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In this paper we show how rotational bands of resonances can be described by using trajectories of poles of
the scattering amplitude in the complex angular momentum plane: each band of resonances is represented by
the evolution of a single pole lying in the first quadrant of the plane. The main result of the paper consists in
showing that also the antiresonanges echoescan be described by trajectories of the scattering amplitude
poles, instead of using the hard-sphere potential scattering as prescribed by the classical Breit-Wigner theory.
The antiresonance poles lie in the fourth quadrant of the complex angular momentum plane, and are associated
with nonlocal potentials which take into account the exchange forces; it derives a clear-cut separation between
resonance and antiresonance poles. The evolution of these latter poles describes the passage from quantum to
semiclassical physics. The theory is tested on the rotational band produeed biastic scattering and on the
hadronic rotational bands in*-p elastic scattering.
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I. INTRODUCTION nances. On the contrary, when the colliding particles are not

The standard partial-wave expansion of the scattering amlgentlcal, and therefore the scattering amplitude is not sym-

plitude can be regarded as a factorization which splits th Mmetrized (or antisymmetrizey] the angular distribution re-

tteri litude into two factors: th dal I.(?ains memory of the incident beam direction and, conse-
scattering amplitude Into two tactors. the partial-wave amp I'quently, it presents an asymmetry which is inversely related
tudesa,(E) (E being the center of mass energythe angular

: : to the lifetime.
momentum and the Legendre polynomials. Therefore it per- - anqther peculiar feature of the classical theory is that

mits to separate those features of the physical process th@hjje the resonances are described by singularities of the
depend on the geometry or symmetry properties of the SySscattering amplitudéBreit-Wigner poley the antiresonances
tem, here represented by the Legendre polynomials, fromre gescribed by the so-called potential scattering, whose
those depending on the forces acting between the interactingnplitude is the same as the one for the scattering by an
particles, here described by the partial-wave amplitudes. Weypenetrable sphere: hard-core scattering. Resonances and
are thus led to a separation between dynamics and symmetiyntiresonances are depicted with completely different mod-
Accordingly, the classical nuclear theory describes the crosssg. Furthermore, the exchange forces, which play a funda-
section peak due to a resonance by fixed poles of the scghenta| role in producing antiresonances, are not faithfully
tering amplitude in the complex momentum plane, whichygnresented by the hard-core model. It follows that in the
arise in complex conjugate pairs corresponding &nd K pyeijt-wigner formalism the time delay due to the resonance

(kz_zE in suitable unity while the angular distribution is de-  cannot be neatly separated from the time advance due to the
scribed by the Legendre polynomials. The theory does nointiresonance.

attempt to group resonances in families, and provides only a Finally, the classical theory, which makes use of fixed
local description in the neighborhood of the energy positiorbdes, does not describe the dynamical evolution of reso-
of the resonance. On the other hand, the phenomenologysnces and antiresonances. Instead, the phenomenology
shows clearly that the resonances appear in ordered Sgpows that the resonance widths increase with energy, and
quences, such as rotational bands, which reflect the dynamine antiresonances tend to disappear at those energies where

cal symmetries. _ there is a smooth transition from quantum to semiclassical
From the factorization between dynamics and symmetry ityahavior.

also follows that the angular distribution of the resonances, |, this paper we try to recover the global character of the
described by the Legendre polynomialehich are related 10 gequences of resonances, and specifically of the rotational
the unitary irreducible representation of the rotation gioup pands. With this in mind, we shall represent the cross-section
cannot be in any way connected to the lifetime of the resopeaks due to resonances by the use of singularities of the
scattering amplitude in the complex plane of the angular mo-

