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In the framework of the symplectic extension of the interacting vector boson model a good description of the
first excited positive and negative parity bands of the nuclei in the rare earth and the actinide region is
achieved. The bands investigated in the model are extended to very high angular momenta as a result of their
consideration as “yrast” bands with respect to the symplectic classification of the basis states. The analysis of
the eigenvalues of the model Hamiltonian reveals the presence of an interaction between these bands. Due to
this interaction theDL=1 staggering effect between the energies of the states of two bands is also reproduced
including the “beat” patterns.
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I. INTRODUCTION

The existence of nuclei with stable deformed shapes was
realized early in the history of nuclear physics. The observa-
tion of large quadrupole moments led to the suggestion that
some nuclei might have spheroidal shapes, which was con-
firmed by the observation of rotational band structures and
measurements of their properties. For most deformed nuclei,
a description as an axial- and reflection-symmetric spheroid
is adequate to reproduce the band’s spectroscopy. Because
such a shape is symmetric under space inversion, all mem-
bers of the rotational band have the same parity. However,
with the first observation of negative parity states near the
ground state, the possibility arose that some nuclei might
have an asymmetric shape under reflection.

On the other hand, whenever symmetry breaking appears
new behavior of the many-body system is expected. Reflec-
tion symmetry breaking is associated with a static octupole
deformation which is expected to determine new collective
features for the nuclear system.

Extensive investigations into the structure of nuclei with
low-lying negative parity states have led to the conclusion
that while reflection asymmetric shapes can play a role in the
band structure, they are not as stable as the familiar quadru-
pole deformations. The rotational spectra of some even-even
nuclei in the rare earth and light actinide region exhibit, next
to the ground band, a negative parity band which consists of
the states withIp=1−, 3−, 5−, . . . . These two bands are dis-
placed from each other, which means that fluctuations back
to space symmetric shapes must also be significant. Experi-
mentally the presence of “octupole” bands for some isotopes
from the light actinide and rare earth region[1] is firmly
established.

There is a large variety of models that try to describe this
behavior of the low-lying states of deformed nuclei. Particu-
larly successful are algebraic models based on symmetry
principles. The introduction of an additional octupole de-
grees of freedom is a common feature of most of those mod-
els.

The prescription for describing negative parity states by
the addition of anf boson to the usuals and d ones of the

interacting vector boson model(IBM ) was first mentioned by
Iachello and Arima[2]. It was suggested[3] that the inclu-
sion of a p boson to thes, d, and f bosons may play an
important role in the description of these collective states.

The coherent state method(CSM) was applied by Alonso
et al. to the spdf SUs3d Hamiltonian with quadrupole and
octupole interactions[4]. Recently Raduta and Ionescu[5]
have used a generalization of the CSM. They suggested that
both ground and octupole bands may be considered as being
projected from a single deformed intrinsic state that exhibits
both quadrupole and octupole deformations.

Another collective model based on point symmetry group
considerations[6] has also been used very successfully for
the description of the energy levels of the ground and octu-
pole bands and reproduces odd-even staggering between
these levels[7]. In this model the octupole field is param-
etrized by irreducible representations of the octahedron point
symmetry group. A recent reflection asymmetric shell model
[8] interprets and reproduces most of the general features of
rotational octupole bands up to very high spins by means of
a variational procedure, combined with a projection method.
For completeness, the methods to describe the negative par-
ity bands in the actinide region in terms of alpha clustering
[9] or binary cluster-core model[10] should be mentioned.
The variety of models and approaches created to investigate
the observed low-lying negative parity bands illustrates the
current high interest in understanding the cause for the ap-
pearance of these bands.

The introduction of an octupole degrees of freedom in the
presence of comparatively large number of free parameters
in all of these models allows for the reproduction of the
experimental data on the energies of the negative parity
states, at least in the low spin region.

