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A new method of pseudostate discretization is proposed for the method of continuum discretized coupled
channels to deal with three-body breakup processes. In the method, discreteS-matrix elements to the pseudo
(discretized) continuum states are transformed into smooth ones to the exact continuum states of the projectile.
As for the basis functions for describing pseudostate wave functions, we take real- and complex-range Gauss-
ian functions, which form in good approximation a complete set in a finite configuration space being important
for breakup processes. This “approximate-completeness” property is essential to make transformedS-matrix
elements accurate. Moreover, the use of these Gaussian bases is expected to be very useful to describe
four-body breakup processes. Accuracy of the method is tested quantitatively for two realistic examples: elastic
and projectile-breakup processes ind+58Ni scattering at 80 MeV and those in6Li+ 40Ca at 156 MeV.
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I. INTRODUCTION

The method of continuum discretized coupled channels
(CDCC) has been successful in describing nuclear reactions
including weakly bound projectiles[1–12]. CDCC has been
attracting much attention since the advent of experiments
with radioactive beams, because projectile breakup processes
are essential to many of such reactions[11,12]. CDCC plays
an important role in the spectroscopic studies of radioactive
nuclei through the nuclear reactions involving such nuclei.

In CDCC for reactions with a projectile consisting of two
fragments, the states of the projectile are classified by the
linear and the angular momenta,k and,, of relative motion
of the two fragments of the projectile, which are truncated by
køkmax and ,ø,max. The truncation is the most basic as-
sumption in CDCC, and it is confirmed that calculated
S-matrix elements converge for sufficiently largekmax and
,max [1,3,13]. It has been shown that CDCC is the first-order
approximation to the distorted Faddeev equations, and cor-
rections to the converged CDCC solution are negligible
within the region of space in which the reaction takes place
[14].

As a consequence of the truncation, the integral equation
form of the equations of coupled channels, derived from the
three-body Schrödinger equation, has a compact kernel, in-
dicating that the equation is soluble mathematically[14]. In
practice, however, the coupled channels equations thus ob-
tained are impossible to be solved because of the continu-
ously infinite number of coupled breakup channels. The
problem is solved by discretizing thek continuum. The dis-
cretization leads the coupled equations to a set of differential
equations with a finite number of channels.

As for the discretization, two kinds of methods have been
proposed so far, i.e., the momentum-bin method[1–3,13,15]

and the pseudostate(PS) method [1,16,17]. In the
momentum-bin method, which consists of the average(Av)
[1–3,15] and the midpoint (Mid) [2,13] methods, the
k-continuum is divided into a finite number of bins. The
continuum channels within each bin state are then repre-
sented by a single channel; the averaged state overk in the
Av method and the state at the midpoint of the bin in the Mid
method. It has been confirmed that calculatedS-matrix ele-
ments converge as the widthD of the bins is decreased, and
also that the two methods yield the same convergedS-matrix
elements[1,3,13]. From a practical point of view, the Av
method requires less numerical works than the Mid one[13];
the Av method therefore is most widely used. In the PS
method, on the other hand, wave functions of the discretized
breakup states are obtained by diagonalizing the internal
Hamiltonian of the projectile, which describes the relative
motion of the two constituents, usingL2-type basis functions.
Since the wave functions of such pseudobreakup states have
wrong asymptotic forms, the PS method was mainly used in
the past to describe virtual breakup processes in the interme-
diate stage of elastic scattering[17] and sd, pd reactions[1].

Independent of the choice of the discretization methods,
one obtains as a result of CDCC calculation discreteS-matrix
elements to the discretized breakup states, sayhSi; i=0–Nj,
as illustrated in Fig. 1(a); Si is given as a spike-type function
with respect tok. In the momentum-bin method, “breakup
S-matrix elements”Sskd, which describes the transition to the
k-continuum, are then approximately constructed by the his-
togram with the widthD as illustrated in Fig. 1(b); Sskd sat-
isfies the condition thatSi equals to the integration ofSskd
over k within the region corresponding to theith bin. An
explicit formula to deriveSskd from hSij was given by Eq.(9)
in Ref. [18], where the derivedSskd is continuous within
each bin but not in the entire range ofk, just the same as in
Fig. 1(b). A prescription to deriveSskd from hSij within the
PS method was recently proposed in Ref.[16] by assuming a
histogram form ofSskd with different magnitudes of widths,*Electronic address: taku2scp@mbox.nc.kyushu-u.ac.jp
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which were estimated in a reasonable way. The resultantSskd
was found to be similar to that obtained by the momentum-
bin method.

