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Wick’s limit and a new method for estimating neutron reaction cross sections
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We construct an analytic model to demonstrate qualitatively the correspondence between the measured
neutron total cross section and the regions where Wick’s limit is actually an equality. This model does not give
sufficiently accurate quantitative results, so we extend our calculations by using the nuclear optical model with
both local and global parameters. We then demonstrate how Wick’s limit can be used to give useful reaction
cross-section information.
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l. INTRODUCTION 0o =[Ref(0°) ]2+ [Im £(0°)]= [Im f(0°)]2. (2

Wick’s limit [1] has been used by neutron physicists toThys the zero-degree differential elastic cross sectign
sections: The fact that this limit was nearly an equality has

been known for over four decad§d,3]. We point out that W k 2
there exists an analytic model for actually estimating the 0y = 470t 3)
accuracy of this near equality and that for fast neutioesi-
trons in the MeV energy ranget is probably accurate to It is convenient to define a fractional deviation of the
within a few percent foA>27. Although useful in providing zero-degree differential cross section from Wick’s limit as
an intuitive understanding of how the near equality comes
about, the analytic model is not sufficiently accurate to be _ 0o~ aX,V
useful in evaluating modern neutron data where the precision = T (4)
of the experimental data is in the neighborhood of 1%. 0
We begin by defining Wick’s limit. We then describe and Wick’s limit is a useful concept whem; is small. The
apply the simple analytic model to illustrate the connectionconditions for which this is true will be discussed in the
between Wick’s limit and the measured total cross sectiongollowing sections.
Since our analytic model is not sufficiently accurate we ex-
amine several optical-model calculations for neutrons inci- I1l. ANALYTIC MODEL
dent on?%%b and note the quality of fits to the total cross-
section data and the corresponding reliability of the Wick's By invoking a simple model of the total cross sectitime
limit derived from these calculations. Using a recent globalnuclear Ramsauer modg$—9]) one can obtain an analytic
optical potential4] we delineate the regions of incident en- estimate of the real part of the scattering amplitude from
ergy and target mass for which the approximate equalityneutron total cross-section data. Thus, within the model we
holds. Finally, we demonstrate a new method of deducingan estimate the validity of Wick’s limit as well as the first-
reaction cross sections using Wick’s limit. order correction term.
In describing the total cross section we use a combination
of formulations by Petersofb] and by Bohr and Mottelson
Wick’s limit [1] is derived from the optical theorem which [6] as follows. We assume a zero-degree scattering amplitude
relates the imaginary part of the zero-degree scattering an®f the form
plitude f(0°) to the total cross sectiog;, i.€.,

II. DEFINITION OF WICK'’S LIMIT

f(0°) = ik(R+ X)%(1 - a€®)/2, (5)

Im f(0°)=£omt, (1) where Xx=1/k is the usual reduced wavelength. By using
4m Eq. (1) one then obtains
where k is the center-of-mass wave number. The zero- )
degree differential elastic cross sectiogis given by 0ot = 27(R+ X)%(1 — a cos B). (6)

The average behavior of the total cross section can be

Magnetic momentMott-Schwingey scattering yields a divergent described byoi=2m(R+X)? (the “black nucleus” approxi-
cross section at zero degrees, but is not relevant in the preseftation and the effect of the coherent nuclear Ramsauer ef-
context because its effects are largely confined to angles mucfect is reflected in thé1l-a cosp) term. We note that the
lower than those in measured angular distributions. This is disaverage cross-section behavior is well fj5] by
cussed briefly in Sec. VI and the Appendix. R=1.3%AY23 fm. The argument of the periodic terpican be
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understood in terms of the difference in phase between the 8 [ T T T T T
wave passing outside the nuclear surface and the wave pass- 7k (a) N
ing through a medium with an index of refraction, i.e., = i
c 6 - i
B= (4/3) ‘/’R(knucl - kinc)v (7) 5,

. 5L \'/\/ ]
where (4/3)R is the average chord length of the neutron b I |

passing through the nucleus agids the index of refrac- —

tion given by
E+v] (V)" o LN
= - kel U
v E E+V ' ® 2
S
P4

In the above expressioky,=[2m(E+V)/4?]Y? where the
positive quantityV is the depth of the average real optical —
potential,E is the neutron energy, arg,.=(2mE#?)Y2 3

