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New treatment of breakup continuum in the method of continuum discretized coupled channels
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A new method of pseudostate discretization is proposed for the method of continuum discretized coupled
channels to deal with three-body breakup processes. In the method, diSonateix elements to the pseudo
(discretizedl continuum states are transformed into smooth ones to the exact continuum states of the projectile.
As for the basis functions for describing pseudostate wave functions, we take real- and complex-range Gauss-
ian functions, which form in good approximation a complete set in a finite configuration space being important
for breakup processes. This “approximate-completeness” property is essential to make tranSforatsgg
elements accurate. Moreover, the use of these Gaussian bases is expected to be very useful to describe
four-body breakup processes. Accuracy of the method is tested quantitatively for two realistic examples: elastic
and projectile-breakup processesdin®®Ni scattering at 80 MeV and those fhi+“°Ca at 156 MeV.
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I. INTRODUCTION and the pseudostatdPS method [1,16,17. In the

The method of continuum discretized coupled channels;)memum_bln method, which consists of the averelge

. o .~ 11-3,13 and the midpoint(Mid) [2,13 methods, the
(CDCC) has been successful in describing nuclear reaction  continuum is divided into a finite number of bins. The

including weakly bound projectilefl—12. CDCC has been continuum channels within each bin state are then repre-

attracting much attention since the advent of experlmentgenteol by a single channel: the averaged state louethe

with radioa_ctive beams, because prpjectile breakup PTOCESSHY method and the state at the midpoint of the bin in the Mid
are essential to many of such reactigh$, 13. CDCC plays method. It has been confirmed that calculaghatrix ele-

an important role in the spectroscopic studies of radioactiw?“ents converge as the widthof the bins is decreased, and

nuclei through the nuclear reactions involving such nuclei. also that the two methods yield the same convefgethtrix

In CDCC for reactions with a projgctile consisti.n.g of two elements[1,3,13. From a practical point of view, the Av
fragments, the states of the projectile are clgssmed_by théethod requires less numerical works than the Mid [dr;
linear and the angular momentaand¢, of relative motion  the Ay method therefore is most widely used. In the PS
of the two fragments of the projectile, which are truncated bymethod, on the other hand, wave functions of the discretized
k<Knax and £=£p,, The truncation is the most basic as- preakup states are obtained by diagonalizing the internal
sumption in CDCC, and it is confirmed that calculatedyamitonian of the projectile, which describes the relative
Smatrix elements converge for sufficiently largga, and  notion of the two constituents, usitd-type basis functions.
€max[1,3,13. It has been shown that CDCC is the first-order gince the wave functions of such pseudobreakup states have
app_rOX|mat|on to the distorted Faddeev _equatlons, an_d_CO(Nrong asymptotic forms, the PS method was mainly used in
rections to the converged CDCC solution are negligibleye past to describe virtual breakup processes in the interme-
within the region of space in which the reaction takes placgyiaie stage of elastic scatterifi7] and (d, p) reactions[1].
[14]. ) ] ] Independent of the choice of the discretization methods,

As a consequence of the truncation, the integral equatiogne ghtains as a result of CDCC calculation discBteatrix
form of the equations of coupled channels, derived from theyjements to the discretized breakup states,{Sayi=0-N},
three-body Schrédinger equation, has a compact kernel, inys jjiustrated in Fig. @); S is given as a spike-type function
dicating that the equation is soluble mathematicBll§]. In  \yith respect tok. In the momentum-bin method, “breakup
practice, however, the coupled channels equations thus olymatrix elements'S(k), which describes the transition to the
tained are impossible to be solved because of the continy.continyum, are then approximately constructed by the his-
ously |nf!n|te number 'of cqu_pled break'up channels.' Thecogram with the widthA as illustrated in Fig. @); S(k) sat-
problem is solved by discretizing thecontinuum. The dis- isfies the condition tha§ equals to the integration dB(k)
cretization leads the coupled equations to a set of differentiglyer k within the region corresponding to theh bin. An

equations with a finite number of channels. explicit formula to deriveS(k) from {S} was given by Eq(9)
As for the discretization, two kinds of methods have been, Ref. [18], where the derivedSk) is continuous within

proposed so far, i.e., the momentum-bin methbe3,13,13  gach bin but not in the entire range kofjust the same as in

