α -decays of neutron-deficient americium isotopes

M. Sakama*

Department of Radiologic Science and Engineering, School of Health Sciences, The University of Tokushima, Tokushima 770-8509, Japan

M. Asai, K. Tsukada, S. Ichikawa, I. Nishinaka, and Y. Nagame

Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

H. Haba

Cyclotron Center, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan

S. Goto

Department of Chemistry, Niigata University, Niigata 950-2181, Japan

M. Shibata

Radioisotope Research Center, Nagoya University, Nagoya 464-8602, Japan

K. Kawade

Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603, Japan

Y. Kojima

Graduate school of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

Y. Oura, M. Ebihara, and H. Nakahara

Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan (Received 28 September 2003; published 23 January 2004)

Neutron-deficient americium isotopes ^{233,234,235,236}Am were produced in the bombardment of multiple thin targets of ²³³U and ²³⁵U with 7.6–10.5 MeV/nucleon ⁶Li ions. The reaction products were effectively mass-separated using the on-line isotope separator (JAERI-ISOL) coupled to a helium gas-jet transport system. For the first time, the α transition of ²³⁵Am was observed, and some improved α -decay data for ^{233,234,236}Am and ²²⁹Np (α -decay daughter of ²³³Am) were accumulated. The α -particle energies of ²³³Am and ²³⁵Am were determined to be 6780±17 keV and 6457±14 keV and their half-lives were 3.2±0.8 min and 10.3±0.6 min, respectively. Measured α -decay branching ratios of ²³⁵Am and ²²⁹Np were (4.0±0.5)×10⁻³ and 0.68±0.11, respectively, while the lower limit for α -decay of ²³³Am was deduced to be 3×10⁻². Hindrance factors and

probable assignments of the levels involved in those α transitions are discussed.

DOI: 10.1103/PhysRevC.69.014308

PACS number(s): 23.60.+e, 27.90.+b

I. INTRODUCTION

Nuclear decay properties of neutron-deficient actinides, including americium isotopes, provide us invaluable information. In particular, the α -particle energies obtained are useful for precise determination of nuclear mass, which is one of the most essential quantities for defining nuclear decay properties, shell stability, and fusion probabilities. In addition, α -decay half-lives and the fine structure of α -particle spectra bring us information on the nuclear structure of daughter nuclei close to the proton drip line. However, since the neutron-deficient actinides decay predominantly by electron capture (EC), and their α -decay branching ratios are extremely small, only a few investigations of neutrondeficient americium isotopes have been conducted in the last 13 years. Examples are the EC-delayed fission of ²³²Am and ²³⁴Am by Hall *et al.* [1–3] and the EC decay of ²³⁵Am by Guo *et al.* [4]. In particular, regarding the α -decays of the americium isotopes with half-lives shorter than 1 h, only a limited number of α -decay data are currently available in the literature. Recently, we have succeeded in observing EC and α -decays of ²³⁶Am [5] and ²³³Am [6], respectively, using the JAERI on-line isotope separator coupled to the helium gasjet transport system [7]. In this paper, we present new and improved data on the α -decay of ²³³Am, ²³⁴Am, ²³⁵Am, ²³⁶Am, and ²²⁹Np (α -decay daughter of ²³³Am). These results are then discussed in the general trend of α -decay properties. Some of the present data on the EC decay of ²³⁶Am and on the identification of ²³³Am have been partly described in our previous papers [5,6].

II. EXPERIMENT

Experiments were performed using the JAERI on-line isotope separator (JAERI-ISOL) coupled to the helium gas-jet

^{*}Corresponding author. Electronic address: sakama@medsci. tokushima-u.ac.jp

FIG. 1. Schematic diagram of the gas-jet coupled JAERI-ISOL. The gas-jet transport system consists of the aerosol generator, the multiple-target chamber, and the vacuum system which consists of a mechanical booster pump (MBP) and a turbomolecular pump (TMP) for the differential pumping.

transport system. A schematic view of the experimental setup is shown in Fig. 1. Neutron-deficient americium isotopes were produced via the reactions of $^{233}U(^{6}Li, 6n)^{233}Am$, 233 U(⁶Li, 4*n*)²³⁵Am, 233 U(⁶Li, 5*n*)²³⁴Am, and ²³⁵U(⁶Li, 5n)²³⁶Am. A stack of 21 ²³³U (or ²³⁵U) targets set in a multiple-target chamber with 5 mm spacings was bombarded with ⁶Li beam intensities ranging from 250 to 340 particle-nA, delivered from the JAERI tandem accelerator. Each target was prepared by electrodeposition of $UO_2(NO_3)_2$ in 2-propanol onto a 0.9 mg/cm² thick aluminum backing foil. Target thicknesses were in the range of 50–130 μ g/cm² for ^{233}U and $160-420 \ \mu g/cm^2$ for ^{235}U . Incident beam energies were 63.0 MeV for the production of ²³³Am, 45.5 MeV for ²³⁵Am, and 51.0 MeV for ²³⁴Am and ²³⁶Am. The ⁶Li beam passed through two HAVAR vacuum windows (4.6 mg/cm^2) and helium cooling gas (0.1 mg/cm^2) , with its energy finally reduced to 52-60 MeV on the targets for the 63.0 MeV incident beam energy, 34-42 MeV for 45.5 MeV, and 39-48 MeV for 51.0 MeV. Reaction products recoiling out of the targets were stopped by He gas (94 kPa) loaded with PbI₂ aerosol clusters. The products attached to the clusters were continuously swept out of the target chamber with a 1.4 l/min He gas flow and transported to a thermal ion source of the ISOL through a Teflon capillary (1.5 mm in

