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We investigate the two-neutron transfer modes induced byst, pd reactions in neutron-rich oxygen isotopes.
The nuclear response to the pair transfer is calculated in the framework of continuum quasiparticle random
phase approximation(cQRPA). The cQRPA allows a consistent determination of the residual interaction and an
exact treatment of the continuum coupling. Thest, pd cross sections are calculated within the distorted wave
Born approximation approach and the form factors are evaluated by different methods: macroscopically,
following the Bayman and Kallio method, and fully microscopically. A significant part of the cross section
corresponds to a high-lying collective mode built entirely upon continuum quasiparticle states.
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I. INTRODUCTION

Two-neutron transfer reactions such asst, pd or sp, td have
been used for many years in order to study the nuclear pair-
ing correlations(for a recent review see Ref.[1]). The cor-
responding pair transfer modes are usually described in terms
of pairing vibrations or pairing rotations[2,3].

High-energy collective pairing modes, called giant pairing
vibrations(gpv), were also predicted[4,5], but they have not
been observed yet. Recently there is a renewed interest for
the study of two-neutron transfer reactions with weakly
bound exotic nuclei. These reactions would provide valuable
information about the pairing correlations in nuclei far from
stability. The use of two-neutron transfer reactions with ex-
otic nuclei can also increase the chance of exciting the gpv
mode, as discussed recently in Ref.[6].

The two-particle transfer modes are commonly described
by the particle-particle(pp) random phase approximation
[7,8] in the case of closed shell nuclei and by the quasipar-
ticle random phase approximation(QRPA) [3,6] in open
shell nuclei. Most of the cross section calculations use the
distorted wave Born approximation(DWBA). The form fac-
tor is usually calculated by means of macroscopic models
[9,10] or by using the Bayman and Kallio method[11]. Sev-
eral aspects of the model are under discussion, especially for
absolute cross section calculations[12]: one-step or sequen-
tial two-step process, triton wave function, zero-range or
finite-range DWBA. The so-called 0S [13] approximation is
also generally used to calculate the cross section in the
DWBA framework. In the latter approximation, the QRPA
solutions act as a spectroscopic factor[3], therefore the mi-
croscopic information does not affect the shape of the form
factor.

The calculation of the two-particle transfer modes in nu-
clei far from stability presents additional difficulties com-
pared to the case of stable nuclei. One of such difficulties is
related to the continuum coupling, which becomes important
in nuclei close to the drip lines. Therefore in nuclei close to
the drip lines the pair transfer, the ground state properties,
and the continuum coupling should be calculated consis-

tently. The aim of this paper is to present such a consistent
description of the two-particle transfer in the framework of
the continuum-QRPA(cQRPA) approach recently developed
in Ref. [14]. In the cQRPA the continuum is treated exactly
and the residual interaction is derived from the same effec-
tive force used in the Hartree-Fock-Bogoliubov(HFB) ap-
proximation for calculating the ground state properties. In
this way the fluctuations of the particle and pairing densities,
which are coupled together in the cQRPA, are calculated on
the same footing with the ground state densities.

The paper is organized as follows. In Sec. II we present
the cQRPA model and show how the response function for
the two-particle transfer is calculated within this model. In
Sec. III we discuss the response function for the particular
case of two neutrons transferred to the neutron-rich oxygen
isotopes. In Sec. IV we present the calculation of cross sec-
tions for the transfer reaction22Ost, pd.

II. THE CONTINUUM-QRPA AND THE TWO-PARTICLE
RESPONSE

Due to the concept of quasiparticle(qp), the QRPA unifies
on the same ground the particle-hole(ph) RPA and the pp-
RPA with the inclusion of the pairing effects. In the
continuum-QRPA model, presented in detail in Ref.[14], the
response of the nuclear system to an external perturbation is
obtained from the time-dependent HFB(TDHFB) equations
[15]

i"
] R
] t

= fHstd + Fstd, Rstdg, s1d

whereR andH are the time-dependent generalized density
and the HFB Hamiltonian, respectively.F is the external
oscillating field,

F = Fe−ivt + H.c. s2d

In Eq. s2d F includes both particle-hole and two-particle
transfer operators,
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F = o
i j

