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We construct an analytic model to demonstrate qualitatively the correspondence between the measured
neutron total cross section and the regions where Wick’s limit is actually an equality. This model does not give
sufficiently accurate quantitative results, so we extend our calculations by using the nuclear optical model with
both local and global parameters. We then demonstrate how Wick’s limit can be used to give useful reaction
cross-section information.
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I. INTRODUCTION

Wick’s limit [1] has been used by neutron physicists to
estimate zero-degree neutron elastic-scattering cross
sections.1 The fact that this limit was nearly an equality has
been known for over four decades[2,3]. We point out that
there exists an analytic model for actually estimating the
accuracy of this near equality and that for fast neutrons(neu-
trons in the MeV energy range) it is probably accurate to
within a few percent forA.27. Although useful in providing
an intuitive understanding of how the near equality comes
about, the analytic model is not sufficiently accurate to be
useful in evaluating modern neutron data where the precision
of the experimental data is in the neighborhood of 1%.

We begin by defining Wick’s limit. We then describe and
apply the simple analytic model to illustrate the connection
between Wick’s limit and the measured total cross sections.
Since our analytic model is not sufficiently accurate we ex-
amine several optical-model calculations for neutrons inci-
dent on208Pb and note the quality of fits to the total cross-
section data and the corresponding reliability of the Wick’s
limit derived from these calculations. Using a recent global
optical potential[4] we delineate the regions of incident en-
ergy and target mass for which the approximate equality
holds. Finally, we demonstrate a new method of deducing
reaction cross sections using Wick’s limit.

II. DEFINITION OF WICK’S LIMIT

Wick’s limit [1] is derived from the optical theorem which
relates the imaginary part of the zero-degree scattering am-
plitude fs0°d to the total cross sectionstot, i.e.,

Im fs0°d =
k

4p
stot, s1d

where k is the center-of-mass wave number. The zero-
degree differential elastic cross sections0 is given by

s0 = fRefs0°dg2 + fIm fs0°dg2 ù fIm fs0°dg2. s2d

Thus the zero-degree differential elastic cross sections0
must be equal to or exceed Wick’s limit which is

s0
W ; S k

4p
stotD2

. s3d

It is convenient to define a fractional deviation of the
zero-degree differential cross section from Wick’s limit as

h =
s0 − s0

W

s0
W . s4d

Wick’s limit is a useful concept whenh is small. The
conditions for which this is true will be discussed in the
following sections.

III. ANALYTIC MODEL

By invoking a simple model of the total cross section(the
nuclear Ramsauer model[5–9]) one can obtain an analytic
estimate of the real part of the scattering amplitude from
neutron total cross-section data. Thus, within the model we
can estimate the validity of Wick’s limit as well as the first-
order correction term.

In describing the total cross section we use a combination
of formulations by Peterson[5] and by Bohr and Mottelson
[6] as follows. We assume a zero-degree scattering amplitude
of the form

fs0°d = iksR+ Âd2s1 − aeibd/2, s5d

where Â=1/k is the usual reduced wavelength. By using
Eq. s1d one then obtains

stot = 2psR+ Âd2s1 − a cosbd. s6d

The average behavior of the total cross section can be
described bystot=2psR+Âd2 (the “black nucleus” approxi-
mation) and the effect of the coherent nuclear Ramsauer ef-
fect is reflected in thes1−a cosbd term. We note that the
average cross-section behavior is well fit[5] by
R=1.35A1/3 fm. The argument of the periodic termb can be

1Magnetic moment(Mott-Schwinger) scattering yields a divergent
cross section at zero degrees, but is not relevant in the present
context because its effects are largely confined to angles much
lower than those in measured angular distributions. This is dis-
cussed briefly in Sec. VI and the Appendix.
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understood in terms of the difference in phase between the
wave passing outside the nuclear surface and the wave pass-
ing through a medium with an index of refraction, i.e.,

b = s4/3dcRsknucl − kincd, s7d

where s4/3dR is the average chord length of the neutron
passing through the nucleus andc is the index of refrac-
tion given by

c =
E + V

E F1 −S V

E + V
D3/2G . s8d

In the above expressionknucl=f2msE+Vd/"2g1/2 where the
positive quantityV is the depth of the average real optical
potential,E is the neutron energy, andkinc=s2mE/"2d1/2.

