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Two-neutron transfer in nuclei close to the drip line

E. Khan! N. Sandulesc@?> Nguyen Van Giaf; and M. Grassb
Ynstitut de Physique Nucléaire, JR;-CNRS, 91406 Orsay, France
?|nstitute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Romania
3Royal Institute of Technology, SCFAB, SE-10691 Stockholm, Sweden
(Received 22 May 2003; published 30 January 2004

We investigate the two-neutron transfer modes induce(t ) reactions in neutron-rich oxygen isotopes.
The nuclear response to the pair transfer is calculated in the framework of continuum quasiparticle random
phase approximatiotQRPA). The cQRPA allows a consistent determination of the residual interaction and an
exact treatment of the continuum coupling. Tlagp) cross sections are calculated within the distorted wave
Born approximation approach and the form factors are evaluated by different methods: macroscopically,
following the Bayman and Kallio method, and fully microscopically. A significant part of the cross section
corresponds to a high-lying collective mode built entirely upon continuum quasiparticle states.
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[. INTRODUCTION tently. The aim of this paper is to present such a consistent
description of the two-particle transfer in the framework of
Two-neutron transfer reactions such(g9) or (p,t) have  the continuum-QRPACQRPA approach recently developed
been used for many years in order to study the nuclear paith Ref. [14]. In the cQRPA the continuum is treated exactly
ing correlations(for a recent review see Rdfl]). The cor- and the residual interaction is derived from the same effec-
responding pair transfer modes are usually described in terniive force used in the Hartree-Fock-Bogoliub@FB) ap-
of pairing vibrations or pairing rotation2,3]. proximation for calculating the ground state properties. In
High-energy collective pairing modes, called giant pairingthis way the fluctuations of the particle and pairing densities,
vibrations(gpv), were also predictef#,5], but they have not which are coupled together in the cQRPA, are calculated on
been observed yet. Recently there is a renewed interest fthe same footing with the ground state densities.
the study of two-neutron transfer reactions with weakly The paper is organized as follows. In Sec. Il we present
bound exotic nuclei. These reactions would provide valuablé¢he cQRPA model and show how the response function for
information about the pairing correlations in nuclei far from the two-particle transfer is calculated within this model. In
stability. The use of two-neutron transfer reactions with ex-Sec. Ill we discuss the response function for the particular
otic nuclei can also increase the chance of exciting the gpease of two neutrons transferred to the neutron-rich oxygen
mode, as discussed recently in Ri&]. isotopes. In Sec. IV we present the calculation of cross sec-
The two-particle transfer modes are commonly describedions for the transfer reactioffO(t, p).
by the particle-particle(pp) random phase approximation

[7.8] in the case of closed shell nuclei and by the quasipar-,, 1.,c CONTINUUM-QRPA AND THE TWO-PARTICLE

ticle random phase approximatiq@RPA) [3,6] in open RESPONSE
shell nuclei. Most of the cross section calculations use the
distorted wave Born approximatiqgbWBA). The form fac- Due to the concept of quasipartigigp), the QRPA unifies

tor is usually calculated by means of macroscopic modelsn the same ground the particle-hgfgh) RPA and the pp-
[9,1Q or by using the Bayman and Kallio meth@til]. Sev- RPA with the inclusion of the pairing effects. In the
eral aspects of the model are under discussion, especially feontinuum-QRPA model, presented in detail in R&#], the
absolute cross section calculatidii]: one-step or sequen- response of the nuclear system to an external perturbation is
tial two-step process, triton wave function, zero-range ofobtained from the time-dependent HFBDHFB) equations
finite-range DWBA. The so-calledS)[13] approximation is  [15]

also generally used to calculate the cross section in the

DWBA framework. In the latter approximation, the QRPA IR

solutions act as a spectroscopic fadi®}; therefore the mi- o= [H(t) + 71, R(O)], (1)
croscopic information does not affect the shape of the form