Fij
11ci

†cj + o
i j

sFij
12ci

†cj
† + Fij

21cicjd, s3d

andci
†, ci are the particle creation and annihilation operators,

respectively.
In the small amplitude limit the TDHFB equations be-

come

"vR8 = fH8, R0g + fH0, R8g + fF, R0g, s4d

where the prime stands for the corresponding perturbed
quantity. The variation of the generalized densityR8 is ex-
pressed in term of three quantities, namely,r8, k8, andk8,
which are written as a column vector,

r8 = 1r8

k8

k8
2 , s5d

whereri j8 =k0ucj
†ciu8l is the variation of the particle density,

ki j8 =k0ucjciu8l and ki j8 =k0ucj
†ci

†u8l are the fluctuations of the
pairing tensor associated with the pairing vibrations and
u8l denotes the change of the ground state wave functionu0l
due to the external field. In contrast with the RPA where one
needs to know only the change of the ph densitysr8d, the
variation of the three quantitiess5d has to be calculated in the
QRPA. In the three dimensional space introduced in Eq.s5d,
the first dimension represents the ph subspace, the second
the particle-particlesppd one, and the third the hole-holeshhd
one. The response matrix has therefore nine coupled ele-
ments in QRPA, compared to one in the RPA formalism.

The variation of the HFB Hamiltonian is given by

H8 = Vr8, s6d

whereV is the matrix of the residual interaction expressed in
terms of the second derivatives of the HFB energy func-
tional, namely,

Vabsrs, r 8s8d =
]2E

] rbsr 8s8d ] rasrsd
, a, b = 1, 2, 3.

s7d

In the above equation the notationa means that whenevera
is 2 or 3 thena is 3 or 2.

Introducing for the external field the three dimensional
column vector

F = 1F11

F12

F212 , s8d

the density changes can be written in the standard form

r8 = GF, s9d

whereG is the QRPA Green’s function obeying the Bethe-
Salpeter equation,

G = s1 − G0Vd−1G0 = G0 + G0VG . s10d

The unperturbed Green’s functionG0 has the form

G0
absrs, r 8s8;vd =X

i j

Ui j
a1srsdUi j

*b1sr 8s8d
"v − sEi + Ejd + ih

−
Ui j

a2srsdUi j
*b2sr 8s8d

"v + sEi + Ejd + ih
, s11d

whereEi are the qp energies andUi j are 332 matrices ex-
pressed in term of the two components of the HFB wave
functionsf14g. TheX symbol in Eq.s11d indicates that the
summation is taken both over the discrete and the continuum
qp states.

The QRPA Green’s function can be used for calculating
the strength function associated with various external pertur-
bations. For instance, the transitions from the ground state to
the excited states induced by a particle-hole external field
can be described by the strength function

Ssvd = −
1

p
ImE F11*sr dG11sr , r 8;vdF11sr 8ddr dr 8,

s12d

whereG11 is the sph,phd component of the QRPA Green’s
function. Examples of such calculations can be found in
Ref. f14g.

The quantity of interest in this work is the strength func-
tion describing the two-particle transfer from the ground
state of a nucleus withA nucleons to the excited states of a
nucleus withA+2 nucleons. This strength function is

Ssvd = −
1

p
ImE F12*sr dG22sr , r 8;vdF12sr 8ddr dr 8,

s13d

whereG22 denotes thespp,ppd component of the Green’s
function.

III. PAIR TRANSFER IN OXYGEN ISOTOPES:
STRENGTH FUNCTIONS

In the cQRPA model presented above one should calculate
in the first step the ground state of the system within the
continuum-HFB(cHFB) approach[16]. The cHFB equations
are solved in coordinate space assuming spherical symmetry.
In the cHFB calculations presented here the mean field quan-
tities are evaluated using the Skyrme interaction SLy4[17],
while for the pairing interaction we take a zero-range
density-dependent force. The parameters of the pairing force
used here for calculating the neutron-rich oxygen isotopes
are taken the same as in Ref[14]. These parameters are fixed
for a model space determined by a qp energy cutoff equal to
50 MeV and a maximum angular momentumj =9/2. The HF
single-particle and HFB qp energies corresponding to thesd
shell and to the 1f7/2 state are listed in Table I. In both HF
and cHFB calculations the state 1f7/2 is a wide resonance for
18–22O nuclei, while the state 1d3/2 is a narrow resonance.