mentum, which is the generator of the rotation group. This
*FAX: +39 0106475500. Email address: demicheli@ge.cnrit can be achieved through a Watson-type resummation of the
TEAX: +39 010314218. Email address: viano@ge.infn.it. partial-wave expansion. Furthermore, we aim to describe
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resonances and antiresonances with analogous mathematicah only find an estimate @f through statistical procedures,
structures: i.e., scattering amplitude singularities in the comas it will be discussed in Sec. V.
plex angular momentum plane. In the complex angular momentum representation of the
In a previous papefl]—hereafter referred to as |—we physical spectrum the bound states are described by pole
studied ion collisions treating the composed structure of th&ingularities lying on the real positive semiaxis of the
clusters by means of the Jacobi coordinates and of the relatddane(i.e., Rex=0,ImA=0). Moving from bound states to
SU(n)-group algebra. We proved that rotational bands'€Sonances, the poles enter the firgt quadrank, increases
emerge by removing the Sb) degeneracies by introducing with the energy and describes the increase of the resonance

forces that depend on the relative angular momentum of th¥dths I'r. At higher energy inelastic and reaction channels
clusters: i.e., nonlocal potentials. The latter is indeed gene2PEN: and the scattering target appears as a ball partially or

ated by the exchange forces which enter the game precise taII_y opaque at the center: the resonances evolve. into dif-
in connection with antiresonances. In the present paper w active surfac?lwavg.;. This evgl_ut|_(|)n||s Sr’]t'" Qesclnbgd by
start from the results obtained in I; next we proceed to {he increase of Im with energy. Similarly, the singularities

. r 9 41 the fourth guadrant move away from the real axis, and at
Watson-type resummation of the partial-wave expansion,

Thi d . qditional . hi igh energy their contribution becomes irrelevant. This be-
is procedure requires some additional constraints which i, concords with the fact that the antiresonances, which

limit the class of nonlocal potentials admitted. We can thus,re produced by exchange forces, are a quantum effect which
study the singularities of the scattering amplitude in the COMyisappears at the classical level.
plex angular momentum plane. We find that there exist tWo The paper is organized as follows. In Sec. Il we outline
types of pole—singularities with Im#0 (A denoting the the scattering theory for nonlocal potentials, summarizing
complex angular momentymthe poles lying in the first the results obtained previously in I. In Sec. Il the singulari-
quadrant(i.e., ImA\>0), which describe the resonances; theties of the scattering amplitude in the complex angular mo-
poles lying in the fourth quadrafite., Im\<0), which cor-  mentum plane are studied; the formulas that represent the
respond to antiresonances. These last poles are a peculghiase shifts, and which allow us to interpolate the rotational
property of nonlocal potentials. Another characteristic fea+tesonances, are given. In Sec. IV we analyze the main prop-
ture of the complex angular momentum poles is that theierties of these singularities and their behavior for high values
location varies as a function of the energy; they mm@ving of the energy; the transition from quantum-mechanical ef-
poles and, accordingly, we can speak pble trajectories  fects to classical behavior is discussed and, accordingly, the
The main results which we prove in this paper are the fol-€volution of rotational resonances in surface waves is de-
lowing. scribed in detail. In Sec. V we present a phenomenological
analysis in order to check the theory. In this section we re-

(i) Each rotational band of resonances is described by thgonsider the previous phenomenological work on the
trajectory of a single pole located in the first quadrant of theelastic collision[3], and on the resonances and surface waves
complex angular momentum plagiee., ImA>0). present in ther*-p elastic scatteringd].

(ii) The corresponding antiresonances are described by the
trajectory of a single pole located in the fourth quadrant of
the complex angular momentum plafie., Imx<0).

(i) The pure resonance widtHsy can be determined
from the locations of poles in the first quadranésonance In this section we sketch the main results obtained in I,
poleg and from their dependence on the energy. which are essential to perform a Watson-type resummation

(iv) Both resonances and antiresonances are representgflthe partial-wave expansion, and which enable the analysis
by pole singularities of the scattering amplitude: we thusof the scattering amplitude singularities in the complex an-
obtain a unified scheme for describing time delay and timgyular momentum plane.
advance associated with the two processes. In 1 we derived and studied the following integro-

(v) We can describe the evolution of the rotational reso-differential equation of Schr('jdinger type:
nances into surface waves.