In the beginning of the 1980s a phenomenological alge-
braic model called the interacting vector boson model
(IVBM ) was introduced[11]. This model is a generalization
of the phenomenological broken-SUs3d symmetry model
[12], which provided a good description of the low-lying
ground andg bands[13] of well deformed even-even nuclei.
Its advantages were incorporated into the rotational limit of
the IVBM [14], with a good description of all the positive
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parity bands of nuclei in the rare earth and the actinide re-
gion. Moreover, the Us6d extension of the model contains
such sequences of SUs3d multiplets, some of which prove to
be convenient for the description of the low-lying negative
parity bands[15].

With the recent advance of the experimental technique the
investigated collective bands were extended to very high an-
gular momenta[1]. This motivated a new approach within
the framework of the IVBM aimed at a description of the
first positive and negative bands, up to very high spins. In
this new application, we make use of the symplectic exten-
sion of the model[16]. This allows these bands to be con-
sidered as yrast bands in the sense that we take into account
the states with a givenL, which minimize the energy values
with respect toN. N is the eigenvalue of the total number of
bosons that build the basis states of the IVBM. Its eigenvalue
changes asDN=2 in the infinite spaces of the boson repre-
sentation of Sps12,Rd. When considering the dynamical
symmetry of the symplectic extension of the model through
the maximal compact subgroup Us6d.Sps12,Rd, we obtain
the exactly solvable rotational limit with a Hamiltonian, di-
agonal in a basis defined by the irreducible representations of
the corresponding chain of subgroups. The measured ener-
gies of the ground and octupole bands in even-even nuclei
from the rare earth and actinide regions are reproduced in
this framework with rather good accuracy. The analysis of
the obtained results shows that this is due to the appearance
of a vibrational-type term that influences the yrast energies.
This term also plays the role of an interaction between the
two considered bands, and is the reason for the correct re-
production of the odd-even staggering of their energies.

II. ALGEBRAIC BASIS OF THE IVBM

We start with a brief review of the model’s assumptions
and definitions. The IVBM is based on the introduction of
two kinds of vector bosons(called p and n bosons), which
“built up” the collective excitations in the nuclear system.
The creation operators of these bosons are assumed to be
SOs3d vectors and they transform according to two indepen-
dent fundamental representations(1,0) of the group SUs3d.
These bosons form a “pseudospin” doublet of the Us2d group
and differ in their “pseudospin” projectiona= ± 1

2. The intro-
duction of this additional degree of freedom leads to the
extension of the SUs3d symmetry to Us6d. Then the opera-
tors

um
+ sa = 1

2d = pm
+ , um

+ sa = − 1
2d = nm

+ , m= 0, ± 1, s1d

transform according to the fundamental representationf1g6

of the group Us6d. The annihilation operators are obtained by
the conjugation(um

+ sad)†=umsad and transform according to
the conjugate SUs3d representationss0,1d. The so intro-
duced boson creation and annihilation operatorss1d do not
have a related microscopic structure, such as thes and d
bosons of the IBM f2g, considered as fermion pairs
coupled to a total angular momentumL=0 andL=2, re-
spectively. The building blocks of the IVBM could be
treated as “oscillator quarks” and are definedf17,11g in

terms of the cyclic coordinatesxmsad, m=0, ±1, of a “qua-
siparticle” and their associated momentaqmsad
=−i ] /]xmsad in the following way:

um
+ sad =

1
Î2

fxmsad − iqmsadg,

s2d

umsad =
1
Î2

fxmsad + iqmsadg,

where xm=on gmnxn and gmn=gmn=s−1dndm,−n. The
Schwinger representation of the angular momentum algebra
so(3) is constructed by substituting the operators(2) in the
standard definition of its generating operator:

LM
1 sa, ad = o

a,k,m
C1k1m

1M xksadqmsad= o
a,k,m

C1k1m
1M uk

+sadumsad,

s3d

which makes the introduced vector bosons a convenient
mathematical tool for use in an algebraic model in the
nuclear structure theory.

The bilinear products of the creation and annihilation op-
erators of the two vector bosons generate the noncompact
symplectic group Sps12,Rd [11]:

FM
L sa, bd=o

k,m
C1k1m

LM uk
+sadum

+ sbd,

GM
L sa, bd=o

k,m
C1k1m

LM uksadumsbd, s4d

AM
L sa, bd=o

k,m
C1k1m

LM uk
+sadumsbd,

whereC1k1m
LM are the usual Clebsch-Gordon coefficients andL

andM define the transformational properties of Eq.s4d under
rotations.