factor. where’R and’H are the time-dependent generalized density

The calculation of the two-particle transfer modes in nu-and the HFB Hamiltonian, respectively: is the external
clei far from stability presents additional difficulties com- oscillating field,
pared to the case of stable nuclei. One of such difficulties is
related to the continuum coupling, which becomes important F=Fe'“'+H.c. (2
in nuclei close to the drip lines. Therefore in nuclei close to
the drip lines the pair transfer, the ground state propertiedn Eq. (2) F includes both particle-hole and two-particle
and the continuum coupling should be calculated consistransfer operators,
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T . . g . —
andc/, G are the particle creation and annihilation operators, Z/{ij-'z(ra)uijﬂz(r o)
respectively. - —, (11
In the small amplitude limit the TDHFB equations be- ho+(E+E)+iny
come whereE; are the gp energies aig; are 3x 2 matrices ex-
hoR' =[H', RO +[HO, R']+[F, R, (4) pressed in term of the two components of the HFB wave

functions[14]. The ¥ symbol in Eq.(11) indicates that the
where the prime stands for the corresponding perturbedummation is taken both over the discrete and the continuum
quantity. The variation of the generalized densiy is ex-  qp states.
pressed in term of three quantities, namely, ', andx’, The QRPA Green’s function can be used for calculating
which are written as a column vector, the strength function associated with various external pertur-
bations. For instance, the transitions from the ground state to
the excited states induced by a particle-hole external field
! (5) can be described by the strength function

!

!

—

p_

=l X

S w) :—llmf FIY(O)GYr, r"; w)Fr")dr dr’,

wherepi’j:<0|c;rci|’> is the variation of the particle density, ™
w5 =(0lcici|") and & =(0|c]c]|") are the fluctuations of the (12)
pairing tensor associated with the pairing vibrations and ) ,
|') denotes the change of the ground state wave fund@ipn whereG** is the (ph,ph component of the QRPA Green's
due to the external field. In contrast with the RPA where onefunCt'on' Examples of such calculations can be found in
needs to know only the change of the ph densit}), the Ref. [14]. . . N .
variation of the three quantiti€s) has to be calculated in the . The qua_lnltlty of interest in .thls work is the strength func-
QRPA. In the three dimensional space introduced in(&y. tion describing the 'two—partlcle transfer frpm the ground
the first dimension represents the ph subspace, the secoﬁﬁate of a _nucleus with ”“C'eo_”s to the exmted_ sta_ltes of a
the particle-particlépp) one, and the third the hole-holeh) nucleus withA+2 nucleons. This strength function is
one. The response matrix has therefore nine coupled ele- 1 .
ments in QRPA, compared to one in the RPA formalism. S(w) = ——|mf F2(r)G?r,r";w)F2(r")dr dr’,

The variation of the HFB Hamiltonian is given by m

H'=Vp', (6)

(13

where G?? denotes theépp,pp component of the Green'’s
whereV is the matrix of the residual interaction expressed infunction.
terms of the second derivatives of the HFB energy func-
tional, namely,
I1l. PAIR TRANSFER IN OXYGEN ISOTOPES:
V(o1 o) = FE  ap=1,23. STRENGTH FUNCTIONS
dpp(r'a’) d pa(r o)

In the cQRPA model presented above one should calculate
(7) in the first step the ground state of the system within the
continuum-HFB(cHFB) approacH16]. The cHFB equations
are solved in coordinate space assuming spherical symmetry.
In the cHFB calculations presented here the mean field quan-
tities are evaluated using the Skyrme interaction S[4,
while for the pairing interaction we take a zero-range

In the above equation the notatianmeans that whenever
is 2 or 3 thena is 3 or 2.

Introducing for the external field the three dimensional
column vector

Fi1 density-dependent force. The parameters of the pairing force

F=|F2 ®) used here for calculating the neutron-rich oxygen isotopes
o | are taken the same as in H&#]. These parameters are fixed

F for a model space determined by a qp energy cutoff equal to

50 MeV and a maximum angular momentym9/2. The HF
single-particle and HFB gp energies corresponding tosthe
p' =GF, (9)  shell and to the fy,, state are listed in Table I. In both HF
and cHFB calculations the staté,} is a wide resonance for
18-220 nuclei, while the statedy, is a narrow resonance.