Thus, so far breakupS-matrix elementsSskd obtained by
CDCC have a form such as that in Fig. 1(b), namely, not
smooth in the entire range ofk. However, in the CDCC cal-
culation of coincidence cross sections of the projectile frag-
ments, such assd, pnd [4], it is desirable to transform the
histogram functionSskd [Fig. 1(b)] into a smooth function of
k, such as in Fig. 1(c). In the calculations in Ref.[4], a
smoothSskd was obtained by simply interpolating the histo-
gram using polynomial functions ofk, the accuracy of which
needs be examined.

The purpose of the present paper is to propose a new PS
method for projectile-breakup reactions, which generates ac-
curate breakupS-matrix elements as a smooth function ofk
in its entire range. In order to achieve this purpose, we em-
ploy appropriate basis functions in the PS method and apply
them to the “smoothing procedure” of Ref.[18] that is based
on the Av method. The new method assumes no forma pri-
ori for k distributions of breakupS-matrix elementsSskd,
same as in Ref.[18], and is independent of the type of the
basis functions used for the PS method. The only condition
for the basis functions for the PS wave functions is that they
constitute an approximate complete set in the wide range of

k and its conjugate coordinater which are important for the
breakup processes. As basis functions which satisfy this con-
dition, we propose to employ the following two bases. One is
a set of ordinary Gaussian functions[19], which we refer to
as real-range Gaussian functionsin the present paper. The
other is a natural extension of that,complex-range Gaussian
functions [20], i.e., Gaussian functions with the complex
range parameters, the precise definition of which is given
later. With these basis functions it is verified thatSskd of a
smooth function obtained by the new PS method is consis-
tent with the histogram-typeSskd obtained by the Av method
with a very small widthD. It should be noted that the use of
these bases of Gaussian form is extremely important for the
simplification of numerical calculations, even in a case
where projectile is assumed to be composed ofthree par-
ticles; cf. Ref.[20] on the Gaussian expansion method for
few-body systems.

In Sec. II, we recapitulate CDCC based on both the Av
and the PS methods of discretization. In Sec. III, we describe
a method of interpolation to obtain continuous breakup
S-matrix elements from discrete ones calculated with the PS
method, and introduce the real- and the complex-range
Gaussian basis. In Sec. IV, the validity of the present PS
method is tested and justified for two realistic cases,d
+58Ni scattering at 80 MeV and6Li+ 40Ca scattering at
156 MeV. In Sec. V, discussion is made for the potentiality
of the present PS method for four-body breakup reactions in
which the projectile is assumed to be composed of three
particles. Section VI gives a summary.

II. THE METHOD OF CONTINUUM DISCRETIZED
COUPLED CHANNELS

We consider a reaction of a weakly bound projectileB
impinging on a target nucleusA. We treat a simple system
shown in Fig. 2 in which the projectileB is composed of two
particlesb and c and the targetA is inert. The three-body
system is described by a model Hamiltonian

H = Hbc + KR + UCoulsRd + U,

Hbc = Kr + Vbcsr d,

U = UbAsr bAd + UcAsr cAd. s1d

Vectorr is the relative coordinate betweenb andc, R the one
between the center of mass of theb-c pair andA, and rXY

FIG. 1. Schematic illustration of three types ofS-matrix ele-
ments for breakup continuum states. See text.

FIG. 2. Illustration of a three-bodysA+b+cd system. The sym-
bol B=b+c stands for the projectile, andA is the target.
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denotes the relative coordinate between two particlesX and
Y. OperatorsKr andKR are kinetic energies associated withr
and R, respectively, andVbcsr d is the interaction betweenb
andc. The interactionUbAsUcAd betweenbscd andA is taken
to be the optical potential forb+Asc+Ad scattering. For sim-
plicity, the spin dependence of the interactions is neglected.
Furthermore, the Coulomb potential betweenA and B is
treated approximately as a function only ofR, i.e., we ne-
glect Coulomb breakup processes and focus our attention on
nuclear breakup.