The coefficienta represents the absorption of the incident i ©
wave and in this crude model is given by

~ _LW( 2m )1’2 9
azexpy-—\ =) | 9

where the positive quantity is the strength of the aver- i ”
age absorptioimaginary potential and. is an appropri- E™ (MeV™)
ate nuclear dimension. Although we will use only the em-

irical parametrizations o& and 8 determined from Ref.
P P B sured by Abfaltereret al. [10] plotted vs. the square root of the

[8]_ in the numerical results_shown in the present work, itneutron energy over the energy range 5.3—64 MéyThe normal-
ISf Itr;:portantr tcr)nh?vre fomsdldf? %fdt?ﬁ e”nrﬁirtgy dnefhendenﬁ(zaed total cross section,/2m(R+x)? defined in Eq(13). (c) The

0 b.ﬁse fpa amete Sd ou G'e N ath t € S0 d N at[;p fractional deviationy of the zero-degree differential cross section
cability of our procedure. Liven that our assumed SCaltery. ., wicies limit as calculated in the analytic modgtq. (12)].

ing amplitude, Eq.(5), does yield a total cross-section
description[Eq. (6)] that provides an adgquate fit to the lot of th lized ’ Esh o Ei
total cross-section data, we may use it to evaluate th&'Ot Of th€ normaiized Cross section Versisshown in Fig.
zero-degree differential cross section via E2). Thus we 1 that these data are well described by

obtain

0.000 L— L 1 A 1 L 1 A 1 L 1
2 3 4 5 6 7 8

FIG. 1. (a) Total neutron cross sectiom,; of natural Pb mea-

Otot
Kk 2
0= [é(R+ 7()2] [(1-acosp?+a?sir? B], (10) 2m(R+ X)?
where we have used the globally fitted parameters of
wherea” sir? g is the additional contribution to the zero- Taple 11 in Ref.[8] to determines.
degree cross section from the real part of the scattering |t is clear that in the neutron energy region from 6 to
amplitude. This implies that we can estimate the accuracpp MeV the measurements can be well fitted with a fixed
of the use of Wick’s limit as an equality via the relation value of @, namely,«=0.115. This implies a maximum cor-
. rection to “Wick’s equality” of just over 1%. The accuracy of
{ o? sir? B }

=1-acosp, (13

- W

(11) this correction depends on? but we note that varyingy

from 0.09 to 0.12, the extremes allowed by the data in this

region, changes this correction only from 0.8% to 1.4%. An

estimate of the energy dependence of the correction term can

also be obtained by fitting the energy dependencg.dfhe

fractional deviation of the zero-degree cross section from
a? sir? 8 Wick’s limit, as evaluated from Eq12) for this simple ana-

= 1= cosg? (12)  Iytic model, is also plotted in Fig. 1.

To show the connection between Wick’s limit, the true
zero-degree cross section, and the total cross section, it is
IV EVALUATION OF THE ANALYTIC MODEL useful to plot the behavior of the quanti8ra exp(iB) as a

function of energyS is determined from the scattering am-

We now present as an example the case of (&l The  plitude via Eq.(5). It is defined so that in the low-energy

total cross section has been very accurately measured ovimit (s waves only it corresponds to the collision matrix
the energy range 5-540 Mel0]. We first divide the mea- element forl=0. It also represents the common value of the
sured cross section bym?R+X)? where R=1.35AY2 fm fol- collision matrix element in a single phase shift approxima-
lowing the procedure of Ref8]. We then deduce from the tion; i.e., the assumption that the complex phase shift is the

1+(1—a cos B)?

in which we note that the correction term is proportional
to o?. This expression may be rearranged to yield the frac
tional deviationz in the analytic model as

7
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FIG. 2. Behavior of the quantit$=« exp(iB) as defined in Eq.
20 ; ; i
(5) for 2Pb, employing(@) the simple analytic mode! and) an in the text.(a) Total neutron cross sections divided by(®+x)? for

optical model calculation using the Koning-Delaroche poteijigl 208p}, compared with experiment on natural Pb measured by Abfal-
The labels on the trajectories are the incident neutron energies in - S
MeV. tereret al. [10]. (b) The fractional deviatiory of the zero-degree

differential cross section from Wick’s limit as defined in E4).