These results represent a very relevant improvement with (-A+Vp)x(R) + gf V(R,R")x(R")dR’ =Ex(R),
respect to our previous analygsee Refs[2—4)]). In fact, in R3
these latter works the rotational resonances were fitted by (1)
using trajectories of the scattering amplitude poles lying in
the first quadrant of the complex angular momentum planewhich describes the interaction of two clusters. In ED.
whereas the antiresonances were described by the hard-is the relative-motion kinetic energy operatgris a real
sphere potential scattering in a form very similar to the clascoupling constantyy, is the potential which derives from
sical Breit-Wigner theory. direct forces,V(R,R’) represents the nonlocal potential
At this point we must strongly remark th&lg cannot be  which takes into account the exchange forces and, finally,
identified with the widthl" of the peak of the observeg@x- E represents, in the case of the scattering process, the
perimenta) cross section. Indeed, the effect of the antireso+elative kinetic energy of the two clusters in the center of
nance distorts the bell-shaped structure of the pure resonanogass systenti=2u=1, u being the reduced mass of the
peak and, while we have a theoretical evaluatiolgfwe  clusters. From the current conservation law it follows that

II. OUTLINE OF THE SCATTERING THEORY FOR
NONLOCAL POTENTIALS
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V(R,R’) is a real and symmetric function¥(R,R’) the normL?(-1, 1) for almost everyR, R’ € [0, +x).
=V'(R,R’)=V(R’,R); moreover,V(R,R’) depends only We must distinguish between two kinds of solutions to
on the lengths of the vector®, R’ and on the angley  Eq.(6): the scattering solutiong®(k, R), and the bound-state
between them, or equivalently, on the dimension of thesolutionsxfgb)(R):

triangle with verticeq0,R, R’) but not on its orientation. (i) The scattering solutions satisfy the following condi-
Hence,V(R,R’) can be formally expanded as follows:  igns:

[

(s) - i
VR,R) = =3 (25+ DVR R)Pcosy), (2 xe (o R =kR(kR + Bl ), (84
where cosy=(R-R’)/(RR), R=|R|, and P are the Leg- ®,(k,0)=0; lim iq)e(k, R) - ik®,(k,R) { =0,
endre polynomials. The Fourier-Legendre coefficients R-+o| R
V4R, R’) are given by (8b)

1
V(R R') = 47rRR’f V(R, R’;cos y)P¢(cos y)d(cos ).
-1

wherej (kR) are the spherical Bessel functions, and the func-
tions dd,/dR are supposed to be absolutely continuous.

(i) The bound-state solutiong”(R) satisfy the condi-

) tions
We may therefore state that the left hand side operator of o
Eq. (1), acting on the wave functiog, is a formally Her- f |X§b)(R)|2dR< o, qub)(o) =0. (9)
mitian and rotationally invariant operator. 0

Next, we expand the relative-motion wave functigiiR)

in the form Then, one can compare, as in the case of local potentials,

the asymptotic behavior of the scattering solution, for

17 large values oR, with the asymptotic behavior of the free

X(R) = 52 xc(R)P(cos0), (4) radial functionj,(kR), and correspondingly, introduce the

=0 phase shiftsy,(k); accordingly, we can define the scatter-

where now¢ is the relative angular momentum betweening amplitude
the clusters. 8,0

Since y is the angle between the two vectd®sandR’, Te(k) = &% Fsin 5,(k). (10

whose directions are determined by the andlésp) and  Now, we can introduce, as in the standard collision theory,
(¢, ¢'), respectively, we have cog=cosfcos6’  the total scattering amplitude that, in view of the rota-
+sin 6 sin §'cog¢—¢'). Then, by using the following addi- tional invariance of the total Hamiltonian, can be formally

tion formula for the Legendre polynomials: expanded in terms of Legendre polynomials as follows:
T 2T s
fo fo P4(cos y)P(cos ¢')sin §'dé’d¢’ f(E, 0)= S, (20 + 1)a,(E)P,(cos 6), (11)
€=0
= 4—7Tp€(cos 0) Sy, (5) WhereE is the center of mass energy,is the center of
(2¢+1) mass scattering anglé,is the relative angular momentum