The coefficienta represents the absorption of the incident
wave and in this crude model is given by

a = expF−
LW

"
S 2m

E + V
D1/2G , s9d

where the positive quantityW is the strength of the aver-
age absorptionsimaginaryd potential andL is an appropri-
ate nuclear dimension. Although we will use only the em-
pirical parametrizations ofa and b determined from Ref.
f8g in the numerical results shown in the present work, it
is important to have some idea of the energy dependence
of these parameters to understand the limits on the appli-
cability of our procedure. Given that our assumed scatter-
ing amplitude, Eq.s5d, does yield a total cross-section
descriptionfEq. s6dg that provides an adequate fit to the
total cross-section data, we may use it to evaluate the
zero-degree differential cross section via Eq.s2d. Thus we
obtain

s0 = F k

2
sR+ Âd2G2

fs1 − a cosbd2 + a2 sin2 bg, s10d

wherea2 sin2 b is the additional contribution to the zero-
degree cross section from the real part of the scattering
amplitude. This implies that we can estimate the accuracy
of the use of Wick’s limit as an equality via the relation

s0 = s0
WF1 +

a2 sin2 b

s1 − a cosbd2G , s11d

in which we note that the correction term is proportional
to a2. This expression may be rearranged to yield the frac-
tional deviationh in the analytic model as

h =
a2 sin2 b

s1 − a cosbd2 . s12d

IV. EVALUATION OF THE ANALYTIC MODEL

We now present as an example the case of lead(Pb). The
total cross section has been very accurately measured over
the energy range 5–540 MeV[10]. We first divide the mea-
sured cross section by 2psR+Âd2 whereR=1.35A1/3 fm fol-
lowing the procedure of Ref.[8]. We then deduce from the

plot of the normalized cross section versusÎE shown in Fig.
1 that these data are well described by

stot

2psR+ Âd2 = 1 −a cosb, s13d

where we have used the globally fitted parameters of
Table II in Ref. f8g to determineb.

It is clear that in the neutron energy region from 6 to
60 MeV the measurements can be well fitted with a fixed
value ofa, namely,a=0.115. This implies a maximum cor-
rection to “Wick’s equality” of just over 1%. The accuracy of
this correction depends ona2 but we note that varyinga
from 0.09 to 0.12, the extremes allowed by the data in this
region, changes this correction only from 0.8% to 1.4%. An
estimate of the energy dependence of the correction term can
also be obtained by fitting the energy dependence ofb. The
fractional deviation of the zero-degree cross section from
Wick’s limit, as evaluated from Eq.(12) for this simple ana-
lytic model, is also plotted in Fig. 1.

To show the connection between Wick’s limit, the true
zero-degree cross section, and the total cross section, it is
useful to plot the behavior of the quantityS=a expsibd as a
function of energy.S is determined from the scattering am-
plitude via Eq.(5). It is defined so that in the low-energy
limit (s waves only) it corresponds to the collision matrix
element forl=0. It also represents the common value of the
collision matrix element in a single phase shift approxima-
tion; i.e., the assumption that the complex phase shift is the

FIG. 1. (a) Total neutron cross sectionstot of natural Pb mea-
sured by Abfaltereret al. [10] plotted vs. the square root of the
neutron energy over the energy range 5.3–64 MeV.(b) The normal-
ized total cross sectionstot/2psR+Âd2 defined in Eq.(13). (c) The
fractional deviationh of the zero-degree differential cross section
from Wick’s limit as calculated in the analytic model[Eq. (12)].
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same in all partial waves. This last assumption is critical for
the usefulness of the Ramsauer model, and its justification
has been discussed in Ref.[11]. In terms offs0°d andS, the
fractional deviation from Wick’s limit may be expressed as

h = SRefs0°d
Imfs0°dD

2

= S ImS

1 − ReSD
2

. s14d

In the simple analytic model with an energy-independent
value ofa, all values ofS lie on a circle in the complex plane
as indicated in the upper part of Fig. 2, as shown for energies
between 5 and 25 MeV. Wick’s limit is an equality whenever
the trajectory ofS crosses the real axis. This occurs for
b=np, wheren is an integer, and these points correspond to
the maxima and minima in the total cross section. The maxi-
mum deviations from Wick’s limit occur when the trajectory
crosses the imaginary axis, which happens forb=mp/2,
wherem is an odd integer. These points correspond to the
inflection points in the normalized total cross section, as can
be seen in Fig. 1.