In the cQRPA calculations we include the full discrete and
continuum qp spectrum up to 50 MeV. These states, which
generate a two-quasiparticle spectrum with a maximum en-
ergy of 100 MeV, are used to construct the unperturbed
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Green’s functionG0. The residual interaction is derived from
the two-body force used in cHFB according to Eq.(2.7). The
contribution given by the velocity-dependent terms of the
Skyrme force to the residual interaction is calculated in the
Landau-Migdal approximation. Due to this approximation
the self-consistency of the HFB+QRPA equations is not ex-
actly preserved in the numerical calculations. Therefore, the
spurious mode associated with the center-of-mass motion is
not at zero energy. In order to put this spurious mode to zero
energy we renormalize in the cQRPA calculations the
Skyrme force by 20% for all the oxygen isotopes. In addition
to this spurious mode, there is also a spurious Goldstone
mode connected to the particle number, which is conserved
only in average in the HFB approximation. This spurious
mode is fixed to zero energy by changing the strength of the
pairing force by a small amount, of maximum 5% for all the
calculated isotopes. The strength function for the two-
neutron transfer is calculated using Eq.(13). For the radial
function F22srd we take the formrL, which is equal to the
unity for the L=0 pair transfer mode considered here[6].
The unperturbed Green’s function is calculated with an av-
eraging intervalh equal to 0.15s1.0d MeV for excitations
energies below(above) 11 MeV.

The results for the strength function corresponding to a
neutron pair transferred to the oxygen isotopes18,20,22O are
shown in Fig. 1. The exact continuum treatment is also com-
pared to box discretization calculations(the box radius is
22.5 fm, and the averaging intervalh is 0.15 MeV). The first

intense peak located at zero energy corresponds to the pair
transfer to the collective Goldstone mode associated with
particle number fluctuations. For the isotopes18,20O the next
two peaks located at higher energy correspond to a pair
transferred mainly to the states 2s1/2 and 1d3/2, respectively.
For the isotope22O, the peak located around 8.6 MeV cor-
responds to a pair transferred mainly to the states 1d3/2. For
all the isotopes we can see a broad resonant structure around
20 MeV which is built mainly upon the single-particle reso-
nant state 1f7/2. This two-quasiparticle broad resonance has
the characteristics of a giant pairing vibration[4–6]. It
should be noted that the continuum treatment affects the
magnitude of low energy states for the three responses. This
is due to the collective nature of these states, since unbound
configurations such as thes1d3/2d2 contribute to these low-
lying states. This points to the necessity to use exact con-
tinuum calculations even to predict transitions towards low-
lying states. The state at 8.6 MeV on the22O+2n spectrum is
embedded in the continuum and it is naturally more affected
by the continuum treatment. The influence of the residual
interaction on the pair transfer modes is illustrated in Fig. 2
for the case of22O+2n, emphasizing the collective nature of
the pairing vibrations[3]. As expected, the residual interac-
tion shifts down the position of the two-quasiparticle reso-
nant state located at 10.8 MeV in theG0 response and in-
creases its strength. This peak in theG0 response
corresponds to the addition of two neutron qp on thes1d3/2d2

subshell. Apart from that, we can also notice a sensitive
change in the spreading widths of the two-quasiparticle reso-
nant states when the residual interaction is turned on. Thus,
due to the mixing of the configurationss1f7/2d2 and s1d3/2d2

by the residual interaction, the broad peak around 18 MeV
becomes narrower and the narrow peak around 10 MeV be-
comes wider. This is a general effect which appears when-
ever in the two-body wave functions wide and narrow single-
particle resonant states are mixed together[18].

IV. PAIR TRANSFER IN OXYGEN ISOTOPES:
CROSS SECTIONS

The DWBA calculation of the cross section for the two-
neutron transfer requires the form factor, which represents

TABLE I. 18,20,22O single-particle and single-quasiparticle neu-
tron energies calculated in the Hartree-Fock and the continuum-
HFB models, respectively. The Skyrme interaction used is SLy4 and
the resonances are displayed in brackets(energy;width).