We consider Sps12,Rd to be the group of the dynamical
symmetry of the model. Hence the most general one-and
two-body Hamiltonian can be expressed in terms of its gen-
erators. Using commutation relations between theFM

L sa, bd
and GM

L sa, bd, the full range of the number of bosons pre-
serving Hamiltonian can be expressed in terms of operators
AM

L sa, bd:

H = o
a,b

h0sa, bdA0sa, bd

+ o
M,L

o
abgd

s− 1dMVLsab;gddAM
L sa, gdA−M

L sb, dd, s5d

whereh0sa, bd and VLsab;gdd are phenomenological con-
stants.

Being a noncompact group, the representations of
Sps12,Rd are of infinite dimension, which makes it impos-
sible to diagonalize the most general Hamiltonian. The op-
eratorsAM

L sa, bd generate the maximal compact subgroup of
Sps12,Rd, namely, the group Us6dfSps12,Rd.Us6dg.
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So the even and odd unitary irreducible representations
(UIR) of Sps12,Rd split into an infinite but countable num-
ber of symmetric UIR of Us6d of the typefN, 0, 0, 0, 0, 0g
=fNg6, whereN=0, 2, 4, . . . for the even set(see Table I) and
N=1, 3, 5, . . . for the odd set[18]. These subspaces are of
finite dimension, which simplifies the problem of diagonal-
ization. Therefore thecompletespectrum of the system can
be calculated only through the diagonalization of the Hamil-
tonian in the subspaces ofall the UIR of Us6d, belonging to
a given UIR of Sps12,Rd.

The rotational limit[14] of the model is further defined by
the chain as follows:

Us6d . SUs3d ^ Us2d . SOs3d ^ Us1d s6d

fNg sl, md sN, TdK L T0 s7d

where the labels below the subgroups are the quantum num-
bers s7d corresponding to their irreducible representations.
Their values are obtained by means of standard reduction
rules and are given in Ref.f14g. In this limit the operators of

the physical observables are the angular momentum operator
s3d,

LM = − Î2o
a

AM
1 sa, ad,

and the truncateds“Elliott” d quadrupole operator,

QM = Î6o
a

AM
2 sa, ad,

which define the algebra of SUs3d.
The operators of the “pseudospin” components and the

number of bosonsN,

T+1 =Î3

2
A0sp, nd, T−1 = −Î3

2
A0sn, pd,

T0 = −Î3

2
fA0sp, pd − A0sn, ndg,

N = − Î3fA0sp, pd + A0sn, ndg,

define the algebra of Us2d.
Since the reduction from Us6d to SOs3d is carried out by

the mutually complementary groups SUs3d and Us2d, their
quantum numbers are related in the following way:

T =
l

2
, N = 2m + l. s8d

The complementarity of the groups SUs3d and Us2d f19g
makes it easy to construct the bases for the Us6d represen-
tations and to reduce it to the SOs3d representationsf20g
of the angular momentum. This provides for an elegant
solution of the state labeling problem, so making use of
the latter we can write the basis as

ufNg6;sl, md;K, L, M ;T0l = usN, Td;K, L, M ;T0l. s9d

The ground state of the system is

u0l = usN = 0,T = 0d;K = 0,L = 0,M = 0;T0 = 0l, s10d

which is the vacuum state for the Sps12,Rd group.

A. The symplectic extension of IVBM

The basis states associated with the even irreducible rep-
resentation of the Sps12,Rd can be constructed by the appli-
cation of powers of raising generatorsFM

L sa, bd of the same
group. Each raising operator will increase the number of
bosonsN by two. As a result we get a realization of the
reduction scheme[18]:

N T2 T0

Sps12,Rd →Us6d →SUs2d 3 SUs3d →SUs3d.

