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The electromagnetic potential consisting in the Coulomb plus the magnetic moment interactions between
two nucleons is studied in nucleon-deuteron scattering. For states in which the relativeN-d angular momentum
L has low values the three-nucleon problem has been solved using the correlated hyperspherical harmonic
expansion basis. For states in which the angular momentumL has large values, explicit formulas for the
nucleon-deuteron magnetic moment interaction are derived and used to calculate the correspondingT matrices
in Born approximation. Then, the transition matrices describingN-d elastic scattering have been derived
including an infinite number of partial waves as required by the 1/r3 behavior of the magnetic moment
interaction. Appreciable effects are observed in the vector analyzing powers at low energies. The evolution of
these effects by increasing the collision energy is examined.

DOI: 10.1103/PhysRevC.69.014002 PACS number(s): 25.10.1s, 21.30.2x, 13.40.Ks

I. INTRODUCTION

The study of the magnetic moment interaction(MM ) in
the two-nucleons2Nd system has been the subject of many
investigations(see Refs.[1,2] and references therein). Al-
though the intensity of this interaction is very small com-
pared to the nuclear interaction, its long-range behavior pro-
duces significant effects in nucleon-nucleonsNNd scattering.
Almost all modernNN potentials have been constructed con-
sidering the electromagnetic(EM) interaction used in the
Nijmegen partial-wave analysis which includes the MM in-
teraction between the two spin-1

2 particles as well as correc-
tions to thep-p Coulomb potential as two-photon exchange,
Darwin-Foldy, and vacuum polarization terms. When 2N
scattering observables are computed with one of these poten-
tials the long-range behavior of the EM interaction implies
an infinite sum in the partial-wave series. For the particular
case of the MM interaction, in Refs.[1,2] it has been shown
how to sum analytically these infinite series forp-p and
n-p scatterings. Important effects of the MM interaction have
been observed in bothn-p andp-p vector analyzing powers
at low energies.

Due to the fact that 2N potentials are constructed by fit-
ting theNN available data, the three-nucleons3Nd system is
the simplest one in which these potentials can be used to
make predictions. However, in the description of the 3N con-
tinuum the MM interaction and corrections to the Coulomb
potential have been systematically disregarded. This omis-
sion has been justified in the past by the intrinsic difficulties
in solving the nuclear problem. At present, the 3N continuum
is routinely solved by different techniques making possible
the treatment of those electromagnetic terms beyond the
Coulomb interaction.

In the present paper we studyN-d elastic scattering in-
cluding Coulomb plus MM interactions. Previous description
of this process without considering the MM interaction has
been performed by the authors using a technique based on
the Kohn variational principle(KVP) [3,4] and expanding
the scattering wave function in terms of the correlated hyper-
spherical harmonics basis[5,6]. Following these works we

perform a partial-wave decomposition of the scattering pro-
cess. For states with low values of the relative orbital angular
momentumL of the projectile and the target, the process is
studied by solving the complete 3N problem with the Hamil-
tonian of the system containing nuclear plus Coulomb plus
MM interactions. For states withL values sufficiently high,
the centrifugal barrier prevents a close approach of the pro-
jectile to the target. So, the collision can be considered pe-
ripheral and treated as a two-body process. Furthermore, in
these states only the EM interaction gives appreciable effects
and the corresponding scattering amplitudes can be calcu-
lated in Born approximation. The value ofL at which the
treatment of the problem changes from a three-body descrip-
tion to a two-body description is to some extent arbitrary and
could be different at different energies. In practice it can be
taken equal to the maximumL value considered when the
problem is solved neglecting the MM interaction.

We apply this procedure to calculate the 3N vector ana-
lyzing powers where the main effects of the MM interaction
can be observed. Forp-d scattering a sizable increase inAy
and iT11 has been obtained at low energies which is, how-
ever, insufficient to explain the usual underestimation pro-
duced by modernNN forces[7,8]. Other observables as the
differential cross section and the tensor analyzing powers
suffer minor modifications, of the order of 1% or less. For
n-d scattering a pronounced effect at very small angles is
observed. In fact, the scattering amplitude has a term
sin u/s1−cosud which diverges foru→0 similar to then-p
case[2]. The experimental observation of this divergence is
problematic since it occurs at extreme forward angles(a frac-
tion of degree). This is different from thep-d case in which
the Coulomb divergence dominates in that region. Regarding
the vector analyzing powers, the MM interaction tends to
slightly flatten then-d Ay around the peak and to produce a
pronounced dip structure at small scattering angles.

The importance of the EM interaction in the description
of N-d scattering decreases as the energy of the process in-
creases. AroundElab=16 MeV the improvement given by the
MM interaction at the peak ofAy and iT11 for p-d scattering
is already less than 5%. On the other hand Coulomb effects
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are important belowElab=30 MeV [3]. Here we show that at
Elab=65 MeV they are considerably reduced in most of the
observables with the exception ofT21 where still some ef-
fects can be observed. This analysis will serve to justify the
application of standardn-d calculations to the description of
p-d scattering at high energies[9].

The paper is organized as follows. In Sec. II theN-d MM
interaction is given. The correspondingT matrices are calcu-
lated in Born approximation for bothn-d andp-d scatterings
and final forms for the transition matrices are given. In Sec.
III the transition from a 3N description to a 2N description is
discussed. It is shown that the 3N T matrix tends to the 2N T
matrix as the value ofL increases. In Sec. IV the vector
analyzing powers are calculated including the MM interac-
tion and compared to the available data. The differences be-
tween the theory and the experiments around the peak of the
observables are analyzed. In Sec. V we present our conclu-
sions. In the Appendix then-d as well as thep-d MM inter-
actions as two distinctive particles are derived.