FIG. 2. Setup of the detection systems: (a) the rotating wheel system for α spectrometry and (b) the α - γ and γ - γ coincidence measurement system.

diameter and 8 m length). Atoms ionized in the ion source were accelerated with 30 kV and mass separated with a resolution of $A/\Delta A \sim 850$ at the mass number A=208 [7]. The overall efficiency including the gas-jet transport and the ionization of americium atoms was measured to be $(0.3\pm0.1)\%$ through the observation of ²³⁷Am produced in the ²³⁵U(⁶Li, 4*n*) reaction [8].

Figure 2(a) shows a schematic drawing of the rotating wheel α -detection system. The mass-separated ions were implanted into 10 μ g/cm² thick polyvinylchloride-acetate copolymer foils placed around the periphery of the rotating wheel. The wheel periodically rotated by 90° with appropriate intervals, which carried the implanted sources to three consecutive detector stations. Each detector station was equipped with two Si detectors (HAMAMATSU PINphotodiode S3204-09, 18×18 mm² active area [9,10]) that surrounded the source on the wheel to measure α particles with an efficiency of 85%. Another Si detector was placed at the implantation station in the forward direction of the ion implantation. In order to determine α /EC branching ratios, characteristic x rays following the EC decay were measured at the first detector station through a window made of Kapton foil (0.05 mm in thickness) using a short coaxial Ge detector (ORTEC LOAXTM, $51\phi \times 21$ mm thickness of Ge, full width at half maximum of 0.66 keV at 122 keV γ ray). The energy calibration of the Si detectors was performed using mass-separated ²²¹Fr(E_{α} =6341 keV) and its α -decay daughters ²¹⁷At(7067 keV) and ²¹³Po(8376 keV). The ²²¹Fr nuclei recoiling out of the 225 Ac α source were transported to the ion source of the ISOL by a gas-jet stream, and the massseparated ions were implanted into the same foils that were used in the on-line experiments for Am isotopes. The α -particle energy resolution was about 45 keV.

For ²³⁵Am, α - γ and γ - γ coincidence measurements were performed using another experimental setup shown in Fig. 2(b). The mass-separated ions were implanted into the Si detector (HAMAMATSU PIN-photodiode S3590-06, 9 $\times 9 \text{ mm}^2$ active area [9,10]) which was tilted by 45° with respect to the ion beam axis. The detection chamber containing the Si detector had an aluminum window of 0.5 mm thickness and a beryllium one of 0.4 mm thickness toward the two endcaps of two Ge detectors placed on both sides of the Si detector; one was a short coaxial Ge detector placed on the front side of the Si detector to detect low-energy photons down to ~ 10 keV and the other was a 35% *n*-type Ge detector (ORTEC GAMMA-XTM) on the opposite side. The detectors were shielded with 100 mm thick lead bricks and 5 mm thick copper inner plates. α - and x/ γ -ray singles and α - γ and γ - γ coincidence data were recorded event by event together with time information.

III. RESULTS

A. ²³⁶Am

The sum of α -particle spectra measured with the seven Si detectors for the mass-236 fraction accumulated during a period of 270 s×380 cycles is shown in Fig. 3(a), and the x/ γ -ray spectrum associated with the EC decay of ²³⁶Am during the same experimental run is shown in Fig. 4(a). The

FIG. 3. Sum of α -particle spectra in the mass fraction of A= (a) 236, (b) 235, and (c) 234. Crosses shown in (a) and (c) indicate the 6.41 MeV α group of ²³⁶Am and 6.46 MeV one of ²³⁴Am reported by Hall *et al.*, respectively [1,3].

 α -decay of ²³⁶Am was reported by Hall *et al.* [3], who observed a 6.41 MeV α group and its α /EC branching ratio of $(4.2\pm0.6)\times10^{-4}$. However, no 6.41 MeV α group was observed in the present experiment [see Fig. 3(a)], and the upper limit of the α branching around 6.41 MeV was deduced to be 2×10^{-5} . Instead, a very weak α group around 6150 keV is observed in the spectrum. The decay curve of this α group gives a half-life of 3.1 ± 1.3 min as shown in Fig. 5, which is consistent with that of 3.6 ± 0.1 min for the decay of the Pu $K_{\alpha 1}$ x ray associated with the EC decay of ²³⁶Am in the same experimental run. In addition, from the γ - γ coincidence measurement data in Ref. [11], it has been found that there are two EC-decaying states (²³⁶Am^g and 236 Am^m) in 236 Am and their half-life values of 3.6 ± 0.2 min for ${}^{236}Am^g$ and 2.9 ± 0.2 min for ${}^{236}Am^m$ are very close to each other. Those half-lives are also in agreement with that of the present 6150 keV α group. Thus, we conclude that the observed 6150 keV α group is attributable to the α -decay of ²³⁶Am. [In the γ - γ coincidence measurement, we know that the yields of mass-separated ²³⁶Am^g and ²³⁶Am^m are ap-