of the colliding clusters, and the partial scattering ampli-

from Egs.(1), (2), (4), and(5) we obtain tudesa,(E) are given by

£€+1) !
" 2 _ e2'5€ -1 T.(k
XeR)+XdR) = xR a@= T e eoumh=1. a2
2ik k
:gf Vi(R, R x/(R")dR’, (6) Expansion(11) factorizes the amplitude into kinematics
0 and dynamics: the Legendre polynomi&gcos 6) (which

are related to the unitary irreducible representation of the
rotation group describe the kinematics: the coefficients
a,(E) (and specifically their singularitiggeflect the dy-
namics. On this factorization is indeed based the classical
Breit-Wigner theory of resonances, which separates kine-
12\ Rr2g2eR matics from dynamics. But, as already mentioned, in this
,A+RIR way the global aspect of the families of states, such as the
rotational bands, is lost. To recover the global aspect of
the rotational bands, as suggested by the phenomenologi-
cal data, one could try to represent the dynamics through
the singularitiedpoles in the complex plane of the angu-

If bound (7) is satisfied, then expansid2) converges in lar momentum, which is the generator of the rotation

wherek?=E, and the local potential is now supposed to be
included in the nonlocal one.

As in |, we suppose that(R, R’) is a measurable function
in R®X R3, and that there exists a constansuch that

R

C= { (1 +R?)e”*RdR
R3

1/2
XV(R,R")|?dR" } <, (7)
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(a) By adding suitable constraints to the conditions intro-
duced previously, one can prove that in the complex angular
momentum plane there exists an angular seatovhere the

ImA
g partial amplitudesa(\, k) satisfy the following bound6]:
al\, k) =0(eP)(\ € A,ReN — +=;8>0). (14
c
/e T Accordingly, the contouC can be deformed into the con-
1|/ \__Jo o Rel tour C’, as shown in Fig. (b). We thus obtain
T2
i 2\ + D)a(\, E)Py(—cosé
HE. ) = - ( )(' )Py( )d)\
2)¢ sin A
N
9n(E)P, (- cosh)
+ el , (15)
=1 sinmA,(E)
(b) A ImA where\,(E) =a,(E) +iB,(E) give the location of the ampli-

tude poles belonging to the angular sectoof the A plane

[see Fig. 1b)], and lying either in the first or in the fourth
C’ quadrant;g,(E) are the residues of2¢+1)a,(E) at the
poles. It is worth remarking that in the applications to
low-energy nuclear physics, which are our concern, the
pathC’ not necessarily has to run parallel to the imaginary
-y . ---- Rek axis, as in the case of the high-energy physics. In fact, we

2 are working in the physical region of c@-1<cos6

=<1), and we are not interested in the asymptotic behavior
of the scattering amplitude for large transmitted momen-

Y

tum.
I1l. COMPLEX ANGULAR MOMENTUM
FIG. 1. (a) Integration path of integral in formuléL3). (b) In- REPRESENTATION OF RESONANCES
tegration path of integral in formulél5). AND ANTIRESONANCES

group. This can be achieved through a Watson resumma- Firs_t I?t us consider the poles Iyi_ng in the first quadrant
tion of expansion(11), which consists in regarding the and within the angular sectat [see Fig. {b)]; suppose that

partial-wave series as an infinite sum over the residues oft @ Ce”a"? energy, 6.‘”0' for. a specific val of Ml G,
the poles of the function 1/sim\, obtained by the follow- ¢f0SSes an integer, whif, <1; then the corresponding term

ing integral whose integration pat@ is shown in Fig. N the sum over the poles in representatid’) becomes
1(a): very large: we have a pole dominance. Therefore, in the

neighborhood of a sharp and isolated resonance the follow-
ing approximation for the amplitude is worth trying:
i [ (2n+Da(\, E)Py(-cosh) gapp P ying

f(E 0)=5 dn. (13 P, (- cos 6)

sin m\ _ Rt
c f(E, 6) = g(E) sin 7 (E) (16)