Fig. 1(b). A prescription to deriveSkk) from {S} within the
PS method was recently proposed in R&6] by assuming a
*Electronic address: taku2scp@mbox.nc.kyushu-u.ac.jp histogram form ofS(k) with different magnitudes of widths,
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(b) FIG. 2. lllustration of a three-bodgA+b+c) system. The sym-
0.2r . bol B=b+c stands for the projectile, andl is the target.
= k and its conjugate coordinatewhich are important for the
= breakup processes. As basis functions which satisfy this con-
"§ 0.1 - dition, we propose to employ the following two bases. One is
7 a set of ordinary Gaussian functiofik9], which we refer to
- asreal-range Gaussian functioris the present paper. The
other is a natural extension of thamplex-range Gaussian
0 . functions [20], i.e., Gaussian functions with the complex
(©) range parameters, the precise definition of which is given
0.2 | later. With these basis functions it is verified ti&k) of a
— smooth function obtained by the new PS method is consis-
& tent with the histogram-typ&(k) obtained by the Av method
o; oAl 1 with a very small widthA. It should be noted that the use of
o these bases of Gaussian form is extremely important for the
1528 simplification of numerical calculations, even in a case
where projectile is assumed to be composedhoée par-
0 , ticles; cf. Ref.[20] on the Gaussian expansion method for
0 0.5 1 few-body systems.
k [fm‘l] In Sec. Il, we recapitulate CDCC based on both the Av

and the PS methods of discretization. In Sec. Ill, we describe
FIG. 1. Schematic illustration of three types Bimatrix ele- g method of interpolation to obtain continuous breakup
ments for breakup continuum states. See text. Smatrix elements from discrete ones calculated with the PS
] ) ) method, and introduce the real- and the complex-range
which were estimated in a reasonable way. The reslidht  Gayssian basis. In Sec. IV, the validity of the present PS
was found to be similar to that obtained by the momentumsynethod is tested and justified for two realistic casés,
bin method. . _ +58Ni scattering at 80 MeV andLi+“°Ca scattering at
Thus, so far breakug-matrix elementsS(k) obtained by 156 MeV. In Sec. V, discussion is made for the potentiality
CDCC have a form such as that in Figb, namely, not o the present PS method for four-body breakup reactions in

smooth in the entire range &f However, in the CDCC cal- \yhich the projectile is assumed to be composed of three
culation of coincidence cross sections of the projectile fragparticles. Section VI gives a summary.

ments, such asd, pn) [4], it is desirable to transform the
histogram functior§k) [Fig. 1(b)] into a smooth function of
k, such as in Fig. ¢). In the calculations in Ref[4], a
smoothSk) was obtained by simply interpolating the histo-
gram using polynomial functions &f the accuracy of which We consider a reaction of a weakly bound projecile
needs be examined. impinging on a target nucleua. We treat a simple system
The purpose of the present paper is to propose a new Pshown in Fig. 2 in which the projectild is composed of two
method for projectile-breakup reactions, which generates agarticlesb and ¢ and the targef is inert. The three-body
curate breakufs-matrix elements as a smooth functionlof system is described by a model Hamiltonian
in its entire range. In order to achieve this purpose, we em-

Il. THE METHOD OF CONTINUUM DISCRETIZED
COUPLED CHANNELS

ploy appropriate basis functions in the PS method and apply H=Hpe+ Kr+ Ucou(R) + U,

them to the “smoothing procedure” of R¢L8] that is based

on the Av method. The new method assumes no farpri- Hpe= K + V),

ori for k distributions of breakups-matrix elementsSk),

same as in Refl18], and is independent of the type of the U = Uga(Fpa) + Uea(F o) (1)

basis functions used for the PS method. The only condition
for the basis functions for the PS wave functions is that theyectorr is the relative coordinate betwebrandc, R the one
constitute an approximate complete set in the wide range dfetween the center of mass of the pair andA, andryy
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denotes the relative coordinate between two parti¥lesid responds to the discretized breakup channels, each de-
Y. OperatorsK; andKy are kinetic energies associated with noted byy. The weight factoiWV, depends on the discreti-
andR, respectively, and/,(r) is the interaction betweed  ,5tion method used. The momerfg and p satisfy the
. . . b4

andc. The interactiorl,a(Uca) betweerb(c) andAis taken  iota] energy conservation:
to be the optical potential fds+A(c+A) scattering. For sim-
plicity, the spin dependence of the interactions is neglected. 2m2 o0
Furthermore, the Coulomb potential betweanand B is E=0"PY2uns + €= 1P/ 21pp + €¢, (6)
treated approximately as a function only Rf i.e., we ne-  where uap is the reduced mass of tha-B system and
glect Coulomb breakup processes and focus our attention g (e;,) is the energy oB in the ground(discretized con-
nuclear breakup. tinuum) state.