FIG. 4. x/γ -ray spectra in the mass fraction of A= (a) 236, (b) 235, and (c) 234. Each inset shows the EC-decay chains from ²³⁶Am, ²³⁵Am, and ²³⁴Am.

proximately equal in the ²³⁵U(⁶Li, 5*n*) reaction, and their contributions to the Pu *K* x-ray intensity are also expected to be about the same. However no clear assignment of the α group to either one of those isomers could be made in the present experiment.] The α branching of I_{α} =(4.0±1.0) ×10⁻⁵ was derived from the ratio between the observed 6150 keV α intensity and that of the Pu *K* x ray. The production cross section σ_{expt} of ²³⁶Am^{*g*+*m*} at the ⁶Li beam energy of 39–48 MeV was determined to be 125±46 μ b by use of the detection efficiency for Pu *K* x rays and the overall efficiency of (0.3±0.1)% for americium atoms in the ISOL system.

B. ²³⁵Am

The sum of measured α -particle spectra for the mass-235 fraction accumulated during 900 s × 360 cycles is shown in Fig. 3(b). The strong α line with the energy of 6457±14 keV is unequivocally observed. In the x/ γ -ray spectrum as shown in Fig. 4(b), Pu and Np *K* x rays associated with the EC EC = EC decays of ²³⁵Am \rightarrow ²³⁵Pu \rightarrow ²³⁵Np were clearly observed. Fig-

FIG. 5. Decay curves of the 6150 keV α group emitted from the α -decay of ²³⁶Am and the Pu $K_{\alpha 1}$ x ray associated with the EC decay of ²³⁶Am.

ure 6 shows decay curves of the 6457 keV α line and Pu K x rays. The deduced half-lives of 10.7±0.7 min for the 6457 keV α line and 9.5±1.2 min for the Pu $K_{\alpha 1}$ x ray are in good agreement within the experimental errors as shown in Fig. 6, indicating that the 6457 keV α line is attributable to the α -decay of ²³⁵Am. We, in this paper, reanalyzed the ECdata [12] of ²³⁵Am produced in the decav ²³⁵U(⁶Li, 6n)²³⁵Am reaction and obtained a half-life of 9.0 ± 1.5 min. Taking a weighted average of these values, it was found that the total half-life of ²³⁵Am obtained from the α - and EC-decay data was determined to be 10.3 ± 0.6 min which is marginally consistent with the literature value of 15 ± 5 min by Guo et al. [4]. The α branching of I_{α} $=(4.0\pm0.5)\times10^{-3}$ was for the first time derived from the

FIG. 6. Decay curves of the 6457 keV α group emitted from the α -decay of ²³⁵Am and the Pu $K_{\alpha 1}$ x ray associated with the EC decay of ²³⁵Am.

FIG. 7. Decay curve of the Pu $K_{\alpha 1}$ x ray associated with the EC decay of ²³⁴Am.

ratio between the observed α - and Pu K x-ray intensities.

In the α -particle spectrum shown in Fig. 3(b), the two weak α lines around 5800 keV and 6200 keV arising from the α -decays of ²³⁵Pu and ²³⁴Pu, respectively, are also barely discernible. In the assignment of ²³⁵Pu, we know that ²³⁵Pu decays very weakly via α -particle emission with I_{α} =(3.0±0.6)×10⁻⁵ and E_{α} =5.85±0.02 MeV [13]. One notices that the ratio of the intensity of the Np $K_{\alpha 1}$ x ray to that of the Pu $K_{\alpha 1}$ x ray is ~2.9 [see Fig. 4(b)], which is much larger than the expected value of 0.6 on the basis of the growth and decay of ²³⁵Pu associated with the EC decay of ²³⁵Am. Thus, it can be stated that the ²³⁵Pu is directly produced via the ²³³U(⁶Li, p3n)²³⁵Pu reaction as well as through the EC decay of ²³⁵Pu. In the assignment of ²³⁴Pu, since ²³⁴Pu decays with I_{α} =4.8% and E_{α} =6202 keV [14], and the mass resolution performance of the ISOL allows a slight inclusion of the A=234 nuclides, it is not surprising that the observed α particles around 6200 keV originated from the α -decay of ²³⁴Pu.

In the α - γ coincidence measurement, although the sum of 230 α particles was detected at 6457 keV, no α - γ coincidence event was observed. This result suggests that the level fed by the 6457 keV α transition is either the ground state of ²³¹Np or a low lying level that decays via internal conversion. The production cross section of the ²³³U(⁶Li, 4*n*)²³⁵Am reaction at the ⁶Li beam energy of 34–42 MeV was determined to be $31\pm12 \ \mu$ b, that is, about six times larger than $5\pm2 \ \mu$ b of the ²³⁵U(⁶Li, 6*n*)²³⁵Am reaction reported in Ref. [12].

C. ²³⁴Am

Figure 4(c) shows the x/ γ -ray spectrum observed in the mass-234 fraction during the detection period of 210 s \times 550 cycles. Pu, Np, and U K x rays associated with the EC decays of ²³⁴Am, ²³⁴Pu, and ²³⁴Np, respectively, are clearly seen in the spectrum. The observed peak intensities of the Np

FIG. 8. α - and EC-decay chains originating from ²³⁴Am. Data from Ref. [14].

