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We investigate the systematics of fission barriers in superheavy elements in the rangeZ=108–120 andN
=166–182. Results from two self-consistent models for nuclear structure, the relativistic mean-field(RMF)
model as well as the nonrelativistic Skyrme-Hartree-Fock approach are compared and discussed. We restrict
ourselves to axially symmetric shapes, which provides an upper bound on static fission barriers. We benchmark
the predictive power of the models examining the barriers and fission isomers of selected heavy actinide nuclei
for which data are available. For both actinides and superheavy nuclei, the RMF model systematically predicts
lower barriers than most Skyrme interactions. In particular, the fission isomers are predicted too low by the
RMF, which casts some doubt on recent predictions about superdeformed ground states of some superheavy
nuclei. For the superheavy nuclei under investigation, fission barriers drop to small values aroundZ=110,N
=180, and increase again for heavier systems. For most of the forces, there is no fission isomer for superheavy
nuclei, as superdeformed states are in most cases found to be unstable with respect to octupole distortions.
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I. INTRODUCTION

The search for superheavy elements(SHE) has made ex-
citing progress in the past few years[1–3]. New, often more
neutron-rich, isotopes of elementsZ=108 [4], Z=110 [5],
andZ=112[6] have been reported as well as the synthesis of
the new elementsZ=114 [7] and Z=116 [8]. At the same
time earlier experiments were confirmed and more data for
already existing isotopes collected[9]. Together with the
a-decay products of the newly synthesized nuclei the known
region of superheavy elements has grown substantially.

SHE are by definition those nuclei at the upper end of the
chart of nuclei where quantum-mechanical shell effects re-
verse the trend of decreasing—and, for the heavier ones,
practically vanishing—liquid-drop fission barriers to produce
significant stabilization. The lifetimes of the recently found
SHE are many orders of magnitude smaller than the early
optimistic estimates[10,11]. Additionally, the systematics of
fusion cross sections suggests that the extension of the chart
of nuclides might be limited by the production mechanism of
SHE, not their decay[3]. With recent experiments heading
for unknown territory, theory has to provide reliable predic-
tions for the stability and the most accessible regions in the
landscape of nuclides. A crucial feature is here spontaneous
fission which is characterized by the fission barrier.

Not too much is known experimentally on the fission bar-
riers of transfermium nuclei. Although their height is not
known, barriers for252No and254No are high enough to sta-
bilize these isotopes against fission up to angular momentum
20 [12]. An analysis of all available data for fusion and fis-
sion of 292112, 292114, and296116 was given recently in Ref.
[13]. Surprisingly, the barrier heights deduced for these very
heavy nuclei are similar, or even slightly larger, than the ones
of actinide nuclei in the240Pu region.

For some other superheavy nuclei it is known that the

barrier is relatively small from the simple fact that fission is
their preferred decay channel. This leads to another aspect of
the stability against fission: the experimental identification of
new superheavy nuclides is much simpler whena decay is
the dominating decay channel. All recent new decay chains
from Dubna end in a region of fissioning nuclei which pre-
vents an extension of the known region of SHE to the
“southeast” with current experimental techniques.

The calculation of fission half-lives is a very demanding
task, which became clear quite early[14]. First explorations
of the potential energy surfaces of transfermium nuclei dem-
onstrated already that triaxial and reflection-asymmetric de-
grees of freedom often greatly reduce the fission barrier. The
collective mass provides the metric for the dynamical calcu-
lation of the fission half-lives. There is no published work so
far that considers all ingredients using self-consistent mod-
els. First ambitious steps in that direction were taken for the
calculation of the decay of the fission isomer into the ground
state [15]. The published fission half-lives from
macroscopic-microscopic mean-field models also simplify
the task considerably by restricting shape degrees of freedom
to axially symmetric ones and using a phenomenological pa-
rametrization of inertia parameters. The detailed potential en-
ergy landscape is also an ingredient for estimates on the fu-
sion cross section, although somewhat different paths have to
be considered asymptotically, see e.g. Ref.[16] and further
references therein.

It is the aim of this paper to analyze the extrapolation of
self-consistent mean-field models, namely, the Skyrme-
Hartree-Fock(SHF) approach and the relativistic mean-field
(RMF) model, concerning large-amplitude deformation prop-
erties of SHE. To that end, we present a systematic survey of
fission paths and barriers for a broad range of SHE, scanning
the a-decay chains of even-even nuclei that are accessible
with the current experimental techniques. The nuclei consid-
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ered in this study cover the proton numbers 108øZø120
and the corresponding neutron numbers 166øNø182. We
first benchmark our models by calculating axial fission bar-
riers and isomeric states for heavy actinide nuclei for which
experimental data are available, namely, isotopes with proton
numbers ranging fromZ=90 to 98.

Section II summarizes the most important results of ear-
lier studies relevant for our calculations. Section III explains
the theoretical and numerical methods which are used in our
study. In Sec. IV the results for actinides are discussed. Sec-
tion V presents detailed results for deformation energy
curves in all considered superheavy nuclei and for all the
different forces. Section VI discusses the result in terms of
key quantities such as deformation energies and barriers. Fi-
nally, Sec. VII attempts to identify the underlying reasons for
the different predictions among the forces and models.

II. EARLIER CALCULATIONS

Estimates of the stability of SHE against fission have a
long history. First explorations of the potential landscapes
were made with phenomenological corrections for shell ef-
fects [11,17], even before Strutinsky introduced the
microscopic-macroscopic method[18], which was then im-
mediately applied to large-scale calculations of fission barri-
ers of heavy and superheavy nuclei, see e.g. Ref.[19]. In this
framework, the deformation energy is minimized in a limited
space of shape parameters. It soon became clear that
reflection-asymmetric[20] and triaxial[21] shape degrees of
freedom have to be included. Complementing the collective
potential energy surfaces by mass parameters enabled the
calculation of fission half-lives of heavy and superheavy nu-
clei, with phenomenological mass parameters[10,22] as well
as with microscopically computed cranking masses[23].
Studies along that line are continued till today with improved
parametrizations of the microscopic-macroscopic(mic-mac)
model, either the finite-range droplet model plus folded-
Yukawa single-particle potential model and phenomenologi-
cal masses[24] or the Yukawa-plus-exponential(YPE) mac-
roscopic plus a Woods-Saxon microscopic model and
cranking masses[25–27]. Nearly all large-scale calculations
of fission lifetimes, however, consider axially symmetric
shapes only(as we will do). A recent exception is presented
in Ref. [27] where triaxial shapes are taken into account,
however, at the price of a reduced number of shape degrees
of freedom in other places.

There do exist also systematic calculations of fission bar-
riers where the macroscopic part of the energy is calculated
within the semi-classical Thomas-Fermi approximation[28].
One step further toward self-consistency is the extended
Thomas-Fermi Strutinsky-integral(ETFSI) approach where
the same microscopic Skyrme force is used to calculate the
macroscopic part of the binding energy and to determine the
single-particle spectra for the calculation of the shell correc-
tion. For a large-scale survey of the axially and reflection-
symmetric potential energy surfaces of heavy and super-
heavy nuclei in the ETFSI approach using the Skyrme
interaction SkSC4, see Refs.[29,30]. Results allowing also
for triaxial degrees of freedom are presented for selected
nuclei in Ref.[31].