The Ramsauer model is equivalent to a square well poten-
tial and thus neglects the nuclear surface. From Fig. 8 of Ref.
[9] we find that the addition of a surface term, although not
affecting the maxima in the total cross section, significantly
modifies the behavior ofSnear the minima in the total cross
section. Thus the minima in the deviation of the zero-degree
cross section from Wick’s limit do not come exactly at the
minima in the total cross section. Optical-model calculations
also support these conclusions(see Figs. 7 and 8 in Ref.[9]).

Thus we find a significant value of ImS at the cross section
minima, and only at the maxima in the total cross-sections
does the Wick equality hold. We also note that realistic
optical-model calculations do not yield a constant value of
uSu, unlike the simple model. Consequently the analytic
model, while providing useful guidance on the behavior of
the deviation from Wick’s limit, does not correctly estimate
the maximum deviation from equality. Therefore we now
investigate optical-model calculations.

V. OPTICAL-MODEL CALCULATIONS

For our sensitivity studies we have chosen four different
sets of optical-model parameters. The first set is the neutron
potential of Becchetti and Greenlees[12], which was chosen
because it was one of the first attempts to fit a large number
of nuclei over a significant energy range. The second param-
etrization is the Ohio global A set[13]. This set allows for
significant energy variations of the parameters, but covers a
smaller energy range. The third set was due to Finlayet al.
[14], which covered a large energy range and was developed
to fit a wide variety of data for neutrons incident on208Pb.
The fourth set, due to Koning and Delaroche[4], is a recent
global potential covering a wide mass and energy range.

Since we originally considered using the analytic model
because of its excellent representation of the total cross sec-
tion, we begin by comparing our various optical-model cal-
culations(Fig. 3) with the same high-precision total cross-

FIG. 2. Behavior of the quantityS=a expsibd as defined in Eq.
(5) for 208Pb, employing(a) the simple analytic model and(b) an
optical model calculation using the Koning-Delaroche potential[4].
The labels on the trajectories are the incident neutron energies in
MeV.

FIG. 3. Results of four optical-model calculations as described
in the text.(a) Total neutron cross sections divided by 2psR+Âd2 for
208Pb compared with experiment on natural Pb measured by Abfal-
terer et al. [10]. (b) The fractional deviationh of the zero-degree
differential cross section from Wick’s limit as defined in Eq.(4).
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section measurements[10] shown in Fig. 1. We also plot the
fractional differencess0−s0

Wd/s0
W between the calculated

zero-degree cross section and the Wick’s limit. It is immedi-
ately obvious that the Becchetti-Greenlees potential deviates
by more than 5% from the measured data and does not meet
our criteria for a good fit. This should not be surprising since
the high-precision data were not available at the time of Bec-
chetti and Greenlees’s work. The latest global parametriza-
tion of Koning and Delaroche as well the potential of Finlay
et al. both meet the criteria of fitting the total cross-sections
at the 1–2% level. The Ohio Global parameterization is an
excellent fit over part of the energy range, but deviates by
about 5% at the cross section maximum around 20 MeV.
Since the slope of the cross section versus energy is different
from the other potentials, we also see a significant difference
at about 15 MeV in the magnitude of the fractional deviation
from Wick’s limit.

We may conclude from the above discussion that the two
most satisfactory optical-model parameter sets(as judged by
comparison with the total cross section data) give satisfac-
tory agreement with the measured total cross section and
produce very similar results for the deviation from Wick’s
limit. The comparison of these calculations with the results
of the analytic model shows that the minimum deviation,
corresponding to the cross-section maxima, is correctly
given, but that the minimum, corresponding to the minimum
cross section, is displaced in energy. We further note that the
maximum deviation given by our optical-model calculations
is almost a factor of 2 larger than that from our analytic
model. We also conclude that our correction term, which
varies from 7% at 3 MeV to 4% at 100 MeV, may be a
useful concept for Pb over this energy range.