II. MAGNETIC MOMENT INTERACTION

Following the notation used in the determination of the
Argonnev18 (AV18) potential[10], all modernNN potentials
can be put in the general form

vsNNd = vEMsNNd + vpsNNd + vRsNNd. s1d

The short-range partvRsNNd of these interactions includes
a certain number of parameters(around 40), which are deter-
mined by a fitting procedure to theNN scattering data and
the deuteron binding energy, whereas the long-range part re-
duces to the one-pion-exchange potentialvpsNNd and the
electromagnetic potentialvEMsNNd.

The AV18 potential includes the samevEMsNNd used in
the Nijmegen partial-wave analysis except for short-range
terms and finite size corrections. ThevEMsppd consists of the
one- and two-photon Coulomb terms plus the Darwin-Foldy
term, vacuum polarization and MM interactions. The
vEMsnpd interaction includes a Coulomb term due to the neu-
tron charge distribution in addition to the MM interaction.
Finally, vEMsnnd is given by the MM interaction only. All
these terms take into account the finite size of the nucleon
charge distributions. Explicitly the two-nucleon magnetic
moment interaction in the center-of-mass reference frame
reads

vMMsppd = −
a

4Mp
2mp

2F2

3
Fdsrdsi · s j +

Ftsrd
r3 SijG

−
a

2Mp
2s4mp − 1d

Flssrd
r3 L ·S, s2d

vMMsnpd = −
a

4MnMp
mnmpF2

3
Fdsrdsi · s j +

Ftsrd
r3 SijG

−
a

2MnMnp
mn

Flssrd
r3 sL ·S+ L ·Ad, s3d

vMMsnnd = −
a

4Mn
2mn

2F2

3
Fdsrdsi · s j +

Ftsrd
r3 SijG . s4d

In the above formulaFd, Ft, andFls describe the finite size of
the nucleon charge distributions. Asr →`, Fd→0 whereas
Ft→1 and Fls→1. Mp sMnd is the protonsneutrond mass,
Mnp is the n-p reduced mass, andmp smnd is the proton
sneutrond magnetic moment. The MM interaction presents
the usualr−3 behavior and has an operatorial structure with a
spin-spin, a tensor, and a spin-orbit term. In then-p case, this
last term includes an asymmetric forcefproportional toA
=ssi −s jd/2g which mixes spin-singlet and spin-triplet states.
This term is expected to have a very small effect.

The EM interaction has been studied in the description of
bound states inAø8 nucleon systems[11]. Recently a de-
tailed analysis of the contribution of the electromagnetic
terms to the3He-3H mass difference has been performed
[12]. A first analysis in three-nucleon scattering has been
done by Stoks[13] including the MM interaction in Born
approximation at highL values. However, theT matrices
used at lowL values were calculated without considering the
MM interaction. In this approximate treatment of the process
the main modifications were obtained in then-d vector ana-
lyzing powers at forward angles. No modifications were ob-
served in other observables as the differential cross section
and tensor analyzing powers, and in the maximum ofAy and
iT11. As a consequence, the conclusion was that the MM
interaction does not improve the theoretical underestimation
of the last two observables. However, disregarding the MM
interaction could not be correct in the description of low
partial waves which govern the polarization observables at
low energies. In Refs.[14,15] the MM interaction has been
included in the calculation ofN-d scattering observables.
However in these analyses its contribution was limited to a
low number of partial waves. The contribution from waves
with high L values was neglected. In the present paper we
will include the MM interaction in both regimes in order to
perform a complete description of the collision process.

For the caseA=2, the contribution of the MM interaction
to the scattering amplitude has been extensively studied
[1,2]. It has been shown that due to itsr−3 behavior the
scattering amplitude results in a slow convergent series
whose leading term can be summed analytically. A similar
analysis can be performed forN-d scattering. The starting
point is theN-d transition matrixM which can be decom-
posed as a sum of the Coulomb amplitudefc and a nuclear
term, namely,

Mnn8
SS8sud = fcsuddSS8dnn8 +

Î4p

k
o

L,L8,J

Î2L + 1sL0SnuJnd

3sL8M8S8n8uJndexpfissL + sL8 − 2s0dg

3JTLL8
SS8YL8M8su, 0d. s5d

This is a 636 matrix corresponding to the two possible
couplings of the spin 1 of the deuteron and the spin1

2 of the
third particle toS, S8= 1

2 or 3
2 and their projectionsn andn8.

The quantum numbersL, L8 represent the relative orbital an-
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gular momentum between the deuteron and the third particle,
and J is the total angular momentum of the three-nucleon

scattering state.JTLL8
SS8 are theT matrix elements correspond-

ing to a Hamiltonian containing nuclear plus Coulomb plus
MM interactions andsL are the Coulomb phase shifts. The
n-d case is recovered puttingfc=sL=0. When the MM in-
teraction is not considered the sums overL, L8, J converge
very fast due to the finite range of the nuclear interaction.
Typically in the low energy regionsElab,50 MeVd states
with L, L8.10 can be safely neglected. However, when the
MM interaction is considered, an infinite number of terms
contribute to the construction of the scattering amplitude. In
this case the sums onL, L8 can be divided in two parts. For
L, L8øLmax the T matrix elements correspond to, and are
obtained from, a complete three-body description of the sys-
tem. For L, L8.Lmax the centrifugal barrier is sufficiently
high to maintain the third particle far from the deuteron and
the description of the state can be performed as a two-body
system. In generalLmax can be fixed in such a way that when
the collision proceeds in states withL, L8.Lmax the nuclear
interaction can be safely neglected and only the Coulomb
plus MM potentials contributes to theN-d scattering. It is
therefore convenient to introduce the MM interaction be-
tween a nucleon and the deuteron as distinct particles. Its
specific form can be obtained summing the MM interaction
between each nucleon of the deuteron and the third nucleon
at large separation distances. Alternatively, theN-d MM in-
teraction can be obtained directly in one-photon exchange
approximation between a spin-1 and a spin-1