To determine the fission path in microscopic-macroscopic,
Thomas-Fermi, and ETFSI calculations, the total energy is
minimized with respect to parameters of the nuclear shape.
There are numerous parametrizations to be found in the lit-
erature, which differ by emphasizing either high-order mul-
tipoles at small deformation, or the fragment deformation of
two-center-type configurations at large deformations, see
Ref. [32] for an overview. While the latter are important for
the proper description of the saddle point of actinide nuclei
(which is located at very largeb2), the first might be better
suited for superheavy nuclei where the saddle point is lo-
cated at rather smallb2. The number of shape degrees of
freedom in actual calculations does rarely exceed five, in
most cases it is even smaller.

This restriction does not exist in the framework of self-
consistent models. Besides very general spatial symmetries
that are imposed(e.g., axiality, reflection symmetry, or tri-
axiality) there are no further assumptions made on the
nuclear density distribution. As this makes self-consistent
calculations more costly in terms of computational time,
there is much less published work employing self-consistent
models so far.

A systematic study of the deformation energy of super-
heavy nuclei along the valley ofb stability in the region
100øZø128 and 150øNø218 in HFB calculations with
the Gogny force D1s under restriction to axially and
reflection-symmetric shapes was presented in Ref.[33]. Po-
tential energy surfaces of selected heavier nuclei are pre-
sented in Ref.[34]. The full potential energy surface in the
b-g plane of a few selected nuclei as resulting from SHF
calculations in a triaxial representation is presented in Ref.
[35]. This investigation points out the importance of triaxial
shapes at small deformationsb2,0.6. The fission barrier of
some superheavy nuclei is reduced to half its value when
relaxing the constraint on axial symmetry and going through
triaxial paths. The fission path returns to axially symmetric
shapes at larger deformations. But here it is necessary to
allow for reflection-asymmetric shapes to accommodate the
usually asymmetric fission. A first exploration of asymmetric
shapes of SHE within self-consistent SHF and RMF models
was presented in Ref.[36]. For many superheavy systems,
reflection-asymmetric shapes lower the fission path at large
prolate deformationb2.0.6, and remove in most cases the
outer barrier known from actinide nuclei(and persisting for
superheavy nuclei when considering reflection-symmetric
shapes only).

III. THEORETICAL FRAMEWORK

A. Effective interactions

We explore the potential landscapes using two widely
used self-consistent mean-field models, namely, the nonrela-
tivistic SHF method as well as the RMF approach[37].
There exists a great variety of parametrizations for both
models which often differ when extrapolated. It is long
known that different parametrizations of a self-consistent
model are not equivalent for the calculation of fission barri-
ers of actinide nuclei, see Refs.[38,39] for a comparison of
early Skyrme forces and Ref.[40] for a comparison of RMF
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forces. Comparisons between SHF and RMF hint at genuine
model differences[40,41]. Relevant for our study is also that
there exist conflicting predictions for the location of the
spherical magic numbers in SHE, see Refs.[42,43], which
can be expected to be reflected in the structure of the poten-
tial landscapes.

A fair survey of the extrapolation of the models to large
mass number and large deformation has therefore to cover a
selection of typical parametrizations. We have chosen param-
etrizations which give a very satisfactory description of
stable nuclei but differ in details. Namely, we use the Skyrme
interactions SkP[44], SLy6 [45], SkI3, and SkI4[46]. In the
relativistic calculations the parametrizations NL3[47] and
NL-Z2 [43] of the standard Lagrangian are employed.

The parametrization SkP has the isoscalar effective mass
m0

* /m=1 and was originally designed to describe the particle-
hole and particle-particle channel of the effective interaction
simultaneously(we do not make use of this particular fea-
ture). The forces SLy6, SkI3, and SkI4 stem from recent fits
including already data on exotic nuclei(all three forces) and
even neutron matter(SLy6). Both SkP and SLy6 use the
standard spin-orbit interaction. The forces SkI3/4 employ a
spin-orbit force with modified isovector dependence. SkI3
contains a fixed isovector part analogous to the nonrelativis-
tic limit of the RMF, whereas SkI4 is adjusted allowing free
variation of the isovector spin-orbit term. The RMF force
NL-Z2 is fitted in the same way as SkI3 and SkI4 to a similar
set of observables.

A quantity that characterizes the average deformation
properties of an effective interaction is the surface energy
coefficient. It is determined for the model system of semi-
infinite nuclear matter, which offers the cleanest procedure to
define a surface energy, see, e.g.,[37,48,49] and the refer-
ences given therein. In Table I, we give values for bulk and
surface properties of nuclear matter obtained exclusively in
fully self-consistent Hartree-Fock calculations of semi-
infinite matter[50,51]. Often values obtained within the ex-
tended Thomas-Fermi approximation are given[39], which
are usually smaller by about 1 MeV.

A correction of the binding energy for spurious center-of-
mass(c.m.) motion is performed as usual. For SkI3, SkI4,

SLy6, and NL-Z2 the c.m. correctionEc.m.=kP̂c.m.
2 l/2mA is

subtracted after variation. For SkP the diagonal part ofEc.m.
only is considered before variation, while for NL3 the
harmonic-oscillator estimate forEc.m. is subtracted, see Ref.
[41] for details. The c.m. correction, however, varies only
little with deformation, see e.g. Refs.[41,52]. Note that the
various recipes for c.m. correction cannot be easily inter-
changed as their differences are partially absorbed into the
force parameters. This has a consequence relevant for our
study. The difference between the “exact” and the approxi-
mate schemes used for SkP and NL3 scales in leading order
as ,A2/3. During the fit this difference is incorporated into
the effective interaction, which leads to the significantly
larger surface tension for SkP and NL3 found in Table I, see
Ref. [41]. The deformation energy from otherwise equally
fitted forces might differ on the order of 5 MeV at the outer
barrier in actinides. For SHE, where the saddle point is at
smaller deformation, this effect can be expected to be less
pronounced, but still might cause differences of a few MeV
between forces.

We treat pairing correlations within the BCS approxima-
tion using an effective density-independent zero-ranged
pairing force with the strength adjusted for each mean-field
parametrization separately as described in Ref.[53]. Includ-
ing a density dependence of the effective pairing interaction
or an approximate particle-number projection might alter the
barrier heights on the order of 1 MeV for actinide nuclei
[54].

The coupled mean-field equations for both SHF and RMF
models are represented on a grid in coordinate space using a
Fourier representation of the derivatives and are solved with
the damped gradient iteration method as described in Ref.
[55]. The numerical codes for both models[54,56] share the
same basic numerical routines which allows for a direct com-
parison of the results. Note that the accuracy of grid tech-
niques is fairly independent of deformation, which is an ad-
vantage to calculations using a harmonic oscillator basis
expansion; see, e.g., Ref.[52] for a convergence study for
256Fm.

