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Starting from the original collective Hamiltonian of Bohr and separating theb andg variables as in the X(5)
model of Iachello, an exactly soluble model corresponding to a harmonic oscillator potential in theb variable
[to be called Xs5d-b2] is constructed. Furthermore, it is proved that the potentials of the formb2n (with n being
an integer) provide a “bridge” between this new Xs5d-b2 model (occurring for n=1) and the X(5) model
(corresponding to an infinite well potential in theb variable, materialized forn→`). Parameter-free(up to
overall scale factors) predictions for spectra andBsE2d transition rates are given for the potentialsb2, b4, b6,
b8, corresponding toR4=Es4d/Es2d ratios of 2.646, 2.769, 2.824, and 2.852, respectively, compared to theR4

ratios of 2.000 for U(5) and 2.904 for X(5). Hints about nuclei showing this behavior, as well as about
potentials “bridging” the X(5) symmetry with SU(3) are briefly discussed.
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I. INTRODUCTION

Models providing parameter-independent predictions for
nuclear spectra and electromagnetic transition rates serve as
useful benchmarks in nuclear theory. The recently introduced
E(5) [1] and X(5) [2] models belong to this category, since
their predictions for nuclear spectra(normalized to the exci-
tation energy of the first excited state) andBsE2d transition
rates[normalized to theBsE2d transition rate connecting the
first excited state to the ground state] do not contain any free
parameters. The E(5) model appears to be related to a phase
transition from U(5) (vibrational) to O(6) (g-unstable) nuclei
[1], while X(5) is related to a phase transition from U(5)
(vibrational) to SU(3) (prolate deformed) nuclei [2]. Both
models originate(under certain simplifying assumptions)
from the Bohr collective Hamiltonian[3], which is known to
possess the U(5) symmetry of the five-dimensional(5D) har-
monic oscillator[4].

In the present paper we study a sequence of potentials
lying between the U(5) symmetry of the Bohr Hamiltonian
and the X(5) model. The potentials, which are of the form
u2nsbd=b2n/2, with n being an integer, are depicted in Fig. 1.
For n=1 an exactly soluble model withR4=Es4d/Es2d ratio
equal to 2.646 is obtained, while X(5) (which corresponds to
an infinite well potential) occurs forn→` [in practice,n
=4 is already quite close to X(5)]. Parameter-independent
predictions for the spectra andBsE2d values(up to the over-
all scales mentioned above) are obtained for the potentials
b2, b4, b6, b8. In addition to providing a number of models
giving predictions directly comparable to experiment, the
present sequence of potentials shows the way for approach-

ing the X(5) symmetry from the direction of U(5) and gives
a hint on how to approach the X(5) symmetry starting from
SU(3).

In Sec. II of the present paper the exactly soluble model
obtained with theb2 potential, to be called X(5)-b2, is intro-
duced and compared to X(5), while in Sec. III a sequence of
potentials lying between the Xs5d-b2 and X(5) models is
considered. Numerical results for spectra andBsE2d transi-
tion rates are given for all these potentials, which lie between
the U(5) symmetry of the Bohr Hamiltonian[3,4] and the
X(5) model. A brief comparison to experimental data is
given in Sec. IV, while in Sec. V perspectives for further
theoretical work are discussed and the conclusions are
summarized.

II. X „5…-b2: A NEW EXACTLY SOLUBLE MODEL

A. The b part of the spectrum

The original Bohr Hamiltonian[3] is
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FIG. 1. The potentialsb2n with n=1 (harmonic oscillator, solid
line), n=2 (dashed line), n=3 (dash-dotted line), n=4 (dotted line),
n=8 (dash-dot-dot), n=16 (short dash-dot), n=32 (short dot),
gradually approaching(with increasingn) the infinite well potential.

PHYSICAL REVIEW C 69, 014302(2004)

0556-2813/2004/69(1)/014302(11)/$22.50 ©2004 The American Physical Society69 014302-1



H = −
"2

2BF 1

b4

]

] b
b4 ]

] b
+

1

b2sin 3g

]

] g
sin 3g

]

] g

−
1

4b2 o
k=1,2,3

Qk
2

sin2 sg − 2
3pkdG + Vsb, gd, s1d

where b and g are the usual collective coordinates, while
Qk sk=1, 2, 3d are the components of angular momentum
andB is the mass parameter.

One seeks solutions of the relevant Schrödinger equation
having the formCsb, g, uid=fK

Lsb, gdDM,K
L suid, whereui si

=1, 2, 3d are the Euler angles,Dsuid denote Wigner functions
of them,L are the eigenvalues of angular momentum, while
M and K are the eigenvalues of the projections of angular
momentum on the laboratory-fixedz axis and the body-fixed
z8 axis, respectively.