FIG. 3. Results of four optical-model calculations as described

same in all partial waves. This last assumption is critical for. h find a sianif | f et th "
the usefulness of the Ramsauer model, and its justificatio;q.u_S we find a significant va ue of L the cross sec lon
has been discussed in Re£1]. In terms off(0°) and S, the minima, and only at the maxima in the total cross-sections

fractional deviation from Wick’s limit may be expressed as do?‘s the Wick equal!ty hold. We _also note that realistic
optical-model calculations do not yield a constant value of

Ref(0°) \2 Ims \2 |9, unlike the simple model. Consequently the analytic

:(Imf(0°)> = (1 — Ré) . (14 model, yvhlle prowdmg usgfu_l guidance on the beha\_/lor of
the deviation from Wick’s limit, does not correctly estimate

In the simple analytic model with an energy-independenthe maximum deviation from equality. Therefore we now
value of, all values ofSlie on a circle in the complex plane investigate optical-model calculations.
as indicated in the upper part of Fig. 2, as shown for energies
between 5 and 25 MeV. Wick’s limit is an equality whenever
the trajectory ofS crosses the real axis. This occurs for
B=nm, wheren is an integer, and these points correspond to For our sensitivity studies we have chosen four different
the maxima and minima in the total cross section. The maxisets of optical-model parameters. The first set is the neutron
mum deviations from Wick’s limit occur when the trajectory potential of Becchetti and Greenled®], which was chosen
crosses the imaginary axis, which happens B»mm/2,  because it was one of the first attempts to fit a large number
wherem is an odd integer. These points correspond to theof nuclei over a significant energy range. The second param-
inflection points in the normalized total cross section, as camtrization is the Ohio global A s€iL3]. This set allows for
be seen in Fig. 1. significant energy variations of the parameters, but covers a

The Ramsauer model is equivalent to a square well potersmaller energy range. The third set was due to Fietbgl.
tial and thus neglects the nuclear surface. From Fig. 8 of Re{14], which covered a large energy range and was developed
[9] we find that the addition of a surface term, although notto fit a wide variety of data for neutrons incident é§Pb.
affecting the maxima in the total cross section, significantlyThe fourth set, due to Koning and Delaroddg, is a recent
modifies the behavior db near the minima in the total cross global potential covering a wide mass and energy range.
section. Thus the minima in the deviation of the zero-degree Since we originally considered using the analytic model
cross section from Wick’s limit do not come exactly at the because of its excellent representation of the total cross sec-
minima in the total cross section. Optical-model calculationgion, we begin by comparing our various optical-model cal-
also support these conclusiofsee Figs. 7 and 8 in Re)). culations(Fig. 3) with the same high-precision total cross-

V. OPTICAL-MODEL CALCULATIONS
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section measuremenits0] shown in Fig. 1. We also plot the 0.10 E oo T AR E
fractional difference(ay—oy)/oy between the calculated i
zero-degree cross section and the Wick’s limit. It is immedi- 0.05
ately obvious that the Becchetti-Greenlees potential deviates .
by more than 5% from the measured data and does not meet 0.10 |
our criteria for a good fit. This should not be surprising since :

the high-precision data were not available at the time of Bec- 005 ¢

chetti and Greenlees’s work. The latest global parametriza- 1
tion of Koning and Delaroche as well the potential of Finlay 0.10 E
et al. both meet the criteria of fitting the total cross-sections < g5 E
at the 1-2% level. The Ohio Global parameterization is an § ]
excellent fit over part of the energy range, but deviates by & 0.10 : E
about 5% at the cross section maximum around 20 MeV. g ]

Since the slope of the cross section versus energy is different® 0.05 |
from the other potentials, we also see a significant difference ;
at about 15 MeV in the magnitude of the fractional deviation 0.10 E
from Wick’s limit.
We may conclude from the above discussion that the two 0.05
most satisfactory optical-model parameter gatsjudged by .
comparison with the total cross section dagave satisfac- 0.10 |
tory agreement with the measured total cross section and ;
produce very similar results for the deviation from Wick’s :
limit. The comparison of these calculations with the results 0.00 L
of the analytic model shows that the minimum deviation,
corresponding to the cross-section maxima, is correctly Neutron energy (MeV)
given, but that the minimum, corresponding to the minimum
Cross Section’ is disp|aced in energy. We further note that the FIG. 4. Optical-model calculations of the fractional deviation
maximum deviation given by our optical-model calculations 7=(co=0g)/og’ of the true zero-degree differential cross section
is almost a factor of 2 larger than that from our analyticrom Wick's limit, using the potential of Koning and Delarocf.
model. We also conclude that our correction term, WhiChThese calculations show that the deviation is small over a wide
varies from 7% at 3 MeV to 4% at 100 MeV, may be q range of incident energies and target masses.
useful concept for Pb over this energy range.