FIG. 9. (a) Singles α -particle spectrum observed in the mass fraction A=233. (b) Coincidence α -particle spectrum constructed from the measured α - α correlation events associated with the α -decay of ²³³Am.

and U K x rays are found larger than those of the Pu K x rays expected from the EC decay of ²³⁴Am. The excess production of ²³⁴Pu and ²³⁴Np may be attributable to reactions such as ²³³U(⁶Li, *p*4*n*) and ²³³U(⁶Li, *an*). The half-life of 3.5 ± 1.3 min derived from the decay curve of the Pu $K_{\alpha 1}$ x ray as shown in Fig. 7 is consistent with that of 2.32 ± 0.08 min reported by Hall *et al.* [1] from the analysis of the decay curve of the EC-delayed fission events of ²³⁴Am.

For the α -decay of ²³⁴Am, the observed spectrum is shown in Fig. 3(c) in which a series of α lines associated with the α -decay chain of

$${}^{234}\text{Pu} \xrightarrow{\alpha} {}^{230}\text{U} \xrightarrow{\alpha} {}^{226}\text{Th} \xrightarrow{\alpha} {}^{222}\text{Ra} \xrightarrow{\alpha} {}^{218}\text{Rn} \xrightarrow{\alpha} {}^{214}\text{Po} \xrightarrow{\alpha} {}^{210}\text{Pb}$$

(see Fig. 8) are detected. The 6.46 MeV α group for ²³⁴Am with α branching of $(3.9\pm1.2)\times10^{-4}$ was reported by Hall *et al.* [1]; however, no such α particles were observed within an upper limit of $I_{\alpha} < 4 \times 10^{-4}$. The production cross section of ²³⁴Am at the ⁶Li beam energy of 39–48 MeV was deduced to be $9\pm5 \ \mu$ b from the intensity of the observed Pu $K_{\alpha 1}$ x ray.

D. ²³³Am

Identification of the new nuclide ²³³Am via the α - α correlation analysis has been described in our previous paper

		This work				Literature			
Nuclide	Reaction	$\sigma_{\rm expt}(\mu b)^{\rm a}$	$T_{1/2}$ (min)	E_{α} (keV)	I_{α}	$T_{1/2}$ (min)	E_{α} (keV)	Ια	
²³⁶ Am ^{g+m}	²³⁵ U(⁶ Li, 5 <i>n</i>)	125±46	3.6±0.1	6150	$(4.0\pm0.1)\times10^{-5}$	4.4±0.8 [5]	6410 [3]	$(4.2\pm0.6)\times10^{-4}$ [3]	
²³⁵ Am	²³³ U(⁶ Li, 4 <i>n</i>)	31 ± 12	10.3 ± 0.6	6457 ± 14	$(4.0\pm0.5)\times10^{-3}$	15±5 [4]			
²³⁴ Am	²³³ U(⁶ Li, 5 <i>n</i>)	9 ± 5	3.5 ± 1.3	Not observed	$< 4 \times 10^{-4}$	2.32±0.08 [1]	6460 [1]	$(3.9 \pm 1.2) \times 10^{-4}$ [1]	
²³³ Am	²³³ U(⁶ Li, 6 <i>n</i>)	< 0.9	3.2 ± 0.8	6780 ± 17	$> 3 \times 10^{-2}$				
²²⁹ Np	α -decay daught	er of ²³³ Am	4.0 ± 0.4	6893 ± 23	0.68 ± 0.11	4.0±0.2 [15]	6890±20 [15]	>0.50 [15]	

TABLE I. α -decay properties of the neutron-deficient Am and Np isotopes.

^aThe production cross sections are evaluated using the overall efficiency of $(0.3 \pm 0.1)\%$ for americium atoms in the present experiments.

[6]. In the present paper, we briefly summarize α /EC-decay properties of ²³³Am and ²²⁹Np. Figures 9(a) and 9(b) show the singles and the delayed-coincident α -particle spectra observed in the mass-233 fraction, respectively. Since the α -decay of ²²⁹Np is followed by four successive α -decays with short half-lives,

²²⁵Pa(1.7 s)
$$\xrightarrow{\alpha}$$
²²¹Ac(52 ms) $\xrightarrow{\alpha}$ ²¹⁷Fr(22 μ s) $\xrightarrow{\alpha}$ ²¹³At(125 ns)

as shown in Fig. 10, the α - α correlations among these five nuclei are unambiguously identified. In the present measurement, 99 α - α correlation events following the α -decay of ²²⁹Np were observed in the mass-233 fraction. The α -particle energies of ²³³Am and ²²⁹Np were determined to be 6780 ± 17 keV and 6893 ± 23 keV, respectively, using the maximum-likelihood method [6]. The half-life of 233 Am was 3.2±0.8 min from the decay curve of 6780 keV α particles. In addition, from the time intervals between the α -decays of ²³³Am and ²²⁹Np, the half-life of ²²⁹Np was evaluated to be 4.0 ± 0.4 min. This value and the α -particle energy mentioned above agree well with the literature values of 4.0±0.2 min and 6890±20 keV reported by Hahn *et al.* [15]. For ²²⁹Np, the α branching I_{α} of 0.68 ± 0.11 was derived from the ratio between the measured $\alpha\text{-}\alpha$ correlation events following the $\alpha\text{-decay}$ of $^{229}\mathrm{Np}$ and those following the α -decay of ²²⁵Th, which was accumulated from the α -decay of ²²⁹U after the EC decay of ²²⁹Np. The present α branching I_{α} is consistent with a value >0.50 reported by Hahn et al. [15]. Figure 11 shows the x/γ -ray spectrum in the mass-233 fraction that was measured using the tape transport detection system. No Pu $K_{\alpha 1}$ x ray originating from the EC decay of 233 Am was observed in the present measurement, while U K x rays due to the EC decay of Np were detected. Considering the detection efficiency and the reaction system, it is likely that the ²³³Np is produced via the nuclear transfer reaction and the observed UK x rays mostly originated from the EC decay of ²³³Np. Based on the detection efficiencies of the α particles and Pu $K_{\alpha 1}$ x ray, the α branching I_{α} of ²³³Am was evaluated to be larger than 3.0×10^{-2} . Using the α branching I_{α} , the production cross section of ²³³Am at the ⁶Li beam energy of 52-60 MeV was deduced to be $<0.9 \ \mu b$ as an upper limit.