2 particle from a
nonrelativistic reduction of the corresponding Feynman dia-
gram. Here below the MMn-d and p-d interactions are ex-
plicitly given. The details of the derivation are reserved to
the Appendix:

vMMsndd = −
a

r3F mnmd

MnMd
Snd

I +
mn

2MnMnd
sL ·Snd + L ·AnddG ,

s6d

vMMspdd = −
a

r3F mpmd

MpMd
Spd

I + S mp

2MpMpd
−

1

4Mp
2DsL ·Spd

+ L ·Apdd + S md

2MdMpd
−

1

4Md
2DsL ·Spd − L ·Apdd

−
Qd

2
Sd

IIG , s7d

SNd
I = 3sSN · r̂dsSd · r̂d − SN ·Sd, N = n, p, s8d

Sd
II = 3sSd · r̂d2 − 2, s9d

where Md is the deuteron mass,MNd is the corresponding
nucleon-deuteron reduced mass, andmd, Qd are the magnetic
and the quadrupole moments of the deuteron, respectively.
Moreover,SNd=SN+Sd whereasANd=SN−Sd. The deuteron-
nucleon distance isr and r̂ is the unitary vector giving their
relative position.

A. n-d case

Let us first discussn-d scattering including the MM inter-
action. For relative states verifyingL, L8.Lmax the descrip-
tion proceeds as a two-body process and theT matrix ele-
ments corresponding to ann-d state with total angular
momentumJ, relative angular momentumL, and total spinS
are given in Born approximation as

JTSS8
LL8 = − kS2Mnd

"2 DkVL8S8JuvMMsndduVLSJl. s10d

The relative motion of then-d system is described by the
regular free solution of Schrödinger equation

VLSJ= jLskrdfYLsr̂d ^ xSgJJz
, s11d

with k2=s2Mnd/"
2dEcm, jL a spherical Bessel function, andxS

the total spin function.
The T matrix elements corresponding to the spin-orbit

term of the MM interaction proportional toL ·S+L ·A are

JTSS8
LL8 = − kCsokVL8S8Ju

L ·S+ L ·A

r3 uVLSJl

= − k Cso

dLL8

2LsL + 1d
JMSS8

L , s12d

with

Cso= −
amn

Mn
< 2.9323 10−3 fm s13d

and

JMSS8
L = s− 1dL+J+S−S8−1/2Î6s2S+ 1ds2S8 + 1d

3H 1
2 S8 1

S 1
2 1

JÎLsL + 1ds2L + 1dHS8 L J

L S 1
J .

s14d

The T matrix elements of Eq.(12) can be used in Eq.(5)
for values ofL, L8.Lmax. Moreover, for fixed values ofL the
sum overJ can be performed analytically using summation
properties of Clebsch-Gordan coefficients. The convergence
of the sum onL is slow enough to prevent a safe truncation
of the series. Therefore, after summing all terms forL.Lmax,
the contribution of the spin-orbit term to the transition matrix
of Eq. (5) results

Mnn8
SS8ssod =

Cso

2
Knn8

SS8F sin u

1 − cosu
− o

L=1

Lmax s2L + 1d
LsL + 1d

PL
1scosudG .

s15d

PL
1scosud is a generalized Legendre polynomial and the

following property has been used to derive the above
equation:
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o
L=1

`
s2L + 1d
LsL + 1d

PL
1scosud =

sin u

1 − cosu
. s16d

Moreover

Knn8
SS8 = s− 1dS−S8+n+1/2Î3s2S+ 1ds2S8 + 1dH 1

2 S8 1

S 1
2 1

J
3SS S8 1

n − n8 − M
DduMu,1. s17d

As a consequence of ther−3 behavior of the MM spin-
orbit interaction a term proportional to sinu/s1−cosud ap-
pears in the transition matrix. This term produces a diver-
gence in the differential cross section at extreme forward
angles and a pronounced dip structure in the vector analyzing
powers.

A similar analysis can be done for the term proportional to
the tensor operator in then-d MM interaction. The corre-
spondingT matrix elements are

JTSS8
LL8 = − k CtkVL8S8Ju

Snd
I

r3 uVLSJl = − k Ct ILL8
JMSS8

LL8, s18d

with

Ct = −
amnmd

Mn + Md
< 1.6753 10−3 fm. s19d

The angular-spin and radial matrices are

JMSS8
LL8 = s− 1dL+L8+J+S85

1
2 1 S8
1
2 1 S

1 1 2
6

3 Î30s2L + 1ds2L8 + 1ds2S+ 1ds2S8 + 1d

3HL8 S8 J

S L 2
JSL 2 L8

0 0 0
D s20d

and

ILL8 =5
dLL8

2LsL + 1d
dL+2,L8

6sL + 1dsL + 2d
dL−2,L8

6sL8 + 1dsL8 + 2d

. s21d

Again for fixed values ofL andL8 the sum overJ in Eq.
(5) can be performed analytically and the contribution to the
transition matrix is

Mnn8
SS8std = − Î4pCt

Î30s2S+ 1ds2S8 + 1d5
1
2 1 S8
1
2 1 S

1 1 2
6

3s− 1dS8−nSS S8 2

n − n8 − M
D

3 o
L,L8.Lmax

s2L + 1dÎ2L8 + 1ILL8SL L8 2

0 0 0
D

3S L8 L 2

− M 0 M
DYL8Msu, 0d. s22d

Three different sums can be constructed corresponding to
uMu=0,1,2 that can be summed numerically term by term.
The convergence of the series is rather fast and a few tens of
terms are sufficient.

In conclusion, then-d transition matrix including the
nuclear plus the MM interaction can be constructed as a sum
of three terms,

Mnn8
SS8sud =

Î4p

k
o
L,L8

Lmax

o
J

Î2L + 1sL0SnuJnd

3sL8M8S8n8uJndJTLL8
SS8YL8M8su, 0d + Mnn8

SS8ssod

+ Mnn8
SS8std. s23d

When the MM interaction is neglected only the first term
contributes to the transition matrix. When the MM interac-
tion is included, theT matrix elements forL, L8øLmax are
different from the previous case. In addition the last two
terms in Eq.(23) have to be included. We stress the fact that
the value of Lmax can be taken in such a way that for
L, L8.Lmax the nuclear interaction gives a negligible contri-
bution to the scattering process, and the interaction between
the incident particle and the target is only electromagnetic.
Typical values forLmax are discussed in Sec. IV.