As pointed out in Ref.[2], in the case in which the poten-
tial has a minimum aroundg=0 one can write the last term
of Eq. (1) in the form
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Using this result in the Schrödinger equation corresponding
to the Hamiltonian of Eq.s1d, introducing reduced energies
e=2BE/"2 and reduced potentialsu=2BV/"2, and assuming
that the reduced potential can be separated into two terms,
one depending onb and the other depending ong, i.e.,
usb, gd=usbd+usgd, the Schrödinger equation can be sepa-
rated into two equationsf2g:
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TABLE I. Spectra of the Xs5d-b4, Xs5d-b6, and Xs5d-b8 models, compared to the predictions of the X(5)
[Eq. (6)] and Xs5d-b2 [Eq. (11)] models, for somes=1 bands. See Secs. II C and III B for details. For the
(ng=1, K=2) band the conventions of Ref.[8] have been used, as mentioned in Sec. II B.

Band L Xs5d-b2 Xs5d-b4 Xs5d-b6 Xs5d-b8 X(5)

s=1, ng=0, K=0

0 0.000 0.000 0.000 0.000 0.000

2 1.000 1.000 1.000 1.000 1.000

4 2.646 2.769 2.824 2.852 2.904

6 4.507 4.929 5.125 5.230 5.430

8 6.453 7.343 7.777 8.015 8.483

10 8.438 9.954 10.721 11.151 12.027

12 10.445 12.729 13.922 14.605 16.041

14 12.465 15.647 17.359 18.355 20.514

16 14.494 18.694 21.013 22.383 25.437

18 16.529 21.858 24.871 26.677 30.804

20 18.568 25.132 28.923 31.225 36.611

22 20.610 28.506 33.159 36.017 42.853

24 22.654 31.976 37.571 41.046 49.528

26 24.700 35.536 42.151 46.302 56.633

28 26.748 39.182 46.895 51.781 64.166

30 28.796 42.909 51.795 57.475 72.124

s=1, ng=1, K=2

2 0.000 0.000 0.000 0.000 0.000

3 0.907 0.925 0.932 0.936 0.943

4 1.863 1.948 1.986 2.005 2.040

5 2.842 3.046 3.138 3.186 3.274

6 3.836 4.206 4.377 4.468 4.639

7 4.839 5.420 5.694 5.842 6.127

8 5.848 6.681 7.084 7.305 7.737

9 6.860 7.986 8.543 8.850 9.465

10 7.876 9.333 10.066 10.476 11.310
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wherekb2l is the average ofb2 over jsbd ande=eb+eg.
In Ref. [2] Eq. (3) is solved exactly for the case in which

usbd is an infinite well potential

usbd = H0 if b ø bW

` for b . bW.
s5d

The relevant exactly soluble model is labeled as Xs5d swhich
is not meant as a group label, although there is relation to
projective representations of Es5d, the Euclidean group in
five dimensionsf2gd. In particular, Eq.s3d in the case ofusbd
being an infinite well potential is transformed into a Bessel
equation, the relevant eigenvalues being

eb;s,L = sks,Ld2, ks,L =
xs,L

bW
, s6d

where xs,L is the sth zero of the Bessel functionJnsks,Lbd,
with

n = SLsL + 1d
3

+
9

4
D1/2

, s7d

while the relevant eigenfunctions are

js,Lsbd = cs,Lb−3/2Jnsks,Lbd, s8d

wherecs,L are normalization constants.
Equation(3) is exactly soluble also in the case in which

usbd=b2/2. In this case, to which we are going to refer as the
Xs5d-b2 model, the eigenfunctions are[5]

Fn
Lsbd = F 2n!

Gsn + a + 5
2dG1/2

baLn
a+3/2sb2de−b2/2, s9d

whereGsnd stands for theG function, Ln
aszd denotes the La-

guerre polynomialsf6g, and
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1

2
S− 3 +Î9 +

4

3
LsL + 1dD , s10d

while the energy eigenvalues are

En,L = 2n + a +
5

2
= 2n + 1 +Î9

4
+

LsL + 1d
3

,

n = 0, 1, 2, . . . . s11d

In the above,n is the usual oscillator quantum number.
One can see that a formal correspondence between the en-
ergy levels of the X(5) model and the present Xs5d-b2 model
can be established through the relation

n = s− 1. s12d

It should be emphasized that Eq.s12d expresses just a formal
one-to-one correspondence between the states in the two
spectra, while the origin of the two quantum numbers is dif-

ferent,s labeling the order of a zero of a Bessel function and
n labeling the number of zeros of a Laguerre polynomial. In
the present notation, the ground state band corresponds tos
=1 sn=0d. For the energy states the notationEs,L=En+1,L of
Ref. f2g will be kept.