Table I summarizes the α -decay properties of the neutrondeficient Am and Np isotopes, together with the literature data [1,3–5,15] and also their production cross sections.

IV. DISCUSSION

In general, a hindrance factor F is often used for understanding the nature of an α transition. Various empirical and theoretical formulas to derive the hindrance factor F from the relationship between the α -decay partial half-life and the α -transition energy have been presented in detail for eveneven nuclides, for example, by Taagepera and Nurmia [16], Viola and Seaborg [17], Buck *et al.* [18], Hatsukawa *et al.* [19], and Preston [20]. In this paper, in order to evaluate the hindrance factors for the α -decays of neutron-deficient Am and Np nuclides, we have used a semiempirical formula for even-even nuclides given by Rasmussen [21], as we now discuss.

Figure 12 shows α -decay partial half-lives T_{α} for the ground-to-ground transitions in even-even nuclides of U, Pu, Cm, and Cf with A=228-250 as a function of the α -transition energy E_{α}^* . The data observed in the present work are plotted by open symbols for ²³⁵Am, ²³⁶Am, and ²²⁹Np and by a vertical line showing error bars for α branching I_{α} ranging from 3.0×10^{-2} to 1.0 for ²³³Am. The curves are drawn through favored transitions according to the following semiempirical function that shows the relationship between α -decay partial half-life T_{α} (s) and α -transition energy E_{α}^* (keV) in even-even nuclides (U, Pu, Cm, and Cf),

FIG. 11. x/γ -ray spectrum at the mass-233 fraction. The inset shows the α - and EC-decay chains from ²³³Am. The observed U *K* x rays originate from the EC decay of ²³³Np which was directly produced via the reaction of ²³³U+⁶Li.

FIG. 12. α -decay partial half-lives for even-even uranium, plutonium, curium, and californium nuclei with A = 228 - 250 plotted as a function of the α -transition energy. The dotted curve is expressed as the semiempirical function fitted for even-even ²²⁸⁻²³⁶U data points, the dashed one is for even-even ²³⁴⁻²⁴⁴Pu, the long dashed one for even-even ²⁴⁰⁻²⁴⁸Cm, and the dash-dotted one for even-even ²⁴⁴⁻²⁵⁰Cf. The present data are plotted by open symbols for ²³⁵Am, ²³⁶Am, and ²²⁹Np and by a vertical line showing the error bar as the α branching of $3.0 \times 10^{-2} < I_{\alpha} < 1.0$ for ²³³Am.

FIG. 13. Correlations between semiempirical A(Z) (upper) and B(Z) (lower) constants and (Z+2) of the even-even nuclei (see text).

FIG. 14. α -decay partial half-lives for odd- $A^{233-243}$ Am and $^{229-237}$ Np, and even- $A^{236-242m}$ Am plotted as a function of the α -transition energy. Two curves of Am (dotted line) and Np (dashed line) are drawn using semiempirical constants A(Z) and B(Z) interpolated from the adjacent even elements. The closed circle, half-closed square, and diamond denote α transitions for odd-A of $^{237-243}$ Am, even-A of $^{238-242m}$ Am, and odd-A of $^{231-237}$ Np, respectively. The open circle, square, and diamond indicate the partial half-lives observed in this work for odd- A^{233} Am, even- A^{236} Am, and odd- A^{229} Np, respectively. The value of 233 Am is plotted up to the lower limit of α -decay partial half-life with the hindrance factor F=1 (see text).

$$\log_{10} T_{\alpha} = A(Z)(E_{\alpha}^{*})^{-1/2} + B(Z), \qquad (4.1)$$

(4.2)

where A(Z) and B(Z) are the constants for each element that give the best fit to the data points, and Z denotes the atomic number of the α daughter nuclide. The E_{α}^{*} defined in this equation is derived from the measured α -particle energy E_{α} through the following equations:

 $E_{\alpha}^* = (A_p/A_d)E_{\alpha} + \Delta E_{sc}$

and

FIG. 15. Excitation energy levels of odd- $A^{229-239}$ Np isotopes as a function of the neutron number. Data from Ref. [14].