Further insight into the relation between the values of
Wick’s limit given by the analytic model and the optical
model can be gained by examining the quantityS introduced
in the preceding section, as shown in Fig. 2. The forward
scattering amplitudefs0°d was calculated from the Koning-
Delaroche potential[4], andS was obtained by inversion of
Eq. (5) as

S= 1 +
2i f s0°d

ksR+ Âd2 , s15d

whereR=1.35A1/3 fm. As noted earlier,S is a single phase
shift parametrization of the solution to the scattering prob-
lem. As the incident energy approaches zero,S must go to
1 as shown in the lower portion of the figure, sinceS is
exactly thes-wave collision matrix element in this limit.
When the incident energy is sufficiently large the trajec-
tory of Sexecutes loops in the neighborhood of the origin,
resembling the behavior of the analytic model shown in
the upper portion. This is the energy region for which the
single phase shift parametrization is a useful representa-
tion of the scattering problem, and for which Wick’s limit
is an equality when the trajectory crosses the real axis. At
higher energies the single phase shift picture is invalidated
because the refractive effects that tend to equalize the
phase shifts in the various partial waves are reduced, and
the trajectory no longer circles in the neighborhood of the

origin. This picture shows that there is a specific energy
region in which Wick’s limit is close to the exact zero-
degree cross section and is therefore useful; in the case of
208Pb this region is approximately 4–80MeV.

To explore the mass and energy ranges for which Wick’s
limit is an approximate equality, we have performed optical-
model calculations for several nuclei from28Si to 208Pb using
the Koning-Delaroche potential[4]. The fractional deviations
h are shown in Fig. 4. In all cases there is a wide energy
range over whichh does not exceed a few percent. Below
and above this range the deviation grows to a large value.
The trajectories ofS (not shown) characterize this behavior
in a manner similar to that shown in Fig. 2 for208Pb. The
trajectory loops near the origin twice for the nuclei heavier
than A<90, and once for lighter nuclei. The intermediate
nucleus89Y shows an anomalously small deviation at low
energies in the neighborhood of 1–2 MeV. This corresponds
to a small loop in the trajectory at low energies before the
approximate single phase shift behavior is well established.

VI. USING WICK’S LIMIT TO DETERMINE REACTION
CROSS SECTIONS

In this section we use Wick’s limit to introduce a new
method for determining neutron reaction cross sections. This
quantity, sometimes called the nonelastic cross section, is the
difference between the total cross section and the angle-
integrated elastic cross section:

FIG. 4. Optical-model calculations of the fractional deviation
h=ss0−s0

Wd/s0
W of the true zero-degree differential cross section

from Wick’s limit, using the potential of Koning and Delaroche[4].
These calculations show that the deviation is small over a wide
range of incident energies and target masses.
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sreac= stot − selas. s16d

Direct measurements ofsreac are difficult. Most of them
have been made by measurements of the attenuation of
neutrons in a spherical shell of the sample materialssee,
e.g., Refs.f15–17gd. Such measurements are sparse and
are subject to systematic errors that must be carefully
evaluated. Determiningsreac by subtracting independent
measurements ofstot andselas is also difficult, because the
subtraction of two large quantities magnifies the resultant
error.

We now show that using Wick’s limit to relate the two
quantities on the right of Eq.(16) allows us to obtain an
expression in which the errors in these quantities are corre-
lated in a manner that greatly reduces the resultant error in
sreac. We will also show that the model dependence intro-
duced by this procedure is very small when the deviation
between Wick’s limit and the exact zero-degree elastic dif-
ferential cross section is small. The conditions for which this
is true were discussed in a previous section.