B. The g part of the spectrum

In the original version of the X(5) model[2] the potential
usgd in Eq. (4) is considered as a harmonic oscillator poten-
tial. The energy eigenvalues turn out to be

Ess, L, ng, K, Md = E0 + Bsxs,Ld2 + Ang + CK2, s13d

whereng andK come from solving Eq.s4d for usgd being a
harmonic oscillator potential

ng = 0,K = 0; ng = 1,K = ± 2; ng = 2,K = 0, ± 4; . . . .

s14d

For K=0 one hasL=0, 2, 4, . . ., while forKÞ0 one obtains
L=K, K+1,K+2, . . ..

A variation of the X(5) model is considered in Ref.[7], in
which usgd is considered not as a harmonic oscillator, but as
an infinite well

usgd = H0 if g ø gW

` for g . gW.
s15d

In this case the energy eigenvalues are given by

Ess, L, s8, K, Md = Asxs,Ld2 + Bsxs8,Kd2 − 0.89AK2, s16d

wherexs8,K is thes8th zero of the Bessel functionJn8sks8,Kgd,
with

n8 =
K

2
, ks8,K =

xs8,K

gW
, sks8,Kd2 = eg;s8,K. s17d

In the present Xs5d-b2 model, one can keep in Eq.(4) for
usgd a harmonic oscillator potential, as in the X(5) model. As
a consequence, the full spectrum is given by

Esn, L, ng, K, Md = E08 + B8S2n + 1 +ÎLsL + 1d
3

+
9

4
D

+ A8ng + C8K2, s18d

which is an analog of Eq.s13d. Equations14d and the dis-
cussion following it remain unchanged.

Yet another variation of the X(5) model is considered in
Ref. [8]. In this case, when performing the separation of
variables in Eq.(1) by using Eq.(2), one keeps the 4K2/3
term in Eq.(3) instead of Eq.(4). As a result, in Eq.(3) the
term LsL+1d−K2 appears in the place ofLsL+1d, and the
same substitution occurs as a consequence in Eqs.(7), (10),
(11), and (18). In addition, the term 4K2/3 disappears from
Eq. (4) and, as a consequence, the term containingK2 is
eliminated in Eqs.(13), (16), and(18).
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C. Numerical spectra

Numerical results for theb parts of the energy spectra
(which correspond to no excitations in theg variable, i.e., to
ng=0) of the Xs5d-b2 and X(5) models are shown in Tables
I and II. All levels are normalized to the energy of the first
excited state, E1,2−E1,0=1.0, where the notationEs,L

=En+1,L is used. The model predictions for these bands are
parameter independent, up to an overall scale, as seen from
Eqs. (6) and (11). This is not the case for bands withng

Þ0, since in this case, as seen from Eqs.(13) and (18) the

extra parametersA, C andA8, C8 enter, respectively. There-
fore, in the case of the(ng=1, K=2) band, the energies are
listed in Table I after subtracting from them the relevantL
=2 bandhead, using the same normalization as above. In the
case of the(ng=1, K=2) band, the conventions of Ref.[8],
described at the end of the preceding subsection, have been
used. TheK=0 bands are not affected by these conventions,
anyway.

A comparison between the spectra of the Xs5d-b2 and
X(5) models, given in Tables I and II, leads to the following
observations.

TABLE II. Same as Table I, but for somes.1 bands.

Band L Xs5d-b2 Xs5d-b4 Xs5d-b6 Xs5d-b8 X(5)