In CDCC, the three-body wave functioif,y, with the Inserting Eq. (5) into the approximate three-body
total angular momenturd and its projectiorM onz axis, is  Schradinger equatiolH-E)W$o°C=0 leads to a set of
expanded in terms of the orthonormal set of eigensiate$ coupled differential equations fdd’yo(Po, R andj(y(ﬁi, R):

Hpc:
& ., LL+1) 2upg
Wym(r, R) = 2 O(r)XfoLJ(POv RIIR ﬁ-'- e —> V,,(R) )(y(Py, R)
2 -
+237§M f Pk, Nxes(P, R/R dk - (2) = %VW(R)SW(PV, R) (7)
Y #y
where for all y including vy, wherelsozPo. The coupling poten-
tials V,,,(R) are obtained by
Vi=liYe( Q) @ iYL Q) low. 3)
For simplicity, we assume that tHe+c system has one V,y (R) = (551 (N[U V500 Dy er (1) (8

bound statedy(r) with angular momentunt, and con-
tinuum statesb,(k, r) with linear momentunk and angu-
lar momentum¢, both ranging from zero to infinity. The
d,(k,r) are real functions normalized to th&function in -
k [3]. The projectileB is initially in the bound state. The . oon [P~ oo
coefficient X@,_J(Xg L) of the expansion describes center- Py R) ~ u<L )(PV’ RISy~ \ = u(P,, R)
of-mass motion of theb-c pair relative toA in the state 0
®, (Py) with the linear and orbital angular momenta 9)
P (Py) andL, respectively. ) ) . : .
In CDCC, the sum ovef is truncated by <., and the Hereu (P R) andu (P R) are incoming and outgoing
kintegral byk=<k,a. FOr each’, furthermore, the continuum Coulomb wave functions with the momentumy The

states fronk=0 tok,,,, are discretized into a finite number of quantlty is the discreteS-matrix element for the tran-
states. The orthonormalized wave functions are denoted by'“on from the initial Channeb,o to a discretized con-

{(DW(I‘)I(ng(Q) i=1-N} whose energies;, are given by tinuum oney [cf. Fig. 1(a)].

The coupled equations are solved under the asymptotic
boundary condition

Eif‘si ir= <q)i€(r)i€Y€m(Qr)|Hbc|q)i’€(r)i(Y€m(Qr)>r- (4) I1l. DISCRETIZATION OF k CONTINUUM
Details of the discretization are described in the following Among the three methods of discretization of theon-
section. _ o _ tinuum, the relation between the Av and the Mid methods has
After the truncation and the discretizatiolyy is reduced  giready been clarifiefl3]. The present discussion therefore
to an approximate one, is focused on the Av and the PS methods.
P§ocC= PN, (Po, RIR
E o Xyt 0 A. The average method
Imax N . R In the Av method, thé-continuum[0, ky,.,], for eacht, is
+> > > V5ii®i(Nx,(P,,RIR, (5  divided into a finite number of bins, each with a widtky
1=0i=1 L =k;—k;_;, and the continuum breakup states in itiebin are
where averaged with a weight functiofy,(k) [1,2]. The resultant

orthonormal state is described as
Xy,(Po, R) = X'yo(P01 R), %=(0,4o, L, J),

- ki
%P R =W, (P, R), y=(i, €, L, J). <i>i€(r):Wi f @,k Nfi(Kdk (for Av), (10

On the right hand side of E@5), the first term represents
the elastic channel denoted by and the second one cor- then the weight factoW, is given by
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ki ) (“exact”) ones is possible, applying the prescription given in
Wo= | [fi(K]? dk. (1)  Ref. [18] to the PS method as follows. The exact breakup
ki1 T-matrix element is given by

For a bin far from a resonance, it is natural to $gtk)
=1, so thaw, = VA;,, sinced,(k, r) changes smoothly with (J) “) oL
k. On the other handd,(k, r) changes rapidly across the T (k) = (@ (k, DU (P, R)Y 3y U W) (15

resonance. One way of coping with this situation is to takeknserting the approximate complete S{Qie(r)} between

he bra vector and the operatorin Eqg. (15), and replac-
ing the ket vector by the CDCC wave functidb), one
obtains the following approximate relation:

A;, much smaller than the width of the resonance so tha
d,(k,r) does not change much within individual bins.
This, however, makes the number of bins large. Alterna-
tively, one can take a single bin which contains the whole
resonance peak and use a weight function of Breit-Wigner
type[1,5,6,8,10,
RHUIY (iUl (P, RS UIWS2C
ir/?2
e(k) — ges+il/2]|’

where e(k) is a continuous intrinsic energy of the+c

system. The discretized intrinsic energy:ﬁzkflz,ubc cor-

reszponding to each bin is obtained ﬁ%.,:(ki+ki_1)2/4

;rr?éf./lz for a nonresonance bin aeg= €,sfor a resonance fPK) = (D (K, 1)|Dio(r)) (17)
Comparing the approximate for@) with the exact one and

(2) in the asymptotic regiofR— oo, it is natural to assume

fie(k) = (12)

~ 3 0T, (16)

where

S( AS?’V - <(I)I€u( (P'yy R)ng|U|lPCDC . (18)
0
o W, fullg forle =ke=k (13 The last form of Eq(16) has been derived by replaciriy
B in o) PR S S
to hold in a good approximation, which was confirmed byby P, in u’(P,R), which is valid since thé distribution
Tostevin et al. [18] in the framework of the Av method. of flf(k) is sharply localized ak= k|—\2,ubcewlﬁ T77 is a
They employed, in actual calculatiofy«(k)=1 for ¢>0 as  CDCC breakupT-matrix element calculated with tDCC.

described above, whild;,(k)=k for ¢=0, which gives a gjnce theT are proportional to the corresponding
change ofw,, i.e., W, = (k*-k%)¥2 In any case, it should :
be noted thaiS({JL(k) given by Eq.(13) is continuous only
within eachk-bin region but not in the entirle [cf. Fig. 1(b)].

S-matrix element§w ,
70

S ~3 AKS, ,,. (19
B. The pseudostate method
In the PS method, we diagonalig in a space spanned The “k-interpolation formula” (19) for the PS method
by a finite number ofL?type basis functions, sajs(r)},  agrees with the corresponding one in R@fg] for the Av
and obtain discrete eigenstat@s (r)} as method. Thus, Eq(19) can be used for any method of
discretization, if the discretized wave functions constitute
A _ an approximate complete set. The interpolation formula is
Di(r) = ; Aiej bielr). (14) also independent of the type of the basis function taken, as
_ _ _ _ . _ _ obvious from the derivation.
The k continuum is automatically discretized by identify-  As such basis functions, we here propose two types; one
ing theith eigenstates above the breakup threshold withs the conventional real-range Gaussian functions
®;,(r). The weight factoW,, is unity if the resultant dis-

cretized statesb;,(r) are orthonormalized. Among the

eigenstates, only low-lying states belonging to the region Dje(r) = rlexd - (r/aj)z] (j=1-n), (20)
0<es ﬁ2k§ugzﬂbc are taken as breakup channels in CDCC
equation(7), where k. is the cutoff value ofk corre-
sponding tokay in the Av method.

The CDCC equationg7) thus obtained yield discrete
breakup Smatrix elements. If the basis functions form a = a,(aa,)i~VD (21)
complete set with good accuracy in the regionroénd k B '
being important for breakup processes, an accurate transfoFhe other is an extension of ER0) introduced in Ref.
mation from the discret&matrix elements to the continuous [20], i.e., the following pairs of functions:

where{a;} are assumed to increase in a geometric progres-
sion[19]:
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TABLE I. Parameters of the optical potentials for>8Ni and p+58Ni at half the deuteron incident energy. We followed the same notation
as in Ref.[21].

System Vo (MeV) ro (fm) ag (fm) W, (MeV) ry (fm) ay (fm) Wp (MeV) rwp (fm) ayp (fm)

p+58Ni 44.921 1.17 0.750 6.10 1.32 0.534 2.214 1.32 0.534
n+58Ni 42.672 1.17 0.750 7.24 1.26 0.580 2.586 1.26 0.580
qu%(r) =rexd - (r/a))?lcogb(r/a)?], (€=1) breakup is negligible, because couplings, (R) be-

tween odd and even parity breakup states contain contribu-
S = f _ 2 21 (i = tion from Upa(rya) andUpa(rya) in opposite sign in Eg8).
2(r)=r‘ex r/a;)“]sinb(r/a =1-n). (22 PAL! pA nAllnA
qb”i( ) pL=(ray)"] 'r[ (_ J_) 1 ) ( ) Table | shows the parameters of the potentials used; the in-
Here,b is a free parameter, in principle, but numerical testteraction between a nucleon and the target is the nucleon-
showed thab=/2 is recommendable. Bot#y; and ¢; are  nucleus optical potential of Becchetti and Greenlg2¥ at
used as the basis functiods, in Eq. (14); the total number  haif the deuteron incident energy. The interaction between