B. p-d case

As for then-d case, theT matrix elements corresponding
to a two-body description of thep-d system with total angu-
lar momentumJ, relative angular momentumL, and total
spin S are given in Born approximation:

JTSS8
LL8 = − kS2Mpd

"2 DkVL8S8JuvMMspdduVLSJl. s24d

Here the relative motion of thep-d system is described by

VLSJ= FLsh, krdfYLsr̂d ^ xSgJJz
s25d

with k2=s2Mpd/"
2dEcm, FL a regular Coulomb function, and

h the usual Coulomb parameter.
Let us first consider the spin-orbit terms of the MM inter-

action in Eq. (7) proportional to sL ·S+L ·Ad and sL ·S
−L ·Ad. The following matrix elements entering in the cal-
culation of theT matrix are defined as
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kVL8S8Ju
L ·S± L ·A

r3 uVLSJl = ILL8dLL8
JMSS8

L s±d s26d

with f16g

ILL =
1

2LsL + 1d
+

1

2LsL + 1ds2L + 1dFhp + 1 +hp coth hp

− 2h2o
p=0

L
1

p2 + h2G . s27d

In Eq. (26) the angular-spin matrixJMSS8
L s+d is equal to

the matrixJMSS8
L defined in Eq.(14), whereas

JMSS8
L s− d = s− 1dJ+L−1/2Î24s2S+ 1ds2S8 + 1d

3H1 S8 1
2

S 1 1
JÎLsL + 1ds2L + 1dHS8 L8 J

L S 1
J .

s28d

Following Ref. [1] we isolate the first term ofILL and
proceed toward a summation of the related amplitude as we
have done for then-d case. The corresponding contribution
to the transition matrix of Eq.(5) for L.Lmax results

Mnn8
SS8ssod =

1

2
fCso

+ Knn8
SS8s+ d + Cso

− Knn8
SS8s− dg

3 Fcosu + 2e−ih lnfs1−cos ud/2g − 1

sin u

− o
L=1

Lmax s2L + 1d
LsL + 1d

e2issL−s0dPL
1scosudG . s29d

To get this final form we have used the following analytical
summation of the seriesf17g:

o
L=1

`
s2L + 1d
LsL + 1d

e2isLPL
1scosud

=
e2is0

sin u
fcosu + 2e−ih lnfs1−cos ud/2g − 1g, s30d

which can be obtained from the series of the Coulomb am-
plitude,

fcsud = o
L=0

`

s2L + 1dse2isL − 1dPLscosud

= − 2ih
e2is0

1 − cosu
e−ih lnfs1−cos ud/2g, s31d

using the recurrence relations of the Legendre polynomials
and the following relation of the Coulomb phase shifts:

e2issL−sL−1dsL − ihd = L + ih. s32d

In Eq. (29) Knn8
SS8s+d=Knn8

SS8 defined in Eq.(17) and

Knn8
SS8s− d = s− 1dn+1/2Î12s2S+ 1ds2S8 + 1dH1 S8 1

2

S 1 1
J

3SS S8 1

n − n8 − M
DduMu,1. s33d

Moreover

Cso
+ = − aMpdS mp

MpMpd
−

1

2Mp
2D < − 3.7753 10−3 fm,

s34d

Cso
− = − aMpdS md

MdMpd
−

1

2Md
2D < − 5.9363 10−4 fm.

s35d

The term proportional toCso
− is much smaller due to the

small magnetic moment of the deuteron. The same happens
to the term proportional toQd in Eq. s7d due to the small
quadrupole moment of the deuteron and will not be dis-
cussed here. The analysis of the term proportional to the
tensor operator in the MM interaction proceeds similar to the
one performed in then-d case, taking care that now the ra-
dial integral ILL is given by Eq. s27d and IL,L+2= 1

6uL+1
+ ihu−1uL+2+ihu−1 f16g. In conclusion the transition matrix
can be constructed as a sum of different contributions:

Mnn8
SS8sud = fcsuddSS8dnn8 +

Î4p

k
o
LL8

Lmax

o
J

Î2L + 1sL0SnuJnd

3sL8M8S8n8uJndexpfissL + sL8 − 2s0dg

3JTLL8
SS8YL8M8su, 0d + Mnn8

SS8ssod + Bnn8
SS8, s36d

whereMnn8
SS8ssod is defined in Eq.s29d andBnn8

SS8 includes the
contribution of the remaining terms in Eq.s27d and those

coming from the tensor operator. TheBnn8
SS8 matrix elements

can be evaluated summing the corresponding series nu-
merically for L, L8.Lmax until convergence is reached.

III. THE 3 N AND N-d T MATRICES IN
BORN APPROXIMATION

The calculations of the observables inN-d scattering can
be obtained from the transition matrices of Eqs.(23) and
(36). Accordingly, after a partial-wave decomposition, it is
necessary to calculate the three-nucleonT matrices for states
with total angular momentumJ in which the deuteron and
the incident nucleon are in relative motion in the regimeL
øLmax. As discussed before, states havingL.Lmax are de-
scribed as a two-body process. Therefore it is appropriate to
make a link between the two regimes and show in which
manner the three-nucleonT matrix smoothly tends to a two-
body T matrix asL increases.