In the cQRPA calculations we include the full discrete and

the density changes can be written in the standard form

whereG is the QRPA Green’s function obeying the Bethe-
Salpeter equation,

G=(1-GyV) Gy=Gy+GyVG. (10) continuum gp spectrum up to 50 MeV. These states, which
generate a two-quasiparticle spectrum with a maximum en-
The unperturbed Green’s functid@®y, has the form ergy of 100 MeV, are used to construct the unperturbed
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TABLE |. 182028 single-particle and single-quasiparticle neu- 2 I
tron energies calculated in the Hartree-Fock and the continuum- 18 }F e G
HFB models, respectively. The Skyrme interaction used is SLy4 and 1.6 | i
the resonances are displayed in bracketergy;width. Sial
180 200 220 % 1.2 |
=
1ds), HF -6.7 -7.0 -7.45 sos L
1ds), cHFB 2.26 2.08 2.30 o) 06 -
2517 HF -4.0 -4.2 -4.6 e 0’4 ]
23y, cHFB 3.46 2.28 1.05 ool
1ds/, HF (0.46;0.02 (0.51;0.03 (0.42;0.02 o -
1ds), cHFB (7.74,0.13 (6.60;0.29 (5.39;0.03 00 25 5 75 10125 15 17.5 20 225
1f4 HF (5.50;1.35 (5.24;1.24 (4.86;1.04 E* (MeV)

1f;,  CHFB  (12.77;1.13  (12.14;0.83  (10.05;0.69

FIG. 2. The response function for the two-neutron transfer on
220. The unperturbed response is in solid line and the QRPA re-
Green’s functiorG,. The residual interaction is derived from sponse in dashed line.

the two-body force used in cHFB according to E2.7). The . :
contribution given by the velocity-dependent terms of themtense peak located at zero energy corresponds (o the pair

; . Lo . transfer to the collective Goldstone mode associated with
Skyrme force to the residual interaction is calculated in th

. > : d 1N N&article number fluctuations. For the isotop&8%0 the next
Landau-Migdal approximation. Due to this approximation 4. peaks located at higher energy correspond to a pair

the self-con3|ste_ncy of the HI_:B+QRPA equations is not exyansferred mainly to the states,2 and Xs,, respectively.
actly preserved in the. numer!cal calculations. Thereforg, th?or the isotope’?0, the peak located around 8.6 MeV cor-
spurious mode associated with the center-of-mass motion k&sponds to a pair transferred mainly to the stathg,.1For
not at zero energy. In order to put this spurious mode to zerg|| the isotopes we can see a broad resonant structure around
energy we renormalize in the cQRPA calculations the20 MeV which is built mainly upon the single-particle reso-
Skyrme force by 20% for all the oxygen isotopes. In additionnant state 1;,,. This two-quasiparticle broad resonance has
to this spurious mode, there is also a spurious Goldstonthe characteristics of a giant pairing vibratigd—6]. It
mode connected to the particle number, which is conserveghould be noted that the continuum treatment affects the
only in average in the HFB approximation. This spuriousmagnitude of low energy states for the three responses. This
mode is fixed to zero energy by changing the strength of thés due to the collective nature of these states, since unbound
pairing force by a small amount, of maximum 5% for all the configurations such as théds,)? contribute to these low-
calculated isotopes. The strength function for the two-ying states. This points to the necessity to use exact con-
neutron transfer is calculated using E@3). For the radial tinuum calculations even to predict transitions towards low-
function F24r) we take the formrt, which is equal to the lying states. The state at 8.6 MeV on t®+2n spectrum is
unity for the L=0 pair transfer mode considered hé6s. embedded in the continuum and it is naturally more aﬁgcted
The unperturbed Green’s function is calculated with an ayPy the continuum treatment. The influence of the residual
eraging intervaly equal to 0.16L.0) MeV for excitations interaction on the pair transfer'njodes is |Ilustrated in Fig. 2
energies belowabove 11 MeV. for the_qase 9F20_+ 2n, emphasizing the collect_|ve nature of
The results for the strength function corresponding to 4N€ Pairing vibrationg3]. As expected, the residual interac-

neutron pair transferred to the oxygen isotope&:20 are tion shifts down the position of t.he two-quasipatrticle reso-
shown in Fig. 1. The exact continuum treatment is also comPant state located at 10.8 MeV in tii&, response and in-

pared to box discretization calculationthe box radius is C'€ases its strength. This peak in B, response
22.5 fm, and the averaging intervalis 0.15 Me\j. The first ~ COrresponds to the addition of two neutron qp on(the;)*
subshell. Apart from that, we can also notice a sensitive

change in the spreading widths of the two-quasiparticle reso-
nant states when the residual interaction is turned on. Thus,
due to the mixing of the configuratiori4f;,)? and (1ds/,)?

by the residual interaction, the broad peak around 18 MeV
becomes narrower and the narrow peak around 10 MeV be-
comes wider. This is a general effect which appears when-
ever in the two-body wave functions wide and narrow single-

particle resonant states are mixed togef{is.