In CDCC, the three-body wave functionCJM, with the
total angular momentumJ and its projectionM on z axis, is
expanded in terms of the orthonormal set of eigenstatesF of
Hbc:

CJMsr , Rd = o
L

YJM
,0,LF0srdx,0LJsP0, Rd/R

+ o
,,L

YJM
,,LE

0

`

F,sk, rdx,LJsP, Rd/R dk, s2d

where

YJM
,,L = fi,Y,sVrd ^ iLYLsVRdgJM. s3d

For simplicity, we assume that theb+c system has one
bound stateF0srd with angular momentum,0 and con-
tinuum statesF,sk, rd with linear momentumk and angu-
lar momentum,, both ranging from zero to infinity. The
F,sk, rd are real functions normalized to thed function in
k f3g. The projectileB is initially in the bound state. The
coefficient x,LJsx,0LJd of the expansion describes center-
of-mass motion of theb-c pair relative toA in the state
F, sF0d with the linear and orbital angular momenta
P sP0d and L, respectively.

In CDCC, the sum over, is truncated by,ø,max and the
k integral bykøkmax. For each,, furthermore, the continuum
states fromk=0 tokmax are discretized into a finite number of
states. The orthonormalized wave functions are denoted by

hF̂i,srdi,Y,msVrd;i=1–Nj whose energiesei, are given by

ei,di,i8 = kF̂i,srdi,Y,msVrduHbcuF̂i8,srdi,Y,msVrdlr . s4d

Details of the discretization are described in the following
section.

After the truncation and the discretization,CJM is reduced
to an approximate one,

CJM
CDCC= o

L
YJM

,0,LF0srdx̂g0
sP0, Rd/R

+ o
l=0

lmax

o
i=1

N

o
L

YJM
,,LF̂i,srdx̂gsP̂g, Rd/R, s5d

where

x̂g0
sP0, Rd = xg0

sP0, Rd, g0 = s0, ,0, L, Jd,

x̂gsP̂g, Rd = WgxgsP̂g, Rd, g = si, ,, L, Jd.

On the right hand side of Eq.s5d, the first term represents
the elastic channel denoted byg0 and the second one cor-

responds to the discretized breakup channels, each de-
noted byg. The weight factorWg depends on the discreti-

zation method used. The momentaP0 and P̂g satisfy the
total energy conservation:

E = "2P0
2/2mAB + e0 = "2P̂g

2/2mAB + ei,, s6d

where mAB is the reduced mass of theA-B system and
e0 sei,d is the energy ofB in the groundsdiscretized con-
tinuumd state.

Inserting Eq. (5) into the approximate three-body
Schrödinger equationsH−EdCJM

CDCC=0 leads to a set of

coupled differential equations forx̂g0
sP0, Rd and x̂gsP̂i, Rd:

F d2

dR2 + P̂g
2 −

LsL + 1d
R2 −

2mAB

"2 VggsRdGx̂gsP̂g, Rd

= o
g8Þg

2mAB

"2 Vgg8sRdx̂g8sP̂g8, Rd s7d

for all g including g0, whereP̂0=P0. The coupling poten-
tials Vgg8sRd are obtained by

Vgg8sRd = kYJM
,,LF̂i,srduUuYJM

,8,L8F̂i8,8srdlr ,VR
. s8d

The coupled equations are solved under the asymptotic
boundary condition

x̂gsP̂g, Rd , uL
s−dsP̂g, Rddg,g0

−Î P̂g

P̂0

Ŝg,g0
uL

s+dsP̂g, Rd.

s9d

HereuL
s−dsP̂g, Rd anduL

s+dsP̂g, Rd are incoming and outgoing

Coulomb wave functions with the momentumP̂g. The

quantityŜg,g0
is the discreteS-matrix element for the tran-

sition from the initial channelg0 to a discretized con-
tinuum oneg fcf. Fig. 1sadg.

III. DISCRETIZATION OF k CONTINUUM

Among the three methods of discretization of thek con-
tinuum, the relation between the Av and the Mid methods has
already been clarified[13]. The present discussion therefore
is focused on the Av and the PS methods.

