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Description of the ground and octupole bands in the symplectic extension of the interacting vector
boson model
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In the framework of the symplectic extension of the interacting vector boson model a good description of the
first excited positive and negative parity bands of the nuclei in the rare earth and the actinide region is
achieved. The bands investigated in the model are extended to very high angular momenta as a result of their
consideration as “yrast” bands with respect to the symplectic classification of the basis states. The analysis of
the eigenvalues of the model Hamiltonian reveals the presence of an interaction between these bands. Due to
this interaction theAL=1 staggering effect between the energies of the states of two bands is also reproduced
including the “beat” patterns.
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I. INTRODUCTION interacting vector boson mod@BM ) was first mentioned by
lachello and Arima[2]. It was suggeste@3] that the inclu-

The existence of nuclei with stable deformed shapes wasion of ap boson to thes, d, and f bosons may play an
realized early in the history of nuclear physics. The observaimportant role in the description of these collective states.
tion of large quadrupole moments led to the suggestion that The coherent state meth¢@SM) was applied by Alonso
some nuclei might have spheroidal shapes, which was coret al. to the spdf SU(3) Hamiltonian with quadrupole and
firmed by the observation of rotational band structures anactupole interaction$4]. Recently Raduta and lones¢s]
measurements of their properties. For most deformed nuclefjave used a generalization of the CSM. They suggested that
a description as an axial- and reflection-symmetric spheroithoth ground and octupole bands may be considered as being
is adequate to reproduce the band’s spectroscopy. Becaugeojected from a single deformed intrinsic state that exhibits
such a shape is symmetric under space inversion, all menpoth quadrupole and octupole deformations.
bers of the rotational band have the same parity. However, Another collective model based on point symmetry group
with the first observation of negative parity states near theonsiderationg6] has also been used very successfully for
ground state, the possibility arose that some nuclei mighthe description of the energy levels of the ground and octu-
have an asymmetric shape under reflection. pole bands and reproduces odd-even staggering between

On the other hand, whenever symmetry breaking appeatbese leveld7]. In this model the octupole field is param-
new behavior of the many-body system is expected. Reflecetrized by irreducible representations of the octahedron point
tion symmetry breaking is associated with a static octupolesymmetry group. A recent reflection asymmetric shell model
deformation which is expected to determine new collective[8] interprets and reproduces most of the general features of
features for the nuclear system. rotational octupole bands up to very high spins by means of

Extensive investigations into the structure of nuclei witha variational procedure, combined with a projection method.
low-lying negative parity states have led to the conclusionFor completeness, the methods to describe the negative par-
that while reflection asymmetric shapes can play a role in thiy bands in the actinide region in terms of alpha clustering
band structure, they are not as stable as the familiar quadr(i®] or binary cluster-core mod¢/L0] should be mentioned.
pole deformations. The rotational spectra of some even-evehhe variety of models and approaches created to investigate
nuclei in the rare earth and light actinide region exhibit, nextthe observed low-lying negative parity bands illustrates the
to the ground band, a negative parity band which consists afurrent high interest in understanding the cause for the ap-
the states witH™=1",37,57,... . These two bands are dis- pearance of these bands.
placed from each other, which means that fluctuations back The introduction of an octupole degrees of freedom in the
to space symmetric shapes must also be significant. Experpresence of comparatively large number of free parameters
mentally the presence of “octupole” bands for some isotopei all of these models allows for the reproduction of the
from the light actinide and rare earth regipty] is firmly  experimental data on the energies of the negative parity
established. states, at least in the low spin region.

There is a large variety of models that try to describe this In the beginning of the 1980s a phenomenological alge-
behavior of the low-lying states of deformed nuclei. Particu-braic model called the interacting vector boson model
larly successful are algebraic models based on symmetrffVBM ) was introduced11]. This model is a generalization
principles. The introduction of an additional octupole de-of the phenomenological broken-&) symmetry model
grees of freedom is a common feature of most of those mod-12], which provided a good description of the low-lying
els. ground andy bands[13] of well deformed even-even nuclei.