To proceed, we define a quantity determined entirely by
experiment,

F =
selas

s0
=

1

s0
E dV

dselas

dV
, s17d

which is the ratio of the integral over solid angle of a
measured elastic angular distribution to its value at zero
degrees. It is important to note thatF does not require
knowledge of the absolute value of the elastic differential
cross section. We may now express the original expres-
sion for sreac, Eq. s16d, as

sreac= stot − s0F, s18d

which in turn may be expressed as

sreac= stot − s1 + hdFS k

4p
D2

stot
2 , s19d

where we have used the definition of Wick’s limit and its
fractional deviation from the true zero-degree cross sec-
tion fEqs. s3d and s4dg. In the last expression we identify
two independent experimental quantitiesstot and F and a
calculated quantity,h, which is determined from an
optical-model calculation. The error insreac is found by
adding the contributions from these three independent
quantities in quadrature. This interpretation assumes that
compound elastic scattering is negligible. Modifications to
Eq. s19d when compound elastic scattering is present are
discussed in the Appendix. An additional effect, the scat-
tering of the neutron’s magnetic moment from the Cou-
lomb field sMott-Schwinger scatteringd f18–20g is largely
confined to very small angles and does not play a signifi-
cant role in the extrapolation to zero degrees of currently
available measured angular distributions, for which the
minimum angle is in the range 12°–20°. This issue is also
discussed briefly in the Appendix.

The error insreac due to the errorDstot in the measured
value of the total cross section is easily found to be

Dsreac
s1d = U1 – 2s1 + hdFS k

4p
D2

stotUDstot. s20d

This expression is the difference of two positive terms,
which significantly reduces the error insreac. In fact, the
cancellation of the two terms can lead to a very small
contribution to the error insreac due to the error instot in
practical cases. To see this, we use Eq.s19d to eliminateF
and thereby rewriteDsreac

s1d as

Dsreac
s1d

sreac
= U2 −

stot

sreac
UDstot

stot
. s21d

The Ramsauer model, supported by realistic optical-model
calculations, shows that over a wide target-mass and en-
ergy ranges,stot oscillates about 2sreac as a function of
energy with an amplitude approximately 10% of the value
of stot. Therefore, the cancellation in the two terms of Eq.
s21d is strong and at certain energies is exact.

The error contribution fromh is

Dsreac
s2d = FS k

4p
D2

stot
2 Dh. s22d

Again using Eq.s19d, this may be expressed as

Dsreac
s2d

sreac
= S stot

sreac
− 1D h

1 + h

Dh

h
. s23d

Under the conditions noted above in the discussion of
Dsreac

s1d the expression in parentheses is close to 1, and the
maximum value ofh is a few percent. Therefore a rather
large value of the fractional errorDh/h will lead to a
small fractional error contribution tosreac.

The final error contribution, due toF, is

Dsreac
s3d = s1 + hdS k

4p
D2

stot
2 DF, s24d

which may be transformed to

Dsreac
s3d

sreac
= S stot

sreac
− 1D DF

F
. s25d

Again, the parenthesized expression is close to 1 in favor-
able circumstances.

We have not yet considered the effects of compound elas-
tic scattering. This will be small in most cases where the
deviation from Wick’s limit is small, but must be treated
correctly if it is present. It is shown in the Appendix that
compound elastic scattering adds an additional term to Eq.
(19) that requires an estimate of the compound contribution
to the zero-degree elastic differential cross section. For rota-
tional nuclei we have the complication that the elastic angu-
lar distribution is rarely measured alone for incident neutrons
because of insufficient energy resolution. When the angular
distributions include a well-defined set of excited states in
the ground-state band it is straightforward to extend the
present treatment to this case with the help of results from
coupled-channel calculations.
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In summary, Wick’s limit allows the original subtraction
expression, Eq.(16) to be transformed so that the error due
to the uncertainty in the total cross-section can be made very
small and an absolute cross-section measurement of the elas-
tic cross section is absent. There is no error amplification due
to the subtraction of large quantities. The model dependence
introduced by the use of Wick’s limit is quantified via Eqs.
(22) and (23) and is small when Wick’s limit is close to the
exact value. In these circumstances the dominant error con-
tribution is due toF, the ratio of the solid-angle integral of
the elastic angular distribution to its value at zero degrees.
Since the zero-degree cross section must be obtained by ex-
trapolation, considerable care must be taken in the analysis
of the angular distribution ifF is to be well determined. An
example of how this can be done will be shown next.