A. The average method

In the Av method, thek-continuumf0,kmaxg, for each,, is
divided into a finite number of bins, each with a widthDi,
=ki−ki−1, and the continuum breakup states in theith bin are
averaged with a weight functionfi,skd [1,2]. The resultant
orthonormal state is described as

F̂i,srd =
1

Wg
E

ki−1

ki

F,sk, rdf i,skddk sfor Avd, s10d

then the weight factorWg is given by

NEW TREATMENT OF BREAKUP CONTINUUM IN THE… PHYSICAL REVIEW C 68, 064607(2003)

064607-3



Wg
2 =E

ki−1

ki

ff i,skdg2 dk. s11d

For a bin far from a resonance, it is natural to setf i,skd
=1, so thatWg=ÎDi,, sinceF,sk, rd changes smoothly with
k. On the other hand,F,sk, rd changes rapidly across the
resonance. One way of coping with this situation is to take
Di, much smaller than the width of the resonance so that
F,sk, rd does not change much within individual bins.
This, however, makes the number of bins large. Alterna-
tively, one can take a single bin which contains the whole
resonance peak and use a weight function of Breit-Wigner
type f1,5,6,8,10g,

f i,skd = U iG/2

eskd − eres+ iG/2
U , s12d

where eskd is a continuous intrinsic energy of theb+c

system. The discretized intrinsic energyei ="2k̂i
2/2mbc cor-

responding to each bin is obtained ask̂i
2=ski +ki−1d2/4

+Di,
2 /12 for a nonresonance bin andei =eres for a resonance

one.
Comparing the approximate form(5) with the exact one

(2) in the asymptotic regionR→`, it is natural to assume

S,,L
sJd skd =

Ŝg,g0

Wg

f i,skd for ki−1 , k ø ki s13d

to hold in a good approximation, which was confirmed by
Tostevin et al. [18] in the framework of the Av method.
They employed, in actual calculation,f i,skd=1 for ,.0 as
described above, whilef i,skd~k for ,=0, which gives a
change ofWg, i.e., Wg~ ski

3−ki−1
3 d1/2. In any case, it should

be noted thatS,,L
sJd skd given by Eq.(13) is continuous only

within eachk-bin region but not in the entirek [cf. Fig. 1(b)].

B. The pseudostate method

In the PS method, we diagonalizeHbc in a space spanned
by a finite number ofL2-type basis functions, sayhfj,srdj,
and obtain discrete eigenstateshF̂i,srdj as

F̂i,srd = o
j

Ai,,j f j,srd. s14d

The k continuum is automatically discretized by identify-
ing the ith eigenstates above the breakup threshold with

F̂i,srd. The weight factorWg is unity if the resultant dis-

cretized statesF̂i,srd are orthonormalized. Among the
eigenstates, only low-lying states belonging to the region
0,eø"2kcut

2 /2mbc are taken as breakup channels in CDCC
equation s7d, where kcut is the cutoff value ofk corre-
sponding tokmax in the Av method.

The CDCC equations(7) thus obtained yield discrete
breakupS-matrix elements. If the basis functions form a
complete set with good accuracy in the region ofr and k
being important for breakup processes, an accurate transfor-
mation from the discreteS-matrix elements to the continuous

(“exact”) ones is possible, applying the prescription given in
Ref. [18] to the PS method as follows. The exact breakup
T-matrix element is given by

T,L
sJdskd = kF,sk, rduL

s−dsP, RdYJM
,,LuUuCJMl. s15d

Inserting the approximate complete sethF̂i,srdj between
the bra vector and the operatorU in Eq. s15d, and replac-
ing the ket vector by the CDCC wave functions5d, one
obtains the following approximate relation:

T,L
sJdskd < o

i
f i,
PSskdkF̂i,srduL

s−dsP, RdYJM
,,LuUuCJM

CDCCl

< o
i

f i,
PSskdT̂g,g0

, s16d

where

f i,
PSskd = kF,sk, rduF̂i,srdl s17d

and

T̂g,g0
= kF̂i,uL

s−dsP̂g, RdYJM
,,LuUuCJM

CDCCl. s18d

The last form of Eq.s16d has been derived by replacingP

by P̂g in uL
s−dsP, Rd, which is valid since thek distribution

of f i,
PSskd is sharply localized atk= k̂i =Î2mbcei,/". T̂g,g0

is a
CDCC breakupT-matrix element calculated with CDCC.

Since the T̂g,g0
are proportional to the corresponding

S-matrix elementsŜg,g0
,

S,L
sJdskd < o

i
f i,
PSskdŜg,g0

. s19d

The “k-interpolation formula” s19d for the PS method
agrees with the corresponding one in Ref.f18g for the Av
method. Thus, Eq.s19d can be used for any method of
discretization, if the discretized wave functions constitute
an approximate complete set. The interpolation formula is
also independent of the type of the basis function taken, as
obvious from the derivation.