The prescription for describing negative parity states byits advantages were incorporated into the rotational limit of
the addition of anf boson to the usuad andd ones of the the IVBM [14], with a good description of all the positive
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parity bands of nuclei in the rare earth and the actinide reterms of the cyclic coordinates,(«), m=0, =1, of a “qua-
gion. Moreover, the (B) extension of the model contains siparticle” and their associated momentay,(«)

such sequences of $8) multiplets, some of which prove to =-id/9x™(«) in the following way:
be convenient for the description of the low-lying negative 1
parity bandq15]. N i

With the recent advance of the experimental technique the Un(@) V’2[Xm(a) ()]
investigated collective bands were extended to very high an-
gular momentg1]. This motivated a new approach within 2
the framework of the IVBM aimed at a description of the 1
first positive and negative bands, up to very high spins. In um(a):fa[xm(a) +iqg™(@)],

v

this new application, we make use of the symplectic exten-
sion of the mode[16]. This allows these bands to be con- yhere xm=3,g™x, and g™=g,=(-1)"6,_. The

sidered as yrast bands in the sense that we take into acco“@éhwinger representation of the angular momentum algebra

th_e states with a gi\_/eh, Wh_ich minimize the energy values s(3) is constructed by substituting the operat@@s in the
with respect taN. N is the eigenvalue of the total number of ¢i3nqard definition of its generating operator:

bosons that build the basis states of the IVBM. Its eigenvalue
changes aaN=2 in the infinite spaces of the boson repre- |1 = M = M
sentation of S(2,R). When considering the dynamical bl @) a%mclklmxk(a)qm(a) a%mclklmuk(a)um(a)1
symmetry of the symplectic extension of the model through (3)
the maximal compact subgroup(®) D Sp(12,R), we obtain
the exactly solvable rotational limit with a Hamiltonian, di- Which makes the introduced vector bosons a convenient
agonal in a basis defined by the irreducible representations éhathematical tool for use in an algebraic model in the
the corresponding chain of subgroups. The measured endpuclear structure theory.
gies of the ground and octupole bands in even-even nuclei The bilinear products of the creation and annihilation op-
from the rare earth and actinide regions are reproduced ifrators of the two vector bosons generate the noncompact
this framework with rather good accuracy. The analysis osymplectic group S@i2,R) [11]:
the obtained results shows that this is due to the appearance . o .
of a vibrational-type term that influences the yrast energies. Fu(a, B)=2 Citlic(@)un(B),
This term also plays the role of an interaction between the kom
two considered bands, and is the reason for the correct re-
production of the odd-even staggering of their energies. Gh(a, B)=2, CtM u(a)un(B), (4)

k,m

Il. ALGEBRAIC BASIS OF THE IVBM L M+
, o , A(a, B)=2 Crinbi(@Un(B),

We start with a brief review of the model’'s assumptions k,m
and definitions. The IVBM is based on the introduction of
two kinds of vector bosongcalled p and n bosong, which
“built up” the collective excitations in the nuclear system. [)%tations
The creation operators of these bosons are assumed to . .
SQO(3) vectors and they transform according to two indepen- We consider S@2,R) to be the group of the dynamical
dent fundamental representatiofisO) of the group S(B). symmetry of the model. Hence the most general one-and

These bosons form a “pseudospin” doublet of th@)group two-body H_amlltonlan can be expressed in terms of its gen-
e o RO 1 . erators. Using commutation relations between Iﬂ'w,\,féa, B)
and differ in their “pseudospin” projectiom=+ 5. The intro-

L
duction of this additional degree of freedom leads to thezggvi?l'\"(gﬁz ilttct]riafrl:”c;ngs gi t?:sggg]iae:e?r;goti‘ogSe?;(taers
extension of the S(B) symmetry to U6). Then the opera- Al (a %)_ P P
tors MAT

whereC}}l  are the usual Clebsch-Gordon coefficients and
andM define the transformational properties of E4). under

Un(@=3) =Py Un(@==3)=ny, m=0, £1, (1) H= Eﬁ ho(er, A, B)
transform according to the fundamental representdtidp
of the group W6). The annihilation operators are obtained by +2 2 (- )M"VHaB; O Ay (@ YAL(B. 8), (5)