The KVP in its complex form establishes that theT matrix
elements are functionals of the three-nucleon scattering state,
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fJTLL8
SS8g = JTLL8

SS8 −
M

2Î3"2
kCLSJ

− uH − EuCL8S8J
+ l. s37d

The stationarity of this functional with respect to the trial
parameters in the three-nucleon scattering stateCLSJ

+ is re-
quired to obtain theT matrix first-order solution. The
second-order estimate is obtained after replacing the first-
order solution in Eq.s37d. In this formalismf18g the con-
tinuum state is usually written as a sum of three Faddeev-like
amplitudes, each of which consists of two terms:

CLSJ
+ = o

i=1,3
fCCsxi, yid + VLSJ

+ sxi, yidg, s38d

wherexi, yi are the Jacobi coordinates corresponding to the
ith permutation of the particles indices 1,2,3. Thefirst term
CC describes the system when the three nucleons are close
to each other. For large interparticle separations and ener-
gies below the deuteron breakup threshold it goes to zero,
whereas for higher energies it must reproduce a three-
outgoing particle state. The second termVLSJ

+ describes
the asymptotic configuration of a deuteron far from the
third nucleon and explicitly it is

VLSJ
+ sxi, yid = VLSJ

0 sxi, yid + o
L8S8

JTLL8
SS8VL8S8J

1 sxi, yid, s39d

where

VLSJ
0 sxi, yid = VLSJ

R sxi, yid, s40d

VLSJ
1 sxi, yid = VLSJ

R sxi, yid − iVLSJ
I sxi, yid. s41d

Besides a factorÎk, VLSJ
R is the functionVLSJ given in Eqs.

s11d and s25d for the n-d andp-d systems, respectively, in
which xS represents the deuteron wave function of spin 1
coupled with the spin12 of the third nucleon to total spinS.
In VLSJ

I the regular relative functionjL or FL is replaced by
the corresponding irregular solutionhL or GL regularized
at the origin f5g. The normalization of the asymptotic
states verifies

M

2Î3"2o
i,j

fkVLSJ
R sxi, yiduH − EuVL8S8J

I sx j, y jdl

− kVLSJ
I sxi, yiduH − EuVL8S8J

R sx j, y jdlg = 1, s42d

M being the nucleon mass. To be noticed that in the three-
nucleon process the energy in the center-of-mass reference
frame is

E =
3"2

4M
k2 + Ed =

"2

2MNd
k2 + Ed s43d

with Ed the deuteron ground state energy. Moreover, the fac-
tor 1/s2Î3d in Eq. s42d is related to the definitions of the
Jacobi coordinates in terms of the particle coordinates:

xi = r j − r k,

yi =
2
Î3

Sr k −
r i + r j

2
D . s44d

The Born approximation of theT matrix is obtained from
Eq. (37) replacing the wave functionC by the regular func-
tion V0 and putting the first-orderT matrix equal to zero:

fJTLL8
SS8gB = −

M

2Î3"2o
i,j

kVLSJ
0 sxi, yiduH − EuVL8S8J

0 sx j, y jdl.

s45d

For a given energy a certain valueLB exists such that for
L, L8ùLB the differences between theT matrix elements ob-
tained from a complete solution of the three-nucleon prob-
lem or from its Born approximation are extremely small.
Increasing further the values ofL and L8 we arrive at the
regime L, L8.Lmax in which the contribution of theNN
nuclear potential can be neglected. Let us considerx3, y3 the
Jacobi coordinates corresponding to the asymptotic configu-
ration in which nucleons(1,2) form the deuteron and nucleon
3 is the incident particle. The relative coordinate between the
third nucleon and the center of mass of the deuteron isr Nd

=sÎ3/2dy3. Starting from the above Born approximation for
the T matrix, the following relations are verified for
L, L8.Lmax:

fJTLL8
SS8gB = −

M

2Î3"2o
i,j

kVLSJ
0 sxi, yiduH − EuVL8S8J

0 sx j, y jdl

s46d

=− 3
M

2Î3"2

3o
i

kVLSJ
0 sxi, yiduVs1, 3d + Vs2, 3duVL8S8J

0 sx3, y3dl

s47d

<− 3
M

2Î3"2

3kVLSJ
0 sx3, y3duVs1, 3d + Vs2, 3duVL8S8J

0 sx3, y3dl

s48d

<− 3
M

2Î3"2
kVLSJ

0 sx3, y3duvMMsNdduVL8S8J
0 sx3, y3dl

s49d

=− 2k
MNd

"2 kVLSJuvMMsNdduVL8S8Jd. s50d

The equivalence between the second and third rows is in
general verified forL, L8.LB. On the other hand, the
equivalence between the third and fourth rows is verified for
L, L8.Lmax. In fact, Lmax can be fixed as theL value at
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which these two rows start to be approximately equal.
Finally, in the last step the asymptotic three-nucleon func-
tion V0 has been replaced by the two-body functionV of
Eq. s11d once the integration overx3 and the change of
variablesy3→ r Nd have been performed. In conclusion, the
above approximate equalities show the relation between
the three-nucleonT matrix of Eq.s45d and the two-bodyT
matrices of Eqs.s10d and s24d for high L values.

IV. N-d OBSERVABLES INCLUDING COULOMB PLUS
MM INTERACTIONS

Elastic observables forN-d scattering can be calculated
using the transition matrices of Eqs.(23) and(36) using trace
operations[19]. The calculations presented here have been
performed using the KVP after an expansion of the three-
nucleon scattering wave function in terms of the pair corre-
lated hyperspherical harmonic basis[5,6]. As NN interaction
we have used the nuclear part of the AV18 potential plus the
Coulomb and MM interactions defined in Eqs.(2)–(4). The
asymmetric forceL ·A in the vMMsnpd interaction has been
included as well as thep-p Darwin-Foldy and then-p short-
range Coulomb terms.