s=2, ng=0, K=0

0 3.562 4.352 4.816 5.091 5.649

2 4.562 5.602 6.232 6.619 7.450

4 6.208 7.733 8.684 9.288 10.689

6 8.069 10.248 11.629 12.527 14.751

8 10.014 12.990 14.896 16.154 19.441

10 11.999 15.901 18.419 20.100 24.687

12 14.007 18.951 22.168 24.331 30.454

14 16.027 22.125 26.121 28.827 36.723

16 18.056 25.409 30.267 33.573 43.481

18 20.091 28.796 34.594 38.559 50.719

20 22.129 32.278 39.094 43.777 58.429

s=3, ng=0, K=0

0 7.123 9.384 10.823 11.758 14.119

2 8.123 10.817 12.562 13.710 16.716

4 9.769 13.228 15.520 17.054 21.271

6 11.630 16.032 19.004 21.025 26.832

8 13.576 19.050 22.802 25.385 33.103

10 15.561 22.221 26.838 30.051 39.979

12 17.568 25.514 31.079 34.983 47.413

14 19.589 28.916 35.504 40.161 55.377

16 21.617 32.416 40.103 45.571 63.856

18 23.652 36.007 44.866 51.202 72.838

20 25.691 39.683 49.786 57.047 82.315

s=4, ng=0, K=0

0 10.685 14.956 17.831 19.781 25.414

2 11.685 16.536 19.842 22.105 28.805

4 13.331 19.177 23.235 26.044 34.669

6 15.192 22.225 27.189 30.667 41.717

8 17.137 25.483 31.458 35.689 49.551

10 19.123 28.882 35.955 41.009 58.033

12 21.130 32.394 40.643 46.584 67.100

14 23.150 36.002 45.501 52.392 76.721

16 25.179 39.699 50.519 58.419 86.876

18 27.214 43.478 55.689 64.653 97.552

20 29.253 47.334 61.003 71.089 108.739
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(a) The members of the ground state band are character-
ized by the ratios

RL =
E1,L − E1,0

E1,2− E1,0
. s19d

TheR4 ratio within the ground state band is 2.646 in the case
of Xs5d-b2, as compared to 2.904 in the case of Xs5d. Fur-
thermore, all normalized energy levels within the ground
state band of Xs5d-b2 are lower than the corresponding Xs5d
normalized energy levels. The same holds within theng=1
bands. Therefore Xs5d-b2 corresponds to nuclei “less rota-
tional” than the ones corresponding to Xs5d.

(b) The location of the bandheads of the variouss families
is described by the ratios

Rs =
Es,0 − E1,0

E1,2− E1,0
. s20d

The R2 ratio, related to the position of the bandhead of the
s=2 band, is 3.562 in Xs5d-b2, while it is 5.649 in Xs5d. In
other words, thes=2 bandhead in Xs5d-b2 lies much lower
than in Xs5d. The same holds for all bandheads ofs families,
as seen in Table II.

(c) The s=2 bandhead in Xs5d-b2 lies almost midway
between the 41

+ state and the 61
+ state of the ground state band

(E1,4 andE1,6, respectively), while in X(5) thes=2 bandhead
is almost degenerate with the 61

+ statesE1,6d of the ground
state band. Indeed, in the case of Xs5d-b2 one has from Eq.
(19) that R4=2.646 andR6=4.507, their midway being
3.577, as compared to 3.562, which is the position of thes
=2 bandhead.

A difference between the Xs5d-b2 and X(5) models can be
seen by considering the ratios[2]

Rs8 =
Es,4 − Es,0

Es,2 − Es,0
. s21d

In the Xs5d case one obtains the series

Rs=1,2,3,. . .8 = 2.904, 2.798, 2.754, 2.730, 2.714, . . . .s22d

In addition, the following limit holds:

lim
s→`

Rs8 = 2.646. s23d

In contrast, in the framework of the Xs5d-b2 model theRs8
ratios are independent ofs=n+1,

Rs8
osc=

Î107
3 − 3

Î17 − 3
. 2.646. s24d

In the case of a simple 5D harmonic oscillator this ratio
would have been equal to 2.

The various ratios are shown in Fig. 2. We remark that in
the X(5) model the rotational collectivity of the bands de-
creases with increasings (a fact already mentioned in Ref.
[2]), while in the Xs5d-b2 model the rotational collectivity
remains invariant with increasingn=s−1. Furthermore, the
Xs5d-b2 constant value of theRs8

osc ratio is the limiting value
of the X(5) Rs8 ratio for s→`.

D. B„E2… transition rates

In nuclear structure it is well known that electromagnetic
transition rates are quantities sensitive to the details of the
underlying microscopic structure, as well as to details of the
theoretical models, much more than the corresponding spec-
tra. It is therefore a must to calculateBsE2d ratios [normal-
ized toBsE2:21

+→01
+d=100] for the X(5) and Xs5d-b2 mod-

els.
The quadrupole operator has the form[9]

Tm
sE2d = tbFDm,0

s2d suidcosg +
1
Î2

fDm,2
s2d suid + Dm,−2

s2d suidgsin gG ,

s25d

wheret is a scale factor, while theBsE2d transition rates are
given by

BsE2;Ls → Ls8
8 d =

ukLsiTsE2diLs8
8 2

2Ls + 1
. s26d

The matrix elements of the quadrupole operator involve an
integral over the Euler angles, which is the same as in Ref.
f2g and is performed by using the properties of the WignerD
functions, of which onlyDm,0

s2d participates, sinceg.0 in Eq.
s25d fas mentioned before Eq.s2dg, as well as an integral
overb. After performing the integrations over the angles one
is left with