. . + . M,L aByd
the conjugatior(uy(@))"=u(a) and transform according to
the conjugate S(B) representation$0,1). The so intro- Wwherehy(e, B) and V-(aB;yd) are phenomenological con-
duced boson creation and annihilation operatdéjsdo not  stants.
have a related microscopic structure, such asstaedd Being a noncompact group, the representations of
bosons of the IBM[2], considered as fermion pairs Sp(12,R) are of infinite dimension, which makes it impos-
coupled to a total angular momentulb¥0 andL=2, re- sible to diagonalize the most general Hamiltonian. The op-
spectively. The building blocks of the IVBM could be eratorsAk,,(a, B) generate the maximal compact subgroup of
treated as “oscillator quarks” and are defingd,11] in Sp(12,R), namely, the group B)[Sp(12,R) D U(6)].
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TABLE I. Classification scheme of the $8) irreps contained  the physical observables are the angular momentum operator
in the even W6) irreps with N=0,2,4,... andT=N/2,N/2 (3),
-1, ..., 0(first column). The columns of the table are labeled with

the values off,. Ly=-12> Al(a, a),
N (MTo - *4 *3 *2 1 0 and the truncated‘Elliott” ) quadrupole operator,
0 0 0,0
1 (2 0) QM = \“’%E Aﬁn(a, a),
2 @0 o )
0 ©0.1) which define the algebra of S8).
' The operators of the “pseudospin” components and the
2 4,0
' number of boson$|,
(4,0
4 1 4,0 2,1 3 3
(2’1) T+l = \/;Ao(pv n)a T—l == \/;Ao(na p)y
0 0.2
3 (6,0 3
(6,0 To=- \/;[AO(ID. p) =A%, n)],
2 (6,0 4,1
6 (6,0 4. N==3[A%p, p) + A°n, m)],
1 4.9 22 define the algebra of (2).
(2,2 Since the reduction from (8) to SQ(3) is carried out by
0 0,3 the mutually complementary groups &) and U?2), their
4 (8,0 quantum numbers are related in the following way:
(8!0) )\
3 (8,0 6,1 T=5, N=2u+N\. (8)
(8,0 (6,1
8 2 (8,0 (6,1) 4,2 The complementarity of the groups &) and U2) [19]
(6,1) (4,2) makes it easy to construct the bases for tl{6)Wepresen-
1 4.2 2.3 tations and to reduce it to the &8 representation§20]
' 2.3 ' of the angular momentum. This provides for an elegant

0 0 solution of the state labeling problem, so making use of
04 the latter we can write the basis as

[[NJs; (N, w); K, L, M; Ty = [(N, T); K, L, M o). (9)

So the even and odd unitary irreducible representationg_he ground state of the system is
(UIR) of Sp(12,R) split into an infinite but countable num- |0)=|(N=0,T=0);K=0,L=0,M=0;To=0), (10)
ber of symmetric UIR of W6) of the type[N, 0,0,0,0,Q o
=[N]s, whereN=0, 2, 4, ... for the even sesee Tablejiand  Which is the vacuum state for the §@,R) group.
N=1,3,5,... for the odd sdtl8]. These subspaces are of
finite dimension, which simplifies the problem of diagonal- A. The symplectic extension of IVBM
ization. Therefore theompletespectrum of the system can

be calculated only through the diagonalization of the Hamil-  1he basis states associated with the even irreducible rep-
tonian in the subspaces afl the UIR of U(6), belonging to ~ '€Sentation of the $f2,R) can be constructed by the appli-

a given UIR of Sp12,R). cation of powers of raising generatd?’,s‘(a, B) of the same
The rotational limit14] of the model is further defined by 9roup. Each raising operator will increase the number of
the chain as follows: bosonsN by two. As a result we get a realization of the
reduction schemgl8]:
U(6) D SU(3) ® U(2) D SO(3) ® U(1) (6) N e T,

Sp(12,R) —U(6) —SU2) X SU(3) —SU3).