0.05 |

Further insight into the relation between the values Oforig_in. '_I'his picture_ ShOW_S .thf'ﬂ there is a specific energy
region in which Wick’s limit is close to the exact zero-

Wick's limit given by the analytic model and the optical degree cross section and is therefore useful; in the case of
model can be gained by examining the quanBiintroduced 208|gb this region is approximately 4—8geV '
in the preceding section, as shown in Fig. 2. The forward To ex Ioregthe maspspand enery ran0es i‘or which Wick's
scattering amplitudé(0°) was calculated from the Koning- limit i P . i gyh 9 ¢ d optical-
Delaroche potentigl4], andS was obtained by inversion of Imit is an appr_oxmate equality, we | a(\)/%gsper Sggge o_ptlca
Eq. (5) as model c_alculatlons for severa_l nuclei fr ito b using
the Koning-Delaroche potentigd]. The fractional deviations
n are shown in Fig. 4. In all cases there is a wide energy
. 2if(0°) (15) range over whichy does not exceed a few percent. Below
k(R+ X)2’ and above this range the deviation grows to a large value.
o ] The trajectories ofs (not shown characterize this behavior
whereR=1.35A'° fm. As noted earlierSis a single phase in a manner similar to that shown in Fig. 2 f3¥Pb. The
shift parametrization of the solution to the scattering prob+rgjectory loops near the origin twice for the nuclei heavier
lem. As the incident energy approaches z&must go to  than A~90, and once for lighter nuclei. The intermediate
1 as shown in the lower portion of the figure, sinBés  nycleus8®y shows an anomalously small deviation at low
exactly thes-wave collision matrix element in this limit. energies in the neighborhood of 1—2 MeV. This corresponds
When the incident energy is sufficiently large the trajec-yg 5 small loop in the trajectory at low energies before the
tory of Sexecutes loops in the neighborhood of the origin, gpproximate single phase shift behavior is well established.
resembling the behavior of the analytic model shown in
the upper portion. This is the energy region for which the VI. USING WICK'S LIMIT TO DETERMINE REACTION
single phase shift parametrization is a useful representa- CROSS SECTIONS
tion of the scattering problem, and for which Wick’s limit
is an equality when the trajectory crosses the real axis. At In this section we use Wick’s limit to introduce a new
higher energies the single phase shift picture is invalidatednethod for determining neutron reaction cross sections. This
because the refractive effects that tend to equalize thquantity, sometimes called the nonelastic cross section, is the
phase shifts in the various partial waves are reduced, andifference between the total cross section and the angle-
the trajectory no longer circles in the neighborhood of theintegrated elastic cross section:

S=1
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Oreac™ Otot ~ Telas: (16) A =
reac™

AO‘tot. (20)

k 2
) - 1-21+ 77)F<4_> Otot
Direct measurements af,q,c are difficult. Most of them ™

have been made by measurements of the attenuation §kjs expression is the difference of two positive terms,
neutrons in a spherical shell of the sample matefsale, \hich significantly reduces the error i, In fact, the
e.g., Refs.[15-17). Such measurements are sparse andancellation of the two terms can lead to a very small
are subject to systematic errors that must be carefullgntribution to the error i, e5c dUE to the error inrg, in

evaluated. Determiningr.,c by subtracting independent pactical cases. To see this, we use B@) to eliminateF
measurements af,,; and o5 iS also difficult, because the tand thereby rewritao? as

subtraction of two large quantities magnifies the resultan reac

error. AO'(l) o Ao
We now show that using Wick’s limit to relate the two —reac_ |5 _ fot | T rtot (21)
quantities on the right of Eq16) allows us to obtain an Oreac Oreac| Otot

expression in which the errors in these quantities are correrhe Ramsauer model, supported by realistic optical-model
lated in a manner that greatly reduces the resultant error igg|culations, shows that over a wide target-mass and en-
Oreac We Will also show that the model dependence intro-grgy rangesp,, oscillates about @, as a function of

duced by this procedure is very small when the deviationenergy with an amplitude approximately 10% of the value
between Wick’s limit and the exact zero-degree elastic dif-of 4, ~Therefore, the cancellation in the two terms of Eq.