At energies below the deuteron breakup threshold the
contribution of the MM interaction is expected to be appre-
ciable. Recently then-d analyzing powerAy has been mea-
sured atElab=1.2 and 1.9 MeV[20]. At these very low en-
ergies the nuclear part of the transition matrix[first term of
Eq. (23)] converges already forLmax=3. The corresponding
theoretical curves obtained using the AV18 potential, and
neglecting the MM interaction, are showed in Fig. 1(solid
line). As it can be seen, the observable is not reproduced by
a large amount which is a common feature of all modernNN
forces. When the MM interaction is taken into account up to
Lmax=3, the analyzing powers are given by the dashed
curves. There is a very small influence of the MM interaction
in the peak ofAy with the tendency of slightly flattening the
observable. However, this is an incomplete calculation since
the inclusion of the MM interaction requires an infinite num-
ber of partial waves in the calculation of the transition ma-
trix. When all three terms of Eq.(23) are considered the
observables are given by the dashed-dotted curves. It is in-
teresting to notice the forward-angle dip structure which al-
ready appears inn-p scattering[2]. Only after summing the
series up tò this particular behavior can be reproduced. We
can conclude that the MM interaction produces a pronounced
modification of Ay at forward angles but has a very small
effect around the peak.

In order to show the importance of the MM moment in-
teraction in the calculations ofAy as the energy increases, in
Fig. 2 the results atElab=6.5 MeV are shown. At this par-
ticular energyAy has been measured in an extended angular
range including forward angles[21]. The solid line corre-
sponds to a standard AV18 calculation neglecting the MM
interaction and including partial waves up toLmax=8. The
dashed-dotted line corresponds to a calculation using the
AV181MM potential and considering the complete series.
We can observe that the effect of the MM interaction on the
peak is practically negligible. Conversely, it is of great im-

portance at forward angles in order to describe the zero
crossing.

Besides the neutron analyzing power and the deuteron
analyzing power which present similar characteristics, other
elasticn-d observables as the tensor analyzing powers suffer
only minor modifications when the MM interaction is in-
cluded. The differences are of the order of 1% or less and
they are not presented here. However when comparisons

FIG. 1. The n-d Ay calculated using AV18(solid line) and
AV181MM (dotted-dashed line). For the dashed line see text. Ex-
perimental points are from Ref.[20].

FIG. 2. Then-d Ay at Elab=6.5 MeV calculated using AV18
(solid line) and AV181MM (dotted-dashed line). Experimental
points are from Ref.[21].
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with the precise experimental data are performed these dif-
ferences could be relevant and the MM interaction should be
taken into account.

For p-d scattering high precision data exist at low ener-
gies [22–25] for differential cross section and vector and
tensor analyzing powers. Detailed comparisons to these data
have been performed in Refs.[7,22,23,26] using AV18 with
and without the inclusion of three-nucleon forces. In those
studies the Coulomb interaction was included whereas the
MM interaction was not. In order to evaluate the effects of
the MM interaction on the vector analyzing powers in the
presence of the Coulomb field, in Fig. 3 the results of the
calculations atEp=1 and 3 MeV are shown. Three different
calculations have been performed at both energies. The solid
line corresponds to the AV18 prediction neglecting the MM
interaction. Accordingly, the transition matrix has been cal-
culated with the first two terms of Eq.(36). The partial-wave
series of the second term has been summed up toLmax=4
sEp=1 MeVd MeV) and Lmax=6 sEp=3 MeVd. The dashed
line corresponds to the same calculation as before but the
T-matrix elements has been calculated using the AV181MM
potential. The dashed-dotted line corresponds to the com-
plete calculation including also the last two terms of Eq.
(36). We see that the major effect of the MM interaction is
obtained around the peak and is appreciable at both energies.
There is also an improvement in the description of the ob-
servable at forward angles, in particular foriT11 at Ep
=3 MeV. The observed modifications are due to the interfer-
ence between the Coulomb and the nuclear plus the MM
interaction and not to higher-order terms, as in then-d case,
since, except forAy at Ep=1 MeV, the dashed and dashed-
dotted lines practically overlap. In fact, high-order terms are
dominated by the Coulomb interaction, and the MM interac-
tion gives a very small contribution.

As the energy increases, the effect of the MM interaction
on Ay and iT11 diminishes as it is shown in Fig. 4 atEp=5
and 10 MeV. Here the AV18 prediction(solid line) has to be
compared to the AV181MM prediction (dashed line) calcu-

lated using the first two terms of Eq.(36) with Lmax=8.
When the last two terms of Eq.(36) are also included, the
results are extremely close to the previous ones. As for the
n-d case, the tensor analyzing powers present very small
modifications when the MM interaction is taken into account
and are not presented here.

The MM interaction has different effects inn-d or p-d
vector analyzing power. One reason is the different sign be-
tween the neutron and proton magnetic moment. Another
reason is the interference with the Coulomb field. However
the MM interaction does not help for a better description of
the neutronAy. On the contrary there is an appreciable im-
provement in the protonAy as well as iniT11, in particular at
very low energies. Hence we can examine the differences
between the experimental data and the theory at the peak in
order to see if the inclusion of the MM interaction helps us to
clarify a different behavior observed forn-d and p-d vector
analyzing powers. In Fig. 5 the relative differencefAysexpd
−Aysthdg/Aysexpd at the peak forn-d and forp-d scattering is

FIG. 3. Thep-d Ay and iT11 calculated using AV18(solid line)
and AV181MM (dotted-dashed line). For the dashed line see text.
Experimental points are from Ref.[23] (1 MeV) and Ref. [25]
(3 MeV).

FIG. 4. Thep-d Ay and iT11 calculated using AV18(solid line)
and AV181MM (dotted-dashed line). Experimental points atEp

=5,10 MeV andEd=10 MeV are from Ref.[27], Ed=20 MeV are
from Ref. [28].

