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In this paper we show how rotational bands of resonances can be described by using trajectories of poles of
the scattering amplitude in the complex angular momentum plane: each band of resonances is represented by
the evolution of a single pole lying in the first quadrant of the plane. The main result of the paper consists in
showing that also the antiresonances(or echoes) can be described by trajectories of the scattering amplitude
poles, instead of using the hard-sphere potential scattering as prescribed by the classical Breit-Wigner theory.
The antiresonance poles lie in the fourth quadrant of the complex angular momentum plane, and are associated
with nonlocal potentials which take into account the exchange forces; it derives a clear-cut separation between
resonance and antiresonance poles. The evolution of these latter poles describes the passage from quantum to
semiclassical physics. The theory is tested on the rotational band produced bya-a elastic scattering and on the
hadronic rotational bands inp+-p elastic scattering.
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I. INTRODUCTION

The standard partial-wave expansion of the scattering am-
plitude can be regarded as a factorization which splits the
scattering amplitude into two factors: the partial-wave ampli-
tudesa,sEd (E being the center of mass energy,, the angular
momentum) and the Legendre polynomials. Therefore it per-
mits to separate those features of the physical process that
depend on the geometry or symmetry properties of the sys-
tem, here represented by the Legendre polynomials, from
those depending on the forces acting between the interacting
particles, here described by the partial-wave amplitudes. We
are thus led to a separation between dynamics and symmetry.
Accordingly, the classical nuclear theory describes the cross-
section peak due to a resonance by fixed poles of the scat-
tering amplitude in the complex momentum plane, which
arise in complex conjugate pairs corresponding tok and −k*

(k2=E in suitable units), while the angular distribution is de-
scribed by the Legendre polynomials. The theory does not
attempt to group resonances in families, and provides only a
local description in the neighborhood of the energy position
of the resonance. On the other hand, the phenomenology
shows clearly that the resonances appear in ordered se-
quences, such as rotational bands, which reflect the dynami-
cal symmetries.

From the factorization between dynamics and symmetry it
also follows that the angular distribution of the resonances,
described by the Legendre polynomials(which are related to
the unitary irreducible representation of the rotation group),
cannot be in any way connected to the lifetime of the reso-

nances. On the contrary, when the colliding particles are not
identical, and therefore the scattering amplitude is not sym-
metrized (or antisymmetrized), the angular distribution re-
tains memory of the incident beam direction and, conse-
quently, it presents an asymmetry which is inversely related
to the lifetime.

Another peculiar feature of the classical theory is that
while the resonances are described by singularities of the
scattering amplitude(Breit-Wigner poles), the antiresonances
are described by the so-called potential scattering, whose
amplitude is the same as the one for the scattering by an
impenetrable sphere: hard-core scattering. Resonances and
antiresonances are depicted with completely different mod-
els. Furthermore, the exchange forces, which play a funda-
mental role in producing antiresonances, are not faithfully
represented by the hard-core model. It follows that in the
Breit-Wigner formalism the time delay due to the resonance
cannot be neatly separated from the time advance due to the
antiresonance.

Finally, the classical theory, which makes use of fixed
poles, does not describe the dynamical evolution of reso-
nances and antiresonances. Instead, the phenomenology
shows that the resonance widths increase with energy, and
the antiresonances tend to disappear at those energies where
there is a smooth transition from quantum to semiclassical
behavior.

In this paper we try to recover the global character of the
sequences of resonances, and specifically of the rotational
bands. With this in mind, we shall represent the cross-section
peaks due to resonances by the use of singularities of the
scattering amplitude in the complex plane of the angular mo-
mentum, which is the generator of the rotation group. This
can be achieved through a Watson-type resummation of the
partial-wave expansion. Furthermore, we aim to describe
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resonances and antiresonances with analogous mathematical
structures: i.e., scattering amplitude singularities in the com-
plex angular momentum plane.

In a previous paper[1]—hereafter referred to as I—we
studied ion collisions treating the composed structure of the
clusters by means of the Jacobi coordinates and of the related
SUsnd-group algebra. We proved that rotational bands
emerge by removing the SUsnd degeneracies by introducing
forces that depend on the relative angular momentum of the
clusters: i.e., nonlocal potentials. The latter is indeed gener-
ated by the exchange forces which enter the game precisely
in connection with antiresonances. In the present paper we
start from the results obtained in I; next we proceed to a
Watson-type resummation of the partial-wave expansion.
This procedure requires some additional constraints which
limit the class of nonlocal potentials admitted. We can thus
study the singularities of the scattering amplitude in the com-
plex angular momentum plane. We find that there exist two
types of pole—singularities with ImlÞ0 (l denoting the
complex angular momentum): the poles lying in the first
quadrant(i.e., Iml.0), which describe the resonances; the
poles lying in the fourth quadrant(i.e., Iml,0), which cor-
respond to antiresonances. These last poles are a peculiar
property of nonlocal potentials. Another characteristic fea-
ture of the complex angular momentum poles is that their
location varies as a function of the energy; they aremoving
poles and, accordingly, we can speak ofpole trajectories.
The main results which we prove in this paper are the fol-
lowing.

(i) Each rotational band of resonances is described by the
trajectory of a single pole located in the first quadrant of the
complex angular momentum plane(i.e., Iml.0).

(ii ) The corresponding antiresonances are described by the
trajectory of a single pole located in the fourth quadrant of
the complex angular momentum plane(i.e., Iml,0).

(iii ) The pure resonance widthsGR can be determined
from the locations of poles in the first quadrant(resonance
poles) and from their dependence on the energy.

(iv) Both resonances and antiresonances are represented
by pole singularities of the scattering amplitude: we thus
obtain a unified scheme for describing time delay and time
advance associated with the two processes.

(v) We can describe the evolution of the rotational reso-
nances into surface waves.

These results represent a very relevant improvement with
respect to our previous analysis(see Refs.[2–4]). In fact, in
these latter works the rotational resonances were fitted by
using trajectories of the scattering amplitude poles lying in
the first quadrant of the complex angular momentum plane,
whereas the antiresonances were described by the hard-
sphere potential scattering in a form very similar to the clas-
sical Breit-Wigner theory.

At this point we must strongly remark thatGR cannot be
identified with the widthG of the peak of the observed(ex-
perimental) cross section. Indeed, the effect of the antireso-
nance distorts the bell-shaped structure of the pure resonance
peak and, while we have a theoretical evaluation ofGR, we

can only find an estimate ofG through statistical procedures,
as it will be discussed in Sec. V.

In the complex angular momentum representation of the
physical spectrum the bound states are described by pole
singularities lying on the real positive semiaxis of thel
plane(i.e., Relù0, Iml=0). Moving from bound states to
resonances, the poles enter the first quadrant, Iml increases
with the energy and describes the increase of the resonance
widths GR. At higher energy inelastic and reaction channels
open, and the scattering target appears as a ball partially or
totally opaque at the center: the resonances evolve into dif-
fractive surface waves. This evolution is still described by
the increase of Iml with energy. Similarly, the singularities
in the fourth quadrant move away from the real axis, and at
high energy their contribution becomes irrelevant. This be-
havior concords with the fact that the antiresonances, which
are produced by exchange forces, are a quantum effect which
disappears at the classical level.