As such basis functions, we here propose two types; one
is the conventional real-range Gaussian functions

f j,srd = r,expf− sr/ajd2g s j = 1 –nd, s20d

wherehajj are assumed to increase in a geometric progres-
sion f19g:

aj = a1san/a1ds j−1d/sn−1d. s21d

The other is an extension of Eq.s20d introduced in Ref.
f20g, i.e., the following pairs of functions:
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f j,
C srd = r,expf− sr/ajd2gcosfbsr/ajd2g,

f j,
S srd = r,exp f− sr/ajd2gsinfbsr/ajd2g s j = 1 –nd. s22d

Here,b is a free parameter, in principle, but numerical test
showed thatb=p/2 is recommendable. Bothfj,

C andfj,
S are

used as the basis functionsfj, in Eq. (14); the total number
of basis is thus 2n.

The basis functions(22) can also be expressed as

f j,
C srd = hc j,

* srd + c j,srdj/2,

f j,
S srd = hc j,

* srd − c j,srdj/s2id, s23d

with

c j,srd = r,exp f− h jr
2g, h j = s1 + ibd/aj

2, s24d

i.e., Gaussian functions with a complex-range parameter.
We thus refer to the basisf j,

C and f j,
S as the complex-

range Gaussian basis.
The complex-range Gaussian basis functions are oscillat-

ing with r. They are therefore expected to simulate the oscil-
lating pattern of the continuous breakup state wave functions
better than the real-range Gaussian basis functions do. More-
over, numerical calculation with the complex-range Gauss-
ians can be done using essentially the same computer pro-
grams as for the real-range Gaussians, just replacing real
variables foraj of Eq. (21) by complex ones. Usefulness of
the real- and complex-range Gaussian basis functions in few-
body calculations are extensively presented in the review
work [20]. We here emphasize that even in the case where
the projectile is assumed to be three-body system, the Gauss-
ian basis functions are easily utilized in the CDCC calcula-
tion with the PS method. We return this point in Sec. V.

IV. NUMERICAL TEST OF THE
PSEUDOSTATE METHOD

In the previous stringent test of CDCC with the Av and
Mid methods[3,13], calculated elastic and breakupS-matrix
elements were found to converge, for sufficiently large
model space. In this section, we test the PS method by com-
paring the calculatedS-matrix elements with those obtained
with the Av method that converged within the error of 1%
and hence forth called “exact”S-matrix elements. The test is
made for two systems,d+58Ni scattering at 80 MeV and
6Li+ 40Ca scattering at 156 MeV.

A. d+58Ni scattering at 80 MeV

As for the orbital angular momentum of the projectilesdd,
we take ,=0 and 2. It should be noted that thep-wave

s,=1d breakup is negligible, because couplingsVgg8sRd be-
tween odd and even parity breakup states contain contribu-
tion from UpAsrpAd andUnAsrnAd in opposite sign in Eq.(8).
Table I shows the parameters of the potentials used; the in-
teraction between a nucleon and the target is the nucleon-
nucleus optical potential of Becchetti and Greenlees[21] at
half the deuteron incident energy. The interaction between
proton and neutron is a one-range Gaussian potential,vnp

=v0 expf−sr/r0d2g with v0=−72.15 MeV andr0=1.484 fm,
which reproduces the radius and the binding energy of deu-
teron.

In the Av method the weight function is taken asfi,skd
=1, since the projectile(deuteron) has no resonance state.
The model space that gives convergence within error of 1%
turns out to beDi,=1.3/30 fm−1 and kmax=1.3 fm−1. The re-
sulting values ofkmax andDi, are different from those used in
the previous analysis[13]; the main purpose of Ref.[13] was
to show that the convergence of the CDCC solution was
obtained within a model space of practical use and that the
converged solution satisfied an appropriate boundary condi-
tion. The model space taken there,kmax=1.0 fm−1 and Di,
=1/8 fm−1, is indeed enough for the elasticS-matrix elements
and the dominant part of the breakup ones with the smallerk,
therefore the elastic cross sections and the total breakup
cross sections are well reproduced. However, the model
space is found to be insufficient to obtain the “exact”
S-matrix elements in the high-k region around 1.0 fm−1,
hence we take herekmax=1.3 fm−1 and Di,=1.3/30 fm−1 as
mentioned above.

FIG. 3. Discretized momenta for real-range(a) and complex-
range(b) Gaussian bases for deuteron. In each panel, the left(right)
side corresponds to thes state(d state). The horizontal dotted line
represents the cutoff momentumkcut taken to be 1.3 fm−1.