The Sp12,R) classification scheme for the $8) boson
where the labels below the subgroups are the quantum numepresentations for even value of the number of bodbis
bers (7) corresponding to their irreducible representationsshown in Table |. Each rowfixed N) of the table corre-
Their values are obtained by means of standard reductiosponds to a given irreducible representation of th@)U
rules and are given in Ref14]. In this limit the operators of Then the possible values for the pseudospin dre

[Nl (\w (NNDK L To )
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=N/2,N/2-1, ......, 0 and argiven in the column next to to even- even deformed nuclei, which exhibit, next to the
the respective value dl. Thus whenN and T are fixed, ground band, a low-lying negative parity band traditionally
2T+1 equivalent representations of the group(SQUarise.  considered to be an octupole baid. In order to do this we
Each of them is labeled by the eigenvalues of the operatdirst have to identify these experimentally observed bands
To:-T,-T+1, ...,T, defining the columns of Table I. The with the sequences of basis states for the even representation
same SU3) representationé\, u) arise for the positive and of Sp(12,R) given in Table I. We choose the $8) multiplet
negative eigenvalues df, (0, w) for a description of the ground band, whereas for the
Hence, in the framework of the discussed boson represermctupole band the S8) multiplet (2, w—1) is used. In terms
tation of the Sp12,R) algebra all possible irreducible repre- of (N, T) this choice corresponds tiN=2u, T=0) for the
sentations of the group $B) are determined uniquely positive (K™=0%) and (N=2u+2,T=1) for the negative
through all possible sets of the eigenvalues of the HermitiatK™=0") parity band, respectively.
operatorsN and T?. The equivalent use of th@\, u) labels
facilitates the final reduction to the $8 representations, A. Yrast bands
which define the angular momentumand its projectiorM.
The multiplicity indexK appearing in this reduction is re-
lated to the projection of in the body fixed frame and is
used with the parity7) to label the different bandd<™) in
the energy spectra of the nuclei. We define the parity of th
states asr=(-1)". This allows us to describe both positive
and negative bands.

In this way, in the framework of the symplectic extension
of boson representations of the number preservi() Bym-
metry, we are able to consider all even eigenvalues of the
é]umber of vector bosonhl with the corresponding set of
pseudosping.

This approach is based on the fact that the enerdigs
increase with the increasing of. We define the energies of
each state with giveh as yrast energy with respect kbin
B. The energy spectrum the two considered bands. Hence their minimum values are
obtained aiN=2L for the ground band, and &t=2L+2 for
the octupole band, respectively. So for the description of the
round band our choice corresponds to the sequence of states

The Hamiltonian, corresponding to the considered rota
tional limit of IVBM, is expressed in terms of the first-and
second-order invariant operators of the different subgroupg

in the chain(6): with different numbers of boson§y=0, 4, 8, ..., and pseu-
In the chain(®) dospinT=0 in the column labeled,=0 of Table I. Similar-
H=aN+ a¢Kg+ asKs + oKy + B33, (11) ily for a description of the negative parity band, we choose

the set of states with quantum numb&s 8, 12, ... andl

. e =1 from the same colummy=0. Since these quantum num-
groups andrs is the SQ3) second-order Casimir operator. bers uniquely define the §B) multiplets, which reduce to

As a result of the czc>nn§ctior(§) the Casimir operatoKs  yhe corresponding values of the angular momelntathe
with eigenvalue (\*+u+Au+3\+3u) is expressed in  414,nd band belongs to the ) multiplet (0, N/2) and the

whereK,, are the quadratic invariant operators of thenlJ

terms of the operatorll and T: octupole band t¢2,N/2-1). In the so-defined S(3) repre-
K= 2Q2+ 312=IN2+ N+ T2, sentations for eacN the maximal values df appear for the
first time (see Table)l
Making use of the above relation, Ed.1) takes the form According to the correspondence, identified above, be-

tween the basis states and the experimental data on the
H=aN+bN’ + asT? + Byms + a1 To, 12 ground and octupole bandg=0, the last term in the energy
and is obviously diagonal in the basi9) labeled by the formula(13) vanishes. The phenomenological model param-
quantum numbers of the subgroups of the ch@in Its ei-  etersa, b, a3, andf; are evaluated by a fit to the experimen-
genvalues are the energies of the basis states of the bost# data[21]. Their values obtained for some even-even de-

representations of $p2,R): formed nuclei belonging to light actinides and rare earth
5 region are given in Table Il. The second column gives the
E((N, T);KLM;To) =aN+bN"+ a3 T(T + 1) + B5L(L + 1) numbers of the experimental states used in the fitting proce-
+ T2, (13  dure