The paper is organized as follows. In Sec. II we outline
the scattering theory for nonlocal potentials, summarizing
the results obtained previously in I. In Sec. III the singulari-
ties of the scattering amplitude in the complex angular mo-
mentum plane are studied; the formulas that represent the
phase shifts, and which allow us to interpolate the rotational
resonances, are given. In Sec. IV we analyze the main prop-
erties of these singularities and their behavior for high values
of the energy; the transition from quantum-mechanical ef-
fects to classical behavior is discussed and, accordingly, the
evolution of rotational resonances in surface waves is de-
scribed in detail. In Sec. V we present a phenomenological
analysis in order to check the theory. In this section we re-
consider the previous phenomenological work on thea-a
elastic collision[3], and on the resonances and surface waves
present in thep+-p elastic scattering[4].

II. OUTLINE OF THE SCATTERING THEORY FOR
NONLOCAL POTENTIALS

In this section we sketch the main results obtained in I,
which are essential to perform a Watson-type resummation
of the partial-wave expansion, and which enable the analysis
of the scattering amplitude singularities in the complex an-
gular momentum plane.

In I we derived and studied the following integro-
differential equation of Schrödinger type:

s− D + VDdxsRd + gE
R3

VsR, R8dxsR8ddR8 = ExsRd,

s1d

which describes the interaction of two clusters. In Eq.s1d
D is the relative-motion kinetic energy operator,g is a real
coupling constant,VD is the potential which derives from
direct forces,VsR, R8d represents the nonlocal potential
which takes into account the exchange forces and, finally,
E represents, in the case of the scattering process, the
relative kinetic energy of the two clusters in the center of
mass systems"=2m=1, m being the reduced mass of the
clustersd. From the current conservation law it follows that
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VsR, R8d is a real and symmetric function:VsR, R8d
=V*sR, R8d=VsR8, Rd; moreover,VsR, R8d depends only
on the lengths of the vectorsR, R8 and on the angleg
between them, or equivalently, on the dimension of the
triangle with verticess0,R, R8d but not on its orientation.
Hence,VsR, R8d can be formally expanded as follows:

VsR, R8d =
1

4pRR8os=0

`

s2s+ 1dVssR, R8dPsscosgd, s2d

where cosg=sR ·R8d/sRR8d, R= uRu, and Ps are the Leg-
endre polynomials. The Fourier-Legendre coefficients
VssR, R8d are given by

VssR, R8d = 4pRR8E
−1

1

VsR, R8;cosgdPsscosgddscosgd.

s3d

We may therefore state that the left hand side operator of
Eq. s1d, acting on the wave functionx, is a formally Her-
mitian and rotationally invariant operator.

Next, we expand the relative-motion wave functionxsRd
in the form

xsRd =
1

Ro
,=0

`

x,sRdP,scosud, s4d

where now, is the relative angular momentum between
the clusters.

Sinceg is the angle between the two vectorsR and R8,
whose directions are determined by the anglessu, fd and
su8, f8d, respectively, we have cosg=cosu cosu8
+sin u sin u8cossf−f8d. Then, by using the following addi-
tion formula for the Legendre polynomials:

E
0

p E
0

2p

PsscosgdP,scosu8dsin u8du8df8

=
4p

s2, + 1d
P,scosudds,, s5d

from Eqs.s1d, s2d, s4d, and s5d we obtain

x,9sRd + k2x,sRd −
,s, + 1d

R2 x,sRd

= gE
0

+`

V,sR, R8dx,sR8ddR8, s6d

wherek2=E, and the local potential is now supposed to be
included in the nonlocal one.

As in I, we suppose thatVsR, R8d is a measurable function
in R33R3, and that there exists a constanta such that

C = HE
R3

s1 + R2de2aRdRE
R3

s1 + R82dR82e2aR8

3uVsR, R8du2dR8J1/2

, `. s7d

If bound s7d is satisfied, then expansions2d converges in

the normL2s−1, 1d for almost everyR, R8P f0, +`d.
We must distinguish between two kinds of solutions to

Eq. (6): the scattering solutionsx,
ssdsk, Rd, and the bound-state

solutionsx,
sbdsRd:

(i) The scattering solutions satisfy the following condi-
tions:

x,
ssdsk, Rd = kRj,skRd + F,sk, Rd, s8ad

F,sk, 0d = 0; lim
R→+`

H d

dR
F,sk, Rd − ikF,sk, RdJ = 0,

s8bd

wherej,skRd are the spherical Bessel functions, and the func-
tions dF,/dR are supposed to be absolutely continuous.

(ii ) The bound-state solutionsx,
sbdsRd satisfy the condi-

tions

E
0

+`

ux,
sbdsRdu2dR, `, x,

sbds0d = 0. s9d

Then, one can compare, as in the case of local potentials,
the asymptotic behavior of the scattering solution, for
large values ofR, with the asymptotic behavior of the free
radial function j,skRd, and correspondingly, introduce the
phase shiftsd,skd; accordingly, we can define the scatter-
ing amplitude

T,skd = eid,skdsin d,skd. s10d

Now, we can introduce, as in the standard collision theory,
the total scattering amplitude that, in view of the rota-
tional invariance of the total Hamiltonian, can be formally
expanded in terms of Legendre polynomials as follows:

fsE, ud = o
,=0

`

s2, + 1da,sEdP,scosud, s11d

where E is the center of mass energy,u is the center of
mass scattering angle,, is the relative angular momentum
of the colliding clusters, and the partial scattering ampli-
tudesa,sEd are given by

a,sEd =
e2id, − 1

2ik
=

T,skd
k

sk2 = E;2m = " = 1d. s12d

Expansions11d factorizes the amplitude into kinematics
and dynamics: the Legendre polynomialsP,scosud swhich
are related to the unitary irreducible representation of the
rotation groupd describe the kinematics: the coefficients
a,sEd sand specifically their singularitiesd reflect the dy-
namics. On this factorization is indeed based the classical
Breit-Wigner theory of resonances, which separates kine-
matics from dynamics. But, as already mentioned, in this
way the global aspect of the families of states, such as the
rotational bands, is lost. To recover the global aspect of
the rotational bands, as suggested by the phenomenologi-
cal data, one could try to represent the dynamics through
the singularitiesspolesd in the complex plane of the angu-
lar momentum, which is the generator of the rotation
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group. This can be achieved through a Watson resumma-
tion of expansions11d, which consists in regarding the
partial-wave series as an infinite sum over the residues of
the poles of the function 1/sinpl, obtained by the follow-
ing integral whose integration pathC is shown in Fig.
1sad:

fsE, ud =
i

2
E

C

s2l + 1dasl, EdPls− cosud
sin pl

dl. s13d

In order to deform conveniently the pathC, it is usually
assumed that the partial wavesa,sEd are the restriction to
the integers of a functionasl, Ed slPC, E fixedd mero-
morphic in the half plane Rel.−1/2, holomorphic for
Re l.L−1/2 swhereL is an integer larger than zerod. All
these properties are satisfied by the partial waves associ-
ated with the class of the Yukawian potentialsf5g. In the
case of nonlocal potentials some peculiar features emerge
because not only the centrifugal barrier, but also the po-
tential itself depends on the angular momentum. There-
fore, some results concerning the restriction on the posi-
tion of the poles of theS function Ssl, kd=expf2idsl, kdg
slPC, Rel.−1/2,k real and fixedd fail in this case. We
can note, as a typical example of this situation, that while
for the class of the Yukawian potentials no poles of theS
function occur for Iml,0, this is not the case for poten-
tials which depend on the angular momentum.