TABLE I. Parameters of the optical potentials forn+58Ni andp+58Ni at half the deuteron incident energy. We followed the same notation
as in Ref.[21].

System V0 (MeV) r0 (fm) a0 (fm) W0 (MeV) rW (fm) aW (fm) WD (MeV) rWD (fm) aWD (fm)

p+58Ni 44.921 1.17 0.750 6.10 1.32 0.534 2.214 1.32 0.534
n+58Ni 42.672 1.17 0.750 7.24 1.26 0.580 2.586 1.26 0.580
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In the real-range Gaussian PS method, a similar conver-
gence is found, when the number of breakup channels,NPS,
is 18 for boths and d waves. The number is even smaller
when the complex-range Gaussian basis is taken:NPS is 16
for s wave and 17 ford wave. The basis functions finally
obtained have parameter setssa1=1.0,an=30.0,n=30d for
real-range Gaussian basis andsa1=1.0,an=20.0, 2n=40,b
=p/2d for complex-range one. For both of themNPS is
smaller than the number of basis functions. High-lying states

with k.kcut=1.3 fm−1, which are obtained by diagonalizing
Hbc, do not affect the breakupS-matrix elements withk
økcut, because the coupling potentials between the twok
regions are weak.

Figure 3 shows the discrete momentak̂i, translated from
the eigenenergiesei, for the real- and complex-range Gauss-
ian bases. One sees that for the real-range Gaussian basis, the
discrete momenta are dense in the smallerk region and
sparse in the largerk one. This distribution is not so effective
in simulating thek continuum, in the higherk region in par-
ticular. For the complex-range Gaussian basis, on the other
hand, the discrete momenta are distributed almost evenly. A

similar sequence of thek̂i is also seen for the case of the
transformed harmonic oscillator basis of Ref.[16,22]. Such a

sequence ofk̂i is close to that in the Av method. Thus, the
complex-range Gaussian basis, as well as the transformed
harmonic oscillator, is well suited for simulating thek con-
tinuum in the entire region 0,køkcut.

For the elasticS-matrix elements, both the real- and
complex-range Gaussian PS methods well reproduce the “ex-
act” one calculated with the Av method, as confirmed in Fig.
4 for the differential cross section. The three types of calcu-
lations, the real-range Gaussian PS(dotted line), the
complex-range Gaussian PS(dashed line), and the Av meth-
ods(solid line), yield an identical cross section at all scatter-
ing angles. Thus, both of the PS methods proposed here are
useful for treating the breakup effects on the elastic scatter-
ing.

Figure 5 shows the result for breakupS-matrix elements
at the grazing total angular momentumJ=17, as a function
of k. The real-range Gaussian PS method(dashed line) well
simulates the exact solution calculated with the Av method

FIG. 4. Angular distribution of the elastic differential cross sec-
tion as a ratio to the Rutherford one ford+58Ni scattering at
80 MeV. Results with the Av method, and the real- and complex-
range Gaussian PS methods are represented by the solid, dotted, and
dashed lines, respectively.

FIG. 5. The squared moduli of breakup
S-matrix elements as a function ofk at the graz-
ing total angular momentumJ=17 for d+58Ni
scattering at 80 MeV. The left upper panel(a)
shows the result for thes states,=0,L=17d. Re-
sults for thed states,=2d with L=15, 17, and 19
are, respectively, shown in(b), (c), and (d). In
each panel, the dashed(solid) line represents the
result of the real-range(complex-range) Gaussian
PS method. The step line is the result for the “ex-
act” S-matrix element calculated by the Av
method.
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(step line) in the lowerk region that corresponds to the main
components of the breakupS-matrix elements, but inaccurate
in the higherk region aroundk=0.8 fm−1. The deviation at
higher k stems from the fact that real-range Gaussian basis
poorly reproduces the continuum breakup stateF,sk, rd at the
higherk. Figure 5 shows that this problem can be solved by
using the complex-range Gaussian basis(solid line) instead.

B. 6Li+ 40Ca scattering at 156 MeV

Characteristic to this scattering, the projectile6Li has
d-wave triplet resonance statess3+, 2+, 1+d. For simplicity, we
neglect the intrinsic spin of6Li, following Refs.[1,5,6]. Then
the projectile has only oned-wave resonance state witheres
=2.96 MeV andG=0.62 MeV. Obviously the energy and the
width do not reproduce experimental data, but at least the
elastic cross section of6Li is not affected much by the ne-
glect of the spin[23].