of basis is thus @ proton and neutron is a one-range Gaussian potenijgl,
The basis functiong22) can also be expressed as =vo exfg—(r/r)?] with vy=-72.15 MeV andry=1.484 fm,
¢>1-C€(r) :{lﬁ;g(f) + (N2, which reproduces the radius and the binding energy of deu-
teron.
N . In the Av method the weight function is taken fgk)
$1e(0) ={5(0) = (N} (20), 23 =1, since the projectilédeuteron has no resonance state.
with The model space that gives convergence within error of 1%
. , o, turns out to beA;,=1.3/30 fm* andk,,=1.3 fni't. The re-
Ge(r)=r'exp[=nre], 7;=(1+ib)/aj, (24 sulting values okyq, andA;, are different from those used in

i.e., Gaussian functions with a complex-range parametefhe previous analysig 3]; the main purpose of Ref13] was
We thus refer to the basi$jce and ¢jse as the complex- © show that the convergence of the CDCC solution was

range Gaussian basis. obtained within a model space of practical use and that the
The complex-range Gaussian basis functions are OSCi"(,ﬂ;onverged solution satisfied an appropriate boundary condi-

— -1
ing with r. They are therefore expected to simulate the oscilfion: The model space taken theig,,=1.0 fm™ and A;

. . Cil-— s .
lating pattern of the continuous breakup state wave functions /8 fm™, is indeed enough for the elastiamatrix elements

better than the real-range Gaussian basis functions do. Mor&nd the dominant part of the breakup ones with the smigller
over, numerical calculation with the complex-range Gausstherefore t_he elastic cross sections and the total breakup
ians can be done using essentially the same computer pr6f0SS sections are well reproduced. However, the model
grams as for the real-range Gaussians, just replacing regPace is found to be insufficient to obtain the “exact
variables fora of Eq. (21) by complex ones. Usefulness of Smatrix elements in the h|gh_—lreg|on around 1'0_5”{

the real- and complex-range Gaussian basis functions in feW€nce we take herky,,,=1.3 fm ™ and A,=1.3/30 fm~ as
body calculations are extensively presented in the reviednentioned above.

work [20]. We here emphasize that even in the case where

the projectile is assumed to be three-body system, the Gaus! () 4 ) 4
ian basis functions are easily utilized in the CDCC calcula- s-state
tion with the PS method. We return this point in Sec. V. 18 18

o
=
w
-
[+

s—state

A
®
g
(4]

IV. NUMERICAL TEST OF THE 1.01
PSEUDOSTATE METHOD ]

k [fm™]

In the previous stringent test of CDCC with the Av and
Mid methods[3,13], calculated elastic and break@matrix 054
elements were found to converge, for sufficiently large
model space. In this section, we test the PS method by com
paring the calculate&matrix elements with those obtained ]
with the Av method that converged within the error of 1% 090 0.0
and hence forth called “exacBmatrix elements. The test is
made for two systemsg+%Ni scattering at 80 MeV and -2.22 MeV -2.22 MeV
bLi+4%Ca scattering at 156 MeV. real-range Gaussian basis complex-range Gaussian basis

FIG. 3. Discretized momenta for real-ran¢® and complex-
range(b) Gaussian bases for deuteron. In each panel, thérigfit)

As for the orbital angular momentum of the projecti#®,  side corresponds to thestate(d state. The horizontal dotted line
we take ¢=0 and 2. It should be noted that thlewave  represents the cutoff momentuky, taken to be 1.3 fiit.

A. d+58Ni scattering at 80 MeV
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10— . . r . r r with k>k.,=1.3 fr', which are obtained by diagonalizing
Av Hp., do not affect the breakuf-matrix elements withk

L e PS (real-range) | <k., because the coupling potentials between the kwo
———— PS (complex-range) regions are weak.

10% 3 Figure 3 shows the discrete momefitatranslated from
i the eigenenergies, for the real- and complex-range Gauss-

© 3 1 ian bases. One sees that for the real-range Gaussian basis, the
E discrete momenta are dense in the smakeregion and
1072k § sparse in the largéeone. This distribution is not so effective
in simulating thek continuum, in the highek region in par-
ticular. For the complex-range Gaussian basis, on the other
hand, the discrete momenta are distributed almost evenly. A

10~ 4 similar sequence of th&i is also seen for the case of the
transformed harmonic oscillator basis of R@f6,22. Such a