By adding suitable constraints to the conditions intro-
duced previously, one can prove that in the complex angular
momentum plane there exists an angular sectorL where the
partial amplitudesasl, kd satisfy the following bound[6]:

asl, kd = Ose−bldsl P L, Rel → + `;b . 0d . s14d

Accordingly, the contourC can be deformed into the con-
tour C8, as shown in Fig. 1sbd. We thus obtain

fsE, ud =
i

2
E

C8

s2l + 1dasl, EdPls− cosud
sin pl

dl

+ o
n=1

N gnsEdPln
s− cosud

sin plnsEd
, s15d

wherelnsEd=ansEd+ ibnsEd give the location of the ampli-
tude poles belonging to the angular sectorL of thel plane
fsee Fig. 1sbdg, and lying either in the first or in the fourth
quadrant;gnsEd are the residues ofs2,+1da,sEd at the
poles. It is worth remarking that in the applications to
low-energy nuclear physics, which are our concern, the
pathC8 not necessarily has to run parallel to the imaginary
axis, as in the case of the high-energy physics. In fact, we
are working in the physical region of cosus−1øcosu
ø1d, and we are not interested in the asymptotic behavior
of the scattering amplitude for large transmitted momen-
tum.

III. COMPLEX ANGULAR MOMENTUM
REPRESENTATION OF RESONANCES

AND ANTIRESONANCES

First let us consider the poles lying in the first quadrant
and within the angular sectorL [see Fig. 1(b)]; suppose that
at a certain energy, and for a specific valuen0 of n, an0
crosses an integer, whilebn0

!1; then the corresponding term
in the sum over the poles in representation(15) becomes
very large: we have a pole dominance. Therefore, in the
neighborhood of a sharp and isolated resonance the follow-
ing approximation for the amplitude is worth trying:

fsE, ud . gsEd
Pls− cosud
sin plsEd

s16d

sfor simplicity, we have dropped the subscriptn0d. The
Legendre functionPls−cosud presents a logarithmic sin-
gularity at u=0 f7,8g. Therefore, approximations16d cer-
tainly breaks down forwards, where it is necessary to take
into account also the contribution of the background inte-
gral, in order to make the amplitudefsE, ud finite and
regular. Conversely, approximations16d is satisfactory at
backward angles. The logarithmic singularity, which the
Legendre functionsPls−cosudslPCd present at u=0,
clearly indicates that the angular distribution given by
these functions, and, accordingly, by approximations16d,
is asymmetric. However, let us observe that this peculiar
feature of approximations16d should not be regarded as a
defect, but it could be interpreted as the capability of this
representation of displaying the specific aspect of the
resonances of nonidentical particles, i.e., the asymmetry

FIG. 1. (a) Integration path of integral in formula(13). (b) In-
tegration path of integral in formula(15).
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proper of the unstable states. Since the angular lifetime is
finite, the isotropy inu is broken: there is memory of the
incident beam direction. The angular asymmetry proper of
the resonances can then be associated with thespin width
of the compound statessee I, Sec. 4d: to small values of
angular momentum dispersion there corresponds a small de-
gree of asymmetry in the angular distribution.

Amplitude (16) diverges logarithmically forward and the
differential cross section diverges as the square of the loga-
rithm, but the total cross section, derived from Eq.(16), is
finite. Indeed, we have

stot. =
2pugsEdu2

usin plsEdu2E0

p

uPls− cosudu2sin udu, s17d

and the integral at the right hand side of formulas17d
converges. Furthermore, we may project the amplitude
s16d on the,th partial wave, obtaining

a, =
e2id, − 1

2ik
=

g

p

1

saR + ibR − ,dsaR + ibR + , + 1d
,

s18d

where we writel=aR+ ibR to emphasize that we are now
referring to resonances. Next, when the elastic unitarity
condition can be applied, we have the following relation-
ship amongg, aR, andbR:

g = −
p

k
bRs2aR + 1d, s19d

and, finally, we obtain:

d, = sin−1 bRs2aR + 1d
hfs, − aRd2 + bR

2gfs, + aR + 1d2 + bR
2gj1/2.

s20d

REMARK. Let us note that the phase shifts of formula(20)
do not satisfy the asymptotic behavior, for large values of,,
prescribed by formula(14). This derives from the fact that
the amplitude given by formula(16), and, accordingly, the
phase shifts given by formula(20), are approximations
which are faithful only for small values of,. These approxi-
mations, however, are acceptable at low energy where a few
terms of the partial-wave expansion are sufficient to describe
the scattering amplitude.

Representation(20) is useful for the following reasons.

(i) At fixed energy it gives several phase shifts at different
values of,, with an acceptable approximation for small val-
ues of,.

(ii ) aR andbR depend on the energyE: i.e., we have a pole
trajectory; whenaRsEd equals an integer,, andbRsEd is very
small, we have sind,.1, i.e., a resonance.

(iii ) Representation(20) can describe, in principle, a se-
quence of resonances in various partial waves.

Next, if we assume that the colliding particles are spinless
bosons(e.g.,a particles ina-a collision), then the scattering
amplitude must be symmetrized. Therefore, instead of ap-
proximation(16), we must write the following one:

fsE, ud .
gsEd

sin plsEdFPlscosud + Pls− cosud
2 G , s21d

and, consequently,

d, = sin−1H1 + s− 1d,

2

bRs2aR + 1d
hfs, − aRd2 + bR

2gfs, + aR + 1d2 + bR
2gj1/2J . s22d

Approximations21d fails at u=0 andu=p, and, in view of
the combination ofPlscosud and Pls−cosud, the angular
pattern showed by approximations21d is symmetric.

Coming back to formula(18), and expanding the term
lsEd=aRsEd+ibRsEd in Taylor’s series in the neighborhood
of the resonance energy, we can derive an estimate of the
resonance widthGR, i.e.,

GR =
2bRsdaR/dEd

sdaR/dEd2 + sdbR/dEd2 . s23d

However,GR should not be identified with the widthG of
the observed peak of the cross sectionssee below at the
end of this section, and Sec. Vd. We can now give the
following physical interpretation of the termbR. The reso-
nance is unstable for the leakage of particles tunneling
across the centrifugal barrier. Therefore the probability of
finding the particles inside a given sphere must decrease
with time. The only possibility of keeping up with the loss

of probability is to introduce a source somewhere. The
source can be provided by the complex centrifugal barrier.
The condition for the source to be emitting is just to take
Im l;bR positive fsee also Eq.s24d belowg.

We now focus on a peculiar feature associated with non-
local potentials: in addition to poles located in the first quad-
rant (i.e., Im l.0), we have also poles located in the fourth
quadrant(i.e., Im l,0), which describe the antiresonances.
In order to achieve a better understanding of this point, let us
consider the continuity equation, which reads[see also Eq.
(95) of I]:

] w

] t
+ = · j = 2w Im Ueff, s24d

where w=x*x, x being the wave functionfsee also Eq.
s4dg, j is the current density: i.e.,j = ihx=x* −x* =xj, and
Ueff is the sum of the potential and of the centrifugal term.
In the case of local potentials, which do not depend on the
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angular momentum, the contribution to ImUeff comes only
from the extension of the centrifugal term to complex-
valued angular momentum. The resonances are precisely
related to this term. When the potential is nonlocal, and
therefore depends on the angular momentum, a contribu-
tion to Im Ueff comes also from the potential when the
angular momentum is extended to complex values. This
contribution cannot be in any way related to the centrifu-
gal barrier, and therefore it cannot be connected to reso-
nances. It rather derives from nonlocality and, accord-
ingly, from the presence of exchange forces which
generates the antiresonancesssee Id. In this case the prob-
ability of finding the scattered particle inside a given
sphere increases with time. The only possibility of keep-
ing up with this increase of probability is to introduce a
negative source, i.e., a pole singularity with Iml,0. This

term cannot in any way be connected to asmetastabled
state; however, we still have a dispersion in energy ac-
cording to the uncertainty principle. We speak in this case
of time advanceinstead oftime delay, which is proper of the
resonance. Analogously, we have a connection between dis-
persion in angle and dispersion in angular momentum. In
fact, let us remark that the antiresonances are a typical
quantum-mechanical effect due to the exchange forces.
Then, proceeding exactly as in the case of resonances, and
denoting the poles in the fourth quadrant byl=aA−ibA,
bA.0, we have in the neighborhood of an antiresonance:

d, = sin−1 − bAs2aA + 1d
hfs, − aAd2 + bA

2gfs, + aA + 1d2 + bA
2gj1/2,

s25d

or, in the case of identical scalar particles,

d, = sin−1H1 + s− 1d,

2

− bAs2aA + 1d
hfs, − aAd2 + bA

2gfs, + aA + 1d2 + bA
2gj1/2J . s26d

Adding the contributions of poles lying in the first and fourth quadrant, we have

d, = sin−1H bRs2aR + 1d
hfs, − aRd2 + bR

2gfs, + aR + 1d2 + bR
2gj1/2J + sin−1H − bAs2aA + 1d

hfs, − aAd2 + bA
2gfs, + aA + 1d2 + bA

2gj1/2J , s27d

and, in the case of identical scalar particles, we obtain

d, = sin−1H1 + s− 1d,

2

bRs2aR + 1d
hfs, − aRd2 + bR

2gfs, + aR + 1d2 + bR
2gj1/2J + sin−1H1 + s− 1d,

2

− bAs2aA + 1d
hfs, − aAd2 + bA

2gfs, + aA + 1d2 + bA
2gj1/2J .

s28d

Finally, we recall the expression of the total cross section
in terms of phase shifts

stot =
4p

k2 o
,=0

`

s2, + 1dsin2d,. s29d

In principle, one could try to introduce an estimate of the
width of the antiresonances in a form similar to that followed
in the case of resonances. In other words we could expand in
Taylor’s series the termlsEd=aAsEd−ibAsEd, in the neigh-
borhood of the antiresonance energy. These widths should be
inversely proportional to the time advance of the outgoing
flux. But, while the resonances produce sharp peaks in the
cross section and the width of the peaks is well defined and
could be properly estimated, this is not the case for the anti-
resonances. The contribution of the antiresonances to the
cross section does not produce sharp peaks and, correspond-
ingly, the width of the antiresonances is ill defined; instead,
the antiresonances are responsible for the asymmetry of the
cross-section peaks(see Sec. V for phenomenological analy-
sis and examples). Moreover, we want to remark that in the
present procedure we can separate neatly the contribution of
the resonance from that of the antiresonance and, accord-

ingly, the time delay from the time advance. Resonances and
antiresonances are both described in terms of pole singulari-
ties, but acting at different values of energy. It follows that
the interference effect between these terms appears negli-
gible, as will be shown phenomenologically in Sec. V. In
view of the difficulty of defining anantiresonance widthGA,
there remains the problem of finding an estimate of thetotal
width G of the observed(experimental) resonance peak,
which is larger thanGR in view of the distorting effect of the
antiresonance. This problem will be analyzed and discussed
in connection with the phenomenological analysis in Sec. V.

IV. FROM RESONANCES TO SURFACE WAVES

Let us first consider the case of Yukawian local potentials,
which are represented by a spherically symmetric function

on R3 of the following form: Vsrd=1/re
m0

+` e−mrssmddm,

sm0.0d. We then recall the main properties of the pole tra-
jectories generated by this class of potentials. At negative
values of the energyE=k2, the poleslnskd lie on the real axis
of the l-plane, and describe bound states. The bound-state
wave function belongs toL2s0, +`d. Further, these states are
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stable and, accordingly, they are described either by poles
lying on the imaginary axis of the upper half of thek plane
(i.e., Rek=0) or by poles located on the real axis of thel
plane(i.e., Im l=0): their lifetime is infinite. Increasing the
energy, the poles in thel plane move to the right. This is
nothing but the familiar fact that the binding energies of the
corresponding bound states of different angular momenta
must decrease with increasing,. At positive energyE=k2,
the poleslnskd enter the first quadrant of the complexl
plane: at those values where Relnskd cross an integer, and
correspondingly Imlnskd is small, we have a resonance. The
lifetime of the latter is inversely proportional to Imlnskd. As
the energy increases, the trajectory could, in principle, de-
scribe several resonances: each of them corresponding to the
crossing of Relnskd through an integer value,. We could
thus have several resonances lying on the same trajectory.
But, as we shall show below, this is not the case. In fact, one
can show numerical examples of trajectories produced by
Yukawian potentials that leave very soon the reall axis, then
turn back toward the left half of thel plane, and do not
exhibit an interpolation of resonances[9]. Furthermore, it
can be proved[5,9] that each trajectory, produced by the
Yukawian potential, necessarily turns back toward the left
half of the l plane. Therefore, if a pole trajectorylnskd,
moving with positive derivatived Relnskd/dk, goes through
an integer value, [i.e., Relnskd=,] and produces a reso-
nance, then, after having turned back to the left, it must
necessarily pass through the same integer value,, but now
with negative derivative. This latter crossing is not associ-
ated with a time delay, but with an advance of the outgoing
wave. Thus the peak in the cross section is not a resonance,
but comes from the downward passage of the phase shift
throughp/2, i.e., it corresponds to an antiresonance. Let us
now suppose that a pole trajectorylnskd, moving with posi-
tive derivatived Relnskd/dk, crosses several integer values,
and describes a sequence of resonances, ordered according to
the increasing values of the angular momentum. Then, the
same trajectory, after having turned back to the left half of
the l plane, should necessarily describe the corresponding
antiresonances in inverse order. One would have at a smaller
value of the energy the antiresonances which correspond to
the resonances with higher angular momentum. To an or-
dered sequence of resonances(the order being given by the
angular momentum) it would correspond a sequence of anti-
resonances ordered inversely. This is manifestly contradic-
tory. We can thus conclude that it is not possible to describe
with a pole trajectorylnskd the ordered sequences of reso-
nances and antiresonances within the framework of the
Yukawian potentials.

Therefore, if we want to describe the ordered sequences
of resonances and antiresonances, like those produced by
rotational bands, we are forced to refer to a larger class of
potentials, like the nonlocal ones, introduced previously. As
we have seen, this class of potentials admit poles in the
fourth quadrant, which are proper for describing antireso-
nances in view of the fact that their imaginary part is nega-
tive, and therefore can describe a time advance instead of a
time delay.

In conclusion, we have poles in the first quadrant of thel
plane, whose trajectories describe ordered sequence of reso-
nances, and poles in the fourth quadrant whose trajectories
describe ordered sequence of antiresonances. The locations
of the poles lying in the first quadrant have an imaginary part
that increases with energy, and this behavior corresponds to
the increase of the widths of the rotational resonances. The
trajectories of these poles keep moving to the right, and not
necessarily should turn back to the left. In this evolution we
pass from a pure quantum-mechanical effect to semiclassical
effects, which can be described in terms of surface waves, as
we shall explain below.