Finally, beyond-mean-field effects can modify the fission
barrier. The most important corrections to the binding energy
remove the contributions from spurious collective vibrational
and rotational states which are inevitably admixed to the
mean-field wave functions[37,52,57]. These corrections
lower the barriers, typically up to 1 MeV for the inner one
and up to 2 MeV for the outer when starting from a well-
deformed prolate ground state. The situation is less clear for
transitional or spherical nuclei.

Altogether, the present study has uncertainties on the de-
formation energy for given configuration of the order of
1–2 MeV. Most of the possible improvements increase the
binding energy. Thus we can assume to explore an upper
limit for the barriers. The comparison of barriers between
different forces is more robust because most corrections can
be expected to be similar for all forces.

B. Shape degrees of freedom

We will consider reflection-symmetric as well as
reflection-asymmetric fission paths. But we restrict the con-

TABLE I. Compilation of bulk properties for the parametriza-
tions employed in this study. The upper block shows the volume
parameter incompressibility modulusK, effective massm0

* /m, and
asymmetry energy coefficientasym. The lower block shows the sur-
face energy coefficientasurf obtained from semi-infinite nuclear
matter calculations. For the RMF, where the effective mass is mo-
mentum dependent,m0

* /m is given at the Fermi momentumk=kF.
This value, which is about 10% larger than the often quoted value
for k=0, determines the average level density around the Fermi
energy, see also Ref.[43] and references therein.

Force SkP SkI3 SkI4 SLy6 NL-Z2 NL3

KsMeVd 202 258 248 230 172 270

m0
* /m 1.00 0.59 0.65 0.69 0.64 0.67

asymsMeVd 30.0 34.8 29.5 32.0 39.0 37.4

asurfsMeVd 18.2 18.3 18.3 17.7 17.7 18.5
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siderations to axially symmetric shapes. Our investigation
also covers the prolate fission path only. It has to be kept in
mind that novel fission paths may emerge for the heaviest of
the nuclides discussed here, which start out from strongly
oblate shapes and proceed through triaxial deformations
[21]. For this and the reasons given above, our results pro-
vide an upper limit for the(static) fission barriers. This limi-
tation holds also for most other work using self-consistent
models published so far, as well as most of the results from
mic-mac approaches.

The deformation energy curves are obtained with a con-

straint on the mass quadrupole momentQ20=kQ̂20l. For
reflection-asymmetric shapes, we also fix the center of mass

with a constraint on the mass dipole momentkQ̂10l=0. The
constraints are added to the energy functional by means of
Lagrange multipliers[37]. Besides these constraints, the de-
formation energy is minimized with respect to all axial mul-
tipole momentsQ,0 for protons and neutrons separately. In a
self-consistent calculation, the energy is not only minimized
with respect to the deformation, but also the radial profile of
the density distribution, again separately for protons and neu-
trons. With that, a self-consistent calculation explores many
more degrees of freedom than the best microscopic-
macroscopic calculation available so far. Some consequences
will be discussed in Sec. VI C below.

The deformation energy is shown versus the dimension-
less multipole deformations of the mass density which are
defined as

b, =
4p

3Ar0
, kr,Y,0l with r0 = 1.2A1/3 fm. s1d

Note that theb, are computed from the expectation values of
the actual shapes and need to be distinguished from the gen-
erating moments which are used in multipole expansions of
the nuclear shape in microscopic-macroscopic modelsf32g.

The constrained calculation does not always follow ex-
actly the static fission path, which is defined as the path that
follows the steepest descent in the multidimensional energy
surface. Instead, for each value ofQ20, one obtains a state
which corresponds to a minimum with respect to all other
degrees of freedom[58]. This might cause some problems to
keep track of the path whenever the fission path has a small
component only in the direction of the constraint. Often there
exist two or even more distinct valleys in the multidimen-
sional potential landscape, which are separated by potential
barriers. Depending on the choice for the initial wave func-
tions, the constrained calculation might find the nearest rela-
tive minimum only, which is not necessarily the absolute
minimum for a given constraint. The existence of distinct
valleys complicates the interpretation of the deformation en-
ergy curves. When the solution jumps from one valley to
another it misses the saddle point in between. The resulting
uncertainty is not cleara priori, as only a calculation includ-
ing two or even more constraints can clarify if there is a flat
plateau or a mountain ridge between the two valleys. The
change from one to another valley in the potential landscape
is accompanied by discontinuities in higher multipole defor-
mations which can be used to identify them. In some cases

the existence of two distinct valleys might be the artifact of
imposed symmetries, cf. the case of258Fm, where the two
distinct valleys obtained from axially symmetric calculations
are spurious as the two solutions are smoothly connected
through triaxial shapes[36].

IV. BARRIERS IN ACTINIDE NUCLEI

Actinides are the heaviest nuclear systems for which data
on the structure of the fission barrier are available. We use
these nuclei to benchmark our models and forces, and to
examine the force dependence of the predictions. We confine
our investigation to axial barriers but release reflection sym-
metry in the calculations of the outer barriers and isomeric
states.

There exists a wealth of information about the(in most
cases) double-humped fission barriers of actinide nuclei, see
Ref. [59] and references given therein. The generic features
of the static fission path are shown in Fig. 1 for the example
of 240Pu calculated with the Skyrme force SLy6. The de-
formed ground state has a calculated deformation ofb2
=0.29, which is in perfect agreement with the value ofb2
=0.29 that can be deduced within the rigid rotor model from
the BsE2d↑ value of 13.33±0.18e2 b2 obtained from Cou-
lomb excitation[60]. The deformation energy of 15.9 MeV
of the ground state corresponds to 0.9% of the total binding
energy. The inner barrier explores triaxial degrees of free-
dom, which reduce the(axial) barrier by about 3 MeV. There
is a superdeformed fission isomer atb2<0.8 at an excitation
energy of 3.0 MeV, which is somewhat larger than the ex-
perimental value of 2.25±0.20 MeV[61]. The outer barrier
explores reflection-asymmetric shapes. The potential land-
scapes of adjacent actinide nuclei are similar, though for
some nuclides there might appear a second isomeric state
[62].

The double-humped fission barrier of240Pu has often
served as a benchmark for mean-field models, see Ref.[63]
for results obtained using Skyrme interactions, Ref.[64] us-
ing Gogny forces, Refs.[40,65] for the RMF, and Ref.[41].
Early comparisons of barriers obtained with different

FIG. 1. Example for the double-humped fission barrier of the
typical actinide nucleus240Pu. The dotted line denotes an axial and
reflection-symmetric calculation, the full line denotes a triaxial(in-
ner barrier) and axial and reflection-asymmetric calculation(outer
barrier). The various shapes along the axial paths are indicated by
the contours of the total density atr0=0.07 fm−3.
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Skyrme forces using approximations to full self-consistency
were published in Refs.[38,39,66]. A direct comparison of
the potential energy curves with triaxial inner and reflection-
asymmetric outer barriers obtained with the Skyrme interac-
tions SLy6, SkM*, and SkI4, the Gogny force D1s, and the
RMF forces NL3 and NL-Z2 is presented in Ref.[37]. The
excitation energy of the fission isomer has been studied with
a variety of Skyrme forces in Refs.[67,68].

