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Using the cranked interacting boson model, we estimate critical frequencies for the rotation-induced
spherical-to-deformed shape transition inA<100 nuclei. The predictions are shown to roughly agree with the
backbending frequencies deduced from experimental yrast sequences in these nuclei.
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It is now well documented that the nuclear ground-state
shapes exhibit sudden changes with varying nucleon
numbers—changes that are described in close analogy with
thermodynamic phase transitions(see, e.g., Refs.[1–13]). In
particular, signatures of transitions between spherical and
various deformed shapes(prolate or oblate axisymmetric el-
lipsoids) clearly follow from spectroscopic data characteriz-
ing some chains of nuclei[1,3,7,9,11,13]. Real nuclei thus
seem to sample—depending on underlying energies and oc-
cupancy of the single-particle orbitals—the phase diagram of
the quadrupole geometric model or, equivalently, of the in-
teracting boson model(IBM ).

Another kind of a structural “phase transition,” the one
that concerns individual nuclides rather than isotopic/
isotonic sequences of nuclei, manifests itself as the well-
known backbending effect[14,15]. Observed in many yrast-
band sequences, this phenomenon is usually interpreted as a
crossing of two rotational bands with different deformations,
pairing properties, and/or angular-momentum alignments
along the rotational axis[16–18]. The yrast state thus flips
between the corresponding configurations(with different val-
ues of the moment of inertia), which can be seen as a
rotation-driven quantum phase transition, similar to phase
transitions of the ground-state shape. However, as recently
pointed out by Reganet al. [19], the picture involving the
crossover between two rotational deformed bands may be
misleading if applied to nuclei with vibrational-like ground-
state properties. For these nuclei, a change from spherical
(vibrational) to deformed(rotational) structure was proposed
as an alternative explanation of the observed backbending
behavior. Indeed, making use of theg-ray energy over spin
(E-GOS) plots, the cited authors claim that the yrast-band
sequences in a number of vibrational Cd, Pd, and Ru nuclei
exhibit a signature of the spherical-to-deformed evolution at
spins of about 10 or 12".

Microscopically, the evolution is caused by several effects
related to the fermionic degrees of freedom. Notably, both
collective two-particle–two-hole excitations leading to more
deformed intruder states with a characteristic energy depen-
dence on the number of valence nucleons[20] as well as

noncollective Coriolis-driven pair breaking leading to align-
ment [21] have to be involved. The latter mechanism can
also be consistently described within the cranked shell
model, applicable around mass 100, based on the alignment
of a sh11/2d2 neutron pair coupled to spin 10" [22].

The purpose of this Rapid Communication is to interpret
experimental results given in Ref.[19] from new theoretical
perspective[23] using the Landau theory of phase transitions
in the framework of the cranked IBM. In the cranking exten-
sion, the IBM is handled as a semiclassical model(the total
number of bosonsN→`) to determine Bohr variablesb and
g as a function of the rotational frequencyv and Hamil-
tonian parameters(h andx coordinates in the extended Cas-
ten triangle[10]). Various phases are located in distinct re-
gions of the parameter spacev3h3x [23,24].

While earlier attempts to apply the Landau theory to ro-
tating (hot) nuclei [25] implied that the rotation did not in-
duce a crossover between spherical and deformed shapes
(since the deformation evolves smoothly with the onset of
cranking), the cranking in the IBM case leads to the conclu-
sion that the rotation-induced spherical-to-deformed phase
transition is theoretically possible with a more general ansatz
for quadrupole geometric variables employed in the calcula-
tion. The dependence of nuclear deformation on the rota-
tional frequency, as determined in Refs.[23,24], closely re-
sembles the abrupt quenching of superconductivity under
increasing magnetic field. In this analogy, the superconduct-
ing and normal phases correspond to the sphericalsb=0d and
deformedsbÞ0d shapes, respectively, whilev plays the role
of the field strength. At a certain critical frequencyvc the
shape flips from spherical to deformed, similarly as the
paired superconducting phase breaks into a normal phase at a
critical field. Due to the analogy of the backbending phe-
nomenon with the behavior of superconductors, the idea of a
pairing transition[16] has been invoked in high-spin physics.
In view of the new result[23], however, it turns out that the
same behavior can be associated with a shape transition, as
well, which supports the viewpoint proposed in Ref.[19].