In order to deform conveniently the pa it is usually

assumed that the partial wavagE) are the restriction to (for simplicity, we have dropped the subscripj). The

the integers of a functiom(\,E) (A e C, E fixed) mero- Legendre functionP,(-cos ) presents a logarithmic sin-
morphic in the half plane Re>-1/2, holomorphic for gularity at #=0 [7,8]. Therefore, approximatiofl6) cer-
ReN>L-1/2 (wherelL is an integer larger than zerdAll tainly breaks down forwards, where it is necessary to take
these properties are satisfied by the partial waves assodiato account also the contribution of the background inte-
ated with the class of the Yukawian potentiftd. In the  gral, in order to make the amplitudgE, ) finite and
case of nonlocal potentials some peculiar features emergegular. Conversely, approximatiqi6) is satisfactory at
because not only the centrifugal barrier, but also the pobackward angles. The logarithmic singularity, which the
tential itself depends on the angular momentum. TherekLegendre functionsP,(-cos#)(A e C) present at6=0,
fore, some results concerning the restriction on the posielearly indicates that the angular distribution given by
tion of the poles of theS function S(\, k)=exd2is(\,k)]  these functions, and, accordingly, by approximati@6),

(A e C,ReN>-1/2,k real and fixedl fail in this case. We is asymmetric. However, let us observe that this peculiar
can note, as a typical example of this situation, that whilefeature of approximatioil6) should not be regarded as a
for the class of the Yukawian potentials no poles of e defect, but it could be interpreted as the capability of this
function occur for Im\ <0, this is not the case for poten- representation of displaying the specific aspect of the
tials which depend on the angular momentum. resonances of nonidentical particles, i.e., the asymmetry
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proper of the unstable states. Since the angular lifetime is 5 = sin Br(2ar+1)

finite, the isotropy in@ is broken: there is memory of the ¢ = SIN 2. 2 2. S22
incident beam d?r);ction. The angular asymmetryyproper of {0 = ap)™+ FRIL(C + ap+ 1)°+ BRI}

the resonances can then be associated withspire width (20)
of the compound statésee |, Sec. ¥ to small values of REMARK. Let us note that the phase shifts of form(2a)
angular momentum dispersion there corresponds a small dgg not satisfy the asymptotic behavior, for large valueg,of
gree of asymmetry in the angular distribution. prescribed by formula14). This derives from the fact that

Amplitude (16) diverges logarithmically forward and the the amplitude given by formulél6), and, accordingly, the
differential cross section diverges as the square of the logghase shifts given by formul@20), are approximations
rithm, but the total cross section, derived from E&6), is  which are faithful only for small values df. These approxi-
finite. Indeed, we have mations, however, are acceptable at low energy where a few
terms of the partial-wave expansion are sufficient to describe

2 ol
Ot = MJ |P, (- cos6)|%sin 6do,  (17) the scattering amplitude. _
|sin T\ (E)[*J Representatio20) is useful for the following reasons.
and the integral at the right hand side of formultr) (i) At fixed energy it gives several phase shifts at different
converges. Furthermore, we may project the amplitudevalues of¢, with an acceptable approximation for small val-
(16) on the¢th partial wave, obtaining ues of¢.
, (il) ag andBr depend on the enerdy. i.e., we have a pole
4= -1 g 1 trajectory; whemg(E) equals an integef, and Bx(E) is very
T 2k T m(ag+iBr-O)(ar+iBrtl+1) small, we have sid,=1, i.e., a resonance.