The comparison between the experimental spectra and our

The energy of the ground stat&0) of the system is ob- calculations using the values of the model parameters given
viously 0. in Table Il for the ground and octupole bands of the nuclei
Ra&f?4 Th??6, Smt®2 and YB%8is illustrated in Fig. 1.

The agreement between the theoretical values obtained
with only four model parameters and the experimental data
for all the nuclei under consideration is rather good.

Applying the yrast conditions relatin andL the ener-

In this paper we modify the earlier application of the gies(13) for ground state band turn out to be given by
IVBM [15] for the description of the first excited even and _
odd parity bands in order to reach much higher angular mo- BL)=ALL+ D)+, (14)
mentum states in both band types. We will apply the modeivhile the energies of the negative parity band are

Ill. APPLICATION OF IVBM FOR THE DESCRIPTION OF
THE GROUND STATE AND OCTUPOLE
BANDS ENERGIES
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TABLE II. Values of the parameters in E(L3) determined by As could be seen from Eqggl4) and(15), the values of3
fitting the theoretical energies of the ground and octupole bands tand y can be determined only from a fit to the positive band
their experimental values for nuclei in the first column. energies, whiley and£ are estimated from the negative ones,

respectively. The values of the paramet@) determine the
Nucleus Ns a b ag Bs behavior of the energies of the two bands and their positions

o4 ~ with respect to each other. In some cases
222226 i: 8'8;6132 8'883? 8'8222 8'8(1)23 (?%2Th, 224U, 2%, %) the two bands are almost parallel.

29 ' e : ' The shift between them depends on the paramgt&vhen
Th 26 0.0558  0.0000 ~ -0.0557  0.0030 they are very close they interact through thelependent
Th224 18  0.0242  -0.0011 0.0362 0.0100 interaction with a strength+ 7.

Th?26 20 0.0194  -0.0009 0.0522 0.0094 As a result of our theoretical assumptions we obtained
Th?28 18  0.0092  -0.0020 0.1470 0.0138 simple formulas for the energy levels. Analyzing E¢t4)
Th232 29  0.0155 -0.0021 0.3244 0.0128 and(15) we can see that eigenstates of the first positive and
U234 19 00124  -0.0010 0.3608 0.0085 hegative bands consist qf rotati(_)na(I_L+1? and vibrational
1236 25  0.0154  -0.0010 0.2846 0.0086 L modes. The rotational interaction is with equal strength
U238 27 00142 00016  0.2851 ooio M both of the bands. The obtained values of the paramgter

168 ' : : ' are always negative, which means that the negative parity

Yb 41 00235  -0.0056 0.6512 0.0295  pand is less vibrational than the positive one.
Smts2 15 0.0194 -0.0045  0.4290  0.0274
E(L)=BL(L+1)+(y+pL+E. (15) B. The staggering
The new free parametevg’ Yy My and g are related to the In the CO”eCtiVe I’Otationa| Spectra Of the Considered de-
previous ones given in Table Il as follows: formed even-even nuclei in this mass region some fine struc-

: B _ B ture effects as back-bending and staggering behavior are ob-
B=4b+ B y=2a-4b, 7=8b, {=2a+4b+2as. served. Odd-even staggering patterns between the energies of
(16) states from the ground and octupole bands have been inves-