ferential cross section is small. The conditions for which this(21) is strong and at certain energies is exact.

is true were discussed in a previous section. The error contribution fromy is
To proceed, we define a quantity determined entirely by
experiment, k \?2
Aa'g)alc: F(E) O-tzotAn- (22)
F= Oelas _ i do doelas 17) ) . .
= —00 s aQ Again using Eq.(19), this may be expressed as
which is the ratio of the integral over solid angle of a AoZ. [ o n Ap
measured elastic angular distribution to its value at zero sl P Ui - (23

degrees. It is important to note th&t does not require N _ _ _
knowledge of the absolute value of the elastic differentialunder the conditions noted above in the discussion of

cross section. We may now express the original expresAo's,. the expression in parentheses is close to 1, and the

sion for o,e40 EQ. (16), as maximum value ofy is a few percent. Therefore a rather
large value of the fractional erroA#/% will lead to a
Oreac= Otot — ToF , (19 small fractional error contribution to ¢

S The final error contribution, due 1, is
which in turn may be expressed as

2
. Ao = (1+ ,,)(L) o2, AF, (24)
Oreac= Ot~ (1 + 7])F<ET> a'tzot! (19 Am
which may be transformed to
where we have used the definition of Wick’s limit and its
fractional deviation from the true zero-degree cross sec- Agg)ac Tiot AE
tion [Egs.(3) and (4)]. In the last expression we identify :< - ) =
two independent experimental quantitieg; andF and a
calculated quantity,n, which is determined from an Again, the parenthesized expression is close to 1 in favor-
optical-model calculation. The error o, iS found by  able circumstances.
adding the contributions from these three independent We have not yet considered the effects of compound elas-
guantities in quadrature. This interpretation assumes thdic scattering. This will be small in most cases where the
compound elastic scattering is negligible. Modifications todeviation from Wick’s limit is small, but must be treated
Eqg. (19) when compound elastic scattering is present areorrectly if it is present. It is shown in the Appendix that
discussed in the Appendix. An additional effect, the scatcompound elastic scattering adds an additional term to Eq.
tering of the neutron’s magnetic moment from the Cou-(19) that requires an estimate of the compound contribution
lomb field (Mott-Schwinger scattering 18—-20 is largely  to the zero-degree elastic differential cross section. For rota-
confined to very small angles and does not play a signifitional nuclei we have the complication that the elastic angu-
cant role in the extrapolation to zero degrees of currenthjar distribution is rarely measured alone for incident neutrons
available measured angular distributions, for which thebecause of insufficient energy resolution. When the angular
minimum angle is in the range 1220C°. This issue is also distributions include a well-defined set of excited states in

(25)

Oreac Oreac

discussed briefly in the Appendix. the ground-state band it is straightforward to extend the
The error ino,e,c due to the erroloyy; In the measured present treatment to this case with the help of results from
value of the total cross section is easily found to be coupled-channel calculations.
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TABLE |. Values of reaction cross sections for neutrons on 28T T T T T T T T T I
208%ph calculated from EQq(19). The total cross sections and
constant-geometry optical potential used to calcukateere taken 27 7]
from Ref. [14]. Uncertainties in the reaction cross section were I
taken from the results shown in Table 1. > 26 ' '
[
EMeV)  aib) 7 F Treadd) §*r i
7 5.78 3.2%107 04768  2.393+0.045 b§ 24 ]
20 5.85 2.1%10°3 0.1608 2.477+0.046 I
22 579  32K10° 01440  2538+0.044 23 i
24 5.67 2.4410° 01359  2.450+0.044 P H R T T TR S R S

In summary, Wick’s limit allows the original subtraction
expression, Eq(16) to be transformed so that the error due
to the uncertainty in the total cross-section can be made very
small and an absolute cross-section measurement of the elas-
tic cross section is absent. There is no error amplification due g
to the subtraction of large quantities. The model dependence b~
introduced by the use of Wick’s limit is quantified via Egs.
(22) and(23) and is small when Wick’s limit is close to the