18O 20O 22O

1d5/2 HF −6.7 27.0 −7.45

1d5/2 cHFB 2.26 2.08 2.30

2s1/2 HF −4.0 −4.2 −4.6

2s1/2 cHFB 3.46 2.28 1.05

1d3/2 HF (0.46;0.02) (0.51;0.03) (0.42;0.02)

1d3/2 cHFB (7.74;0.12) (6.60;0.29) (5.39;0.01)

1f7/2 HF (5.50;1.35) (5.24;1.24) (4.86;1.04)

1f7/2 cHFB (12.77;1.13) (12.14;0.83) (10.05;0.69)

FIG. 1. The QRPA response for the two-neutron transfer on
18,20,22O. The exact continuum calculations are in solid lines
whereas the calculations with box boundary conditions are in
dashed lines. The results are displayed as functions ofE* , the exci-
tation energy with respect to the final nucleus ground state.

FIG. 2. The response function for the two-neutron transfer on
22O. The unperturbed response is in solid line and the QRPA re-
sponse in dashed line.
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the correlation between the two neutrons and the initial
nucleus[19]. In order to compare the influence of various
approximations, the form factor is calculated below by three
different ways: macroscopically, by the so-called Bayman
and Kallio method, and using the cQRPA model. The calcu-
lations based on the cQRPA allow for a straightforward study
of the effects of the pairing correlations and of the continuum
coupling upon the cross section. The form factors and the
cross sections will be calculated below for the particular
transfer reaction22Ost, pd.

A. The macroscopic form factor

In Refs. [9,10] the form factor is calculated from the
variation of the optical potentialU with respect to the change
of the number of particles:

Fsrd = bp
dU

dA
, s14d

wherebp is the so-called pairing deformation parameter rep-
resenting the strength of the two-neutron pairing transfer re-
action.

Using for the nuclear radius the relationR=r0A
1/3 one

gets

Fsrd = bR
dU

dr
, s15d

where

b =
bp

3A
. s16d

Equations15d is referred to the macroscopic form factor.
In this model for the form factor the transfer is considered

as an inelastic process corresponding to a deformation pa-
rameter given by Eq.(16). One advantage of this model is
that the two-particle transfer cross section can be calculated
by knowing only the optical potential in the entrance chan-
nel. It should be stressed that Eq.(14) assumes that the op-
tical potential changes smoothly with the number of nucle-
ons. Therefore, one expects that this model for the form
factor works better for heavy nuclei.

The cross section for the reaction22Ost, pd is calculated in
the DWBA approximation using theECIS88 code [20]. The
reaction energy is chosen to be 15 MeV/nucleon. For the
optical potential corresponding to the system22O+t we use
the potential derived by Becchetti and Greenlees[21]. The
parameters corresponding to this potential are summarized in
Table II. Thebp parameter associated with a particular trans-
fer mode is obtained by taking the average of the square root
of the integral of the strength function over the energy region
corresponding to that mode. The calculations are performed
for the peak located at 8.6 MeV and for the broad resonant
region located around 16 MeV. The angular distribution cor-
responding to the state located at 8.6 MeV, displayed in Fig.
3, is showing a typical diffraction pattern. For the other state
the pattern of the angular distribution is the same. The only
difference is in their magnitude, which depends on thebp
value. Table III shows the total cross sections obtained for
the two states mentioned above. The continuum treatment
affects the cross section by 10% to 20%.

B. The Bayman and Kallio form factor

Bayman and Kallio have proposed a method to calculate
the form factor on a semimicroscopic ground. In this method

FIG. 3. DWBA calculations for the reaction22Ost, pd at
15 MeV/nucleon calculated with a macroscopic form factor(see
text for details).

TABLE II. The parameters of the optical potential[21,22] used for the transfer reaction22Ost, pd at 15 MeV/nucleon.V is the depth used
for the real part of the potential,W for the imaginary absorptive part,Ws for the surface imaginary part, andVso for the spin-orbit part. The
depths are given in MeV and the radii and diffuseness parameters in fm.