4 -
224
2 -
Ra Sm
3 -
>
(<)
=1} 2r
L ——Theory 1 ——Theory
* Experiment # Experiment
Theor Theory s ,
L] Experiyment m Experiment FIG. 1. Theoretical'Theory’)
op \ \ ) 0 . . and experimental(‘Experiment)
0 5 10 15 0 5 10 15 20 energies of the groungstary and
octupole (squarey bands of the
of 22’Ra, 1525m, 226Th, and 6%vh
16} nuclei. The theoretical valug43)
Iculated with the corre-
226 168 are ca
sl T h Y b sponding parameters, taken from
12l Table 1.
>
(>}
2 -
= 8r
L
1k ——Theory
* Experiment 4r T“e°’¥
Theory * Experiment
m Experiment Theory
m Experiment
0 1 1 1 1 0 1 1 1 1
0 5 10 15 20 25 0 10 20 30 40
L [h/2r] L [h/2r]

014305-5



H. GANEV, V. P. GARISTOV, AND A. |. GEORGIEVA PHYSICAL REVIEW (59, 014305(2004)

151
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L L . . L L 15 . L . L oretical (‘Theory’) and experi-
2 4 6 8 012 0 5 10 15 20 mental (‘Experiment) values of
the staggering functionA®E(L)
3l AA (17) of the ground and octupole
a 226 20r * a 168 bands energiesAL=1 of the
2l 4o Th Y b 224Ra3 1525m, 126Th, and 1%8vb
. 1ol nuclei.
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Q) 1 r [ ] e ) ‘
= . ol
0 -
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Lu 1r ® 10F ®
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tigated recently{7]. In order to test further our model we IV. CONCLUSIONS
applied on the energies the staggering function defined as
[22] We have applied the interacting vector boson model for

the description of the ground and octupole bands in some

even-even rare earth and actinide nuclei up to very high
+AE(L-2), (17)  spins. In spite of the simplicity of the model without intro-

] . ducing additional degrees of freedom we are able to describe

whereAE(L) =E(L)-E(L-1) gives the odd-even energy dif- o nositive and negative parity bands. This is due to the

ference.. The functior{1?) is a finite difference of fourth  ghaific definition of the states parity depending on the pseu-
order in respect t&AE(L) or of fifth order in respect to the dospin quantum numbet.

energyE(L) (13), and is characteristic for the deviation of
the rotational behavior from that of the rigid rotor. The cal-
culated and experimental staggering patterns are illustrat

ASE(L) = 6AE(L) — 4AE(L — 1) - 4AE(L + 1) + AE(L + 2)

The successful reproduction of the experimental energies
and of their odd-even staggering was achieved as a result of

i Fig 2. O d twith th : eir consideration as yrast energies in respect to the number
In Fg. 2. uneé can See a good agreeme[] wi . € experlmen(gf phonon excitatiorN that build the collective states. The
as well as with the reproduction of the “beat” patterns of the

staggering behavior. They occur in the region where the in[ntroducuon of this notion was possible, as we extended the

teraction between the two considered bands is most strong (BYBM to its symplectic dynamical symmetry §I2,R),
they cross. Substituting the expressi¢hé) and (15) in the Whlch allows the change of the nur_nber of bosons that are the
staggering functiorf17) it can be easily seen that it depends bund!ng t_)locks of _the model Hamiltonian. Neverthe_less the
on 7L. The correct reproduction of the experimental stagger{iamiltonian remains with only few phenomenological pa-
ing patterns is due to this term, which could be interpreted agameters and is still exactly solvable. Through the algebraic
interaction between the positive and negative parity bandgroperties of the dynamical symmetry chain relations be-
Hence the success of the model in describing the beat patween SU3) and U2) quantum numbers are established.
terns in theAL=1 staggering is a result of the introduced Combining these relations with the notion of yrast energies
notion of yrast energies in the framework of the symplecticthe physical meaning of each term of the Hamiltonian is
extension of the IVBM. clarified. In the rotational limit of the model in addition to
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the rotational character of the considered bands a purely vappropriate for the description of diverse nuclear structure
brational mode is appearing, which introduces also some inproblems.

teraction between them. This is the reason for the reproduc-

tion also of the fine effect of the structure of these bands. The

obtained physically meaningful results are also simple and ACKNOWLEDGMENTS
easy for use, and they permit the application of the model to
larger class of nuclei than the purely rotational ones. The authors are grateful for fruitful discussions and help
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