BsE2;Ls → Ls8
8 d = sLs2Ls8

8 u000d2Is,L;s8,L8
2 , s27d

where the Clebsch-Gordan coefficientsLs2Ls8
8 u000d appears,

which determines the relevant selection rules. In the case
of Xs5d the integral overb is

FIG. 2. (Color online) The energy ratioRs8, defined in Eq.(21),
for the X(5) and Xs5d-b2 models. See Sec. II C for further discus-
sion.
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TABLE III. IntrabandBsE2d transition rates for the Xs5d-b4, Xs5d-b6, and Xs5d-b8 models, compared to the predictions of the X(5) and
Xs5d-b2 models. See Secs. II D and III C for details.

Band sLsdi sLsd f Xs5d-b2 Xs5d-b4 Xs5d-b6 Xs5d-b8 X(5)

ss=1d→ ss=1d
21 01 100.00 100.00 100.00 100.00 100.00

41 21 177.90 169.03 165.31 163.41 159.89

61 41 255.18 226.15 214.62 208.83 198.22

81 61 337.06 279.88 258.09 247.31 227.60

101 81 421.32 330.45 297.02 280.71 250.85

121 101 506.85 378.25 332.37 310.24 269.73

141 121 593.11 423.67 364.85 336.77 285.42

161 141 679.84 467.07 395.01 360.94 298.69

181 161 766.88 508.74 423.25 383.18 310.11

201 181 854.13 548.89 449.86 403.84 320.04

221 201 941.54 587.72 475.10 423.16 328.79

241 221 1029.06 625.37 499.14 441.35 336.57

261 241 1116.68 661.98 522.13 458.56 343.54

281 261 1204.36 697.64 544.19 474.91 349.84

301 281 1292.10 732.44 565.43 490.49 355.55

ss=2d→ ss=2d
22 02 155.69 121.99 106.03 97.23 79.52

42 22 240.30 187.73 162.89 149.05 120.02

62 42 316.27 239.86 205.80 187.08 146.75

82 62 397.68 290.57 245.80 221.73 169.31

102 82 481.90 339.23 282.84 253.23 188.55

122 102 567.55 385.73 317.15 281.93 205.12

142 122 653.98 430.22 349.09 308.22 219.55

162 142 740.88 472.91 379.00 332.49 232.24

182 162 828.08 514.03 407.16 355.03 243.52

202 182 915.48 553.74 433.81 376.11 253.63

ss=3d→ ss=3d
23 03 211.85 144.41 116.82 102.55 72.52

43 23 302.74 208.42 169.03 148.48 104.36

63 43 377.38 256.28 206.61 180.79 124.81

83 63 458.35 304.07 242.92 211.42 142.94

103 83 542.55 350.70 277.41 240.11 159.02

123 103 628.33 395.71 309.93 266.81 173.30

143 123 714.93 439.06 340.58 291.71 186.06

163 143 802.00 480.86 369.55 314.99 197.54

183 163 889.36 521.25 397.03 336.85 207.93

203 183 976.92 560.37 423.18 357.46 217.41

ss=4d→ ss=4d
24 04 268.23 165.90 127.76 108.86 69.06

44 24 365.19 229.20 177.27 151.33 95.96

64 44 438.49 273.60 210.90 179.61 112.50

84 64 519.04 318.87 244.18 207.11 127.62

104 84 603.25 363.62 276.37 233.38 141.39

124 104 689.16 407.17 307.10 258.20 153.88

144 124 775.94 449.36 336.35 281.61 165.22
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Is,L;s8,L8 =E bjs,Lsbdjs8,L8sbdb4db, s28d

which, as seen from Eq.s8d, involves Bessel functions, while
in the case of Xs5d-b2 the integral has the form

Is,L;s8,L8 =E bFn
LsbdFn8

L8b4db s29d

with n=s−1 andn8=s8−1, which involves Laguerre polyno-
mials, as seen from Eq.s9d.