(18) (i) Representatioii20) can describe, in principle, a se-
guence of resonances in various partial waves.
where we writeh=ar+iB to emphasize that we are now
referring to resonances. Next, when the elastic unitarityb
" ) : . o}
condition can be applied, we have the following relation-

ship amongg, ag, and Bg:

Next, if we assume that the colliding particles are spinless
songe.g.,a particles ina-« collision), then the scattering
amplitude must be symmetrized. Therefore, instead of ap-
proximation(16), we must write the following one:

. __9(E) | Py(cos@) +P,(-cosb)
and, finally, we obtain: and, consequently,
|
) G Br(2ar+1)
e { 2 (0= ap?+ BI(C+ an+ 17+ B2 22

Approximation(21) fails at #=0 andé=, and, in view of  of probability is to introduce a source somewhere. The
the combination ofP,(cos #) and P,(-cos6), the angular source can be provided by the complex centrifugal barrier.
pattern showed by approximatid@1) is symmetric. The condition for the source to be emitting is just to take
Coming back to formula18), and expanding the term Im \= By positive[see also Eq(24) below].
ME)=ar(E)+iBx(E) in Taylor's series in the neighborhood We now focus on a peculiar feature associated with non-
of the resonance energy, we can derive an estimate of tHecal potentials: in addition to poles located in the first quad-

resonance width'y, i.e., rant(i.e., Im\>0), we have also poles located in the fourth

quadrant(i.e., Im\<0), which describe the antiresonances.
B 2Br(dag/dE) In order to achieve a better understanding of this point, let us
I'r= (dag/dE)? + (dBR/AE)?’ (23 consider the continuity equation, which regdee also Eq.

95) of I]:

However,I'g should not be identified with the width of ©3 ]

the observed peak of the cross sectisee below at the IW _

end of this section, and Sec.)VWe can now give the T Vo] =2w Im U, (24)

following physical interpretation of the terg. The reso-

nance is unstable for the leakage of particles tunnelingvhere w=yx"y, x being the wave functiosee also Eq.
across the centrifugal barrier. Therefore the probability of(4)], j is the current density: i.ej=i{xVx -x Vx}, and
finding the particles inside a given sphere must decreasl,; is the sum of the potential and of the centrifugal term.
with time. The only possibility of keeping up with the loss In the case of local potentials, which do not depend on the
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angular momentum, the contribution to by comes only  term cannot in any way be connected toraetastablg
from the extension of the centrifugal term to complex- state; however, we still have a dispersion in energy ac-
valued angular momentum. The resonances are precisetprding to the uncertainty principle. We speak in this case
related to this term. When the potential is nonlocal, andof time advancenstead oftime delay which is proper of the
therefore depends on the angular momentum, a contribuesonance. Analogously, we have a connection between dis-
tion to Im comes also from the potential when the Persion in angle and dispersion in angular momentum. In
angular momentum is extended to complex values. Thidact, let us remark that the antiresonances are a typical

contribution cannot be in any way related to the centrifu-duantum-mechanical effect due to the exchange forces.

gal barrier, and therefore it cannot be connected to resol €N, proceeding exactly as in the case of resonances, and

nances. It rather derives from nonlocality and, accord—deioémg ﬂ;]e po_lesthm th_ehfl;)urrt]h ((qjuafdrant h;?c“A_'BA’ _
ingly, from the presence of exchange forces whichBA » We have in the neighborhood ot an antiresonance:

generates the antiresonangsee ). In this case the prob- - Ba(2ap+1)
ability of finding the scattered particle inside a given {[(€ = an)?+ BAI[(€ + ap+ 1)2+ B2I}V2’
sphere increases with time. The only possibility of keep-

&, =sint

ing up with this increase of probability is to introduce a (25
negative source, i.e., a pole singularity with Na<0. This  or, in the case of identical scalar particles,
|
)1+ (=) - BaRap+ 1)
Sy=sin?t . (26)
' { 2 {[(t-an?+ B+ an+ 12+ BRI

Adding the contributions of poles lying in the first and fourth quadrant, we have

& = Sin‘l{ I Pr(2ap* 1) } + sin‘l{ T ~ Pa2ap+ 1) } , (27)