101G 1. The QRPA response for the two-neutron transfer on IV. PAIR TRANSFER IN OXYGEN ISOTOPES:
2028, The exact continuum calculations are in solid lines
. . .. . CROSS SECTIONS
whereas the calculations with box boundary conditions are in
dashed lines. The results are displayed as functioris ahe exci- The DWBA calculation of the cross section for the two-
tation energy with respect to the final nucleus ground state. neutron transfer requires the form factor, which represents

S(E" MeV™h
S = N Wb W

O =W R
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TABLE II. The parameters of the optical potentjall,22 used for the transfer reactidfO(t, p) at 15 MeV/nucleonV is the depth used
for the real part of the potentialy for the imaginary absorptive paitys for the surface imaginary part, an, for the spin-orbit part. The
depths are given in MeV and the radii and diffuseness parameters in fm.

\ f'o N W 'w ay Ws Mwg Ay Vso I'so aso
220 +t 156 1.20 0.72 28 1.40 0.84 0 0 0 25 1.20 0.72
240 +p 50.6 1.17 0.75 5.9 1.32 0.74 6.0 1.32 0.74 6.2 1.01 0.75

the correlation between the two neutrons and the initial Bo
nucleus[19]. In order to compare the influence of various B= 3A° (16)
approximations, the form factor is calculated below by three
different ways: macroscopically, by the so-called BaymanEquation(15) is referred to the macroscopic form factor.
and Kallio method, and using the cQRPA model. The calcu- In this model for the form factor the transfer is considered
lations based on the cQRPA allow for a straightforward studyas an inelastic process corresponding to a deformation pa-
of the effects of the pairing correlations and of the continuunrameter given by Eq(16). One advantage of this model is
coupling upon the cross section. The form factors and théhat the two-particle transfer cross section can be calculated
cross sections will be calculated below for the particularby knowing only the optical potential in the entrance chan-
transfer reactiof?0(t, p). nel. It should be stressed that EG4) assumes that the op-
tical potential changes smoothly with the number of nucle-
ons. Therefore, one expects that this model for the form
factor works better for heavy nuclei.

In Refs. [9,10 the form factor is calculated from the The cross section for the reactié®O(t, p) is calculated in
variation of the optical potentid) with respect to the change the DWBA approximation using thecisss code [20]. The
of the number of particles: reaction energy is chosen to be 15 MeV/nucleon. For the
optical potential corresponding to the systéf®+t we use
the potential derived by Becchetti and Greenlg2H. The
parameters corresponding to this potential are summarized in
Table Il. Theg, parameter associated with a particular trans-
wheref;, is the so-called pairing deformation parameter repfer mode is obtained by taking the average of the square root
resenting the strength of the two-neutron pairing transfer reof the integral of the strength function over the energy region

A. The macroscopic form factor

du
F(r) = Boga: (14)

actioq. _ _ corresponding to that mode. The calculations are performed
Using for the nuclear radius the relatidt=r,A'® one  for the peak located at 8.6 MeV and for the broad resonant
gets region located around 16 MeV. The angular distribution cor-
responding to the state located at 8.6 MeV, displayed in Fig.
_ ndU 3, is showing a typical diffraction pattern. For the other state
F(r)=pBpR—, (15 o PO
dr the pattern of the angular distribution is the same. The only

difference is in their magnitude, which depends on fhe
where value. Table Il shows the total cross sections obtained for
the two states mentioned above. The continuum treatment
affects the cross section by 10% to 20%.