Very precise measurements of neutron elastic-scattering
angular distributions on208Pb were reported in Ref.[14] at
incident energies 7, 20, 22, and 24 MeV. In that work the
observation was made that Wick’s limit was a near equality
at these energies. This fact was used to confirm the estimate
of the absolute normalization of the angular distributions
(2% at 7 MeV; 3% at the higher energies) by showing that
the extrapolated zero-degree cross section was consistent
with Wick’s limit. Reaction cross sections were also obtained
by subtracting the angle-integrated elastic angular distribu-
tions from total cross sections. To illustrate the usefulness of
the technique presented here, we calculate the reaction cross
sections using Eq.(18) and compare them with those ob-
tained by subtraction. Results are shown in Table I, and the
uncertainties as well as their components are shown in Table
II. The extracted cross sections are shown in Fig. 5, along
with the results of the direct subtraction procedure taken
from Ref. [14].

To find the quantityF we employ the method of Ref.[14],
as shown in Fig. 2 of that paper for the 22-MeV data. The

values ofx2 per degree of freedom, the integrated elastic
cross section, and the zero-degree differential cross section
are calculated as a function ofLmax, the maximum order of a
Legendre polynomial fit. For well-behaved data thex2 per
degree of freedom shows a distinct knee at a critical value of
Lmax, beyond which its value is roughly constant. The elastic
and zero-degree cross sections show the same behavior, but
eventually become erratic for higherLmax because the fitting
function is not adequately constrained by the data. We obtain
the desired cross sections from the stable region just above
the knee. We have repeated the Legendre fits of Ref.[14] to
verify them and to estimate the uncertainty inF, which we
estimate as 1.3%.

TABLE I. Values of reaction cross sections for neutrons on
208Pb calculated from Eq.(19). The total cross sections and
constant-geometry optical potential used to calculateh were taken
from Ref. [14]. Uncertainties in the reaction cross section were
taken from the results shown in Table II.

EsMeVd stotsbd h F sreacsbd

7 5.78 3.22310−7 0.4768 2.393±0.045
20 5.85 2.13310−3 0.1608 2.477±0.046
22 5.79 3.27310−5 0.1440 2.538±0.044
24 5.67 2.44310−3 0.1359 2.450±0.044

TABLE II. Uncertainty estimates for reaction cross sections shown in Table I as calculated from Eqs.(21), (23), and (25). The last
column is the final fractional error obtained by adding the three previous columns in quadrature.

EsMeVd Dstot/stot Dh /h DF/F Dsreac
s1d /sreac Dsreac

s2d /sreac Dsreac
s3d /sreac Dsreac/sreac

7 0.010 0.5 0.013 0.0043 2.3310−7 0.0184 0.0189
20 0.015 0.5 0.013 0.0056 1.5310−3 0.0177 0.0186
22 0.016 0.5 0.013 0.0044 2.1310−5 0.0167 0.0172
24 0.016 0.5 0.013 0.0050 1.6310−3 0.0171 0.0179

FIG. 5. Upper portion: reaction cross sections for neutrons on
208Pb at 7, 20, 22, and 24 MeV inferred by the method discussed
herein from total cross sections and elastic angular distributions in
Ref. [14] (closed circles). These are compared with reaction cross
section obtained by direct subtraction of the total and elastic cross
sections(open circles). The points are displaced slightly in energy
to show the uncertainties. Lower portion: The present results
(closed circles) compared with sphere-transmission measurements
from Refs.[15–17] on natural Pb(crosses) and209Bi (open circles).
The solid curve is obtained from the constant-geometry optical
model of Ref.[14], and the dotted curve from that of Ref.[4].
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The values of the total cross sections were those used in
Ref. [14]. More recent measurements[21,10] on natural Pb,
208Pb, and Bi are available, but they are consistent with those
used in Ref.[14] within stated uncertainties. As shown in
Table II (column Dsreac

s1d /sreac) the error from the total cross
section is small compared to that fromFsDsreac

s3d /sreacd.
Values ofh were calculated from the constant-geometry

optical model in Ref. [14]. The error contribution
Dsreac

s2d /sreac is negligible, even with the assumed 50% error
in this quantity. Of course, this result is somewhat artificial
since Wick’s limit is a near equality at the chosen energies.