FIG. 5. Relative difference between the theoretical and experi-
mental vector analyzing powersAy at the peak as a function of
energy.
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shown. In this last case both the AV18 and AV181MM re-
sults have been reported. Forn-d case both results are ex-
tremely close at the peak, so the difference does not depend
on which calculation(AV18 or AV181MM ) is considered.
Without the inclusion of the MM interaction the underesti-
mation of the protonAy is much more pronounced than the
neutronAy. When the MM interaction is considered the dif-
ference between theory and experiment for bothp-d and n
-d scatterings are of similar size, around 25%, for all the
energy values below 16 MeV. Above 16 MeV the differ-
ences at the peak between theory and experiment diminish.
As shown in Fig. 5, at 18 MeV the difference is around 20%.
In Fig. 6 the deuteron analyzing poweriT11 is examined. The
relative differencefiT11sexpd− iT11sthdg/iT11sexpd is shown at
the peak forp-d scattering(there are no data for then-d
case) using AV18 and AV181MM. Besides the first point at
Elab=0.650 MeV which corresponds to a very small value of
iT11 [22], the underestimation of the observable oscillates
around 24%, very close to theAy case.

Finally we wish to discuss the importance of the Coulomb
effects as the energy increases. In fact, up toElab=30 MeV
we can observe appreciable differences in the description of
n-d andp-d elastic scatterings that however tend to diminish
[3]. Experimental data are not always conclusive since ex-
periments with neutrons have larger uncertainties than those
performed with protons. On the other hand,n-d calculations
have been often used to describep-d scattering, in particular
at high energies[9]. In order to clarify this approximation, in
Figs. 7 and 8n-d and p-d calculations atElab=65 MeV are
compared. To make contact with the results given in Ref.[9]
in which n-d scattering has been analyzed at this particular
energy, we have consider also the Urbana IX(UR) three–
nucleon interaction[31]. In Fig. 7 the differential cross sec-
tion and Ay are shown. Three curves are displayed corre-
sponding top-d AV18 (solid line), n-d AV18 (dashed line),
andp-d AV181UR (dotted line) and compared to the experi-
mental data. In Fig. 8 the same calculations are shown for
iT11 and the three tensor analyzing powersT20, T21, andT22.
As expected, Coulomb effects are small at this energy. We
can observe appreciable Coulomb effects only inT21 whereas

three-nucleon interaction effects are found in the minimum
of the differential cross section and inT21 and T22 as well.
These results justify to some extent the description ofp-d
data usingn-d calculations at intermediate energies, however
with some caution in the description of particular observ-
ables.

V. CONCLUSIONS

The MM interaction has been included in the description
of N-d scattering at low energies. Though its strength is
small compared to the nuclear interaction, it has a very long
tail which behaves as 1/r3. As a consequence, the construc-
tion of the scattering amplitude necessitates an infinite num-
ber of partial waves. Analytical summations of the corre-
sponding p-d and n-d series have been given following
previous works forNN scattering. Accordingly, the 636
transition matrixM has been written as a sum of the standard
Coulomb amplitude and the MM amplitude and a finite se-
ries ofT matrices. These matrices have been calculated from
a complete three-body description of the process with a
Hamiltonian including the nuclear plus Coulomb plus MM
interaction. For highL values, the MM amplitude has been
calculated as a two-body process. To this aim the MM inter-

FIG. 6. Relative difference between the theoretical and experi-
mental vector analyzing powersiT11 at the peak as a function of
energy.

FIG. 7. The differential cross section andAy at Elab=65 MeV.
For explanation of the curves see text. Experimental data are from
Ref. [29].

FIG. 8. The deuteron analyzing poweriT11 and the tensor ana-
lyzing powersT20, T21, T22 at Elab=65 MeV. For explanation of the
curves see text. Experimental data are from Ref.[30].
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action between a nucleon and the deuteron as distinct par-
ticles has been derived.

Different 3N elastic observables have been calculated and
compared to previous calculations in which the MM interac-
tion was neglected. The main effect has been observed in the
vector analyzing powers. However the modifications pro-
duced by the MM interaction do not improve the description
of the neutronAy around the peak. Conversely, there is an
appreciable improvement in the protonAy and in iT11, in
particular at low energies. Due to the different effect that the
MM interaction produces inn-d andp-d scatterings, the rela-
tive difference between the calculated and the measuredAy at
the peak results largely charge independent and approxi-
mately constant below 16 MeV. The underestimation is
about 25%. Above this energy the difference starts to dimin-
ish. At Elab=18 MeV it has been reduced to 20% and above
30 MeV there is a much better description ofAy and iT11.
This is shown by the calculations performed atElab
=65 MeV. Furthermore, we have shown that at this energy
Coulomb effects are not important. OnlyT21 still shows
some sensitivity.

The main aim of this work is to describe the three-nucleon
continuum using the samevEMsNNd used in the description
of the 2N scattering states. In the past the MM interaction
has been systematically neglected in the calculation of 3N
scattering observables with few exceptions. Here we show
how to include it and which terms are important. From the
present analysis it can be concluded that the approximate
treatment of Ref.[13] is justified for n-d scattering but not
for the p-d case. In fact, in the calculation of then-d Ay the
symmetric spin-orbit term invMMsnpd tends to depress the
observable at the peak whereas the asymmetric term almost
cancels this effect. Therefore the transition matrix of Eq.(23)

can be constructed with the MM amplitudesMnn8
SS8ssod and

Mnn8
SS8std but neglecting the MM interaction in the calculation

of the T matrix elementsJTLL8
SS8 for L, L8,Lmax. In addition,

the amplitudeMnn8
SS8std gives an extremely low contribution

and can be neglected too. In thep-d case the interference
between the Coulomb, MM, and nuclear interactions does
not allow for the omission of the MM interaction in the
calculation of theT matrix elements. Otherwise the improve-
ment at low energies on the peak ofAy and iT11 is lost.
However, in the construction of the transition matrix the last
two terms in Eq.(36) give very small contributions and,
except at extremely low energies, can be omitted.

