, 3 isodirections. Therefore, we see here that from basic
R PR arguments it follows that conservation of the time reversal
po(F, 1) = polT, 1), (1063 must imply the isospin symmetry breakifigpe only isorota-

3-3;073-3 =- 103, (105b

B. Time-reversal symmetry

tions that are compatible with the time reversal are those

N — _ (— 1\k.* ’
pdr, T == (= Dp(r,r), (106D 4pout thek=2 isoaxis.(The influence of the time-odd fields
. on the magnitude of the Wigner energy was pointed out in
Solr, 1) = =so(r, 1), (1060  Ref.[12].)
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TABLE lll. Symmetries of thep-h (left) and p-p (right) densities in general cagro conserved symme-
tries imposey and in case of the time-reversal symmetry conserved. @sland imaginary(Im) parts are
symmetric(S) or antisymmetriqA) under exchange of their spatial arguments, as indicated in the table.

General Time reversal General Time reversal

Density Re Im Re Im Density Re Im Re Im
po(r,r’) S A S 0 polr, r’) A A A 0
po(r, 1) S A 0 A po(r,r’) S S 0 S
prar,r’) S A S 0 P13, 1) S S S 0
So(r,r’) S A 0 A S(r,r’) S S 0 S
sy(r,r’) S A S 0 5(r,r’) A A A 0
Spar, r') S A 0 A SR A A 0 A

Table Ill summarizes properties pth and p-p densities  obtained for specific phase conventions and symmetries. On
under the exchange of their spatial arguments. When no conhe other hand, as shown in Table IV, the general case cor-
served symmetry is imposed, all densities are complex, angesponding to no conserved symmetri@sg., for rotating
their real and imaginary parts are either symmetric or antistates requires that all thepn densities be complex.
symmetric. For conserved time reversal, all densities become To summarize this section, we now enumerate all nonzero
either real or imaginary and are either symmetric or antisymgensities when the time reversal is conserved or not, and/or
metric. Recall that symmetric parts contribute only to par-the proton-neutron mixing is present or not. By counting as

ticle, kinetic, spin, spin-kinetic, and tensor-kinetic local den-,ne gensity each component of a vector, tensor, or isovector,
sities, while the antisymmetric parts contribute only to the,;o gptain the following four options.

current and spin-current local densities. Therefore, local den- (i) 1° time-reversal broken plus proton-neutron mixing.
sities are complex, real, imaginary, or vanishing, depending (a) 23 realp-h isoscalar densitiegig(r), 7o(r), Jo(r)
on whether time-reversal, proton-neutron, or both symme- : 0N /v TOR /o HORT
tries are conserved. Table IV presents these properties for asl‘P(r)’ To(r). Jo(r), andFo(r). R
local p-h and p-p densities. (b) 69 real p-h isovector densitiesp(r), 7(r), J(r),
In previous studies, e.g., in Reff3,62,65,152,158 the &), T(r), i), andF(r).
T=1 pairing fields were associated with the real part of the . o -
pairing tensor, while th&=0 pairing was represented by the © ,12 complexp-p isoscalar densitiesi(r), To(r),
imaginary part of the pairing tensor. Such a structure wago(r), andF(r).

TABLE IV. Properties of the locap-h and p-p densities in general cag@o conserved symmetries
imposed, and in case of the time-reversal, proton-neutron, or both symmetries conserved=THg 2, or
3 isospin components of densities are compl€x real (R), imaginary(l), or zero(0), as indicated in the

table.
General Time reversal Proton neutron Both

k 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Pk R R R R R R 0 R R 0 0 R R 0 0 R
Tk R R R R R R 0 R R 0 0 R R 0 0 R
Ji R R R R R R 0 R R 0 0 R R 0 0 R
Sk R R R R 0 0 R 0 R 0 0 R 0 0 0 0
Tk R R R R 0 0 R 0 R 0 0 R 0 0 0 0
Jk R R R R 0 0 R 0 R 0 0 R 0 0 0 0
Fy R R R R 0 0 R 0 R 0 0 R 0 0 0 0
Pk 0 C C C 0 R | R 0 C C 0 0 R | 0
Tk 0 C C C 0 R | R 0 C C 0 0 R | 0
jk 0 C C C 0 R | R 0 C C 0 0 R | 0
% C 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0
i—k C 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0
jk C 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0
= C 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0
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(d) 33 complexp-p isovector densitiesp(r), Ar),  approach. In some models, tfie:0 andT=1 pairing modes
z are mutually exclusive, while in others they are not. What is
and_q(r); . . clear, however, that predictions of calculations that impose
(if) 2° time-reversal conserved plus proton-neutron Mix-some symmetry constrainghich can rule out the presence

Ing. ) . of some pairing fieldsshould be taken with the grain of salt.
(@ 11 real p-h isoscalar densitiespo(r), 7(r), and In this work, we propose the most general nuclear energy-
Jo(r).- . . density functional which is quadratic in isoscalar and isovec-
(b) 30 real p-h isovector densitiesp; (1), 713(r),  tor densities. To this end, we discuss the isospin structure of
J1.4(1), Sy(r), Ta(r), jo(r), andJx(r). § the density matrices and self-consistent mean fields that ap-
(c) 12 imaginaryp-p isoscalar densitiess,(r), To(r),  Ppear in the coordinate-space HFB theory allowing for a mi-
Io(f), andlEO(r). croscopic description of pairing correlations in all isospin

channels. The resulting expressions incorporate an arbitrary

. ' ) l mixing between protons and neutrons. No particular self-
J14(r) and 11 imaginanp,(r), 7,(r), Ja(r). consistent symmetries of the energy-density functional have
(iii) 3° time-reversal broken, no proton-neutron mixing. been imposed, however, the consequences of the time-
(8 23 realp-h isoscalar densitiegio(r), 7(r), Jo(r),  reversal and proton-neutron symmetry are discussed. The ob-

(d) 33 p-p isovector densities, 22 re@h 5(r), 71 4(r),

So(r), To(r), jo(r), andFq(r). tained nuclear energy-density function@b)—(41) does not
(b) 23 realp-h isovector densitiess(r), 73(r), J3(r),  have to be related to any given local potential. However, if
s3(r), Ta(r), ja(r), andF5(r). the underlying potential is local and velocity independent,
(c) 22 complex p-p isovector densities:p; o(r),  the potential energy density is invariant with respect to a
7140, andjl A1) local gauge transformation. The resulting densities appear in

(iv) 4° time-reversal conserved, no proton-neutron mix-Cerain gauge-invariant combinatiod?) and (48) which
ing. lead to a S|gn|f|c§1nt simplification gf the fungtlonal. .
(a) 11 realp-h isoscalar densities(r), 7(r), and The selfjconS|stent wave functions qbtamed by splvmg
Jo(1). the generalized HFB equations are not eigenstates of isospin.
This is a serious drawback of the quasiparticle approach. To
3(0) cure this problem, isospin should be restored by means of,
s\ . . . . e.g., projection techniques. While this can be carried out in a
. () 22 p-p isovector denS|tv|es, 11 regh(r), 7,(r), straightforward manner for energy functionals that are re-
Ja(r) and 11 imaginary,(r), 7»(r), Ja(r). lated to a two-body potential, the restoration of spontane-
ously broken symmetries of a general density functional
poses a conceptional dilemmiB385-188 and a serious chal-
lenge that is left for the future work.

(b) 11 realp-h isovector densitiesps(r), 75(r), and
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