The Sps12,Rd classification scheme for the SUs3d boson
representations for even value of the number of bosonsN is
shown in Table I. Each row(fixed N) of the table corre-
sponds to a given irreducible representation of the Us6d.
Then the possible values for the pseudospin areT

TABLE I. Classification scheme of the SUs3d irreps contained
in the even Us6d irreps with N=0, 2, 4, . . . andT=N/2,N/2
−1, . . . , 0(first column). The columns of the table are labeled with
the values ofT0.

N sTd \T0 ¯ ±4 ±3 ±2 ±1 0

0 0 (0,0)

1 (2,0)

2 (2,0)

0 (0,1)

2 (4,0)

(4,0)

4 1 (4,0) (2,1)

(2,1)

0 (0,2)

3 (6,0)

(6,0)

2 (6,0) (4,1)

6 (6,0) (4,1)

1 (4,1) (2,2)

(2,2)

0 (0,3)

4 (8,0)

(8,0)

3 (8,0) (6,1)

(8,0) (6,1)

8 2 (8,0) (6,1) (4,2)

(6,1) (4,2)

1 (4,2) (2,3)

(2,3)

0 (0,4)

¯ ¯ ¯ ¯ ¯ ¯ ¯
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=N/2,N/2−1, . . .... , 0 and aregiven in the column next to
the respective value ofN. Thus whenN and T are fixed,
2T+1 equivalent representations of the group SUs3d arise.
Each of them is labeled by the eigenvalues of the operator
T0:−T, −T+1, . . . ,T, defining the columns of Table I. The
same SUs3d representationssl, md arise for the positive and
negative eigenvalues ofT0.

Hence, in the framework of the discussed boson represen-
tation of the Sps12,Rd algebra all possible irreducible repre-
sentations of the group SUs3d are determined uniquely
through all possible sets of the eigenvalues of the Hermitian
operatorsN and T2. The equivalent use of thesl, md labels
facilitates the final reduction to the SOs3d representations,
which define the angular momentumL and its projectionM.
The multiplicity indexK appearing in this reduction is re-
lated to the projection ofL in the body fixed frame and is
used with the parityspd to label the different bandssKpd in
the energy spectra of the nuclei. We define the parity of the
states asp=s−1dT. This allows us to describe both positive
and negative bands.

B. The energy spectrum

The Hamiltonian, corresponding to the considered rota-
tional limit of IVBM, is expressed in terms of the first-and
second-order invariant operators of the different subgroups
in the chain(6):

H = aN+ a6K6 + a3K3 + a1K1 + b3p3, s11d

whereKn are the quadratic invariant operators of the Usnd
groups andp3 is the SOs3d second-order Casimir operator.
As a result of the connectionss8d the Casimir operatorK3
with eigenvalue sl2+m2+lm+3l+3md is expressed in
terms of the operatorsN and T:

K3 = 2Q2 + 3
4L2 = 1

2N2 + N + T2.

Making use of the above relation, Eq.(11) takes the form

H = aN+ bN2 + a3T
2 + b3p3 + a1T0

2, s12d

and is obviously diagonal in the basiss9d labeled by the
quantum numbers of the subgroups of the chains6d. Its ei-
genvalues are the energies of the basis states of the boson
representations of Sps12,Rd:

E„sN, Td;KLM ;T0… = aN+ bN2 + a3TsT + 1d + b3LsL + 1d

+ a1T0
2. s13d

The energy of the ground state(10) of the system is ob-
viously 0.

III. APPLICATION OF IVBM FOR THE DESCRIPTION OF
THE GROUND STATE AND OCTUPOLE

BANDS ENERGIES

In this paper we modify the earlier application of the
IVBM [15] for the description of the first excited even and
odd parity bands in order to reach much higher angular mo-
mentum states in both band types. We will apply the model

to even- even deformed nuclei, which exhibit, next to the
ground band, a low-lying negative parity band traditionally
considered to be an octupole band[1]. In order to do this we
first have to identify these experimentally observed bands
with the sequences of basis states for the even representation
of Sps12,Rd given in Table I. We choose the SUs3d multiplet
s0, md for a description of the ground band, whereas for the
octupole band the SUs3d multiplet s2, m−1d is used. In terms
of sN, Td this choice corresponds tosN=2m, T=0d for the
positive sKp=0+d and sN=2m+2,T=1d for the negative
sKp=0−d parity band, respectively.