In this scattering, the three-body system consists of deu-
teron,a, and40Ca. The interactions between each pair of the
constituents are the optical potential ofa+40Ca scattering at
104 MeV [24], that of d+40Ca scattering at 56 MeV[25],
and vad=v0 expf−sr/r0d2g with v0=−74.19 MeV and r0
=2.236 fm. Table II shows the parameters of the optical po-
tentials.

The model space sufficient for describing breakup pro-
cesses in this scattering iskmax=2.0 fm−1 and ,max=2; the

model space is composed of twok-continua for,=0 and 2.
Since there exists a resonance in,=2, the d-wave
k-continuum is further divided in the Av method into the
resonant part f0,k,0.55g and the nonresonant part
f0.55,k,2.0g. In the former region thek continuum of
Fi,,=2sk, rd varies rapidly withk. The Av method can simulate
this rapid change by takingfi,,=2skd=1 with bins of an ex-
tremely small width. In fact, clear convergence is found for
both the elastic and the breakupS-matrix elements, when the
resonance part is described by 30 bins and the nonresonance
part of thed-wave and thes-wave k-continua by 20 bins.
Another Av discretization, which has been widely used as a
convenient prescription[1,5,6,8,10], is also made for com-
parison, in which the resonance region is represented by a
single state with the weight factor of Breit-Wigner type given
by Eq.(12). The two sorts of Av discretization are compared
with the real- and complex-range Gaussian PS methods.
With the PS methods, convergence of theS-matrix elements
is found with 21s-wave breakup channels and 22d-wave
ones. The level sequences of the resulting discrete eigen-
states are shown in Fig. 6 for both the basis functions, which
have the same properties as in Fig. 3. The parameter sets of
the basis functions, finally taken in the PS methods, aresa1
=1.0,an=30.0,n=30d for the real-range Gaussian basis and

TABLE II. The same as in Table I but fora+40Ca at 104 MeV andd+58Ca at 56 MeV.

System V0 (MeV) r0 (fm) a0 (fm) W0 (MeV) rW (fm) aW (fm) WD (MeV) rWD (fm) aWD (fm)

a+40Ca 219.30 1.21 0.713 98.8 1.40 0.544
d+58Ca 75.470 1.20 0.769 2.452 1.32 0.783 9.775 1.32 0.783

FIG. 6. The same as in Fig. 4 but for6Li; kcut is taken to be
2.0 fm−1. The horizontal dashed line corresponds to the border mo-
mentum between the resonance and nonresonance parts used in the
Av method.

FIG. 7. Angular distribution of the elastic differential cross sec-
tion (Rutherford ratio) for 6Li+ 40Ca scattering at 156 MeV. The
results of the complex-range Gaussian PS method and the approxi-
mate treatment of the resonance of6Li, i.e., the conventional Av
method with the weight factor of Breit-Wigner type, are shown by
the dashed and dash-dotted lines, respectively. The solid line is the
exact solution calculated by the Av method with dense bins and the
dotted line is the result of Watanabe model, i.e., without breakup
effects.
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sa1=1.0,an=20.0, 2n=40,b=p/2d for the complex-range one.
For both baseskcut is taken to be 2.0 fm−1.

Figure 7 shows the differential cross section of the elastic
scattering. The result with the precise Av discretization based
on dense bins, considered to be the exact solution, is denoted
by the solid line. The dotted line represents the result of the
Watanabe model, i.e., with no breakup channels. The con-
ventional Av discretization, based on the weight factor of
Breit-Wigner type (dash-dotted line), well describes the
breakup effects, particularly at forward anglessu,20°d, but
deviates considerably from the exact solution at larger angles
su.30°d. The complex-range Gaussian PS discretization
(dashed line) well reproduces the exact solution with a num-
ber of channels being suitable for practical use. The real-
range Gaussian PS method gives just the same result as the
complex-range one.

Figure 8 represents breakupS-matrix elements at grazing
total angular momentumJ=43. The real- and complex-range
Gaussian PS discretization well reproduces the exact solution
calculated by the Av discretization with dense bins. The re-
sults of the two PS methods turn out to coincide within the
thickness of the line. The resonance peak can be expressed
by only 8 (12) breakup channels in the complex-range(real-
range) Gaussian PS method, while the corresponding number
of breakup channels is 30 in the Av method, as mentioned
above. Thus, one can conclude that the real- and complex-
range Gaussian PS methods are very useful for describing
not only nonresonant states but also resonant ones.