As can be seen in the upper portion of Fig. 5 the results
are consistent with the direct subtraction procedure but with
much smaller errors, which are dominated by the uncertain-
ties in F. In the bottom portion of the figure we show the
new results in comparison with sphere-transmission mea-
surements on natural Pb and209Bi from Refs. [15–17]. We
have also shown cross sections calculated from two optical
potentials, the constant-geometry potential from Ref.[14]
(solid line), and the recent potential of Koning and
Delaroche[4] (dotted line).

Finally, we summarize the conditions for which the new
method for finding reaction cross sections is expected to be
reliable. It is important that the model dependence intro-
duced by the use of Wick’s limit should be weak. This re-
quires the deviation of Wick’s limit from an equality to be
sufficiently well determined by optical-model calculations so
that an uncertainty may be assigned to it that does not domi-
nate the other error contributions; see Eq.(23) and discus-
sion following it. Figure 4 shows that the deviation is small
over a wide mass range and over an energy range that ex-
tends from a few MeV to several tens of MeV depending on
the target mass. Assigning a 50% error to the fractional de-
viation Dh /h, as suggested by the variation in the optical-
model calculations shown in Fig. 3, leads to an uncertainty
contribution in the ranges0–2d%. Outside this energy range
the increased error contribution makes the method less use-
ful, even though it is valid in principle. Since the optical
model yields only energy-averaged observables, the method
should be used only when the energy spread in the beam
used to measure the angular distributions is sufficiently large
to achieve a corresponding energy average over possible
resonant structure. This is normally the case for medium and
heavy nuclei, but the method may be inaccurate for light
nuclei where this condition is often not satisfied. We repeat
the caution that systematic and statistical errors in the elastic
angular distribution measurement must be sufficiently under
control to ensure the reliability of the extrapolation to zero
degrees required for the determination ofF [Eq. (17)]. There
are currently scant neutron elastic angular distribution data
available at energies above the regions shown in Fig. 4
where the deviation from Wick’s limit is small, which is an
additional reason for limiting application of the method to
the region where the optical-model results are favorable.

VII. SUMMARY

We have applied an analytic model, the nuclear Ramsauer
model, to demonstrate that Wick’s limit is an equality at

several energies and that these energies are well correlated
with energy modulations in the total cross section. We have
also demonstrated the inadequacies of this model and pre-
sented realistic optical-model calculations to obtain quantita-
tive results. Furthermore we demonstrated that only two of
the optical models examined gave sufficiently adequate rep-
resentation of the high-precision total neutron cross-section
measurements(with less than 2% error) so that we consid-
ered them reliable for generating estimates of the deviation
from the Wick’s limit equality. From this analysis we con-
clude that small valuess,4%d of the deviation of Wick’s
limit from an equality are found in the energy range
6–60 MeV for 208Pb, with larger uncertainties outside this
energy range. We also performed optical model calculations
showing that the similar behavior is found over a wide mass
range from light to heavy nuclei.

Having established reliable estimates of the deviation of
the Wick’s limit from equality, we developed a method of
reducing the error on reaction cross sections determined from
total and elastic-scattering cross sections. The usual proce-
dure of obtaining the reaction cross section from the differ-
ence between the total cross section and the elastic-scattering
cross section normally results in uncertainties of over 5% in
the reaction cross section. Using our new procedure, when
Wick’s limit is nearly an equality, we are able to reduce this
error significantly. Since the energy dependence of the reac-
tion cross section is very slow, just a few data points are
adequate to delineate this quantity. We presented data for
208Pb to demonstrate the usefulness of this technique, show-
ing that the error in the cross section was reduced by more
than a factor of 2 from that given by a simple subtraction.
Conditions for the usefulness of the method are noted at the
end of the preceding section. If elastic angular distributions
of sufficient quality are available, the method should be use-
ful over a wide mass range for neutron energies from a few
MeV to approximately 50 MeV.
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APPENDIX
In this appendix we give a more careful derivation of the

expression for calculating reaction cross sections using
Wick’s limit and elastic angular distributions. In particular,
we wish to show the effects of correctly including compound
elastic scattering. We also briefly discuss the role of Mott-
Schwinger scattering in the context of the present work.