The influence of correlations on the deformation energy in
the framework of Skyrme mean-field calculations has been
studied in Ref.[69]. An exact angular momentum projection
lowers the axial inner barrier by a bit less than 1 MeV, the
excitation energy of the isomeric minimum by about 1 MeV,
and the reflection-symmetric outer barrier by about
1.5–2 MeV. Removing spurious quadrupole vibrations from
the mean-field states by configuration mixing of the angular
momentum projected mean-field states lowers both the
ground state and the isomeric state by a few 100 keV. For
240Pu, this effect is more pronounced for the isomer, which
lowers its excitation energy even further, but it cannot be
expected that this will be the same for all actinides.

In this section we will confine ourselves to the heights of
the inner and outer barrier as well as the excitation energies
of the isomeric states while postponing a thorough discus-
sion of the potential landscapes to future work. As our goal is
the extrapolation of the models to superheavy nuclei, a dis-
cussion of these key quantities suffices.

The selection of even-even nuclei for this study is

90
230Th140, 90

234Th144, 92
234U142, 92

238U146, 94
238Pu144, 94

242Pu148,

94
246Pu152, 96

242Cm146, 96
246Cm150, 96

250Cm154, and98
250Cf152, which is

only every second known nucleus in neutron number. We
omit Fm isotopes as there are two competing paths at the
outer barrier, and there is no continuous axial path for the
inner barrier for some Skyrme forces[36].

Figure 2 compares calculated and experimental heights of
the inner barrier. In the case of the inner barrier, the com-
parison of data with values obtained from axial calculations
is somewhat dangerous, as the static inner barrier is known
to be triaxial and the energy gain through triaxial deforma-
tion may differ for each force. Still, there are several conclu-
sions that can be safely drawn from Fig. 2. Our selection of
forces suggests that there is a difference between SHF and
RMF models. All Skyrme forces predict that the inner barrier
increases with neutron number up toN=150, most pro-
nounced for SLy6. TheZ dependence of the barrier height is
most pronounced for SkI3 and SkI4, the Skyrme forces with
an extended spin-orbit interaction, while it is negligible for
SkP, the only force in our sample with the large effective
massm0

* /m=1.0, cf. Table I. One might suspect that the cor-
responding large level density suppresses shell effects com-
pared to the other forces. On the other hand, for the two
RMF forces the barriers stay nearly constant withN, and
show an increase withZ only. This finding suggests a signifi-
cant difference in shell structure between the SHF and RMF
models. Experimental data do not show any significant de-
pendence onN or Z at all, they just fall off a few 100 keV
with mass number. From our present calculations, it cannot
be decided if adding triaxiality will give a similar trend.

There is also a difference in absolute height between SHF
and RMF. With the exception of SkP, the inner barriers from

SHF are significantly higher by about 2 MeV than those ob-
tained within the RMF. This is reflected in the values for the

mean deviation of the inner barrier heights1/ndo
i=1

n uDEiu
from the experimental value in MeV is 4.5(SLy6), 2.7(SkP),
4.1 (SkI3), 4.1 (SkI4), 1.5 (NL-Z2), and 2.3(NL3), respec-
tively, although this quantity is of limited significance. An-
gular momentum projection will lower the barrier by about
1 MeV, and one can speculate only about the effect of tri-
axiality and other correlations on the trends withN andZ. It
is tempting to assume that, when including these missing
corrections, the SHF might still overestimate the barriers of
the heavier nuclei but be on the right order for the lighter
ones, while the RMF will underestimate the barriers of Th
isotopes already on the mean-field level.

The outer barrier heights as predicted by the various
mean-field forces are shown in Fig. 3. For the outer barrier, it
can be expected that our calculations cover all necessary de-
grees of freedom, so data and calculated values can be di-
rectly compared. There are differences in absolute barrier
height. With a mean deviation of the outer barrier height in
MeV of 2.2 (SLy6), 4.7 (SkP), 1.4 (SkI3), 3.8 (SkI4), 1.2
(NL-Z2), and 0.8(NL3), respectively, SkI3, NL-Z2, and in
particular NL3 give a quite good description of the barrier

FIG. 2. Height of the inner barrier from axial and reflection-
symmetric calculations. ThsZ=90d, UsZ=92d, PusZ=94d, CusZ
=96d, and CfsZ=98d isotopes are denoted by open circles(for N
=140, 142), open triangles, open squares, open diamonds, and again
open circlessN=152d, respectively. Experimental data(full sym-
bols) are taken from Ref.[29]. Data points for the same element are
connected by lines.
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height on the mean-field level. The differences found for the
barrier height seem to manifest themselves mainly in an
overall offset, while all models and forces predict quite simi-
lar trends of the barrier heights withN and Z, a bit more
pronounced for Skyrme forces, and a bit more damped for
NL-Z2. The good news is that this overall trend is quite close
to the experimental findings.

As barriers from NL-Z2 are already always smaller than
the experimental values, there is no room left for correlation
effects. For shapes around the outer barrier, the(missing)
rotational correction can be expected to be about 1.5 MeV
larger than for the ground state of a well-deformed nucleus.
When removing those 1.5 MeV from the outer barrier
heights shown in Fig. 3, the barriers from the RMF are too
low, in particular for NL-Z2, where not much will be left.

The excitation energy of the fission isomer is displayed in
Fig. 4. We have added also results obtained for the nuclei
with neutron numbers between those used to investigate the
barriers above. To the best of our knowledge, only three
experimental values for superdeformed 0+ states in even-
even nuclei are available so far from spectroscopy in the
superdeformed and normal-deformed wells, which are236,8U
and 240Pu; see the recent collection of data in Ref.[70].
There are more superdeformed levels known in some other
adjacent even and odd nuclei, but their quantum numbers
could not be established so far. They all have in common that
their excitation energy is at least 2 MeV, which also sets
some constraints to our calculations. These values are also
consistent with the data obtained from fits to fission-isomer
excitation functions, see, e.g., Ref.[71].

Although the sparse data do not allow for a detailed
analysis, there are a few conclusions that can be drawn. On
the mean-field level, SkP gives rather high energies and over-
estimates the data by about 2 MeV. Values from SLy6 are
scattered around the data. RMF models predict very low ex-
citation energies. The Skyrme interactions SkI3 and SkI4
with extended spin-orbit interactions also underestimate the
known excitation energies at least for certain elements. It is
noteworthy that SkI3, NL3, and particularly NL-Z2 predict
the superdeformed state to be the ground state for some ac-
tinide nuclei, in contradiction with experimental knowledge
about the spectroscopy and decay of those nuclei. It was
already noticed in Ref.[40] for selected examples that the
RMF underestimates the excitation energy of the fission iso-
mer. This seems to be a general shortcoming of the RMF
model, at least of most, if not all, of its standard parametri-
zations. This finding is not restricted to actinide nuclei, but
was also observed for superdeformed states in the neutron-
deficient A<190 region[72,73], where it can be cured to
some extent taking additional information about the spherical
shell structure of208Pb into account during the fit of the force
parameters[73]. The overbinding of the fission isomer can
be expected to become even more pronounced when correc-
tions for breaking of rotational and other symmetries are
considered.