To compare experimental data on the yrast-band shape
transition in vibrational nuclei with predictions of the
cranked IBM, one may try to determine from the theory the
critical angular momentum for which the spherical yrast state
transforms into a deformed one. This angular momentum is,
in principle, available from experimental data, using for ex-
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ample the E-GOS plots[19]. However, since the IBM spheri-
cal phase is formed by a condensate of onlys bosons, it
carries zero angular momentum for anyv up tovc. One thus
has to extract from yrast data not the critical spin but rather
the critical frequency. This is indeed possible with the aid of
the backbending diagram, where the yrast spinI <ÎIsI +1d
(or a related quantity) is plotted against EI

g/2=sEI+1

−EI−1d/2, with EI denoting the yrast-state energy for spinI,
thus EI

g/2=]EI/]I <vI approximating the rotational fre-
quency at angular momentumI. The well-knownS-shaped
structure in backbending plots which would(in the rotational
picture) be interpreted as a change of the moment of inertia,
is correlated with the evolution from hyperbolic to roughly
constant behavior in the corresponding E-GOS plots, as ob-
served in vibrational nuclei[19]. Therefore, it can be used to
estimate the critical frequencyvc.

Experimental values of the critical frequency, as extracted
from the data[19,26–28,30] for a subset of nuclei studied in
Ref. [19], are given in Table I. The mean valuesvc

exd and its
error (in parentheses) were obtained as the central point and
the width, respectively, of theS-shaped structure in the back-
bending plot corresponding to the given nucleus. Let us
stress that this method does not imply the insistence on the
rotational interpretation of the backbending effect in vibra-
tional nuclei: in the present picture, the yrast sequence above
vc is assumed to be rotational, while the spectrum belowvc
rather corresponds to an anharmonic vibrator.

To analyze experimental data in theA<100 region, we
use the well-known IBM Hamiltonian

H = "VFhnd −
1 − h

N
Q ·QG s1d

whereN is the total number of bosons,nd the d-boson num-

ber operator, andQ=sd†s̃+s†d̃ds2d+xsd†d̃ds2d the quadrupole
operator. It is clear that this Hamiltonian is too simple to
fully describe complete spectra of real even-even nuclei, but,
at the same time, it is known to capture some essential fea-

tures of basic collective states in these nucleif11,13g. H in
Eq. s1d has in principle three control parameters:sid the
quadrupole parameterx, taking values from the interval
f−Î7/2, +Î7/2g as the deformed shape evolves from a pro-
late to oblate form; we setx=0 for the A<100 nuclei
studied heresimplying that we stay at or close to the
g-soft transitional line of the Casten triangled, sii d h
P f0, 1g governing the evolution between the deformed,
Os6d in case ofx=0, and spherical, Us5d, ground state,
and siii d the overall scaling frequencyV.0. The phase
transition from a deformed to spherical ground-state shape
appears ash crosseshc=0.8. Thus the nuclei with poten-
tial to host the spherical-to-deformed transition along their
yrast line must be located close to the Us5d vertex—within
the intervalhP f0.8, 1g.

The values ofh and V in Eq. (1) were fitted to experi-
mental yrast energies below the critical spin in the nuclei
studied, namely to yrast states up toI =10" in Cd isotopes
andI =12" in Pd, Ru, and Mo. The resulting values ofh are
given in Table I. The rms deviation of level energies,
DErms=ÎoI DEI

2/n (with n standing for the number of fitted
levels andDEI for the difference between experimental and
theoretical energies for the yrast state with a givenI), mea-
sures the quality of the fit.

Properties of the Hamiltonian(1) in the rotating frame
were analyzed in Refs.[23,24] yielding the deformation pa-
rametersb and g as a function of dimensionless cranking
frequencyṽ=v/V. Note that the deformation parameters in
the cranked IBM are not directly connected with the
coherent-state coefficients, as in the standard IBM geometric
analysis[1], but follow from an analogous parameterization
of the average quadrupole-moment components, i.e., from
kQ0l=b cosg andÎ2kQ2l=b sin g. The dependence of de-
formation parameters onh andv, as it follows from the IBM
cranking calculations, can be found in Figs. 3 and 5 of Ref.
[24]. The critical cranking frequency is an increasing func-
tion of hP f0.8, 1g with ṽc=0 at hø0.8 andṽc=0.5 ath
=1, see Fig. 1. By fitting the values ofh andV, as explained
above, we are therefore able to determine the absolute theo-
retical valuevc

th=ṽcshdV. In Table I, this quantity is com-
pared with experimental critical frequencies in the nuclei
studied.

Before discussing the degree of agreement between theo-
retical and experimental values in Table I, we should point
out that not all nuclei considered in Ref.[19] are listed here.
The fits of experimental yrast energies in Mo isotopes with

TABLE I. Comparison of experimental and theoretical values of
the critical rotational frequency, the latter obtained from the cranked
IBM with h fitted to low-spin yrast energies(DErms measures the
quality of the fit).