A. Yrast bands

In this way, in the framework of the symplectic extension
of boson representations of the number preserving Us6d sym-
metry, we are able to consider all even eigenvalues of the
number of vector bosonsN with the corresponding set of
pseudospinsT.

This approach is based on the fact that the energies(13)
increase with the increasing ofN. We define the energies of
each state with givenL as yrast energy with respect toN in
the two considered bands. Hence their minimum values are
obtained atN=2L for the ground band, and atN=2L+2 for
the octupole band, respectively. So for the description of the
ground band our choice corresponds to the sequence of states
with different numbers of bosons,N=0, 4, 8, . . ., and pseu-
dospinT=0 in the column labeledT0=0 of Table I. Similar-
ily for a description of the negative parity band, we choose
the set of states with quantum numbersN=8, 12, . . . andT
=1 from the same columnT0=0. Since these quantum num-
bers uniquely define the SUs3d multiplets, which reduce to
the corresponding values of the angular momentaL, the
ground band belongs to the SUs3d multiplet s0,N/2d and the
octupole band tos2,N/2−1d. In the so-defined SUs3d repre-
sentations for eachN the maximal values ofL appear for the
first time (see Table I).

According to the correspondence, identified above, be-
tween the basis states and the experimental data on the
ground and octupole bandsT0=0, the last term in the energy
formula (13) vanishes. The phenomenological model param-
etersa, b, a3, andb3 are evaluated by a fit to the experimen-
tal data[21]. Their values obtained for some even-even de-
formed nuclei belonging to light actinides and rare earth
region are given in Table II. The second column gives the
numbers of the experimental states used in the fitting proce-
dure.

The comparison between the experimental spectra and our
calculations using the values of the model parameters given
in Table II for the ground and octupole bands of the nuclei
Ra224, Th226, Sm152, and Yb168 is illustrated in Fig. 1.

The agreement between the theoretical values obtained
with only four model parameters and the experimental data
for all the nuclei under consideration is rather good.

Applying the yrast conditions relatingN and L the ener-
gies (13) for ground state band turn out to be given by

EsLd = bLsL + 1d + gL, s14d

while the energies of the negative parity band are
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EsLd = bLsL + 1d + sg + hdL + j. s15d

The new free parametersb, g, h, and j are related to the
previous ones given in Table II as follows:

b = 4b + b3, g = 2a − 4b, h = 8b, j = 2a + 4b + 2a3.

s16d

As could be seen from Eqs.(14) and(15), the values ofb
andg can be determined only from a fit to the positive band
energies, whileh andj are estimated from the negative ones,
respectively. The values of the parameters(16) determine the
behavior of the energies of the two bands and their positions
with respect to each other. In some cases
s232Th, 234U, 236U, 238Ud the two bands are almost parallel.
The shift between them depends on the parameterj. When
they are very close they interact through theL-dependent
interaction with a strengthg+h.

As a result of our theoretical assumptions we obtained
simple formulas for the energy levels. Analyzing Eqs.(14)
and(15) we can see that eigenstates of the first positive and
negative bands consist of rotationalLsL+1d and vibrational
L modes. The rotational interaction is with equal strengthb
in both of the bands. The obtained values of the parameterh
are always negative, which means that the negative parity
band is less vibrational than the positive one.

B. The staggering

In the collective rotational spectra of the considered de-
formed even-even nuclei in this mass region some fine struc-
ture effects as back-bending and staggering behavior are ob-
served. Odd-even staggering patterns between the energies of
states from the ground and octupole bands have been inves-

TABLE II. Values of the parameters in Eq.(13) determined by
fitting the theoretical energies of the ground and octupole bands to
their experimental values for nuclei in the first column.