From our small selection of Skyrme forces, it is hard to
disentangle the influence of the effective mass and of the
various spin-orbit functionals from the influence of the actual

FIG. 3. The same as Fig. 2, but for the outer barrier.
FIG. 4. Excitation energy of the isomer, obtained from axial

calculations.
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fitting procedure on the predictions for barrier heights. It is
tempting to correlate the large deformation energy obtained
with SkP with its large effective mass, but this is ruled out by
recent Skyrme-HFB mass fits with effective mass around 1.0
that deliver much smaller barriers[74] than SkP. Since
NL-Z2 and NL3 have the same functional form, the tendency
of NL3 to larger barriers must result from the different strat-
egies to adjust the force.

It is a bit surprising that the differences in surface tension
visible in Table I are not reflected in the inner barrier heights
and cannot be solely responsible for the differences obtained
for outer barrier heights and fission isomers. Shell effects
seem to play a much larger role for these quantities than the
nuclear matter properties. For the forces in our sample, the
difference in surface tension seems to be compensated by
other features of the forces through the fit. However, when
the influence of shell effects is suppressed by comparing pre-
dictions of pairs of otherwise identically fitted forces with
different surface tension, one finds indeed the expected dif-
ference, see Ref.[41] for the example of the Skyrme inter-
actions SLy4 and SLy6 and the RMF forces NL1 and NL-Z.

Summarizing, a differences in the models, can be recog-
nized. SHF gives usually higher barriers than RMF. In com-
parison with experimental data, it seems that the RMF pre-

dictions are too low for barriers and fission isomers. These
findings were already hinted in earlier investigations of ac-
tinide [40,41] and superheavy nuclei[36], but emerge even
more clearly for the present systematic investigation of nu-
clei.

In the following section we will see how these trends
translate to superheavy nuclei.

V. POTENTIAL LANDSCAPES

Figure 5 provides a summary view of the deformation
energy curves along the fission paths for all SHE under con-
sideration here for the Skyrme interaction SLy6 and the rela-
tivistic mean-field force NL-Z2. The full lines denote the
asymmetric fission path and the dashed lines the symmetric
fission path(which coincide at small deformations). The glo-
bal trends are common for both forces(and also the others
employed in this study) and in qualitative agreement with
earlier studies in mic-mac and semiclassical models.

(1) There is a gradual transition from well-deformed nu-
clei with b2<0.3 around the deformedZ=108 andN=162
shell closures to spherical shapes approachingN=184. Note
that earlier studies suggest that the neutron number is more

FIG. 5. Axial fission barriers for the Skyrme
force SLy6(top) and the relativistic force NL-Z2
(bottom). Solid (dashed) lines denote the
reflection-asymmetric (reflection-symmetric)
path.
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important than the proton number to determine the ground-
state shape.

(2) Intermediate systems aroundZ=114,N=174 have two
distinct prolate and oblate minima at small deformation. On
the basis of our axial calculations it is not clear if this leads
to shape coexistence in these nuclei as concluded on similar
grounds in Refs.[75–77]. Calculations including triaxial de-
grees of freedom suggest that for some, or perhaps all, of
these systems the prolate and oblate “minima” are connected
through triaxial shapes without a barrier[78].

(3) While the ground-state deformation moves to smaller
values, also the saddle point is shifted to smaller deforma-
tions. This means that the width of the fission barrier is not
necessarily larger for nuclei with spherical shell closures.

(4) The transitional nuclei in between belong to a regime
of low fission barriers. This is consistent with the current
(still sparse) experimental knowledge. The recent data from
Dubna interpreted as thea-decay chain of292116 indicate
that fission is the preferred decay channel for280110170, but
not for the heavier nuclides in this chain[8].

(5) Above Z=108, the static fission path switches from
symmetric to asymmetric fission.

(6) For most of the nuclei aboveZù110 considered here,
reflection-asymmetric shape degrees of freedom remove
completely the outer barrier that is well known from actinide
nuclei, leading to a single-humped fission barrier only.

(7) The superdeformed minima aroundb2<0.5 obtained
from reflection-symmetric calculations with NL-Z2 for
298118176 in Ref. [76] and292116176,

288114174,
284112172, and

280110172 in Ref. [77] are not stable with respect to octupole
distortions, which makes the conclusions about superde-
formed ground states of superheavy nuclei drawn in Refs.
[76,77] questionable. This finding is not completely general
as for some forces there remains a very small asymmetric
barrier.

The general features of these trends are easily understood
in the more intuitive language of the mic-mac models(al-
though they apply, of course, to the self-consistent models as
well). For nuclei at the lower end of the region investigated
here, the potential energy surface from the LDM is rather flat
around the spherical point and drops off fast at prolate de-
formations aboutb2<0.7, cf. Fig. 7 in Ref.[35]. The struc-
tures seen in Fig. 5 are mainly determined by the variation of
the shell correction with deformation. The maximum of the
shell correction follows the shell closures from the deformed
Z=108 andN=162 to the sphericalN=184 shell. The poten-
tial wells are deepest in the vicinity of closed shells. With
increasingZ, the plateau is shifted toward oblate deforma-
tions, while the LDM surface drops at smaller and smaller
prolate deformations, which cannot be counterweighted by
the variation ofEshell. With that the saddle point moves in
toward smaller deformations. For larger systems than those
discussed here the potential energy surface becomes also un-
stable on the oblate side.

Figure 5 gives also an idea where triaxiality might play a
significant role. Whenever the deformation energy is smaller
on the oblate side than for the same deformation on the pro-
late side outside the prolate saddle point, oblate shapes might
be unstable through a triaxial path. Of course this is neither a
sufficient nor necessary condition.

While there is overall qualitative agreement among the
two forces(and models), there are significant differences at a
quantitative level. The RMF force NL-Z2 predicts lower bar-
riers when going toward heavy systems than the Skyrme
interaction SLy6. This is confirmed when directly comparing
the deformation energy for selected nuclei, see Fig. 6.
166
274Hs108 is a well-deformed nucleus located at the edge of the
“rock of stability” around 162

270Hs108, 182
302120 is close to the

spherical neutron shellN=184, while the other two are lo-
cated in the transitional region. The figure compares more
forces, now two from SHF(SLy6 and SkI3) and two from
RMF (NL3 and NL-Z2).

There are two kinds of differences. First, the systematic
difference between SHF and RMF models which we saw
already for the actinides, with the RMF giving smaller bar-
riers, persists to superheavy systems, and second, an addi-
tional difference between the two RMF parametrizations
NL-Z2 and NL3 concerning the outer barrier occurs, with
NL3 being the only force predicting a double-humped barrier
for the heavier systems.