V. DISCUSSIONS ON FOUR-BODY BREAKUP REACTION

In the past CDCC calculations the projectile was assumed
to be a two-body system, dealing only with three-body

breakup reactions. In this section, we investigate the appli-
cability of CDCC to four-body breakup reactions of the pro-
jectile consisting of three particles,b+c+x (Fig. 9). The Av
method needs the exact three-body wave functions being im-
possible to obtain. We can circumvent this problem with the
present PS method; one can prepare an approximate com-

plete sethF̂i,j by diagonalizing the Hamiltonian of the pro-
jectile in a space spanned by a set of basis functions ofL2

type. With hF̂i,j as the wave functions of the breakup chan-
nels, one can obtain an approximate total wave function
CCDCC by solving CDCC equations(7). InsertingCCDCC into
the exact form of breakupT-matrix elements in place of the
exact total wave function, one reaches an approximate form:

T4 = keisP·R+k·r+q·yduU4uCCDCClR,r ,y, s25d

where U4 is the sum of all interactions in the four-body
systemsA+b+c+xd, r andy are two Jacobi coordinates of
the three-bodysb+c+xd system, andksqd is the momen-
tum being conjugate tor syd. The accuracy of Eq.s25d

FIG. 8. The same as in Fig. 5 but for6Li
+40Ca scattering at 156 MeV. The corresponding
grazing total angular momentum is 43. The step
line is the result of the Av method with dense
bins. Note that the difference between the results
of the real- and complex-range Gaussian PS
methods is not visible since it is less than about
1%.

FIG. 9. Illustration of a four-bodysA+b+c+xd system. The pro-
jectile consists ofb, c, andx, andA is the target.
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depends on how complete the setF̂i, is within the region
s0ø r ø rmax, 0øyøymax, 0økøkmax, 0øqøqmaxd being
important for the breakup process considered. An impor-
tant advantage of the use of the real- and complex-range
Gaussian bases is that analytic integrations overr and y
can be done in Eq.s25d, by expandingU4 in terms of a
finite number of Gaussian basis functions. This makes the
derivation ofT4 feasible. Analyses based on this formula-
tion are of much interest as a future work.

VI. SUMMARY

The method of continuum discretized coupled channels
(CDCC) is an accurate method of treating three-body
breakup processes, in which the discretization of thek con-
tinuum is essential. In this paper, we proposed the new
method of pseudostate(PS) discretization which can be used
not only for virtual breakup processes in elastic scattering
but also for breakup reactions. First we showed that an ac-
curate transformation from the discrete breakupS-matrix el-
ements calculated with the PS method to smooth ones is
possible, since the PS basis functions can form in the good
approximation a complete set in the finite region ofr andk
being important for the breakup processes. As bases satisfy-
ing the approximate completeness, we proposed to employ
the real- and complex-range Gaussian bases; both of them
can treat virtual breakup processes in the elastic scattering
with high accuracy, i.e., with the error of calculated cross
sections less than 1%. For breakup processes, the complex-
range Gaussian basis is accurate throughout the entire region
of thek-continuum concerned. The real-range Gaussian basis
also keeps a good accuracy for the dominant part of breakup
S-matrix elements with the lowerk, although it is partially

inaccurate for the higherk region. Thus, both bases can be
used for realistic analyses of elastic scattering and projectile-
breakup reactions including coincidence cross sections and
energy spectra of ejected fragments.

The present new PS method has at least two advantages
over the widely used momentum-bin average method. One is
that it does not need the exact wave function of the projectile
over the entire region ofr. This is important from a theoret-
ical point of view. The other is that with the real- and
complex-range Gaussian bases one can calculate all the cou-
pling potentials semianalytically[20], which is very useful in
actual calculations. Furthermore, if the projectile has reso-
nances in its excitation spectrum, the new method discretizes
the complicated spectrum with a reasonable number of the
basis functions, without distinguishing the resonance states
from nonresonant continuous states. These advantages of the
new method are extremely helpful, sometimes even essential,
in applying CDCC to four-body breakup effects of unstable
nuclei such as6He and11Li. The use of the Gaussian bases is
promising for describing pseudobreakup states of these pro-
jectiles consisting of three fragmentsscore+n+nd [20]. Ac-
tually, a CDCC study of four-body breakup effects on the
6He elastic scattering from12C at 38.3 MeV/nucleon is in
progress[26], and the result of the analysis will be reported
in a forthcoming paper.
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