As the energy increases, inelastic and reaction channels
open: the scenario drastically changes. The elastic unitarity
condition does not hold anymore, and the target may now be
thought of as a ball partially or totally opaque at the center,
and with a semitransparent shell at the border. Accordingly,
the potential acquires an imaginary part. The structure of the
singularities becomes much more complicated than in the
one-channel case. In fact, the structure of the singularities is
a superposition of cuts starting at every thresholdEgi

, gi
labeling the channels. In spite of these difficulties, we can
still, roughly speaking, continue the trajectory of the pole in
the complex angular momentum plane with the only caution
of avoiding the use of the elastic unitarity condition(19).
Moreover, when the energy increases, the effects of the ex-
change forces, which are a pure quantum effect, tend to van-
ish. Therefore we can still retain approximation(16), which
represents the elastic scattering, but now its physical inter-
pretation must be appropriately modified. We have seen that
the width of the rotational resonances increases with the en-
ergy; accordingly,bR;Im l increases. It follows that when
aR;Rel crosses an integer value, butbR is not much
smaller than one, we do not observe sharp peaks in the cross
section sinceusinspaR+ibRdu−1.exph−pbRj: we have diffrac-
tive effects. These phenomena can be very well described by
returning to formula(16), which can now be conveniently
written in the following form:

fsE, ud . CsEdPlsEds− cosud. s30d

In this way the amplitude is factorized into two terms: the
first one,CsEd, gives the amplitude atu=p as a function
of E fin fact, Pls1d=1g; the second factor describes the
backward angular distribution at fixedE. This second
term may be easily interpreted by recalling the asymptotic
behavior ofPls−cosud for large values ofulu. In fact, it
holds f7g that, for 0,u,p,

Pls− cosud ~
e−ifsl+1/2dsp−ud−p/4g + eifsl+1/2dsp−ud−p/4g

s2pl sin ud1/2 .

s31d

These exponentials correspond to the surface waves ex-
cited at the periphery of the target by the grazing rays.
These rays undergo at the point of tangency a splitting:
one ray leaves the targetswhich is supposed, for simplic-
ity, to be a sphered tangentially, while the other one propa-
gates along the edge; finally, if the blackbody limit is not
yet reached, we may also have a refracted ray which pen-
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etrates the weakly absorbing region. Moreover, the sur-
face ray undergoes at any point the same splitting de-
scribed above; also the refracted ray, after emerging at the
surface, undergoes the same splitting, sending off tangen-
tial rays. However, these latter rays are in phase and uni-
directional only in the direct forward and backward direc-
tions. The factor ssin ud−1/2 describes precisely this
focusing effect atu=0, andu=p.

In order to have the exact expression of the surface
waves, excited by the grazing rays at the periphery of the
target, we must introduce the surface angleum

sS±d in place of
the scattering angleu. The relationship is as follows:

um
sS+d = u + 2pm sm= 0, 1, 2, . . .d, s32ad

um
sS−d = 2p − u + 2pm, s32bd

where um
sS+d refers to the counterclockwise traveling rays,

while um
sS−d corresponds to the clockwise ones. By using for-

mula (31) it can be shown that the Legendre function
Pls−cosud can be generated by the superposition of expo-

nentials of the formeilum
sS±d

, representing surface waves creep-
ing around the target[10]. Coming back to formula(16), we
recall that the latter is logarithmically divergent atu=0, but it
is not atu=p. This different behavior is in agreement with
the fact that the damping factor of the surface waves is given

by e−Im lum
sS±d

. Then, forwards, where the damping factor is
nearly equal to 1, an infinity of creeping waves contribute to
the total amplitude: we have a divergence. On the contrary,
the creeping wave approximation works better backwards,
since Iml um

sS±d is larger.
In order to evaluate the termCsEd, let us suppose that the

blackbody limit has been reached. Then the grazing ray at
the tangency point will split into two branches only: a sur-
face ray which describes a geodesic around the target, and
another ray which leaves the surface tangentially. The point
where diffraction takes place may be regarded as an interac-
tion vertex, characterized by a coupling constant, while the
line joining two vertices may be regarded as a propagator.
The coupling constants are the diffraction coefficients; the
propagator, for a surface ray describing an arc lengthum

sS±d,

takes the formeilum
sS±d

. Next, we suppose that the so-called
localization principleholds true: the phenomena which occur
for large energy, on the periphery of the interaction region,
are independent of the inner structure of the target. Therefore
we take for Iml (which characterizes the propagator), as
well as for the coupling constant(the diffraction coefficient)
an energy dependence as the one calculated for a wholly
transparent sphere[11]. Then, the formula for the cross sec-
tion at u=p is given by[11,4]

p

k2S ds

dV
D

u=p

= C0k
−4/3e−ck1/3

sc = constd, s33d

whereC0 is a constant beyond the blackbody limit. Before
reaching the blackbody limit, the grazing rays may un-
dergo a critical refraction, penetrate the weakly absorbing
region, and then emerge after one or two shortcutsssee

Fig. 2d. In this caseC0 is not a constant since it must take
into account the contributions of various components: the
diffracted rays which do not undergo any shortcut and the
critically refracted rays which take one or two shortcuts
before emerging. These various contributions interfere,
producing an oscillating pattern. But, as the momentum
increases, the radius of the central opaque core increases
too, and the shortcuts are progressively suppressed; there-
fore the amplitude of these oscillations is damped and
tends to vanish towards the blackbody limit. In order to fit
this oscillating pattern, we use a function of the following
form: f1+A sinsvk+fdg. Accordingly, we shall fit the ex-
perimental datassee Sec. Vd with the following formula:

p

k2S ds

dV
D

u=p

= C0k
−4/3e−ck1/3

f1 + A sinsvk + fdg. s34d

Let us finally note that the complex angular momentum
poles which are connected to resonances and those which
are associated with surface waves present remarkable dif-
ferences. We can, indeed, speak of two different classes of
polesf9g. The poles of the first class are located near the
real axis of the complexl plane, and are associated with
resonances. The poles of the second class lie along a line
which is nearly parallel to the imaginary axis: they are
insensitive to the behavior of the potential in the inner
region, and are associated with surface wavesf9g. Further,
the poles of the second class move nearly parallel to the
real axis when the energy increases.

To these different classes of poles we can associate two
different physical models: vortices and surface waves pro-
duced by diffracted rays. In order to summarize rapidly the
hydrodynamical model of the vortices, we move back to the
expression of the current density, introduced in Sec. III: i.e.,
j =ihx=x* −x* =xj, wherex is the wave function(see also
Ref. [1]). Assuming a semiclassical approximation, we write
x=sA/Î2deiQsA=constd; accordingly, we havej =A2=Q. Then
we introduce a velocity fieldv, regardingQ as a velocity
potential in the hypothesis of irrotational flow:v==Q. First,
we represent the incoming beam as an irrotational flow
streaming around the target. Then the trapping proper of the
resonance can be depicted as a rotational flowv given by
v== 3v.

The diffracted rays which generate surface waves are due
to a completely different process. Regarding the diffraction
as an obstacle problem in a Riemannian space with bound-
ary, we can consider the edge of the diffracting body as the
boundary of the ambient space. Then the determination of
the geodesics by their initial tangent(Cauchy problem) is not

FIG. 2. Diffracted rays emerging along the directionu. (a) With-
out taking any shortcut.(b) Taking one shortcut.
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unique: when a ray grazes a boundary surface, the ray splits
in two parts, one keeps going as an ordinary ray, whereas the
other part travels along the surface. This is precisely the
mechanism which generates diffracted rays and surface
waves[10]. We thus call the first class of poles associated
with vortices, and representing resonances, Regge poles;
while the name Sommerfeld poles is reserved for the second
class of poles, in view of the fact that they have been dis-
covered by Sommerfeld[8] in connection with the diffrac-
tion of radio waves around the Earth.