Comparing the potential energy curves from NL-Z2 and
SLy6 at small deformation for the heaviest nuclei, one sees
also some differences concerning how strongly the nuclei are
driven to sphericity. Comparing nuclides in the “northeast-
ern” corner of Fig. 5, the onset of spherical ground states is
predicted to be earlier with NL-Z2 than with SLy6. This
reflects the different predictions for shell closures from both
models[42,43]. While NL-Z2 (like all other standard RMF
forces) predicts strongZ=120 andN=172 shells and a weak
N=184 shell, SLy6 gives a strongN=184 shell and a weak
Z=120 shell, which is not sufficient to guarantee a spherical
ground state of this nucleus for nonmagic neutron number.
Therefore nuclei at the upper end of Fig. 5 are much more
driven to sphericity when calculated with NL-Z2 than with
SLy6.

FIG. 6. The fission barriers of four selected nuclei normalized to
the ground-state for four mean-field parametrizations as indicated.
Shown is always the energetically favored fission barrier.
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VI. CHARACTERISTIC QUANTITIES

The basic features of all the deformation energy surfaces
shown in the previous plots can be characterized by a few
key numbers, i.e., the ground-state deformation energy and
the height of the inner fission barrier and the outer barrier,
which will be discussed in this section.

A. Ground-state deformation energy

The ground-state deformation energy, i.e., the energy dif-
ference between the spherical shape and the(possibly de-
formed) ground state, is plotted in Fig. 7. We consider only
small deformationsb2ø0.4. Zero deformation energy al-
ways indicates a spherical ground state, as we do not find
coexisting well-deformed minima at the same energy as the
spherical configuration.

We see that all models and parametrizations predict a
transition from deformed nuclei aroundZ=108, N=162 to
sphericalN=184 in agreement with earlier studies[35,79].
These deformation energies correspond to strongly prolate
deformations at the lower corner of our selection of nuclei.
For higherZ values, a shape isomerism is established with
two minima on the prolate and oblate side having approxi-
mately the same energy and only small deformations ofb2
< ±0.15. Thus far the general trends agree. There are differ-
ences in quantitative detail, most prominently the fact that
RMF predicts systematically lower deformation energies
than SHF.

It is to be noted that in SHE the neutron number most
often determines the ground-state shape, while a magic pro-
ton number might not prevent deformation. This seems to be
a general feature of all self-consistent models[35,79], and
can also be observed in mic-mac models, which predict de-
formed Z=114 isotopes[80,81] far off N=184. This is due
partially to the overall larger shell correction energy of the

spherical neutron shells compared to the proton shells[82],
and partially to the existence of many deformed proton shell
closures in the region 108øZø120, which drive nuclei with
nonmagic neutron number toward deformation.

B. Existence of shape isomers

The existence of a shape(or fission) isomer with defor-
mation aroundb<1.0 is a prominent feature of actinide nu-
clei [59]. A fission isomer necessarily requires an outer fis-
sion barrier. The height of the outer barrier with respect to
the isomeric state is shown in Fig. 8. All forces and models
confirm the earlier finding that the outer barrier fades away
for transactinide nuclei, see e.g. Ref.[36]. An exception is
NL3, which predicts a substantial outer barrier for most nu-
clei, cf. also Fig. 6. As NL-Z2 usually does not show a fis-
sion isomer, this cannot be a general feature of the RMF
model, but has to be a particularity of the NL3 parametriza-
tion. Similarly, SkI4 is an exception among the Skyrme in-
teractions. Most nuclear matter properties of NL3 and NL-Z2
are very close, the same holds for the Skyrme interactions
SkI4, SkI3, and SLy6. This suggests that the height of the
outer barrier is mainly determined by shell structure, not the
average liquid-drop properties. Remember that SkI4 employs
a nonstandard spin-orbit interaction which leads to single-
particle spectra different from those of the other self-
consistent models at spherical shape[43].

C. Saddle-point height

A most interesting feature of SHE is the stability against
spontaneous fission. The fission half-life can be computed
from a tunneling dynamics in the shape degrees of freedom
[83]. Input to that are the collective masses along the fission
path and the fission barriers. We aim here at a mere compari-
son of stability between the different forces. To that end, we
assume that the collective masses are almost similar in all

FIG. 7. Deformation energy for the lowest minimum at small
deformation sb2ø0.4d for the nuclides and forces as indicated.
White squares denote deformation energies smaller than 0.5 MeV.
See the main text for a detailed description.

FIG. 8. Height of the outer, usually asymmetric, fission barrier
with respect to the isomeric state. White squares indicate a second
bump smaller than 0.5 MeV.
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cases and confine the discussion to the height of the(inner)
axial fission barrier as key quantity. Keep in mind that the
numbers given for the barrier height represent an upper limit
due to possible lowering through triaxial shapes.

The systematics of the fission barriers for all nuclei and
mean-field forces considered here are shown in Fig. 9. We
have added results from two other large-scale calculations,
one employing the semi-classical ETFSI approach[30] and
the other within the mic-mac approach[26]. In both cases
axial shapes which allow for reflection asymmetry are as-
sumed, similar as in our calculations. The mic-mac fission
barriers from Ref.[26] are dynamical barriers, i.e. the barrier
which lies on the fission path that minimizes the multidimen-
sional action.

All models and forces agree that there is a regime of low
fission barriers aroundZ=110, but the(axial) barriers in-
crease again when going towardN=184. There are, however,
significant differences among the models. Comparing the
fully self-consistent models, the barriers from RMF are much
lower than those from SHF.

And even among the various SHF forces, we see differ-
ences in the barriers. It is again SkI4 with its particular spin-
orbit force which shows the largest barriers. Here it is note-
worthy that SkI4 predicts largest stability forZ=120
although it places the magic shell closure atZ=114 [43].
This shows once again that “magicity” is something different
from stability as was argued also in Ref.[82].

The ETFSI calculations give barriers that have almost the
same size as the ones from the RMF forces, with the differ-
ence that they produce a bit smaller barriers at the lower end
and larger regions with more stable nuclei. Similarly, the

barriers from the mic-mac rather correspond to the estimates
from the RMF forces. The self-consistent SHF results deliver
the highest barriers throughout.

For two nuclei and the forces SLy6 and NL-Z2, the
saddle-point shapes are shown in Fig. 10. In all cases, com-
pact nuclear shapes are obtained. The saddle-point deforma-
tion decreases slightly from values aroundb2=0.32 obtained
with both forces for274Hs, to b2=0.28 obtained with SLy6
and b2=0.18 predicted by NL-Z2, respectively, for302120.
Note that for NL-Z2 there exists no pronounced saddle point,
since the barrier is rather flat(see Fig. 6).