22O(t,p)
1 F E; ;=15 MeV/nucleon B. The Bayman and Kallio form factor

Bayman and Kallio have proposed a method to calculate
the form factor on a semimicroscopic ground. In this method

do/dSQ2 (mb/sr)

TABLE IIl. Total cross sectiorimb) of the 220(t, p) reaction at
E=15 MeV/nucleon. The calculations are performed for the reso-
nant states of thé%0+2n system located at 8.6 MeV and for the
giant pairing vibration(gpv) mode. The results are obtained using
the macroscopic model for the form factfd]. The first(second
[T T P Y A S S row shows the results obtained with b@gontinuum boundary

conditions.
0, m. (deg) E=8.6 MeV gpv
FIG. 3. DWBA calculations for the reactio?0(t,p) at Box 0.353 0.523
15 MeV/nucleon calculated with a macroscopic form fadteee Continuum 0.281 0.455

text for detail3.
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FIG. 4. The microscopic form factors for the lowest energy state 0 1020 30 40 50 60
in the 220+ 2n system. The solid line is obtained using the Bayman 6 (deg)
and Kallio method, and the dashed line with the unperturGgd cm-
response. FIG. 5. 15 MeV/nucleorf?0(t, p) DWBA calculations using the
form factors shown in Fig. 4.
the two-particle wave function of the transferred pair is ex- C. The microscopic form factor

pressed in term of the single-particle wave functions corre- .
sponding to a Woods-Saxon poten{isl]. The spectroscopic In the nuclear response theory the transition from.the
factors of the single-particle states are an input of the Calcuground.st%teb to r:he exc!ted sdtdte) .Of (tjh?. sagnke nucleus is
lation. An example of such calculation for the form factor is etermined by the transition density defined by
shown in Fig. 4 The calculation is for the configuration p"(ro) ={0|c'(r o)c(r o)|v), (17)
(2s;/5)? and for the??0+2n system. The Woods-Saxon po- ) _ . . _ _
tential was obtained by the separation energy method, wheiéherec'(ro) is the particle creation operator in coordinate
the depth of the potential is set in order to reproduce théPace. The corresponding quantity for describing pair trans-
binding energy of the single particle to the core. The radiud®’ Processes is the pair transition density defined by
and the diffuseness of the potential were taken at the stan- K*(r o) = 0|c(ra)c(r o)|v), (18)
dard values of 1.25 fm and 0.65 fm, respectively. For the B o
spectroscopic factor of the single-particle state we take thwherec'(ro)=-20c'(r—o) is its time reversed counterpart.
value 1. As can be seen in Fig. 4, the Bayman and KallioThe pair transition density defined above determines the
form factor has also negative values. This is due to the fadfansition from the ground state of a nuclei wAhnucleons
that in this calculation the two neutrons are not considered g @ statgv) of a nucleus withA+2 nucleons. This quantity
the same position in the two-neutron wave function. is the output of cQRPA calculations. The form factor for the
The previous??0+t Becchetti and Greenlees optical po- pair transfer is obtained by folding the pair transition density
tential [21] is used for the entrance channel and #@+p «” [Eq. (18)] with the interaction acting between the trans-

Becchetti and Greenle¢22] for the exit channel, in order to ferred pairt.and thedrﬁsidu?kl] frggme[n;]. In th? tzhero.—r?nget.
calculate the DWBA cross section. The resulting optical po_approxma lon used here he dependence ot this interaction

tential parameters are given in Table Il. The DWBA calcula-2" the relative distance between the pair and the_ frag_ment IS
) ; . taken as a delta force. Therefore in this approximation the
tions are performed with thewuck4 [23] code and using

L . L pair transition density(18) coincides with the form factor
the zero-range approximation. In this approximation the tWOrJ;