The treatment previously given implicitly assumed that an
energy average over an incident-energy interval large enough
to smooth out cross-section fluctuations due to resonances
had been carried out. This is a necessary condition for the
use of the optical model in calculating Wick’s limit. Follow-
ing standard procedures, we divide the forward scattering
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amplitude fs0°d into an average partfs0°d and a fluctuating
part f fls0°d, defined so that the energy average off fls0°d van-
ishes. By using the completefs0°d in the expressions for the
optical theorem and for the zero-degree differential cross
section, and then taking an energy average(indicated by a
bar), we have

stot = s4p/kdImfs0°d, sA1d

s0 = ufs0°du2 = s0
shape+ s0

cmpd, sA2d

wheres0
shape= ufs0°du2 ands0

cmpd= uf fls0°du2. This expression
explicitly indicates the separation of the observable differ-
ential elastic cross section into a shape-elastic part that
can be estimated from an optical model and a compound
part that requires a Hauser-Feshbach treatment with width
fluctuations.

Similar to what was done in Sec. VI we express the
energy-averaged reaction cross section as the difference be-
tween the energy-averaged total and integrated elastic cross
sections,

sreac= stot − selas= stot − s0F, sA3d

where

F =
selas

s0
=

1

s0
E dV

dselas

dV
. sA4d

We define a Wick’s limit related to the average total cross
section by

s0
W = fImfs0°dg2 = Skstot

4p
D2

, sA5d

and a fractional deviation of the shape-elastic cross sec-
tion from this energy-averaged version of Wick’s limit by

h =
s0

shape− s0
W

s0
W = FRe fs0°d

Imfs0°d G2

. sA6d

With the above definitions, Eq.sA3d may be recast as

sreac= stot − s1 + hdFS k

4p
D2

stot
2 − Fs0

cmpd. sA7d

This expression is identical to that in Eq.s19d, except for
an extra term containing the compound elastic cross sec-
tion. This term must be calculated from a reaction model
and its uncertainty estimated. Since the shape-elastic scat-
tering is strongly forward peaked, and the compound elas-
tic is only slightly anisotropic, a rough upper limit on the
compound elastic contribution may be obtained by look-
ing at the deepest minimum in the elastic angular distri-
bution.

The effect of magnetic moment(Mott-Schwinger) scatter-
ing on neutron differential elastic cross sections and polar-
izations has been calculated by several groups over the last
few decades[18–20]. All of these treatments agree that the
main effects on the cross sections are confined to very small
angles(less than approximately 2°). Thus the effects of Mott-
Schwinger scattering can be ignored in a consistent treatment
in which the minimum angle at which measurements are
made is large enough so that the Mott-Schwinger effect is
negligible, and in which the optical-model analysis does not
include the effect. Minimum angles in currently available
angular distribution data are typically in the 12°−20° range.
A simple estimate based on the results in Ref.[20] for 24
-MeV neutrons on Bi shows that the singular(Born approxi-
mation) part of the Mott-Schwinger cross section arising
from the long-range 1/r3 interaction, which has angular de-
pendence proportional to cot2su/2d, is much less that 1% of
the nuclear cross section at 12°, and can therefore be ne-
glected. The most recent treatment of the Mott-Schwinger
effect [20] showed that corrections to the Born approxima-
tion lead to a component in the Mott-Schwinger cross section
that falls much less rapidly with angle than the Born term but
can be seen in the minima of the elastic diffraction pattern at
large angles. This small component may appropriately be
assumed to be covered up by the phenomenological optical
potential. Moreover, plots of the extrapolated zero-degree
cross section as a function of maximum order of the Leg-
endre polynomial(see Sec. VI and Ref.[14]) show no evi-
dence for an increase of the cross section beyond a value
Lmax<kR. This would not be the case if there were a signifi-
cant contribution from the long-range Mott-Schwinger inter-
action. However, we caution that if angular distribution data
become available with minimum angles significantly smaller
than those in currently available data, the relevance of the
Mott-Schwinger cross section should be revisited.
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