(barns)

exact value. In these circumstances the dominant error con- 22l L)
tribution is due toF, the ratio of the solid-angle integral of 6 & 10 12 14 16 18 20 22 24 26
the elastic angular distribution to its value at zero degrees. Neutron energy (MeV)

Since the zero-degree cross section must be obtained by ex- - _ ons f
trapolation, cons_ide_rab_le care must be taken in '_[he analys'%qftleétSY. Lngpgrz pg:]télor;.4 r&a‘lecvtlci):fé:rrrc:esds ;eiggn;e?goréegitg:zszré
of the angular distribution i is to be well determined. An P e y

example of how this can be done will be shown next. herein from total cross sections and elastic angglar dIStr.IbutIOFIS in
Ref. [14] (closed circles These are compared with reaction cross

Velry %Tef'.ze t.measul%rfggs nts of neut;og .E|a§tlciicat:e”ngection obtained by direct subtraction of the total and elastic cross
anguiar distrioutions o were reported in Ref14] a sections(open circleg The points are displaced slightly in energy

incident _energles 7, 20, 22, a_nd, 24 MeV. In that work theto show the uncertainties. Lower portion: The present results
observation was made that Wick’s limit was a near equalitygjosed circles compared with sphere-transmission measurements
at these energies. This fact was used to confirm the estimajg, Refs.[15-17 on natural Picrossesand2%%Bi (open circles
of the absolute normalization of the angular distributionsthe solid curve is obtained from the constant-geometry optical
(2% at 7 MeV; 3% at the higher energjesy showing that  model of Ref.[14], and the dotted curve from that of R¢4].
the extrapolated zero-degree cross section was ConS'Ste\/rEIues of x2 per degree of freedom, the integrated elastic
with Wick’s limit. Reaction cross sections were also obtainedCrOSS section, and the zero-degree ’differential cross section
b_y subtracting the angle—l_ntegrate_d elastic angular distribuz;e calculated as a function bf,.., the maximum order of a
tions from total cross sections. To illustrate the usefulness Q‘iegendre polynomial fit. For well-behaved data tfeper
the technique presented here, we calculate the reaction crogggree of freedom shows a distinct knee at a critical value of
sections using Eq(18) and compare them with those ob- | “heyond which its value is roughly constant. The elastic
tained by subtraction. Results are shown in Table I, and thgnd zero-degree cross sections show the same behavior, but
uncertainties as well as their components are shown in Tablgventually become erratic for highky,,, because the fitting
Il. The extracted cross sections are shown in Fig. 5, alongunction is not adequately constrained by the data. We obtain
with the results of the direct subtraction procedure takerthe desired cross sections from the stable region just above
from Ref.[14]. the knee. We have repeated the Legendre fits of Réf.to

To find the quantity= we employ the method of Reffl4],  verify them and to estimate the uncertaintyRnwhich we
as shown in Fig. 2 of that paper for the 22-MeV data. Theestimate as 1.3%.

TABLE Il. Uncertainty estimates for reaction cross sections shown in Table | as calculated fron2Eq$23), and (25). The last
column is the final fractional error obtained by adding the three previous columns in quadrature.

E(MeV) Aol oot Anln AF/F Ao, %LJ Oreac Ao, EﬁLJ Oreac Ao, g)ac/ Oreac Adread Oreac
7 0.010 0.5 0.013 0.0043 231077 0.0184 0.0189
20 0.015 0.5 0.013 0.0056 E073 0.0177 0.0186
22 0.016 0.5 0.013 0.0044 2107 0.0167 0.0172
24 0.016 0.5 0.013 0.0050 D603 0.0171 0.0179
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The values of the total cross sections were those used iseveral energies and that these energies are well correlated
Ref. [14]. More recent measuremerjsl,1q on natural Pb, with energy modulations in the total cross section. We have
208 and Bi are available, but they are consistent with thosalso demonstrated the inadequacies of this model and pre-
used in Ref.[14] within stated uncertainties. As shown in sented realistic optical-model calculations to obtain quantita-

Table Il (column Ao’%lmlo'reaa the error from the total cross tive results. Furthermore we demonstrated that only two of

section is small compared to that frd.'ﬁﬁAo.Eg)aLja.reaC)_ the optical models examined gave sufficiently adequate rep-
Values of 7 were calculated from the constant-geometry'@sentation of the high-precision total neutron cross-section

optical model in Ref. [14]. The error contribution ~Measurement@nith less than 2% errorso that we consid-