V r0 a0 W rW aW WS rWS
aWS

Vso rso aso

22O+t 156 1.20 0.72 28 1.40 0.84 0 0 0 2.5 1.20 0.72
24O+p 50.6 1.17 0.75 5.9 1.32 0.74 6.0 1.32 0.74 6.2 1.01 0.75

TABLE III. Total cross section(mb) of the 22Ost, pd reaction at
E=15 MeV/nucleon. The calculations are performed for the reso-
nant states of the22O+2n system located at 8.6 MeV and for the
giant pairing vibration(gpv) mode. The results are obtained using
the macroscopic model for the form factor[1]. The first (second)
row shows the results obtained with box(continuum) boundary
conditions.

E=8.6 MeV gpv

Box 0.353 0.523

Continuum 0.281 0.455
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the two-particle wave function of the transferred pair is ex-
pressed in term of the single-particle wave functions corre-
sponding to a Woods-Saxon potential[11]. The spectroscopic
factors of the single-particle states are an input of the calcu-
lation. An example of such calculation for the form factor is
shown in Fig. 4 The calculation is for the configuration
s2s1/2d2 and for the22O+2n system. The Woods-Saxon po-
tential was obtained by the separation energy method, where
the depth of the potential is set in order to reproduce the
binding energy of the single particle to the core. The radius
and the diffuseness of the potential were taken at the stan-
dard values of 1.25 fm and 0.65 fm, respectively. For the
spectroscopic factor of the single-particle state we take the
value 1. As can be seen in Fig. 4, the Bayman and Kallio
form factor has also negative values. This is due to the fact
that in this calculation the two neutrons are not considered at
the same position in the two-neutron wave function.

The previous22O+t Becchetti and Greenlees optical po-
tential [21] is used for the entrance channel and the22O+p
Becchetti and Greenlees[22] for the exit channel, in order to
calculate the DWBA cross section. The resulting optical po-
tential parameters are given in Table II. The DWBA calcula-
tions are performed with theDWUCK4 [23] code and using
the zero-range approximation. In this approximation the two-
neutrons and the residual fragment are located at the same
point and the range function is expressed through a simple
constantD0 [19]. For the st, pd reaction we takeD0=2.43
3104 MeV2 fm3 [24]. This value relies on measurements of
the 2n+p system and may be subject to uncertainties[19].
The angular distribution for thest, pd reaction at E
=15 MeV/nucleon obtained with the Bayman and Kallio
form factor is shown in Fig. 5. As discussed in Refs.
[3,12,19], the shape of the angular distribution is usually
described correctly by the zero-range approximation, but not
its magnitude, which is generally underestimated by a large
amount. Therefore in what follows we will focus our discus-
sion not on the absolute values of the cross sections, but
rather on the relative values obtained using different form
factors.

C. The microscopic form factor

In the nuclear response theory the transition from the
ground state to the excited stateunl of the same nucleus is
determined by the transition density defined by

rnsrsd = k0uc†srsdcsrsdunl, s17d

wherec†srsd is the particle creation operator in coordinate
space. The corresponding quantity for describing pair trans-
fer processes is the pair transition density defined by

knsrsd = k0ucsrsdcsrsdunl, s18d

wherec†srsd=−2sc†sr –sd is its time reversed counterpart.
The pair transition density defined above determines the
transition from the ground state of a nuclei withA nucleons
to a stateunl of a nucleus withA+2 nucleons. This quantity
is the output of cQRPA calculations. The form factor for the
pair transfer is obtained by folding the pair transition density
kn fEq. s18dg with the interaction acting between the trans-
ferred pair and the residual fragmentf1g. In the zero-range
approximation used here the dependence of this interaction
on the relative distance between the pair and the fragment is
taken as a delta force. Therefore in this approximation the
pair transition densitys18d coincides with the form factor
f19g.