' L sequence ok; is close to that in the Av method. Thus, the
60 120 180 . .
... (deg) compleg-rang_e Gau§3|an bas.ls, as wgll as .the transformed
harmonic oscillator, is well suited for simulating thkecon-
FIG. 4. Angular distribution of the elastic differential cross sec- tinuum in the entire region @k<kg,;.
tion as a ratio to the Rutherford one fai+%Ni scattering at For the elasticSmatrix elements, both the real- and
80 MeV. Results with the Av method, and the real- and complex-complex-range Gaussian PS methods well reproduce the “ex-
range Gaussian PS methods are represented by the solid, dotted, act” one calculated with the Av method, as confirmed in Fig.
dashed lines, respectively. 4 for the differential cross section. The three types of calcu-
lations, the real-range Gaussian R8otted ling, the
In the real-range Gaussian PS method, a similar conveicomplex-range Gaussian R&ashed ling and the Av meth-
gence is found, when the number of breakup chaniglg, ods(solid line), yield an identical cross section at all scatter-
is 18 for boths and d waves. The number is even smaller ing angles. Thus, both of the PS methods proposed here are
when the complex-range Gaussian basis is takipg:is 16  useful for treating the breakup effects on the elastic scatter-
for s wave and 17 ford wave. The basis functions finally ing.
obtained have parameter sd@=1.0,a,=30.0,n=30) for Figure 5 shows the result for break@matrix elements
real-range Gaussian basis afa,=1.0,a,=20.0,7=40,b  at the grazing total angular momentulm17, as a function
=m/2) for complex-range one. For both of theMss is  of k. The real-range Gaussian PS metfiddshed ling well
smaller than the number of basis functions. High-lying statesimulates the exact solution calculated with the Av method

ol

s—state (J=17} d-state (J=17 , L=15}
I (a) ————— PS (real-range) 1 F (b) ————— PS (real-range)
0.1+ PS (complex-rangeM 0.1 PS (complex-range)
\ [—] AV 4 L | —] AV _

£ £

2 008 2 008 .

28 & FIG. 5. The squared moduli of breakup
Smatrix elements as a function &fat the graz-
ing total angular momentund=17 for d+58Ni

] 3 1 scattering at 80 MeV. The left upper pan@)
or | " Ul : shows the result for the state(¢=0,L=17). Re-
0 Dok ° Tk sults for thed state(£=2) with L=15, 17, and 19
d-state (J=17, L=17) d-state (J=17, L=19) are, respectively, shown i), (c), and (d). In
L © e PS (realrange) | N PS (renlrange) each panel, the dashgsbolid) line represents.the
0.1+ PS (complex-range)- 01 PS (complex-rangeX result of the real-rangeeomplex-rangeGaussian
== Av | L = Av J PS method. The step line is the result for the “ex-
_ act” Smatrix element calculated by the Av

& & method.

§ 0.08 5 0.05

z 2

o ok I_M
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TABLE Il. The same as in Table | but fa+4°Ca at 104 MeV andl+°8Ca at 56 MeV.

System Vo (MeV) ro (fm) ag (fm) Wy (MeV) ry (fm) ay (fm) Wp (MeV) rwp (fm) ayp (fm)

a+%Ca 219.30 1.21 0.713 98.8 1.40 0.544
d+%ca 75.470 1.20 0.769 2.452 1.32 0.783 9.775 1.32 0.783

(step ling in the lowerk region that corresponds to the main model space is composed of twecontinua for¢=0 and 2.
components of the breakimatrix elements, but inaccurate Since there exists a resonance {2, the d-wave
in the higherk region arounck=0.8 fmt. The deviation at k-continuum is further divided in the Av method into the
higherk stems from the fact that real-range Gaussian basigesonant part[0<k<0.55] and the nonresonant part
poorly reproduces the continuum breakup steték, r) atthe  [0.55<k<2.0]. In the former region thek continuum of
higherk. Figure 5 shows that this problem can be solved by, ,_,(k, r) varies rapidly withk. The Av method can simulate
using the complex-range Gaussian baswlid line) instead.  hjg rapid change by taking (-,(k/=1 with bins of an ex-
tremely small width. In fact, clear convergence is found for
B. °Li+ “%Ca scattering at 156 MeV both the elastic and the breakSpnatrix elements, when the
Characteristic to this scattering, the projectfliei has  resonance part is described by 30 bins and the nonresonance
d-wave triplet resonance statég, 2*, 1%). For simplicity, we  part of thed-wave and thes-wave k-continua by 20 bins.
neglect the intrinsic spin dLi, following Refs.[1,5,6. Then  Another Av discretization, which has been widely used as a
the projectile has only ond-wave resonance state wit,,  convenient prescriptiofil,5,6,8,1Q, is also made for com-
=2.96 MeV andl'=0.62 MeV. Obviously the energy and the parison, in which the resonance region is represented by a
width do not reproduce experimental data, but at least thgingle state with the weight factor of Breit-Wigner type given
elastic cross section SLi is not affected much by the ne- by Eq.(12). The two sorts of Av discretization are compared
glect of the spin23]. with the real- and complex-range Gaussian PS methods.
In this scattering, the three-body system consists of deuwith the PS methods, convergence of Smatrix elements
teron, a, and*°Ca. The interactions between each pair of theis found with 21s-wave breakup channels and #2vave
constituents are the optical potential @“°Ca scattering at ones. The level sequences of the resulting discrete eigen-
104 MeV [24], that of d+%°Ca scattering at 56 Me\[25],  states are shown in Fig. 6 for both the basis functions, which
and v,g=vo exd-(r/ry)?] with v,=-74.19 MeV andr, have the same properties as in Fig. 3. The parameter sets of
=2.236 fm. Table Il shows the parameters of the optical pothe basis functions, finally taken in the PS methods,(aje
tentials. =1.0,a,=30.0,n=30) for the real-range Gaussian basis and
The model space sufficient for describing breakup pro-
cesses in this scattering kg,,=2.0 fmi! and ¢,,,,=2; the