Odd-A nuclide	α transition [14]	E^*_{α} (keV)	$expt T_{1/2}^{\alpha}$ (s)	$_{ m favored}T^{lpha}_{ m 1/2}$ (s)	F
²³³ Am		6937	<6400	4700	<1.4
²³⁵ Am		6607	1.55×10^{5}	1.25×10^{5}	1.2
²³⁷ Am	$(5/2^{-})$ for g.s. ²³⁷ Am \rightarrow ²³³ Np $(5/2^{-})$	6184	1.76×10^{7}	1.23×10^{7}	1.4
²³⁹ Am	$5/2^{-}[523] \rightarrow ^{235}Np 5/2^{-}[523]$	5911	5.12×10^{8}	3.07×10^{8}	1.7
²⁴¹ Am	$5/2^{-}[523] \rightarrow {}^{237}Np 5/2^{-}[523]$	5616	1.60×10^{10}	1.29×10^{10}	1.2
²⁴³ Am	$5/2^{-}[523] \rightarrow ^{239}Np 5/2^{-}[523]$	5402	2.66×10^{11}	2.35×10^{11}	1.1
²²⁹ Np		7049	343	196	1.8
²³¹ Np	(5/2) for g.s. ${}^{231}Np \rightarrow {}^{227}Pa(5/2)$	6405	1.46×10^{5}	1.11×10^{5}	1.3
²³³ Np	$(5/2^+)$ for g.s. ${}^{233}Np \rightarrow {}^{229}Pa(5/2^+)$	5664	$>2.17 \times 10^{8}$	5.95×10^{8}	>0.36
²³⁵ Np	$5/2^{+}[642] \rightarrow {}^{231}Pa \ 5/2^{+}[642]$	5149	2.48×10^{12}	6.75×10^{11}	3.7
²³⁷ Np	$5/2^{+}[642] \rightarrow {}^{233}Pa \ 5/2^{+}[642]$	4756	1.09×10^{15}	3.07×10^{14}	3.6

TABLE II. Hindrance factor F estimated for odd-A Am and Np isotopes. g.s. stands for ground state.

$$\Delta E_{sc} = (6.5 \times 10^{-2}) Z^{7/5} \text{ keV}, \qquad (4.3)$$

where A_p and A_d refer to the mass number of the parent and daughter nuclides, respectively, and ΔE_{sc} is the correction factor for the electron screening [21]. In Figs. 13(a) and 13(b) are plotted those constants obtained for the α -emitting parents of even-even nuclides of each element for (Z+2)=92-98. To evaluate the hindrance factors of the odd-A ^{233,235}Am and ²²⁹Np and even-A ^{234,236}Am nuclides, the values of the constants A(Z) and B(Z) for Am and Np were deduced by interpolation from the neighboring elements. As a result, A(Z) and B(Z) for Am are valued at 152.23 (keV) and -54.13 (keV), while those for Np are 148.9 (keV) and -53.79 (keV), respectively. Figure 14 shows two curves drawn for the expected, favored transitions for Am and Np and the reference data for ^{237–242m}Am and ²³¹⁻²³⁷Np, together with the data obtained in the present work for ²³⁶Am, ²³⁵Am, ²²⁹Np, and ²³³Am. The deviations of the experimental α -decay partial half-lives from the corresponding Am and Np curves at the same E_{α} are defined here as hindrance factors F, and they are expressed as ratios. Tables II and III show the experimental and expected α -decay partial half-lives for favored transitions, α -transition energies, hindrance factors F, and the assigned Nilsson levels involved in the α transitions, if known, for odd-A ²³³⁻²⁴³Am and ²²⁹⁻²³⁷Np, and for even-A ^{234–242m}Am, respectively. It is found that the hindrance factors for odd-A ²³⁵Am and ²²⁹Np and for even-A ²³⁶Am measured in this work are close to 1.

Since the results of the γ - γ coincidence measurements for ²³⁵Am revealed that the ground state of ²³⁵Am has the $\pi 5/2^{-523}$ configuration [11], the energy level in the daughter ²³¹Np fed by the α -decay is expected to be the $\pi 5/2^{-}[523]$ configuration from the evaluated F value. This assignment of the transition for ²³⁵Am is the same with the transition well-established favored from the ²⁴¹Am $\pi 5/2^{-}[523]$ to the $\pi 5/2^{-}[523]$ level of ²³⁷Np. As neutron-deficient actinides with $A \ge 225$ are commonly deformed to $\epsilon_2 = 0.2 - 0.3$ as estimated in Ref. [22], it is expected from the Nilsson diagram that the 93rd proton would occupy one of the two configurations $\pi 5/2^{-}[523]$ or $\pi 5/2^{+}[642]$ as the ground state. For examining the systematic features of the energy levels of those states, we depict the energy levels of the $\pi 5/2^{-}[523]$ state and the ground state configurations of the neighboring odd-A Np isotopes (²³⁵Np, ²³⁷Np, and ²³⁹Np) as shown in Fig. 15. All of the odd-A Np nuclides $^{235-239}$ Np have the $\pi 5/2^{+}$ [642] configuration in the ground state bandhead, and the $\pi 5/2^{-}[523]$ state lies very close to the $\pi 5/2^{+}$ [642] state, whose energy difference becomes smaller with decreasing neutron number. This tendency can explain the absence of detected α - γ coincidence events in the α -decay of ²³⁵Am, as described in Sec. III B. During the course of the configuration assignment in odd-A Am α transitions, the observed lower branching limit and the F value close to unity for the α transition of ²³³Am also suggest that this transition is between the ²³³Am $\pi 5/2^{-}[523]$ and the ²²⁹Np $\pi 5/2^{-}[523]$. In addition, the observed α -decay of ²³³Am with the upper limit of the hin-

TABLE III. Hindrance factor F estimated for even-A Am isotopes.