AO—EgL(!Ureac is negligible, even with the assumed 50% errorered them reliable for generating estimates of the deviation

in this quantity. Of course, this result is somewhat artificialfrlor(;1 ﬂtf \tN'CkS”“m'It quiltl;y. Ffr(t)kr]n tg's _art1_aly5|? \"/VV? E,On'
since Wick’s limit is a near equality at the chosen energiesCu e that small valueg<4%) of the deviation of Wick's

As can be seen in the upper portion of Fig. 5 the result§mlt from an equality are found in the energy range

- 20 . L . )
are consistent with the direct subtraction procedure but wit 60 MeV for 22%Pb, with larger uncertainties outside th|s
much smaller errors, which are dominated by the uncertaine €9y range. We also performed optical model calculations

ties in F. In the bottom portion of the figure we show the showing that the similar behavior is found over a wide mass

new results in comparison with sphere-transmission mea2N9€ from light to heavy_nuclel. . _
surements on natural Pb aR¥Bi from Refs. [15-17. We Having established reliable estimates of the deviation of

have also shown cross sections calculated from two optica{r‘e chks limit from equqllty, we devel_oped a me'ghod of
potentials, the constant-geometry potential from Ra#] reducing the error on reaction cross sections determined from

(solid line), and the recent potential of Koning and total and elastic-scattering cross sections. The usual proce-
Delaroche[zyl] (dotted ling dure of obtaining the reaction cross section from the differ-
Finally, we summarizé the conditions for which the new €Nc€ between the total cross section and the elastic-scattering

method for finding reaction cross sections is expected to b ross section normally results in uncertainties of over 5% in

reliable. It is important that the model dependence intro-\N€ reaction cross section. Using our new procedure, when

duced by the use of Wick's limit should be weak. This re- Wick’s limit is nearly an equality, we are able to reduce this
quires the deviation of Wick's limit from an equality to be error significantly. Since the energy dependence of the reac-

sufficiently well determined by optical-model calculations sotlon Cross section is very slow, just a few data points are

. - . dequate to delineate this quantity. We presented data for
that an uncertainty may bg as_S|gned ot that does_not domEOBPg to demonstrate the usgfulnes)é of thiz technique, show-
nate the other error contributions; see E2@) and discus- '

sion following it. Figure 4 shows that the deviation is small ing that the error in the cross section was reduced by more

over a wide mass range and over an energy range that e%]an a factor of 2 from that given by a simple subtraction.

tends from a few MeV to several tens of MeV depending on Ogd':'?r?s for th((aj.usefuh}(.ass (I)]f tf|1e TethOd flredr)()ttgg ‘?t the
the target mass. Assigning a 50% error to the fractional deENd Of the preceding section. 1 elastic angular distributions

viation A7/, as suggested by the variation in the opticaI-Of sufficient .quality are available, the method should be use-
model calculations shown in Fig. 3, leads to an uncertaint ul over a wide mass range for neutron energies from a few

contribution in the rang€0—2%. Outside this energy range eV to approximately 50 MeV.

the increased error contribution makes the method less use-

ful, even though it is valid in principle. Since the optical ACKNOWLEDGMENTS

model yields only energy-averaged observables, the method

should be used only when the energy spread in the beam This work was performed under the auspices of the U.S.

used to measure the angular distributions is sufficiently larg®epartment of Energy by the University of California,

to achieve a corresponding energy average over possibleawrence Livermore National Laboratory under Contract

resonant structure. This is normally the case for medium antllo. W-7405-Eng-48, and Ohio University under Contract

heavy nuclei, but the method may be inaccurate for lightNo. DE-FG02-88ER40387.

nuclei where this condition is often not satisfied. We repeat

the caution that systematic and statistical errors in the elastic

angular distribution measurement must be sufficiently under APPENDIX

control to ensure the reliability of the extrapolation to zero In this appendix we give a more careful derivation of the

degrees required for the determinationFofEq. (17)]. There  expression for calculating reaction cross sections using

are currently scant neutron elastic angular distribution datdVick’s limit and elastic angular distributions. In particular,

available at energies above the regions shown in Fig. 4ve wish to show the effects of correctly including compound

where the deviation from Wick’s limit is small, which is an elastic scattering. We also briefly discuss the role of Mott-

additional reason for limiting application of the method to Schwinger scattering in the context of the present work.