) 19].
neetrons and the reS|duaI. fragment are located at the.sa e Figure 4 displays the pair transition density corresponding
point and the range function is expressed through a simplg, the lowest energy state of the final nucleus in %@
constantD, [19]. For the(t, p) reaction we takeDo=2.43 o system, derived from th&, response, i.e., without tak-
X 10" MeV? fm® [24]. This value relies on measurements of ing into account the residual interaction between the quasi-
the 2n+p system and may be subject to uncertainfi&d].  particles. Thus the dashed curve corresponds to a pair trans-
The angular distribution for the(t,p) reaction atE  ferred in the pure two-quasiparticle configurati@s, ;)% and
=15 MeV/nucleon obtained with the Bayman and Kallio is directly comparable to the Bayman and Kallio form factor,
form factor is shown in Fig. 5. As discussed in Refs.shown by the full line, corresponding also to the addition of
[3,12,19, the shape of the angular distribution is usuallya pair of neutrons in a pure two-particle configuration
described correctly by the zero-range approximation, but not2s,,,)%>. As can be seen in Fig. 4, the form factor derived
its magnitude, which is generally underestimated by a largérom the G, response has at large distances a smaller ampli-
amount. Therefore in what follows we will focus our discus-tude compared to the Bayman and Kallio form factor. This is
sion not on the absolute values of the cross sections, bulue to the occupancy of the stats;2 which is different
rather on the relative values obtained using different formfrom zero in the case of th&, response. Another reason is
factors. that in the pair transition density given by Ed.8) the two
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0.1
E=8.6MeV | 0.1 10 %L ®0@tp) E,=15MeV/nucleon
6 ) P
E 7
%0.05 0.05 E
4 N2
3
PN B
00246 8 O 1]
r (fm)
FIG. 6. The QRPA form factors for the 8.6 MeV state and for 0163030405060
the giant pairing vibration region. The form factors obtained with
Ocm. (deg)

box boundary conditions are in solid lines whereas the form factors
obtained with the exact continuum treatment are displayed in

dashed lines. The calculations are done for i@+ 2n system. FIG. 7. DWBA calculations for the 8.6 MeV state. The solid

(dashegl line corresponds to the QRPA results obtained with box
N ~ (exac) boundary conditions. The calculations correspond to the sys-
neutrons are taken to be at the same position whereas in thgmn 220+ 2n.

Bayman and Kallio method the two neutrons are allowed to ] ) o )
be at different positions. fully microscopically. The cross section is evaluated by using

Figure 5 displays the angular distributions for the reactiorf’® DWBA and the zero-range approximation. The response
220t p) at 15 MeV/nucleon. The optical potential we have function exhibits some narrow resonances corresponding to a

used in calculations is the same as above. The angular di air transfer in the single-particle states sif shell and a

tributions are mainly sensitive to the surface part of the forn}ggagnzﬁgkpgﬁtm%h rzgggﬁié‘-r;ir?;eit 'ir?)l;'g ;nee(l;l':i]!){] uizon
H - 7

factor, where the form fgctors calculated W'th. the Bayman,, . larger than the one associated with the lower energy

and Kallio method and witls, show strong variations. The

ifract o hif G transfer modes. Since this high energy transfer mode is
diffraction minima are shifted by around five degrees be+omaq mainly by single-particle states above the valence

tween the two calculations. The angular distribution calcu-pg|| this mode is similar to the giant pairing vibration mode
Ia_ted_ with the Bayman a_nd_ Kallio form facto_r drops ff_iStersuggested long ago. Although such a mode has not been
with increasing angle. This is due to the spatial extension ofjetected yet, the pair transfer reactions involving exotic
the two transferred neutrons which produces the negatlv%osew bound nuclei may offer a better chance for this un-
part of the form factor. In order to see the continuum effectdertaking. On the theoretical side, one needs to make a better
on the form factor, in Fig. 6 we display the transition densi-estimation for the absolute cross section associated with this
ties calculated by solving the QRPA equations with con-mode. Due to the collectivity of the final states the con-
tinuum and box-type asymptotic conditions, for the modetinuum treatment has also an impact on low-lying states. The
located at 8.6 MeV and for the giant pairing vibrations. Theform factors calculated microscopically show an effect of the
corresponding effect on th@, p) angular distribution is il- continuum treatment on the form factor for high energy
lustrated in Fig. 7 for the state located at 8.6 MeV. The effecstates. The angular distributions are mainly affected in their
is large for this state, which is built mainly upon narrow diffraction minima for narrow high energy states. In the case
resonant gp states: the angular distributions are mainly se®f the gpv, no drastic influence of the exact continuum treat-
sitive to the surface of the form factor. From Fig. 6 we canMent is observed. It should be interesting to perform the
see that the continuum treatment has also some effect on tR/VBA calculations without the zero-range approximation in

form factor corresponding to the high energy mode aroun@der to make more quantitative predictions for the cross
16 MeV, especially at small values of the nuclear radius S€ction. This requires to fold the pair transition densities with
However, its effect on the global cross section remains negt_he interaction between the two neutrons and the residual

ligible, about 3%. fragment.
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