Even-A nuclide	α transition [14]	E^*_{α} (keV)	$\operatorname{expt}_{1/2}^{\alpha}$ (s)	$_{ m favored}T^{lpha}_{1/2}$ (s)	F
²³⁶ Am ^{<i>g</i>+<i>m</i>}	$\pi 5/2^{-}[523]\nu 5/2^{+}[633]$ for g.s. ²³⁶ Am	6294	4.95×10^{6}	3.57×10^{6}	1.4
²³⁸ Am	$\pi 5/2^{-}[523]\nu 7/2^{-}[743] \rightarrow {}^{234}Np(0^{+})$	6080	5.88×10^{9}	4.09×10^{7}	143.9
²⁴⁰ Am	$\pi 5/2^{-}[523]\nu 1/2^{+}[631] \rightarrow {}^{236}\text{Np} \ \pi 5/2^{-}[523]\nu 1/2^{+}[631]$	5507	1.11×10^{11}	5.54×10^{10}	2.0
$^{242}\text{Am}^m$	$\pi 5/2^{-}[523]\nu 5/2^{+}[622] \rightarrow {}^{238}Np \pi 5/2^{-}[523]\nu 5/2^{+}[622]$	5333	1.08×10^{12}	6.22×10^{11}	1.7

Nuclide	$Q_{\alpha}(\text{expt})^{a}$ (keV)	Audi and Wapstra [26] (keV)	Möller <i>et al.</i> [27] (keV)	Koura <i>et al.</i> [28] (keV)
²³³ Am	6898±17	7100±235	7110	7459
Δ		202	212	561
²³⁵ Am	6569 ± 14	6700 ± 212	6600	7237
Δ		131	31	668
²³⁶ Am	6286 ± 40	6397 ± 141	6470	7105
Δ		111	184	819

TABLE IV. Experimental $Q_{\alpha}(\text{expt})$ values are compared with the evaluated and theoretical ones. The symbol Δ means a deviation between the $Q_{\alpha}(\text{expt})$ values and the evaluated and theoretical ones.

^aThe observed α transitions are assumed to be ground-to-ground state transitions.

drance factor F=1.4 suggests that the F value for ²³³Am is in the range of 1.0–1.4. Thus, the α branching I_{α} should be constrained to lie between 3.0×10^{-2} and 5.0×10^{-2} as plotted by a bar symbol in Fig. 14.

For the α -decays of odd- $A^{229-237}$ Np shown in Table II, all the hindrance factors except for ²³³Np are within the range of 1–4. The α branching I_{α} of ²³³Np is merely evaluated as an upper limit value in Refs. [23,24], and the hindrance factor is deduced to be >0.36. It is reasonable to suppose from such small hindrance factors that these α transitions are regarded as the favored transitions, although the hindrance seems to be a little larger for the heavier isotopes of Np than for the lighter ones.

For α -decays of even-A ²³⁴Am, we suggest that the 6.46 MeV α group of ²³⁴Am reported in Ref. [1] must be assigned to the α -decay of ²³⁵Am. Hall *et al.* [1] concluded that the α -decay of ²³⁵Am could be ignored in their experiment when the predicted cross sections for the 237 Np(⁴He, *xn*)^{241-*x*}Am reactions were considered. However, we have estimated that the appearance of α -decay events from ²³⁵Am is probable and cannot be excluded. Since no mass separation was performed in Ref. [1], they could not definitely determine where the α -particle group of 6.46 MeV came from, ²³⁴Am or ²³⁵Am. If the α -decay curve is analyzed with one component in the Hall's half-life analysis instead of two components as they assumed, the calculated half-life turns out to be about 9 min, which is in good agreement with the 10.3 ± 0.6 min half-life of ²³⁵Am determined in the present study. For these reasons, it is reasonable to point out that the 6.46 MeV α group in Ref. [1] could have originated from the α -decay of ²³⁵Am. However, in the present paper we simply state that the upper limit of the α -branching intensity of ²³⁴Am for the 6.46 MeV α group is $I_{\alpha} < 4.0$ $\times 10^{-4}$. In Table III are summarized the hindrance factor F of ²³⁶Am together with those of the heavier even-A Am. It is revealed that the F value of 236 Am is almost equal to those of other even-A ²⁴⁰Am and ²⁴²Am^m, except for ²³⁸Am (a hindrance factor value of 110 for ²³⁸Am is reported by Ahmad et al. [25], who calculated it from the spin independent theory of Preston [20] and concluded that its transition was not a favored transition) and is also in the range of F=1.1-1.7observed for the α transitions of odd-A ^{239,241,243}Am nuclei

regarded as the favored transitions (see Table II). Therefore, it is made clear that the observed α -decay of ²³⁶Am in the present work can be regarded as a favored transition.

In Table IV are presented $Q_{\alpha}(\text{expt})$ values obtained from the present results of α -particle energies E_{α} of ^{233,235,236}Am with an assumption of the ground-to-ground transition, together with the evaluated values from the mass table by Audi and Wapstra [26] and theoretical values based on the finiterange droplet model (FRDM) by Möller *et al.* [27] and on the Koura-Uno-Tachibana-Yamada (KUTY) formula by Koura *et al.* [28]. Although the predicted values are systematically larger than the experimental ones for ^{233,235,236}Am, the semiempirical values by Audi and Wapstra and the theoretical one by Möller *et al.* can well account for the experimental values in the range below ~200 keV.