Nucleus ns a b a3 b3

Ra224 13 0.0119 −0.0022 0.0789 0.0155

Ra226 18 0.0269 −0.0005 0.0226 0.0060

Th222 26 0.0558 0.0000 −0.0557 0.0030

Th224 18 0.0242 −0.0011 0.0362 0.0100

Th226 20 0.0194 −0.0009 0.0522 0.0094

Th228 18 0.0092 −0.0020 0.1470 0.0138

Th232 29 0.0155 −0.0021 0.3244 0.0128

U234 19 0.0124 −0.0010 0.3608 0.0085

U236 25 0.0154 −0.0010 0.2846 0.0086

U238 27 0.0142 −0.0016 0.2851 0.0110

Yb168 41 0.0235 −0.0056 0.6512 0.0295

Sm152 15 0.0194 −0.0045 0.4290 0.0274

FIG. 1. Theoretical(‘Theory’)
and experimental(‘Experiment’)
energies of the ground(stars) and
octupole (squares) bands of the
224Ra, 152Sm, 226Th, and 168Yb
nuclei. The theoretical values(13)
are calculated with the corre-
sponding parameters, taken from
Table II.
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tigated recently[7]. In order to test further our model we
applied on the energies the staggering function defined as
[22]

D5EsLd = 6DEsLd − 4DEsL − 1d − 4DEsL + 1d + DEsL + 2d

+ DEsL − 2d, s17d

whereDEsLd=EsLd−EsL−1d gives the odd-even energy dif-
ference.. The functions17d is a finite difference of fourth
order in respect toDEsLd or of fifth order in respect to the
energyEsLd s13d, and is characteristic for the deviation of
the rotational behavior from that of the rigid rotor. The cal-
culated and experimental staggering patterns are illustrated
in Fig. 2. One can see a good agreement with the experiment,
as well as with the reproduction of the “beat” patterns of the
staggering behavior. They occur in the region where the in-
teraction between the two considered bands is most strong or
they cross. Substituting the expressionss14d and s15d in the
staggering functions17d it can be easily seen that it depends
on hL. The correct reproduction of the experimental stagger-
ing patterns is due to this term, which could be interpreted as
interaction between the positive and negative parity bands.
Hence the success of the model in describing the beat pat-
terns in theDL=1 staggering is a result of the introduced
notion of yrast energies in the framework of the symplectic
extension of the IVBM.

IV. CONCLUSIONS

We have applied the interacting vector boson model for
the description of the ground and octupole bands in some
even-even rare earth and actinide nuclei up to very high
spins. In spite of the simplicity of the model without intro-
ducing additional degrees of freedom we are able to describe
both positive and negative parity bands. This is due to the
specific definition of the states parity depending on the pseu-
dospin quantum numberT.

The successful reproduction of the experimental energies
and of their odd-even staggering was achieved as a result of
their consideration as yrast energies in respect to the number
of phonon excitationN that build the collective states. The
introduction of this notion was possible, as we extended the
IVBM to its symplectic dynamical symmetry Sps12,Rd,
which allows the change of the number of bosons that are the
building blocks of the model Hamiltonian. Nevertheless the
Hamiltonian remains with only few phenomenological pa-
rameters and is still exactly solvable. Through the algebraic
properties of the dynamical symmetry chain relations be-
tween SUs3d and Us2d quantum numbers are established.
Combining these relations with the notion of yrast energies
the physical meaning of each term of the Hamiltonian is
clarified. In the rotational limit of the model in addition to

FIG. 2. Comparison of the the-
oretical (‘Theory’) and experi-
mental (‘Experiment’) values of
the staggering functionD5EsLd
(17) of the ground and octupole
bands energiesDL=1 of the
224Ra, 152Sm, 126Th, and 168Yb
nuclei.
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the rotational character of the considered bands a purely vi-
brational mode is appearing, which introduces also some in-
teraction between them. This is the reason for the reproduc-
tion also of the fine effect of the structure of these bands. The
obtained physically meaningful results are also simple and
easy for use, and they permit the application of the model to
larger class of nuclei than the purely rotational ones.

The symplectic extension of the interacting vector boson
model permits a richer classification of the states than its
unitary version and gives the possibility for a further consid-
eration of other collective bands. In general the model proves

appropriate for the description of diverse nuclear structure
problems.
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