........... Watanabe
@ 4 ®) 4 —-—-- conventional Av
20 s—state d-state 20 s—state d-state (Brei t—Wigner)
- 10° precise Av |
- I ———- PS (complex-range)
154 15— bCE -----
ol E 10 — L MNUS e
] — — = — — 10—4 L ]
— — —— — ~
—_— — k=055 e R — N 1
054 —— _ 05+ —— —
_— = _— — 0 20 40 60 80
= = E— @... (deg)
0.0 0.0
FIG. 7. Angular distribution of the elastic differential cross sec-
tion (Rutherford ratip for SLi+4%Ca scattering at 156 MeV. The
1.47 MeV 1.47 MeV results of the complex-range Gaussian PS method and the approxi-
real-range Gaussian basis complex—range Gaussian basis mate treatment of the resonance %f, i.e., the conventional Av

method with the weight factor of Breit-Wigner type, are shown by
FIG. 6. The same as in Fig. 4 but f8ki; kg, is taken to be the dashed and dash-dotted lines, respectively. The solid line is the
2.0 fmL. The horizontal dashed line corresponds to the border moexact solution calculated by the Av method with dense bins and the
mentum between the resonance and nonresonance parts used in tlegted line is the result of Watanabe model, i.e., without breakup
Av method. effects.
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0 s-state (J=43) d-state (J=43 , L=41)
| @ === PS (real-range) | (b) ———— PS(real-range)
PS (complex-range) PS(complex-range
| — AV 7 — AV
& £
o 0.08 o
£ | | £
r 1 FIG. 8. The same as in Fig. 5 but fét.i
: ; i +40Ca scattering at 156 MeV. The corresponding
ok . A , grazing total angular momentum is 43. The step
- i - . . .
0 ! k[fm™] 0 K[fm™] line is the result of the Av method with dense
d-state (J=43 , L=43) d-state (J=43 , L=45) bins. Note that the difference between the results
T T T T .
© - PS (real-range) @  ———— PS (real-range) of the re_al- anq _complex-rgnge Gaussian PS
PS (complex-range PS (complex—range methods is not visible since it is less than about
— Ay — Av 1%.
0.2 1 0.2 -
£ g
z z
i 0.1 z 0.1+
oF oF
1 I 1 I
0 1 K[ fm™] 0 1 K[ fm™]

(2y=1.0,a,=20.0, h=40,b=m/2) for the complex-range one. breakup reactions. In this section, we investigate the appli-
For both basek,, is taken to be 2.0 fitt. cability of CDCC to four-body breakup reactions of the pro-
Figure 7 shows the differential cross section of the elastigectile consisting of three particleb#c+x (Fig. 9). The Av
scattering. The result with the precise Av discretization basethethod needs the exact three-body wave functions being im-
on dense bins, considered to be the exact solution, is denotgassible to obtain. We can circumvent this problem with the
by the solid line. The dotted line represents the result of theoresent PS method; one can prepare an approximate com-
Watanabe model, i.e., with no breakup channels. The coryjete set{d,} by diagonalizing the Hamiltonian of the pro-
‘ée”_tt'ovr:/?‘l AV cthscre(tjlzatrl]og,t:)a:jselpl on trhe ;"’e'ghé factt?]r ofjectile in a space spanned by a set of basis functionis2of
reit-Wigner type (dash-dotted ling well describes the type. With{®,;} as the wave functions of the breakup chan-

breakup effects, particularly at forward angl@s=20%, but els, one can obtain an approximate total wave function
deviates considerably from the exact solution at larger angleg cpcc by solving CDCC equation). Inserting#PC into