V. CONCLUSION

We have observed the α transition of ²³⁵Am for the first time. The α -particle energies of ²³³Am and ²³⁵Am were determined to be 6780 ± 17 keV and 6457 ± 14 keV, and their half-lives were measured to be 3.2 ± 0.8 min and 10.3±0.6 min, respectively. The α branchings I_{α} of ²³⁵Am and of ²²⁹Np, the α -decay daughter of ²³³Am, were determined to be $(4.0\pm0.5)\times10^{-3}$ and 0.68 ± 0.11 , respectively, and the lower limit of α branching for ²³³Am was deduced to be 3×10^{-2} . Using a well-known systematic formula relating α -particle half-life $T_{1/2}^{\alpha}$ and α -transition energy E_{α}^{*} , we have evaluated the hindrance factors for odd-A Am and Np and for even-A Am. It was found that those observed α transitions of ²³³Am, ²³⁵Am, ²³⁶Am, and ²²⁹Np had hindrance factors close to unity, and thus, they could be regarded as the favored transitions. In addition, we have obtained the $Q_{\alpha}(expt)$ values of 233,235,236 Am derived from their measured α -particle energies.

ACKNOWLEDGMENTS

The authors wish to thank the staff and crew of the JAERI tandem accelerator for providing the intense and stable ⁶Li beam. This work was partly carried out by Universities-JAERI Joint Research Project on the Back-End Chemistry of the Nuclear Fuel Cycle.

α -DECAYS OF NEUTRON-DEFICIENT AMERICIUM ISOTOPES

- [1] H. L. Hall et al., Phys. Rev. C 41, 618 (1990).
- [2] H. L. Hall et al., Phys. Rev. C 42, 1480 (1990).
- [3] H. L. Hall, Ph.D thesis, Lawrence Berkeley Laboratory, LBL-27878, 1989.
- [4] J. Guo et al., Z. Phys. A 355, 111 (1996).
- [5] K. Tsukada et al., Phys. Rev. C 57, 2057 (1998).
- [6] M. Sakama et al., Eur. Phys. J. A 9, 303 (2000).
- [7] S. Ichikawa, K. Tsukada, M. Asai, H. Haba, M. Sakama, Y. Kojima, M. Shibata, Y. Nagame, Y. Oura, and K. Kawade, Nucl. Instrum. Methods Phys. Res. B 187, 548 (2002).
- [8] Y. Hatsukawa, N. Shinohara, K. Hata, K. Tsukada, Y. Oura, S. Ichikawa, I. Nishinaka, Y. Nagame, and M. Oshima, JAERI Review 96–011, 42 (1996).
- [9] K. Yamamoto, Y. Fujii, Y. Kotooka, and T. Katayama, Nucl. Instrum. Methods Phys. Res. A 253, 542 (1987).
- [10] T. Motobayashi, M. Louvel, S. M. Lee, and S. Jeong, Nucl. Instrum. Methods Phys. Res. A 284, 526 (1989).
- [11] M. Asai et al., J. Nucl. Radiochem. Sci. 3, 187 (2002).
- [12] M. Sakama et al., JAERI-Review 99-028, 20 (1999).
- [13] T. D. Thomas, R. Vandenbosch, R. A. Glass, and G. T. Seaborg, Phys. Rev. 106, 1228 (1957).
- [14] Table of Isotopes, 8th ed., edited by R. B. Firestone and V. S. Shirley (Wiley, New York, 1996).
- [15] R. L. Hahn, M. F. Roche, and K. S. Toth, Nucl. Phys. A113, 206 (1968).

- [16] R. Taagepera and M. Nurmia, Ann. Acad. Sci. Fenn., Ser. A VI, 78(1961).
- [17] V. E. Viola, Jr. and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966).
- [18] B. Buck, A. C. Merchant, and S. M. Perez, J. Phys. G 17, 1223 (1991).
- [19] Y. Hatsukawa, H. Nakahara, and D. C. Hoffmann, Phys. Rev. C 42, 674 (1990).
- [20] M. A. Preston, Phys. Rev. 71, 865 (1947).
- [21] J. O. Rasmussen, *Alpha-, Beta- and Gamma-ray Spectroscopy*, edited by K. Siegbahn (North-Holland, Amsterdam, 1965), p. 701.
- [22] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables **59**, 185 (1995).
- [23] L. B. Magnusson, S. G. Thompson, and G. T. Seaborg, Phys. Rev. 78, 363 (1950).
- [24] R. Weiss-reuter, H. Münzel, and G. Pfennig, J. Inorg. Nucl. Chem. 35, 2145 (1973).
- [25] I. Ahmad, R. K. Sjoblom, R. F. Barnes, J. F. Wagner, and P. R. Fields, Nucl. Phys. A186, 620 (1972).
- [26] G. Audi and A. Wapstra, Nucl. Phys. A595, 409 (1995).
- [27] P. Möller, J. R. Nix, and K. L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).
- [28] H. Koura, M. Uno, T. Tachibana, and M. Yamada, Nucl. Phys. A674, 47 (2000).