Figure 4 displays the pair transition density corresponding
to the lowest energy state of the final nucleus in the22O
+2n system, derived from theG0 response, i.e., without tak-
ing into account the residual interaction between the quasi-
particles. Thus the dashed curve corresponds to a pair trans-
ferred in the pure two-quasiparticle configurations2s1/2d2 and
is directly comparable to the Bayman and Kallio form factor,
shown by the full line, corresponding also to the addition of
a pair of neutrons in a pure two-particle configuration
s2s1/2d2. As can be seen in Fig. 4, the form factor derived
from theG0 response has at large distances a smaller ampli-
tude compared to the Bayman and Kallio form factor. This is
due to the occupancy of the state 2s1/2, which is different
from zero in the case of theG0 response. Another reason is
that in the pair transition density given by Eq.(18) the two

FIG. 4. The microscopic form factors for the lowest energy state
in the 22O+2n system. The solid line is obtained using the Bayman
and Kallio method, and the dashed line with the unperturbedG0

response. FIG. 5. 15 MeV/nucleon22Ost, pd DWBA calculations using the
form factors shown in Fig. 4.
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neutrons are taken to be at the same position whereas in the
Bayman and Kallio method the two neutrons are allowed to
be at different positions.

Figure 5 displays the angular distributions for the reaction
22Ost, pd at 15 MeV/nucleon. The optical potential we have
used in calculations is the same as above. The angular dis-
tributions are mainly sensitive to the surface part of the form
factor, where the form factors calculated with the Bayman
and Kallio method and withG0 show strong variations. The
diffraction minima are shifted by around five degrees be-
tween the two calculations. The angular distribution calcu-
lated with the Bayman and Kallio form factor drops faster
with increasing angle. This is due to the spatial extension of
the two transferred neutrons which produces the negative
part of the form factor. In order to see the continuum effect
on the form factor, in Fig. 6 we display the transition densi-
ties calculated by solving the QRPA equations with con-
tinuum and box-type asymptotic conditions, for the mode
located at 8.6 MeV and for the giant pairing vibrations. The
corresponding effect on thest, pd angular distribution is il-
lustrated in Fig. 7 for the state located at 8.6 MeV. The effect
is large for this state, which is built mainly upon narrow
resonant qp states: the angular distributions are mainly sen-
sitive to the surface of the form factor. From Fig. 6 we can
see that the continuum treatment has also some effect on the
form factor corresponding to the high energy mode around
16 MeV, especially at small values of the nuclear radius.
However, its effect on the global cross section remains neg-
ligible, about 3%.

V. CONCLUSIONS

In this paper we have investigated the pair transfer in
neutron-rich oxygen isotopes in the framework of the
continuum-QRPA. The form factors are calculated with a
macroscopic model, the Bayman and Kallio approach, and

fully microscopically. The cross section is evaluated by using
the DWBA and the zero-range approximation. The response
function exhibits some narrow resonances corresponding to a
pair transfer in the single-particle states ofsd shell and a
broad peak at high energies. This peak is built mainly upon
the single-particle resonance 1f7/2 and its cross section is
much larger than the one associated with the lower energy
transfer modes. Since this high energy transfer mode is
formed mainly by single-particle states above the valence
shell, this mode is similar to the giant pairing vibration mode
suggested long ago. Although such a mode has not been
detected yet, the pair transfer reactions involving exotic
loosely bound nuclei may offer a better chance for this un-
dertaking. On the theoretical side, one needs to make a better
estimation for the absolute cross section associated with this
mode. Due to the collectivity of the final states the con-
tinuum treatment has also an impact on low-lying states. The
form factors calculated microscopically show an effect of the
continuum treatment on the form factor for high energy
states. The angular distributions are mainly affected in their
diffraction minima for narrow high energy states. In the case
of the gpv, no drastic influence of the exact continuum treat-
ment is observed. It should be interesting to perform the
DWBA calculations without the zero-range approximation in
order to make more quantitative predictions for the cross
section. This requires to fold the pair transition densities with
the interaction between the two neutrons and the residual
fragment.
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FIG. 6. The QRPA form factors for the 8.6 MeV state and for
the giant pairing vibration region. The form factors obtained with
box boundary conditions are in solid lines whereas the form factors
obtained with the exact continuum treatment are displayed in
dashed lines. The calculations are done for the22O+2n system.

FIG. 7. DWBA calculations for the 8.6 MeV state. The solid
(dashed) line corresponds to the QRPA results obtained with box
(exact) boundary conditions. The calculations correspond to the sys-
tem 22O+2n.
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