V. PHENOMENOLOGICAL ANALYSIS

A. Rotational band in a-a elastic scattering

The a-a elastic scattering is certainly a good laboratory
for testing the theory, since it is a system of two identical
spinless particles which clearly displays rotational bands.
The data, which we analyze, are the experimental phase
shifts, taken from Refs.[12–16], the range of energies ex-
tending up to 40 MeV in the center of mass system. In this
range of energies, in addition to the elastic channel that we
here consider[notice that to obtain formula(28) the unitary
elastic condition was assumed to hold], there are several
other inelastic and reaction channels: for instance, the reac-
tion channelp+Li7, whose threshold energy is 17.25 MeV
[17]. Therefore, the experimental phase shifts contain nonva-
nishing imaginary parts, and even their real part is affected
by these channels. For this reason considering only the real
part of the experimental phase shifts, as we do in the follow-
ing, is admittedly an approximation. Nevertheless, we as-
sume that the effects of the nonelastic channels on the real
part of the experimental phase shifts is negligible within the
considered energy range, and we compare the phase shifts
computed by the theory presented in the previous sections
with the real part of the experimental phase shifts. Finally,
instead of fitting the differential cross section, we prefer to fit
the phase shifts so that the action of the Coulomb potential
can be subtracted. However, in connection with the interfer-
ence effects related to the Coulomb subtraction, the follow-
ing two remarks should be made.

(i) In view of the long range of the Coulomb force, the
exchange part of the Coulomb interaction does not affect
greatly the scattering wave function(see Ref.[18] and the
references therein) [19].

(ii ) For the sake of preciseness, one should distinguish the
quasinuclearphase shiftsd, from the purely nuclearphase
shifts d,

*, which are those associated with the scattering be-
tween the same particles, with the same strong properties but
without the Coulomb interaction[21]. It is rather intuitive,
and can be rigorously proved[21,22], that they differ by
quantities proportional to the Sommerfeld parameterh
=Z1Z2e

2/"v. Even thoughh can be significantly large at low
energies, nevertheless, this fact does not prevent the phase
shiftsd, from being treated as corresponding to a short range
potential and retaining the main properties of interest for our
analysis. The reader interested in a rigorous mathematical
analysis of the Coulomb effects atk=0 is referred to Ref.
[23], where it is proved that an additional Coulomb potential
does not affect the general properties of the Regge’s trajec-

tories except for their threshold behavior.
The functionsaRsEd, bRsEd, aAsEd, andbAsEd in formula

(28) are parametrized as follows:

aRsEdfaRsEd + 1g = 2IE + a0, s35ad

bRsEd = b1ÎE, s35bd

aAsEd = a1E
1/4, s35cd

bAsEd = g0s1 − e−E/E0d + g1E + g2E
2, s35dd

where I=mR2 is the moment of inertia,m is the reduced
mass,R is the interparticle distance, andE is the center of
mass energy. Formula(35a) for the resonant component
aRsEd simply gives the angular momentum of the two-
particle system viewed, in first approximation, as a rotator;
formula (35b) states forbsEd a growth which is fast for low
energy, but slower for higher energy; this behavior suits the
analysis done in Sec. IV concerning the evolution of the
resonances into surface waves for sufficiently large energy.
For what concernsbAsEd in formula (35d), the role of the
exponential term is just to make a smooth, though rapid,
transition ofbAsEd from zero to the constantg0, so as to have
a regular behavior at very low energy. Unfortunately, a
model which prescribes the growth properties ofaAsEd and
bAsEd is, at present, missing. This would require a refined
theory able to describe the evolution toward semiclassical
and classical phenomena. The quantitiesI, a0, b1, a1, g0, g1,
andg2 should be regarded as fitting parameters. In what fol-
lows, we will consider phenomena occurring only above
threshold; therefore we do not analyze the,=0 phase shift,
which is ruled by the low-energy behavior of the trajectories
aAsEd and bAsEd. In particular, the resonance-antiresonance
correspondence is missing in the,=0 phase shift, and to date
this makes it difficult to reproduce this phase shift in the
framework of our model.

In Fig. 3(a) the fits of the experimental phase shifts, ob-
tained by means of Eq.(28), for ,=2, 4 are shown, while Fig.
3(c) shows the effect of the antiresonance on the,=2 phase
shift. The resulting numerical values of the fitting parameters
are given in the figure legend. It is clear that the phase shifts
obtained by using Eq.(28) reproduce rather well the experi-
mental data. In particular, they are notably better than the
ones obtained previously in Ref.[3], where a hard-core
model of the repulsive part of the interaction was imple-
mented, and whose phase shifts turned out to be not adequate
for representing the nonresonant part of the phase shifts over
a sufficient energy range(see also Refs.[14,15]). Table I
summarizes the results of the analysis for what concerns the
2+ and 4+ resonances. The agreement with the experimental
values appears quite good, but for a slight discrepancy in the
2+ total width G. However, as will be discussed later in this
section, care must be taken in the interpretation of the reso-
nance widths. It is worth remarking that some experimental
indications of a 6+ state atER,28 MeV and of an 8+ state at
ER,57 MeV have been reported[24]. Pushing forward our
analysis, and computingd, from Eq. (28) even for,=6 and
,=8, we obtain a resonance 6+ at ER,27.2 MeV, and a 8+
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resonance atER,47 MeV. Then, with a single pair of pole
trajectories(one for resonances and one for antiresonances)
this rotational band of resonances can be fitted quite accu-
rately.

From formula (29) the total cross section can be com-
puted from the phase shifts of Fig. 3(a): the result is shown
in Fig. 3(b), while in Fig. 3(d) the total cross sections com-
puted with and without the antiresonance term are compared.

The analysis of the total cross section arouses the issue
regarding the definition of the resonance parameters, in par-
ticular of the widthG of the resonance. The extraction of the
resonance parameters is model dependent, and many ways to
proceed in practice have been presented in the literature(see,
for instance, Refs.[25,26] and the references therein). The
estimate of G presents several difficult questions in the
framework of the present theory as well as in the Breit-
Wigner formalism. In both theories the main difficulty de-

rives from the effect of the antiresonance which deforms the
bell-shaped symmetry of the resonance peak. Further, we
must note the following.

(i) In the present theory, formula(23) provides an esti-
mate of the pure resonance widthGR, which must be under-
stood as the width of the resonance in the absence of the
antiresonance effect; as explained in Sec. III an analogous
estimate for theantiresonance widthGA is hardly definable.

(ii ) In the fit of the experimental cross section within the
Breit-Wigner theory, the estimate ofG is obtained by adding
to the pure resonance a background term, which is supposed
to be generated by the so-called potential scattering. One
obtains a purely phenomenological result.

Reverting to our theory, in order to give a phenomeno-
logical estimate of the widthG, two different situations
should be distinguished.

(I) The effect of the antiresonance is a small perturbation
to the pure resonance(see, for instance, the leftmost reso-

FIG. 3. a-a elastic scattering.(a) Experimen-
tal phase shifts for the partial waves,=2, ,=4,
and corresponding fits(solid lines) [see formula
(28)], vs the center of mass energyE. Experimen-
tal data are taken from Refs.[12–16]. The nu-
merical values of the fitting parameters are(see
text): I=0.76 sMeVd−1, a0=1.6, b1=1.06
310−1 sMeVd−1/2, a1=1.03 sMeVd−1/4, g0=0.72,
g1=−7.5310−3 sMeVd−1, g2=2.0310−5 sMeVd−2,
E0=4.1 MeV. (b) Total cross section computed
by using the phase shifts in(a) [see formula(29)].
(c) Phase shift for the partial wave,=2. The solid
line indicates the phase shift computed by using
formula (28), which takes into account both the
resonance and antiresonance terms. The dashed
line shows the phase shift computed by using
only the resonance term[see formula(22)]. (d)
Comparison between the total cross section com-
puted by accounting for both the resonance and
antiresonance terms(solid line), and that com-
puted by using only the resonance term(dashed
line).