The results for intraband transitions are reported in Table
III, while interband transitions are listed in Table IV. All
transitions are normalized toBsE2:21

+→01
+d=100. The fol-

lowing observations can be made.
(a) The ratio of the lowestBsE2ds within the ground state

band

R4→2 =
BsE2:41

+ → 21
+d

BsE2:21
+ → 01

+d
s30d

is 1.7790 in Xs5d-b2, while it is 1.5989 in Xs5d. In general,
the normalized intrabandBsE2ds in Xs5d-b2 are higher than
the corresponding normalizedBsE2ds in Xs5d. This is con-
sistent with the fact that the various bands in Xs5d-b2 appear
to be “less rotational” than the corresponding bands in Xs5d,
as remarked above. It is well known from experimental data
that in near-rotational nuclei theBsE2ds within the ground
state band have high values which increase relatively slowly
with increasing initial angular momentum, while in near-
vibrational nuclei theBsE2ds within the ground state band
have low values which increase rapidly with increasing ini-
tial angular momentumsin the absence of band crossingsd.
This experimental picture is consistent with the intraband
BsE2ds listed in Table III.

(b) As far as interband transitions are concerned, it is seen
in Table IV that transitions which are strong in X(5) appear
also to be strong in Xs5d-b2, while transitions weak in X(5)
are weak in Xs5d-b2 as well.

III. A SEQUENCE OF POTENTIALS LYING BETWEEN
U(5) AND X(5)

A. General

The two cases mentioned in the preceding section are the
only ones in which Eq.(3) is exactly soluble, giving spectra
characterized byR4 ratios 2.646 and 2.904 for Xs5d-b2 and
X(5), respectively. However, the numerical solution of Eq.
(3) for other potentials is a straightforward task. The poten-

tials to be used in Eq.(3) have to obey the restrictions im-
posed by the 24 transformations mentioned in Ref.[3] and
listed explicitly in Ref.[10].

A particularly interesting sequence of potentials is given
by

u2nsbd =
b2n

2
, s31d

with n being an integer. Forn=1 the Xs5d-b2 case is ob-
tained, while forn→` the infinite well of Xs5d is obtained
f11g, as shown in Fig. 1. Therefore this sequence of poten-
tials interpolates between the Xs5d-b2 model and the Xs5d
model, in the region lying between Us5d and Xs5d.

B. Spectra

Numerical results for the spectra of theb4, b6, and b8

potentials have been obtained through two different methods.
In one approach, the representation of the position and mo-
mentum operators in matrix form[12] has been used, while
in the other the direct integration method[13] has been ap-
plied. In the latter, the differential equation is solved for each
value of L separately, the successive eigenvalues for each
value of L labeled bys=1, 2, 3, . . .(or, equivalently, byn
=0, 1, 2, . . .). The two methods give results mutually consis-
tent, the second one appearing of more general applicability.
The results are shown in Tables I and II, where excitation
energies relative to the ground state, normalized to the exci-
tation energy of the first excited state, are exhibited.

In Tables I and II the model labels Xs5d-b4, Xs5d-b6,
Xs5d-b8 have been used for the above-mentioned potentials,
their meaning being that the Xs5d-b2n model corresponds to
the potentialb2n/2 plugged in the differential equation(3)
obtained in the framework of the X(5) model. In this notation
Xs5d-b2n with n→` is simply the original X(5) model [2].

From Tables I and II it is clear that in all bands and for all
values of the angular momentumL, the potentialsb4, b6, b8

gradually lead from the Xs5d-b2 case to the X(5) results in a
smooth way. The same conclusion is drawn from Fig. 3(a),
where several levels of the ground state band of each model
are shown versus the angular momentumL, as well as from
Fig. 3(b), where the bandheads of several excited bands are
shown for each model as a function of the indexs.

C. B„E2… transition rates

The calculation of theBsE2ds follows the steps described
in Sec. II D. Equation(27) is still valid, the only difference
being that in the integral overb the wave functions in the
present cases are known only in numerical form and not in
analytic form as in Eqs.(28) and (29).

TABLE III. (Continued.)

Band sLsdi sLsd f Xs5d-b2 Xs5d-b4 Xs5d-b6 Xs5d-b8 X(5)

164 144 863.19 490.22 364.21 303.71 175.57

184 164 950.72 529.83 390.81 324.64 185.07

204 184 1038.42 568.29 416.27 344.52 193.82
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TABLE IV. Same as Table III, but for interband transitions.