Figure 9 also shows fission barriers calculated within the
mic-mac method[26]. The trends are remarkably different
from the self-consistent models. A maximum of stability is
found aroundZ=116 and less stability for larger systems.
Effective massm* /m=1 cannot be the reason because SkP
with m* /m=1 behaves as all other SHF and RMF. We can
only speculate about possible explanations. There might be
differences in the smooth part of the self-consistent models,
e.g., in higher-order terms missing in the mic-mac models or
even the curvature term(all of which do not necessarily have
the right structure in self-consistent models); or the effect
comes from the different shell structure between the Folded-
Yukawa potential used in the mic-mac calculations and self-
consistent models[43] (although the difference among, e.g.,
SkI4 and NL-Z2 is quite significant, while the global trend of
the barriers is not).

It can be speculated that this is a consequence of missing
shape degrees of freedom, either in missing higher-order de-
formations in the mic-mac method or in the radial density
distribution. It is well known that multipole moments at least
up to ,=8 have to be taken into account to obtain the full
shell effect around108

270Hs162 [84]. It can be expected that even
more shape degrees of freedom are necessary to get the full
shell effect for the even more complex saddle-point configu-

FIG. 9. The height of the symmetric inner barrier calculated in
axial symmetry for the models and forces as indicated. We have
also added ETFSI taken from Ref.[30] and mic-mac results ob-
tained within the YPE+WS model from Ref.[26].

FIG. 10. Contour plots of the mass density distribution for the
saddle-point configurations of the nuclei282112170 (lower panels)
and302120 (upper panels) as predicted by the forces SLy6(left) and
NL-Z2 (right). The z axis is the symmetry axis. The contour lines
correspond to the densities 0.01, 0.03,…, 0.15 and 0.17 fm−3.
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ration. The standard mic-mac models also assume that pro-
tons and neutrons have the same deformation. An exploration
of the consequences of this constraint in the framework of
the self-consistent Gogny force is given in Ref.[85]. Impos-
ing the same deformation for neutrons and protons leads to
larger barriers of the order of 1 MeV in actinides. A similar
effect can be expected for SHE. Even more severe might be
the parametrization of the radial density distribution in mic-
mac models. There is no radial degree of freedom at all,
although it is well known that changing the surface diffuse-
ness might significantly change the ground-state shell correc-
tion of SHE. The current parametrizations of mic-mac mod-
els also prevent “semibubble” density distributions that
might appear at the upper end of the nuclei in Fig. 9.

Although each missing degree of freedom causes a loss in
binding energy, the deformation dependence of the various
effects can be expected to be very different. Depending on if
the missing energy is larger at the ground state or around the
saddle point the fission barriers are either increased or de-
creased. This might explain the difference in the global trend
between mic-mac and self-consistent models.

Table II compares our calculated barrier heights with the
lower limits of the barriers of some very heavy nuclei re-
cently deduced from an analysis of the available data for
fusion and fission[13]. Surprisingly, these experimentally
estimated barrier heights are similar, or even slightly larger,
than that of actinide nuclei in the240Pu region. Experimental
and calculated values are in agreement for the Skyrme forces
SLy6, SkI3, and SkI4, while both RMF forces and the
Skyrme interaction SkP significantly underestimate the bar-
rier.

Although the barrier heights are comparable, the lifetimes
corresponding to these barriers are much shorter than for
actinide nuclei as the barriers are much narrower. For the
adjacent170

280110, a fission lifetime of aboutT1/2=7.6−2.3
+5.8 s was

reported in Ref.[8]. This is quite short but two orders of
magnitude longer than results of the mic-mac model, which
predict about 10−1 s [26]. As those heavy nuclei are solely
stabilized by shell effects[86], reliable predictions will be a
difficult task for any model.

VII. SEARCH FOR UNDERLYING MECHANISMS

The above results on the fission barriers and its trends
toward the heaviest SHE show systematic differences be-

tween SHF and RMF. In this section, we want to ponder a bit
about possible reasons. For the further discussion it is useful
to distinguish between the macroscopic part of the models
(which determines the nuclear matter properties and the av-
erage trends), and the microscopic part(which determines
the actual shell structure). As we will see, it is not yet fully
clear which part is responsible for the observed systematic
differences.

A. Macroscopic aspects

It is well known that most nuclear matter properties from
SHF and RMF models differ significantly, see e.g. Ref.[37]
and references therein. In lowest order, the barrier heights
can be expected to scale with the surface energy coefficient
asurf. With the exception of NL3, however, the values forasurf
are quite close for all forces used here, see Table I. NL3
gives in most cases smaller(inner) barriers in spite of its
larger surface energy coefficient.

If the differences seen in Fig. 6 are rooted in the macro-
scopic part, another bulk property thanasurf has to be respon-
sible. It is unlikely that this is the volume energy because it
is basically independent of the nuclear shape. The situation is
more involved for the volume symmetry energy, coefficient
asym. At first glance, the volume energy also scales with the
nuclear volume, but there is an implicit surface effect due to
a correlation between the neutron skin andasym; the skin
increases with increasingasym. A systematic study performed
in Ref. [87] suggests that this relation is unique. A variation
of other isovector properties as the sum rule enhancement
factor kTRK or the surface-asymmetry coefficientksym leaves
the skin unchanged.

And indeed, when we calculate fission barriers with the
systematically varied Skyrme forces from Ref.[87], we find
that the barriers increase with decreasingasym, while they do
not change when the isovector effective mass is varied. This
is consistent with our findings for the barriers, where the
Skyrme forces which all haveasym<32 MeV have larger
barriers than the RMF forces withasym<39 MeV, cf. Table
I. This correlation is not unique and might apply only to
forces fitted according to the protocol of Ref.[88]. The
Skyrme mass fit MSk7[89], which follows a very different
fitting strategy, has a significantly smallerasym=27.95 MeV
than the Skyrme forces used here, but predicts also signifi-
cantly smaller fission barriers for heavy and superheavy nu-
clei [74], which are in fact similar to our RMF results. With
that, a satisfying explanation of the difference between RMF
and SHF concerning fission barrier heights based on macro-
scopic properties of the models is still missing.

B. Microscopic aspects

For nuclei with flat or unstable macroscopic potential en-
ergy surfaces the height of the fission barrier is determined
by the variation of the shell correction energyEshell with
deformation.Eshell reflects the deviation of the actual density
of single-particle levels around the Fermi energyeF from an
averaged level density. Pivotal for the barrier is not the ab-
solute value ofEshell, but its variation, which reflects the
change of the single-particle spectra with deformation.

TABLE II. Comparison of fission barriers(see text). Experimen-
tal data are taken from Ref.[13]. The assignment of the neutron
number has some uncertainty, therefore the same experimental bar-
rier appears for two nuclei in the list.