TABLE I. a-a elastic scattering. In the present work the resonance energyER, associated with the angular
momentum,, is defined as the energy of the upwardp/2 crossing of the corresponding phase shiftd,sEd. The
purely resonantGR indicates the width of the resonance peak computed without the antiresonance contribu-
tion, while thetotal G stands for the width of the resonance peak accounting also for the antiresonance term.
DS/SRes indicates the relative increase of skewness of the resonance peak when the antiresonance contribu-
tion is added to the pure resonant term; hereS is evaluated by means ofSphen.

JP ERsMeVd ERsMeVd GRsMeVd GsMeVd GsMeVd DS/SRes

(Present work) (Ref. [24]) Purely resonant Total (Ref. [24])

2+ 3.23 3.27 1.04 2.58 1.50 20.53
4+ 12.6 11.6±0.3 4.33 4.91 4.0±0.4 2.35
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nance peak in Fig. 4(a) in connection with thep+-p elastic
scattering). This means that the reference baseline of the pure
resonance peak and that of the observed cross section(com-
prising both resonance and antiresonance) coincide within a
good approximation.

In this case we can proceed operatively as follows. First,
from formula (23) we obtain the estimate ofGR. Then, from
the plot of the cross section generated by only the pure reso-
nant term, i.e., obtained by using only the pole singularity
lying in the first quadrant of thel plane, we can recover the
reference baseline of this almost symmetric bell-shaped dis-
tribution by equating its second central moment to the the
value ofGR [evaluated by means of Eq.(23)]. Next, keeping
fixed this baseline, we evaluate the second central moment of
the distribution which fits the experimental cross-section
peak(i.e., accounting also for the antiresonant term). We can
take as an estimate of the total widthG the value of this
second moment. As a measure of the degree of asymmetry of
the resonance peak, which can be ultimately ascribed to the

composite structure(nonelementariness) of the interacting
particles, we take the statistical skewnessSstat of the distri-
bution, defined asSstat=m3/m2

3/2, wherem2 andm3 are, respec-
tively, the second and third central moments of the distribu-
tion (see Table II for the numerical values related to the
p+-p elastic scattering). This procedure works reasonably
well as far as the asymmetry of the resonance peak is not too
large and can be regarded as a small perturbation of the pure
resonance effect, as in the case of theDs3

2, 3
2

d resonance in the
p+-p elastic scattering, which will be treated in the following
subsection.

(II ) The asymmetry of the bell-shaped peak is very large,
and the antiresonance effect cannot be regarded as a small
perturbation to the pure resonance[see Figs. 3(b) and 3(d) in
connection with thea-a elastic scattering]. In this case the
increase of the cross section corresponding to the downward
crossing ofp/2 of the phase shift is relevant and deforms
considerably the shape of the pure resonant peak. Moreover,
the reference baseline of the pure resonance peak and that of

FIG. 4. p+-p elastic scattering.(a) Total cross section. The experimental data(dots) are taken from Ref.[31]. The solid line indicates the
total cross section computed by means of Eq.(39), and taking into account the contributions of both the resonance and antiresonance poles
generatingd,

s+d [formula (40)], and the resonance pole generatingd,
s−d. The dashed line shows the total cross section computed by accounting

only for the resonance poles generatingd,
s+d and d,

s−d, respectively. The fitting parameters are[see Eqs.(40), (41), and (42a)–(42f)] a0
s+d

=6.89310−1, a1
s+d=9.2310−7 sMeVd−2, b1

s+d=9.0310−5 sMeVd−1, b2
s+d=1.4310−7 sMeVd−2, c0=−0.5, c1=5.0310−7 sMeVd−2, g0=2.0

310−6 sMeVd−2, g1=3.0310−12 sMeVd−4, a1
s−d=6.4310−7 sMeVd−2, b1

s−d=1.25310−4 sMeVd−1. (b) Differential cross section vss−cosud, at
s=E2=10.66 sGeVd2. The experimental data(dots) are taken from Ref.[27]. The solid line shows the differential cross section computed by
means of Eq.(43). The fitting parameters are Rel=7.1, Iml=1.3,B0=1.61mb sfmd2, B1=8.0310−4 mb sfmd2. (c) Differential cross section
vs s−cosud, at s=E2 =14.04 sGeVd2. The fitting parameters are: Rel=9.2, Iml=1.2, B0=0.778mb sfmd2, B1=1.6310−5 mb sfmd2. (d)
Differential cross section atu=p vs k. The experimental data(dots) are taken from Ref.[28]. The solid line shows the differential cross
section computed by means of Eq.(34). The fitting parameters areC0=1.853106 mb sfmd2/3, c=5.5 sfmd1/3, A=−9.3310−2, v=5.4 fm, f
=0.84. The dashed line shows the differential cross section computed by means of formula(33), in which the oscillating term is absent.
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the observed experimental cross section differ significantly,
so that a statistical approach as the one described in the pre-
vious case(I) cannot be adopted. We are forced to follow a
more pragmatic attitude. Since the asymmetry due to the
antiresonance effect sets in just after the resonance maxi-
mum, we can regardG as the full width at half maximum of
the resonance peak, like in the Breit-Wigner theory. From the
plot of the pure resonance cross section we obtain a bell-
shaped distribution whose full width at half maximum agrees
with the value ofGR evaluated by formula(23). Then we can
give an estimate of the total widthG by evaluating the full
width at half maximum of the curve fitting the experimental
cross section(i.e., including both resonance and antireso-
nance terms). In this case the asymmetry of the resonance
peak can be estimated by using aphenomenological skew-
nessSphen, defined as follows: first we compute the differ-
ence between the two half-maximum semiwidths, measured
with respect to the energy of resonanceER; then the degree
of asymmetrySphen is defined as the ratio between this value
and the full widthG (see Table I for numerical values related
to thea-a elastic scattering).

B. Resonances and surface waves inp+-p elastic scattering

In the analysis of thep+-p scattering the spin of the pro-
ton must be taken into account. Therefore, we start recalling
rapidly the main formulas for the scattering amplitude in the
case of spin-0–spin-1

2 collision. In particular, we have the
spin-non-flip amplitude and the spin-flip amplitude, which,
respectively, read

fsk, ud =
1

2iko
,=0

`

fs, + 1dsS,
s+d − 1d + ,sS,

s−d − 1dgP,scosud,

s36ad

gsk, ud =
1

2ko
,=0

`

sS,
s+d − S,

s−ddP,
s1dscosud, s36bd

whereP,
s1dscosud is the associated Legendre function, and

S,
s+d = e2id,

s+d
, s37ad

S,
s−d = e2id,

s−d
, s37bd

d,
s±d being the phase shift associated with the partial wave

with total angular momentumj=,± 1
2. The differential cross

section is given by

ds

dV
= uf u2 + ugu2, s38d

if the proton target is unpolarized, and if the Coulomb
scattering is neglected, as it is admissible at energy suffi-
ciently high. Let us note that the Sommerfeld parameter
h=e2/"v at E.1200 MeV fclose to the energy of the
Ds 3

2, 3
2

d resonanceg is of the order of0.04. Next, integrating
over the angles and taking into account the orthogonality
of the spherical harmonics, we obtain for the total cross
section the following expression:

stot =
2p

k2 o
j ,,

s2j + 1dsin2 d,,j , s39d

where j =,± 1
2, d,,j =d,,,±1/2, d,,,+1/2;d,

s+d, d,,,−1/2;d,
s−d.