the region where the optical-model results are favorable. The treatment previously given implicitly assumed that an

energy average over an incident-energy interval large enough

to smooth out cross-section fluctuations due to resonances

had been carried out. This is a necessary condition for the
We have applied an analytic model, the nuclear Ramsauarse of the optical model in calculating Wick’s limit. Follow-

model, to demonstrate that Wick’s limit is an equality ating standard procedures, we divide the forward scattering

VII. SUMMARY
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amplitudef(0°) into an average paif{0°) and a fluctuating _ _ _—( k 2_2 = cmpd

part f'(0°), defined so that the energy average™0°) van- Oreac= Ot~ (L +7)F a7 Ot Faog o (A7)
ishes. By using the complef€0°) in the expressions for the

optical theorem and for the zero-degree differential crosd his expression is identical to that in EQL9), except for

Section, and then tak|ng an energy avera'gdicated by a a-n eXtI’a_l term Containing the Compound e|aStiC_CFOSS Sec-
bar, we have tion. This term must be calculated from a reaction model

and its uncertainty estimated. Since the shape-elastic scat-
_ tering is strongly forward peaked, and the compound elas-
Tyt = (47/K)Imf(0°), (A1) tic is only slightly anisotropic, a rough upper limit on the
compound elastic contribution may be obtained by look-
ing at the deepest minimum in the elastic angular distri-

— _T1f/o\|2 — _shape, _cmpd bution.

_UO IF(O)f = o™ 0™, (A2) The effect of magnetic momeW¥ott-Schwingey scatter-
where o3P |f(0°)2 and o§™P%=|£11(0°)|2. This expression ing on neutron differential elastic cross sections and polar-
explicitly indicates the separation of the observable differ-izations has been calculated by several groups over the last
ential elastic cross section into a shape-elastic part thdéw decadeg18-2Q. All of these treatments agree that the
can be estimated from an 0ptica| model and a Compounmain effects on the cross sections are confined to very small

part that requires a Hauser-Feshbach treatment with widtnglesless than approximately’ Thus the effects of Mott-
fluctuations. Schwinger scattering can be ignored in a consistent treatment

Similar to what was done in Sec. VI we express theln Which the minimum angle at which measurements are

energy-averaged reaction cross section as the difference bB12de is large enough so that the Mott-Schwinger effect is

tween the energy-averaged total and integrated elastic cr09§g“g'ble' and in Wh'(.:h. the optlcal—quel analysis dogs not
sections, include the effect. Minimum angles in currently available

angular distribution data are typically in the°t20° range.
A simple estimate based on the results in R&0] for 24
T O — O :_tot_EOEv (A3) -MeV neutrons on Bi shows that the singu{®&orn approxi-
mation) part of the Mott-Schwinger cross section arising
where from the long-range 1# interaction, which has angular de-
pendence proportional to ¢o#/2), is much less that 1% of
= 1 do the nuclear cross section at°l2and can therefore be ne-
F=—=_ dgﬂs_ (A4) glected. The most recent treatment of the Mott-Schwinger
0o Op dQ effect [20] showed that corrections to the Born approxima-
We define a Wick's limit related to the average total crosstion ad to a component in the Mott-Schwinger cross section
: that falls much less rapidly with angle than the Born term but
section by ! e A X
can be seen in the minima of the elastic diffraction pattern at
large angles. This small component may appropriately be
Tt |2 assumed to be covered up by the phenomenological optical
) (AS5) potential. Moreover, plots of the extrapolated zero-degree
cross section as a function of maximum order of the Leg-
and a fractional deviation of the shape-elastic cross seendre polynomialsee Sec. VI and Refl14]) show no evi-
tion from this energy-averaged version of Wick’s limit by dence for an increase of the cross section beyond a value
Lmax=KR This would not be the case if there were a signifi-
r cant contribution from the long-range Mott-Schwinger inter-

Gy’ =[Imf(0°) 2= (

AG action. However, we caution that if angular distribution data

(AB) become available with minimum angles significantly smaller
g g y

than those in currently available data, the relevance of the

7]: — =
9

ore-g | Ref(0°)
Imf(0°)

With the above definitions, EQA3) may be recast as Mott-Schwinger cross section should be revisited.
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