Band sLsdi sLsd f Xs5d-b2 Xs5d-b4 Xs5d-b6 Xs5d-b8 X(5)

ss=2d→ ss=1d
02 21 121.92 93.21 81.03 74.66 62.41

22 01 1.57 2.04 2.18 2.21 2.12

22 21 13.40 11.34 10.28 9.66 8.22

22 41 96.85 65.53 53.55 47.59 36.56

42 21 0.06 0.48 0.72 0.84 0.94

42 41 12.41 9.63 8.37 7.68 6.10

42 61 96.68 59.53 46.23 39.78 27.87

62 41 0.03 0.16 0.37 0.49 0.64

62 61 12.32 8.84 7.41 6.64 4.92

62 81 95.89 54.68 40.71 34.09 21.85

82 61 0.12 0.08 0.27 0.39 0.56

82 81 12.34 8.29 6.72 5.90 4.09

82 101 95.03 50.85 36.56 29.91 17.64

102 81 0.19 0.05 0.23 0.35 0.52

102 101 12.37 7.86 6.19 5.35 3.49

102 121 94.30 47.79 33.36 26.76 14.61

ss=3d→ ss=2d
03 22 241.37 166.55 136.53 120.61 86.33

23 02 2.74 3.20 3.19 3.11 2.66

23 22 25.45 19.61 16.82 15.19 11.25

23 42 193.64 120.83 94.54 81.36 54.01

43 22 0.11 0.70 0.97 1.08 1.12

43 42 23.75 17.14 14.27 12.67 8.83

43 62 193.35 111.85 84.29 70.99 43.76

63 42 0.04 0.22 0.47 0.59 0.71

63 62 23.73 16.09 13.01 11.37 7.46

63 82 191.71 104.04 75.89 62.68 36.03

83 62 0.20 0.11 0.33 0.46 0.60

83 82 23.89 15.32 12.07 10.39 6.44

83 102 189.99 97.61 69.18 56.16 30.26

103 82 0.33 0.07 0.28 0.41 0.56

103 102 24.05 14.69 11.31 9.61 5.65

103 122 188.51 92.33 63.80 50.99 25.87

ss=3d→ ss=1d
03 21 0.8371 0.0300 0.0461 0.1835 0.5852

23 01 0.1178 0.0311 0.0036 0.0002 0.0213

23 21 0.4123 0.0770 0.0063 0.0012 0.0546

23 41 0.0170 0.0716 0.2433 0.3876 0.6769

43 21 0.0059 0.0005 0.0033 0.0139 0.0605

43 41 0.3111 0.0471 0.0012 0.0051 0.0733

43 61 0.0049 0.1241 0.2795 0.4046 0.6616

63 41 0.0022 0.0020 0.0107 0.0240 0.0790

63 61 0.2554 0.0323 0.0001 0.0085 0.0866

63 81 0.0169 0.1235 0.2503 0.3548 0.5907

83 61 0.0090 0.0043 0.0129 0.0255 0.0833

83 81 0.2165 0.0236 0.0000 0.0104 0.0930
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The results of the calculations for intraband transitions are
shown in Table III, while interband transitions are shown in
Table IV. In addition, the normalizedBsE2d transition rates
within the ground state band of each model are shown in Fig.

3(c). In all cases a smooth evolution from Xs5d-b2 to X(5) is
seen. Furthermore, the results are in agreement with general
qualitative expectations: the more rotational the nucleus, the
less rapid the increase(with increasing initial angular mo-

FIG. 3. (Color online) (a) Levels of the ground state bands of the models Xs5d-b2n with n=1–4 and of the X(5) model, vs the angular
momentumL. In each model all levels are normalized to the energy of the first excited state. See Sec. III B for further discussion.(b)
Bandhead energies of excited bands of the same models and with the same normalization, vs the band indexs. See Sec. III B for further
discussion.(c) BsE2:Lf +2→Lfd transition rates within the ground state bands of the same models, vs the angular momentum of the final
state,Lf. In each model all rates are normalized to the one between the lowest states,BsE2:2→0d. See Sec. III C for further discussion.

TABLE IV. (Continued.)

Band sLsdi sLsd f Xs5d-b2 Xs5d-b4 Xs5d-b6 Xs5d-b8 X(5)

83 101 0.0220 0.1102 0.2134 0.3011 0.5207

103 81 0.0130 0.0051 0.0126 0.0240 0.0824

103 101 0.1877 0.0181 0.0002 0.0112 0.0949

103 121 0.0231 0.0960 0.1813 0.2555 0.4610

ss=4d→ ss=3d
04 23 359.75 228.92 179.59 154.38 99.18

24 03 3.77 4.05 3.86 3.66 2.85

24 23 36.92 26.34 21.65 19.06 12.76

24 43 290.41 169.37 127.74 107.41 64.60

44 23 0.14 0.84 1.12 1.22 1.17

44 43 34.54 23.40 18.80 16.32 10.39

44 63 290.00 158.78 116.23 96.05 54.31

64 43 0.06 0.26 0.52 0.64 0.73

64 63 34.61 22.27 17.49 14.98 9.05

64 83 287.51 149.11 106.29 86.50 46.15

84 63 0.27 0.12 0.36 0.49 0.60

84 83 34.93 21.45 16.48 13.95 8.02

84 103 284.90 140.88 98.06 78.69 39.76

104 83 0.45 0.08 0.31 0.43 0.56

104 103 35.24 20.74 15.63 13.08 7.19

104 123 282.67 133.99 91.26 72.30 34.73

SEQUENCE OF POTENTIALS LYING BETWEEN THE… PHYSICAL REVIEW C 69, 014302(2004)

014302-9



mentum) of the BsE2d ratios within the ground state band
should be. Indeed the most rapid increase is seen in the case
of Xs5d-b2, while the slowest increase is observed in the
case of X(5).