Other small terms in thevEMsppd interaction as the two-
photon Coulomb and vacuum polarization interactions have
been neglected in the present analysis. These terms have im-
proved the description ofp-p scattering at low energies and,
therefore, their inclusion in the description ofp-d scattering
is of interest. The analysis of these terms as well as the study
of the MM interaction inp-3He scattering is at present un-
derway.
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APPENDIX
In this appendix we briefly outline the derivation of the

N-d MM interactions of Eqs.(6)–(9).
We consider two particles: the first one with spin1

2, mass,
charge, and magnetic momentM1, Z1, andm1, respectively;
the second one with spin 1, mass, charge, magnetic moment,
and quadrupole momentM2, Z2, m2, and Q2, respectively.
The magnetic and the quadrupole moments are given in
nuclear magneton and fm2, respectively. The nonrelativistic
reduction of the covariant current for the pointlike spin-1

2
particle gives for the charger and currentj operators inr
space[32]:

r1sqd = Z1e
iq·r 1 − i

2m1 − Z1

2M1
2 q · sS1 3 p1deiq·r 1,

j 1sqd =
Z1

2M1
hp1, eiq·r 1j − i

m1

M1
sq 3 S1deiq·r 1, sA1d

whereq is the three-momentum transferred to the particle,p1
and S1 are the momentum and spin operators, respectively,
and h¯, ¯ j denotes the anticommutator. We have here ne-
glected the Darwin-Foldy relativistic correction.

The covariant current operator for a spin-1 particle is
written as[33]

jm = −
1

Î4EE8
HFG1sQ2dse8* · ed −

G3sQ2d
2M2

2 se8* ·qdse ·qdGPm

+ G2sQ2dfemse8* ·qd − e8*mse ·qdgJ , sA2d

where E,E8 are the initial and final energies,em;esl, pdm

ande8m;esl8, p8dm are the four-vector spin-1 initial and fi-
nal polarizations,qm=p8m−pm, Pm=p8m+pm, andQ2=−q·q.
The three form factorsG1sQ2d, G2sQ2d, andG3sQ2d are re-
lated to the charge, magnetic, and quadrupole form factors as
f32g

GCsQ2d = G1sQ2d +
2

3
hGQsQ2d,

GQsQ2d = G1sQ2d − G2sQ2d + s1 + hdG3sQ2d,

GMsQ2d = G2sQ2d. sA3d

Here h=Q2/s4M2
2d, GCs0d=Z2, GMs0d=sM2/Mdm2, and

GQs0d=M2
2 Q2, M being the nucleon mass.

To perform the nonrelativistic reduction of Eq.(A2), the
following relations are used:

esl, pdm = F êsld ·p

M2
, êsld +

p„êsld ·p…

M2sE + M2dG , sA4d

with ês±1d= 7 s1/Î2ds1, ±i, 0d, ês0d=s0, 0, 1d, and

êsl8da
* êsldb = dab −

1

2
hSa, Sbj +

i

2
eabgSg, sA5d

S being the spin operator.
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The final r-space expressions for the charge and current
operators of the spin-1 particle are

r2sqd = Z2e
iq·r 2 − i

2m2 − Z2

2M2
2 q · sS2 3 p2deiq·r 2

+
Q2

2
eiq·r 2F2

3
uqu2 − sS2 ·qd2G ,

j 2sqd =
Z2

2M2
hp2, eiq·r 2j − i

m2

M2
sq 3 S2deiq·r 2. sA6d

Notations are similar to the ones used in Eq.(A1). It is im-
portant to note that besides the quadrupole moment term,
Eqs.(A6) and (A1) are formally identical.

To calculate the MM interaction between the two spin-1
2

and spin-1 particles, we consider the standard one-photon
exchange Feynman diagram, from which we can write

vMMsrd =E dqeiq·rvMMsqd,

vMMsqd =
e2

uqu2
fr1sqdr2sqd − j 1sqd · j 2sqdg. sA7d

With a straightforward algebra, using Eqs.sA1d and sA6d
and keeping terms up toOs1/M4d, the formulas forvMMsNdd
of Eqs.s6d–s9d are obtained.

In an equivalent derivation,vMMsNdd is written as sum of
the NN MM interactions between each nucleon of the deu-
teron and the third particle, at large separation distances. It is
however important to note that the center of mass(c.m.) of
each two-bodyNN subsystem is not at rest, and therefore
Eqs.(2)–(4), which are derived in the c.m. reference frame,
need to be generalized. In fact, the MM interaction between

two spin-12 pointlike particles in a generic reference frame in
which the c.m. of the system has momentumP is given by
[2,34]

vMMsrd = −
a

r3H m1m2

M1M2
S12 +

Z2

2
S m1

M1M12
−

Z1

2M1
2DsL ·S

+ L ·Ad +
Z1

2
S m2

M2M12
−

Z2

2M2
2DsL ·S− L ·Ad

−
Z1Z2

4M1M2
Fsr 3 Pd ·A + sr 3 Pd ·S

M2 − M1

M1 + M2
GJ .

sA8d

Here Mi, Zi, mi si =1, 2d, andM12 are the masses, charges,
magnetic moments, and reduced mass of the two particles;
r is their relative position,S12=3sS1·r̂dsS2·r̂d−S1·S2 is the
tensor operator,S1 andS2 being the spin operators;S and
A are defined asS=S1+S2 and A =S1−S2; and L is the
orbital angular momentum. The last term of Eq.sA8d is
the well-known Thomas precessionsTPd term ssee Ref.
f35g, and references thereind. Clearly, Eq.sA8d becomes
Eqs.s2d–s4d, when we consider two nucleons in their c.m.
reference frame. If the TP contribution, which is present
only in vMMsppd sZ1Þ0 and Z2Þ0d was neglected, the
p-d MM interaction would have become

vMMspdd = −
a

r3F mpmd

MpMd
Spd

I + S mp

2MpMpd
−

1

4MpMpd
DsL ·Spd

+ L ·Apdd + S md

2MdMpd
−

1

4MdMpd
DsL ·Spd

− L ·Apdd −
Qd

2
Sd

IIG , sA9d

with same notation as in Eq.s7d.
Finally, note that Eq.(A8) gives the MM interactions also

for four-body systems such asp-3He andn-3H.
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