Nucleus Expt. NL3 NL-Z2 SLy6 SkI3 SkI4 SkP

284112172 5.5 3.38 2.99 6.06 6.75 6.03 2.77
286112174 5.5 3.41 3.16 6.91 7.52 6.97 2.77
288114174 6.7 3.87 4.08 8.12 8.75 8.11 4.02
290114176 6.7 3.56 3.70 8.52 8.15 8.67 4.31
292116176 6.4 3.81 3.74 9.35 8.77 9.62 5.67
294116178 6.4 3.80 3.96 9.59 8.61 10.93 6.50
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Nilsson plots of the single-particle energies of the nucleus
302120182 as calculated with the RMF force NL-Z2 and the
Skyrme interaction SLy6 are shown in Fig. 11. There are
significant differences between the forces which can be
traced back to their different shell structure at spherical
shapesb2=0d [42,43]. The small spin-orbit splitting of the
3p and 2f states obtained with NL-Z2 leads to a major shell
closure atZ=120, whileZ=120 is a subshell closure only for
SLy6, which (for this neutron number) has more prominent
gaps in the single-particle spectrum atZ=114 andZ=126.
On the other hand, there is a huge gap in the neutron spec-
trum atN=184 for SLy6, while there are several small gaps
at N=172, 182, and 184 for NL-Z2.

It has to be stressed, however, that for self-consistent
models such Nilsson plots cannot be extrapolated very far
from the N and Z they are calculated for. For deformed
shapes, the self-consistent optimization of higher multipole
moments when changingN and Z might change the single-
particle spectra significantly. Additionally, the radial shape of
the density distribution might change with nucleon numbers
[34,43,90] or deformation. Figure 11 provides an example
for the latter. At small deformation NL-Z2 predicts a semi-
bubble shape for302120182 (see the small inserts in the upper
panel), which aroundb2<0.12 changes abruptly into a more

regular density distribution, thereby causing the discontinuity
in the single-particle spectra at that deformation. The semi-
bubble shape reduces the spin-orbit splitting(cf. the proton
2f, 3p, or neutron 3d states). The appearance of such semi-
bubble shapes is force dependent, for SLy6 it occurs forZ
=120 only at smaller neutron numbers aroundN=172. For a
more detailed discussion of this phenomenon see Refs.
[34,43,90].

Comparing the spectra from NL-Z2 and SLy6 at spherical
shape, there is another significant difference besides the spin-
orbit splitting. The highly degenerated 1i11/2+ proton and
1j13/2− neutron states above the Fermi energy are much lower
for NL-Z2 than for SLy6. This does not yet lead to a signifi-
cantly smaller (total) shell correction for NL-Z2 sEshell

=−13.1 MeVd than for SLy6sEshell=−14.1 MeVd [82], but
their splitting with deformation brings more of these levels
close to the Fermi energy around the fission barrier for NL-
Z2, which might be the reason for the difference between
NL-Z2 and SLy6. From looking at the single-particle spectra
in Fig. 11 alone, however, this cannot be decided. To resolve
this issue, a calculation of the shell correction for deformed
shapes along the strategy of Ref.[82] seems highly desirable.

The single-particle spectra at the spherical point also de-
termine the existence or nonexistence of the reflection-
asymmetric outer barrier, and with that of the fission isomer.
At deformations aroundb2<0.5, there are several single-
particle states originating from the intruder and the major
shells above and below coming close to the Fermi energy,
see Fig. 12 for the example of302120182. Spectra for other
nuclei in this region look quite similar. Octupole deformation
mixes states with the same angular momentum but opposite
parity, so depending on the actual level ordering it will in-
crease or decrease the level density at the Fermi surface. The
differences in the relative distance of the single-particle
states found at spherical shape[43] are reflected in the spec-
tra for these very deformed shapes. For example, the subtle
shift in single-particle energies between the RMF forces

FIG. 11. Inner axial fission barrier(top), proton levels(middle),
and neutron levels(bottom) for the nucleus302120 with NL-Z2
(left) and SLy6 (right). Solid (dotted) lines in the Nilsson plots
denote single-particle states with positive(negative) parity, while
the dashed line plots the Fermi energy. In the upper panel for NL-
Z2, the radial distribution of the total density along thez axis is also
shown.

FIG. 12. Single-particle spectra in the superdeformed configu-
ration obtained from reflection-symmetric calculations for
302120182.

BÜRVENICH, BENDER, MARUHN, AND REINHARD PHYSICAL REVIEW C69, 014307(2004)

014307-12



NL-Z2 and NL3 removes the outer asymmetric barrier for
the former, but not the latter. The single-particle spectra at
spherical shape including those far above and below the
Fermi energy have to be described with very high precision
to decide if there exist superdeformed states in superheavy
elements.

VIII. CONCLUSIONS

We have investigated the systematics of fission barriers in
superheavy elements withZ=108,. . . , 120 aspredicted by
self-consistent mean-field models. As typical representatives,
we employed the nonrelativistic Skyrme-Hartree-Fock(SHF)
model as well as the relativistic mean-field(RMF) model,
and for each case, we used a selection of different parametri-
zations to explore the variances in the predictions. All calcu-
lations have been done with axial symmetry but allowing for
reflection-asymmetric shapes.

As a benchmark for our mean-field models and forces, a
selection of actinide nuclei ranging from Th to Cf isotopes
has been utilized to study the predictions for the inner and
outer axial barriers as well as the excitation energies of the
isomer. Overall, a model dependence of the results has sur-
faced. RMF forces tend to lower, and often too low, barriers
and excitation energies, while most Skyrme forces tend to
higher values, which sometimes leads to an overestimation
on the mean-field level.

For superheavy nuclei all models and forces agree on the
systematic trends concerning the fission barriers, ground-
state deformations, and fission modes. There are differences
in detail. Fission isomers are generally suppressed in super-
heavy elements, with the exception of the RMF force NL3 in
our sample. For larger nuclei, there emerge large and system-
atic discrepancies between SHF and RMF concerning the
barrier heights, reaching a factor of 2 forZ=120. This am-
plifies and confirms the tendency which has been demon-
strated for actinides. The factor of 2 in fission barriers around
Z=120 means in absolute numbers that SHF fission barriers

are about 5 MeV larger and this amounts to many orders of
magnitude longer fission lifetimes. Moreover, the SHF forces
employed here predict also barriers larger than the more phe-
nomenological mic-mac models. The reason for the system-
atic difference between SHF and RMF have yet to be found
out. We suspect that the difference is caused by a different
shell structure in the models. This point deserves more in-
vestigation.

The further systematic trends are shared by SHF and
RMF. There is a transition from well-deformed ground states
aroundZ=108 to nearly spherical ones atZ=120, which de-
velops through very soft nuclei which might exhibit shape
isomerism. Also there is a marked breakdown of fission sta-
bility around Z=110 in agreement with experimental find-
ings where thea chains of superheavy elements are limited
at the lower end by fission.

The axially symmetric fission barriers are, of course, only
a first indicator of fission stability(to be more precise, an
upper limit). One needs yet to include triaxial degrees of
freedom and to model the dynamics of fission to obtain life-
times. Taking into account the results from actinides and su-
perheavy nuclei, the mean-field models used in this study
seem to deliver lower(and probably too low—RMF) and
upper(SHF) limits for the barrier heights. It is yet difficult to
map these differences on special and isolated features of the
models, which remains an urgent and important task for the
near future.
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