IV. COMPARISONS TO EXPERIMENTAL DATA

From the above observations, we conclude that a few key
features of the Xs5d-b2 model, which can serve as bench-
marks in the search for nuclei exhibiting such behavior, are
the following.

(a) The R4 ratio [defined in Eq.(19)] should be close to
2.646.

(b) The position of thes=2 bandhead should be almost
midway between the 41

+ and 61
+ (E1,4 and E1,6) states of the

ground state band, theR2 ratio [defined in Eq.(20) being
3.562].

(c) The ratio of the lowestBsE2ds within the ground state
band,R4→2 [defined in Eq.(30)], should be around 1.7790.

Analogous remarks can be made in the cases of the
Xs5d-b4, Xs5d-b6, and Xs5d-b8 models.

It is clear that the first place to look for nuclei exhibiting
Xs5d-b2n behavior is the region close to nuclei showing X(5)
structure. The best examples of nuclei corresponding to the
X(5) structure are so far theN=90 isotones152Sm [14],
150Nd [15], 156Dy [16]. A preliminary search in the rare
earths withN,90 shows that148Nd [17] can be a candidate
for Xs5d-b2, 158Er [18] can be a candidate for Xs5d-b6, while
160Yb [19,20] can be a candidate for Xs5d-b4. Existing data
for the ground state bands and theb1 bandheads of these
nuclei are compared to the corresponding model predictions
in Table V. However, much more detailed information on
spectra andBsE2d transitions is needed before final conclu-
sions can be reached.

V. CONCLUSION

An exactly soluble model, labeled as Xs5d-b2, has been
constructed starting from the original Bohr collective Hamil-

tonian, separating theb andg variables as in the X(5) model
of Iachello, and using a harmonic oscillator potential for the
b variable. Furthermore it has been proved that the potentials
b2n (with n being an integer) provide a “bridge” between this
new Xs5d-b2 model(occurring forn=1) and the X(5) model
of Iachello(which is obtained by putting in the Bohr Hamil-
tonian an infinite well potential in theb variable, material-
ized for n→`). Parameter-free(up to overall scale factors)
predictions for spectra andBsE2d transition rates have been
given for the potentialsb2, b4, b6, b8, called the Xs5d-b2,
Xs5d-b4, Xs5d-b6, and Xs5d-b8 models, respectively, lying
between the U(5) symmetry of the original Bohr Hamil-
tonian and the X(5) model. Hints about nuclei showing this
behavior have been given.

A sequence of potentials interpolating between the U(5)
and E(5) symmetries should also be worked out. Further-
more, one should try to find a sequence of potentials inter-
polating between SU(3) and X(5), as well as between O(6)
and E(5). In other words, one should try to approach E(5)
and X(5) “from the other side.” From the classical limit of
the O(6) and SU(3) symmetries of the Interacting Boson
model [21] it is clear that for this purpose potentials with a
minimum atbÞ0 should be considered, the Davidson-like
potentials[22]

u2n
D sbd = b2n +

b0
4n

b2n s32d

being strong candidates. The Davidson potential, corre-
sponding ton=1, is known to be exactly solublef22,23g.
Work in these directions is in progress.
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TABLE V. Experimental spectra of the ground state(g.s.) andb1 bands of148Nd [17], 160Yb [19,20], and
158Er [18], compared to the predictions of the Xs5d-b2, Xs5d-b4, and Xs5d-b6 models, respectively.

Band L 148Nd Xs5d-b2 160Yb Xs5d-b4 158Er Xs5d-b6

g.s.

2 1.000 1.000 1.000 1.000 1.000 1.000

4 2.493 2.646 2.626 2.769 2.744 2.824

6 4.242 4.507 4.718 4.929 5.050 5.125

8 6.153 6.453 7.142 7.343 7.772 7.777

10 8.194 8.438 9.761 9.954 10.786 10.721

12 10.298 10.445 12.903 12.729 13.952 13.922

14 17.561 17.359

b1

0 3.039 3.562 4.463 4.352 4.197 4.816
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