>30°). - i i izati . .
(6>30°. The complex-range Gaussian PS d|scret|zat|or1he exact form of breakup-matrix elements in place of the

(dashed lingwell reproduces the exact solution with a num- . , )
ber of channels being suitable for practical use. The realSexaCt total wave function, one reaches an approximate form:

range Gaussian PS method gives just the same result as the
complex-range one. T, =(¢PR*ay)|y,|wePeo, | (25
Figure 8 represents break@matrix elements at grazin ) , o
g P Spm g 9 where U, is the sum of all interactions in the four-body

total angular momenturd=43. The real- and complex-range ; )
Gaussian PS discretization well reproduces the exact solutigiy SteMA+b+c+Xx), r andy are two Jacobi coordinates of
calculated by the Av discretization with dense bins. The re{n€ three-bodyb+c+x) system, anck(q) is the momen-
sults of the two PS methods turn out to coincide within thelU™ being conjugate ta(y). The accuracy of Eq(25)
thickness of the line. The resonance peak can be expressed
by only 8(12) breakup channels in the complex-rarigeal-
rangg Gaussian PS method, while the corresponding number
of breakup channels is 30 in the Av method, as mentioned
above. Thus, one can conclude that the real- and complex-
range Gaussian PS methods are very useful for describing
not only nonresonant states but also resonant ones.

V. DISCUSSIONS ON FOUR-BODY BREAKUP REACTION

In the past CDCC calculations the projectile was assumed FIG. 9. lllustration of a four-bodyA+b+c+x) system. The pro-
to be a two-body system, dealing only with three-bodyijectile consists ob, ¢, andx, andA is the target.
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depends on how complete the Q»@ is within the region inaccurate fqr Fhe highek region. '!'hus, bot.h bases can b_e
(0<I<T1ae OSY<Yimae 0<K<knae 0<0=<Qns) being Used for realistic analyses of elastic scattering and projectile-
important for the breakup process considered. An imporbreakup reactions including coincidence cross sections and
tant advantage of the use of the real- and complex-rangenergy spectra of ejected fragments.

Gaussian bases is that analytic integrations avandy The present new PS method has at least two advantages
can be done in Eq(25), by expandingU, in terms of a  over the widely used momentum-bin average method. One is
finite number of Gaussian basis functions. This makes théhat it does not need the exact wave function of the projectile
derivation of T, feasible. Analyses based on this formula- over the entire region af. This is important from a theoret-

tion are of much interest as a future work. ical point of view. The other is that with the real- and
complex-range Gaussian bases one can calculate all the cou-
VI. SUMMARY pling potentials semianalytically20], which is very useful in

actual calculations. Furthermore, if the projectile has reso-

The method of continuum discretized coupled channelfances in its excitation spectrum, the new method discretizes
(CDCQ) is an accurate method of treating three-bodythe complicated spectrum with a reasonable number of the
breakup processes, in which the discretization ofklw®n-  pasjs functions, without distinguishing the resonance states
tinuum is essential. In this paper, we proposed the newWrom nonresonant continuous states. These advantages of the
method of pseudostat®9 discretization which can be used new method are extremely helpful, sometimes even essential,
not only for virtual breakup processes in elastic scatteringn applying CDCC to four-body breakup effects of unstable
but also for breakup reactions. First we showed that an agyyclei such aSHe and!!Li. The use of the Gaussian bases is
curate transformation from the discrete breal&lplatrix el- promising for describing pseudobreakup states of these pro-
ements calculated with the PS method to smooth ones ﬁctiies Consisting of three fragmer(t&)re{-n+n) [20] Ac-
possible, since the PS basis functions can form in the gooﬁja"y, a CDCC study of four-body breakup effects on the
approximation a complete set in the finite regiomadndk  é4e elastic scattering from?C at 38.3 MeV/nucleon is in

being important for the breakup processes. As bases satisfyjrogresg26], and the result of the analysis will be reported
ing the approximate completeness, we proposed to employ a forthcoming paper.

the real- and complex-range Gaussian bases; both of them

can treat virtual breakup processes in the elastic scattering

W|th.h|gh accuracy, i.e., with the error of calculated cross ACKNOWLEDGMENTS
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