Nucleus vc
ex vc

th h DErms

(MeV/") (MeV/") (keV)

108Cd 0.40(17) 0.37 0.94 177
110Cd 0.32(15) 0.38 0.97 168
112Cd 0.38(2) 0.31 0.93 36
114Cd 0.30(6) 0.32 0.99 74
104Pd 0.35(5) 0.33 0.94 132
106Pd 0.36(8) 0.33 0.97 130
108Pd 0.33(6) 0.23 0.89 93
100Ru 0.45(5) 0.14 0.82 83
102Ru 0.36(5) 0.24 0.88 91
100Mo 0.37(2) 0.22 0.87 49

FIG. 1. Cranking phase diagram of Hamiltonian(1).
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Aù102 and in Ru withAù106 place these nuclei well to the
deformed side of the Casten triangle, implyingvc

th=0. This is
in accord with mostly rotational character of the correspond-
ing E-GOS plots[19]. The 102Mo, 104Ru, and also110,112Pd
nuclei seem to be very close to the separatrix between spheri-
cal and deformed shapes. Although the E-GOS plots in these
nuclei still show behaviors characteristic for the spherical
ground-state configuration, our fit gives values ofh already
near tohc, implying vc zero or negligible(namely, we get
h=0.81 for 110,112Pd, h=0.80 for 104Ru, and h=0.68 for
102Mo). For 104Ru, the latter result in fact agrees with Ref.
[31], where this nucleus was proposed as a candidate for the
E(5) critical-point symmetry. Finally, we did not analyze
98Mo because of the lack of data, and104,106Cd and102Pd,
where IBM only gives yrast states up toI =8 or 10" (since
N=4 or 5).

The theoretical and experimental critical frequencies
listed in Table I show very good agreement for the nuclei
placed close to the U(5) vertex, i.e., for those withh.0.9.
However, as the fittedh approaches 0.8, the predicted critical
frequency decreases and deviates from the experimental
value. An extreme example is100Ru, which is located indeed
too close tohc in our fit and thus exhibits rather small value
of vc

th. This cannot be improved by allowing for nonzero
values ofx. Let us note that qualitatively the same trend as in
the cranked IBM would be generally expected in the micro-
scopic picture, since the intruder orbitals lower in energy as
the midshell is approached. The presently analyzed data,
however, seem to exhibit rather a constant value of the criti-
cal frequency and then a sudden change tovc

ex=0. This be-
havior should be checked in other relevant regions of the
nuclear chart. On the other hand, we see that in spite of
apparent simplifications involved in our approach it is pos-
sible to correctly reproduce the critical frequencies in truly
vibrational nuclei and to roughly predict the border of the
vibrational-like region in the given part of the nuclear chart.
Let us note that on the microscopic level, the delayed back-
bend observed in100Ru seems to be connected with a sup-
pressed population of thesh11/2d2 neutron configuration,
which is linked to the backbending plots in the given mass
region [19,22].

We are aware that the weakest point of the present analy-
sis is the oversimplified form of the Hamiltonian(1) in con-
frontation with experimental spectra, for instance the absence
of an anharmonic term in the U(5) limit. This may in some
cases lead to unphysical fits ofh and thus to incorrect esti-
mates ofvc

th. To use the Hamiltonian(1) was necessary to
keep a link with the analysis of Ref.[23]. The form (1) is
common in studies of nuclear shape phases[5,8,10–13] and
the extension into the cranking framework led to a particu-
larly simple and clear perspective on the rotation-induced
shape transitions. Nevertheless, similar analyses can in prin-
ciple be done for other, more sophisticated nuclear collective
Hamiltonians, even beyond the IBM scheme. The crucial ob-
servation is that with the generalized Landau theory of shape
phase transitions in rotating nuclei(specifically, using gen-
eral non-Hermitian coherent-state coefficients yielding a
Hermitian physical quadrupole tensor[23]) one can obtain
results that overcome previous analyses[25] just in the di-
rection required by the new interpretation of experimental
data[19].

Let us finally note that the approach proposed here differs
substantially from that of Ref.[32] (recently reconsidered in
Ref. [33]) where the backbending phenomenon in vibrational
nuclei was interpreted using the IBM Hamiltonian in the
exact U(5) limit with a negative coefficient at the second-
order U(5) invariant. In this case, one indeed observes the
yrast-band transition betweennd= I/2 and nd=N configura-
tions(having, in this sense, different “deformations”), but the
divergence of solutions forN→` makes it impossible to use
the model in the classical limit(to speak in this context about
a b→` “phase transition,” as in Ref.[33], is thus very mis-
leading). The cranking approach, in contrast, results in a pic-
ture where the yrast-band structural transition is indeed be-
tween spherical and deformed shapes and remains physical
in the classical limit.
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