We put at the center of our analysis theDs3
2, 3

2
d resonance.

It is considered the first member of a family of resonances
whoseJP values are precisely given by32

+, 7
2

+, 11
2

+, 15
2

+, 19
2

+. It
has been suggested[29] that this sequence could correspond
to an even rotational band of the proton states whose angular
momentum is given byL=0+, 2+, 4+, 6+, 8+. We could as well
have an odd rotational band of proton states with angular
momentum:L=1−, 3−, . . .. But, in thep+-p elastic scattering,
we observe only one resonance withJP= 1

2
−, which could

correspond to the first member(i.e., L=1−) of this odd rota-
tional band[30] (see Ref.[29]).

Let us now focus on the first family of resonances. In our
model they should be fitted by the trajectory of one pole
lying in the first quadrant of the complex angular momentum
plane. But, since the proton and the pion are composite par-
ticles, the antiresonances should play a role. Accordingly, we
should add the contribution of a pole in the fourth quadrant
of the complex angular momentum plane. Furthermore, since
the spin of the proton is fixed, we limit ourselves to perform
the analytic continuation of the partial waves from integers
to complex values of the angular momentum,. Therefore,
we shall fit the resonances belonging to the family whose
first member isDs3

2, 3
2

d, by writing for d,,,+1/2;d,
s+d the fol-

lowing expression:

d,
s+d = sin−1H1 − s− 1d,

2

bR
s+ds2aR

s+d + 1d

hfs, − aR
s+dd2 + sbR

s+dd2gfs, + aR
s+d + 1d2 + sbR

s+dd2gj1/2J
+ sin−1H1 − s− 1d,

2

− bA
s+ds2aA

s+d + 1d

hfs, − aA
s+dd2 + sbA

s+dd2gfs, + aA
s+d + 1d2 + sbA

s+dd2gj1/2J . s40d

(Let us note that the factorf1−s−1d,g/2 in formulas40d and in the next formulas41d, instead off1+s−1d,g/2, is due to the fact
that we interpolate odd values of,.)

We can now pass to consider the second family of resonances, whose first member isDs1
2, 3

2
d. But, as mentioned above, this

resonance is the sole member of this sequence which is phenomenologically observed in elastic scattering. We thus introduce
a second trajectory of a pole lying in the first quadrant. In view of the small effect of this resonance on the total cross section,
we neglect the corresponding antiresonance pole. Then, with obvious meaning of the notations, we write ford,,,−1/2;d,

s−d,
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d,
s−d = sin−1H1 − s− 1d,

2

bR
s−ds2aR

s−d + 1d

hfs, − aR
s−dd2 + sbR

s−dd2gfs, + aR
s−d + 1d2 + sbR

s−dd2gj1/2J . s41d

We then fit the total cross section parametrizingaR
s±d, bR

s±d,
aA

s+d, andbA
s+d as follows:

aR
s+d = a0

s+d + a1
s+dsE2 − E0

2d, s42ad

bR
s+d = b1

s+dÎE2 − E0
2 + b2

s+dsE2 − E0
2d, s42bd

aA
s+d = c0 + c1sE2 − E0

2d, s42cd

bA
s+d = g0sE2 − E0

2d + g1sE2 − E0
2d2, s42dd

aR
s−d = a1

s−dsE2 − E0
2d, s42ed

bR
s−d = b1

s−dÎE2 − E0
2, s42fd

whereE is the energy in the center of mass frame, andE0 is
the rest mass of thep+-p system.

Substituting the valuesd,
s±d [formulas (40), (41), and

(42a)–(42f)] in formula (39) we can fit the total cross section
(the data are taken from Ref.[31]). The result is shown in
Fig. 4(a), where the total cross sections computed with(solid
line) and without (dashed line) the antiresonance term are
compared(see the figure legend for numerical details). The
fit is very satisfactory, and shows with clear evidence the
effect of the antiresonance corresponding to the resonance
Ds3

2, 3
2

d. The difference between the two curves reveals the
composite structure of the interacting particles[32].

In Table II the analysis for family of resonancesDs3
2, 3

2
d,

Ds7
2, 3

2
d, Ds11

2 , 3
2

d, Ds1
2, 3

2
d is summarized. In particular we give

the energy location, the purely resonant and total widths, and
the skewness ascribable to the antiresonance phenomenon. It
should be remarked that the values of theDs11

2 , 3
2

d resonance,
which is not visible in Fig. 4(a), have been extrapolated by
computingd,=5

s+d with the parameters obtained from the analy-
sis of theDs3

2, 3
2

d and Ds7
2, 3

2
d resonances(see the legend of

Fig. 4). It is worth noticing from the last column in Table II
that the degree of asymmetry associated with the resonance
peaks decreases notably when the angular momentum, in-
creases. This behavior was expected since the asymmetry of

the resonance peaks is due to the antiresonances, whose ef-
fect tends to disappear as, increases(see also Table I for a
similar behavior in connection with thea-a scattering).

As shown in Fig. 4(a) we can fit the total cross section up
to a value ofE of the order of 2000 MeV. At higher energy,
the elastic unitarity condition is largely violated, and the fit-
ting formula should be modified accordingly. Furthermore,
the resonances15

2
+ and 19

2
+ do not display sharp peaks in the

total cross section. This means that the resonances evolve
into surface waves in the sense described in Sec. IV. At these
energies the partial-wave analysis cannot be properly ap-
plied, nor has it the meaning to separate thed,

s+d from thed,
s−d

trajectories. As explained in Sec. IV, we can try two different
types of fits:(i) at fixed energy;(ii ) at fixed angle, i.e.,u
=p. We start with the first type of fit. With this in mind we
approximate the differential cross section in the backward
direction with the following formula:

p

k2

ds

dV
. B0uPls− cosudu2 + B1uPl

s1ds− cosudu2. s43d

In formula s43d we introduce the termB1uPl
s1ds−cosudu2,

which gives the contribution to the differential cross sec-
tion of the spin-flip amplitudefsee formulass36dg. In
Figs. 4sbd and 4scd we present two fits of the differential
cross section in the backward angular region 0.8
,−cosu,1.0, at fixed energy. The fits are satisfactory,
and B1 turns out to be negligible, compared toB0. Let us
moreover note that the values of Rel obtained by these
fits indicate that we do not have resonances atJP= 15

2
+ and

JP= 19
2

+, but backward peaks due to creeping wave effects,
which can be described by the Sommerfeld poles, instead
of by the Regge’s ones.

Finally, in Fig. 4(d) we present a fit at fixed angleu=p.
The fit is performed by means of formula(34), derived in
Sec. IV. It presents a clear evidence of an oscillating pattern
due to the interference of grazing rays which undergo a dif-
ferent number of shortcuts. As the energy increases, the ra-
dius of the central core increases too, and the shortcuts are
progressively suppressed: the oscillating pattern is damped.

TABLE II. p+-p elastic scattering. Notice that, in the rightmost column,S is evaluated by means ofSstat.
For the other definitions, see the legend of Table I.

JP Mass(MeV) Mass(MeV) GRsMeVd GsMeVd GsMeVd DS/SRes

(Present work) (Ref. [31]) Purely resonant Total (Ref. [31])

3
2

+ 1231 1230–1234 84 117 115–125 4.40
7
2

+ 1941 1940–1960 273 308 290–350 3.80
11
2

+ 2445 2300–2500 374 410 300–500 3.24
1
2

− 1655 1615–1675 147 120–180
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