€ - ag)+ BRIL(€ + ag+ 1)+ BRI} €= ap)+ BRIL(E + ap+ 1)+ BRIV
and, in the case of identical scalar particles, we obtain
5 - sm—l{ 1+(-1) P20+ 1) } - { 1+(- 1) ~ Bu(2an+ D } |
’ 2 (- ap’®+ BRIL(E + ag+ 1)+ BRI 2 {l(6-an)®+ BAII(€ + an+ )+ BRI
(28)

Finally, we recall the expression of the total cross sectioringly, the time delay from the time advance. Resonances and
in terms of phase shifts antiresonances are both described in terms of pole singulari-
ties, but acting at different values of energly follows that
dr the interference effect between these terms appears negli-
Utot:—22 (2€ + 1)sirfs, . (29 gible, as will be shown phenomenologically in Sec. V. In
k* =0 view of the difficulty of defining arantiresonance widtl',,
In principle, one could try to introduce an estimate of theth.ere remains the problem of fmgjmg an estimate ofttial
width of the antiresonances in a form similar to that foIIowedW'd.th F of the observeQ(expenmenpa)l resonance peak,
in the case of resonances. In other words we could expand iWh'.Ch is larger thaﬂ“R In ViIew of'the distorting effect O.f the
Taylor's series the term(E)=ax(E)-iBa(E), in the neigh- antiresonance. ThIS problem will be a_nalyzed ar_ld_dlscussed
borhood of the antiresonance energy. These widths should ) connection with the phenomenological analysis in Sec. V.
inversely proportional to the time advance of the outgoing
flux. But, while the resonances produce sharp peaks in the
cross section and the width of the peaks is well defined and

could be properly estimated, this is not the case for the anti- | et ys first consider the case of Yukawian local potentials,

resonances. The contribution of the antiresonances to thghich are represented by a spherically symmetric function
cross section does not produce sharp peaks and, correspond- . . ) A (e

ingly, the width of the antiresonances is ill defined: instead®n 1 ©of the following form: V(r)-l/rfﬂo e o(wdp,

the antiresonances are responsible for the asymmetry of tHg,,>0). We then recall the main properties of the pole tra-
cross-section peaksee Sec. V for phenomenological analy- jectories generated by this class of potentials. At negative
sis and exampl@sMoreover, we want to remark that in the values of the energg=k?, the poles\,(k) lie on the real axis
present procedure we can separate neatly the contribution of the \-plane, and describe bound states. The bound-state

the resonance from that of the antiresonance and, accorskave function belongs th%(0, +=). Further, these states are

IV. FROM RESONANCES TO SURFACE WAVES
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stable and, accordingly, they are described either by poles In conclusion, we have poles in the first quadrant ofxhe
lying on the imaginary axis of the upper half of thkeplane  plane, whose trajectories describe ordered sequence of reso-
(i.e., Rek=0) or by poles located on the real axis of the nances, and poles in the fourth quadrant whose trajectories
plane(i.e., Im\=0): their lifetime is infinite. Increasing the describe ordered sequence of antiresonances. The locations
energy, the poles in the plane move to the right. This is Of the poles lying in the first quadrant have an imaginary part
nothing but the familiar fact that the binding energies of thethat increases with energy, and this behavior corresponds to
corresponding bound states of different angular momentf€ increase of the widths of the rotational resonances. The
must decrease with increasifg At positive energyE=k?, trajectories of these poles keep moving to th'e right, and not
the poles\,(k) enter the first quadrant of the complax necessarily should turn back to the left. In this evolution we

plane: at those values where Rdk) cross an intege¢ and pass from a pure quantum-mechanical effect to semiclassical
correspondingly Im\(k) is small, we have a resonance. The effects, which can be described in terms of surface waves, as

lifetime of the latter is inversely proportional to In(k). As We:Sh?rl:ee)éﬂ:rm bﬁ:gxases inelastic and reaction channels
the energy increases, the trajectory could, in principle, de- 9y X

. ) . en: the scenario drastically changes. The elastic unitarity
scnbg several resonances: each of them corresponding to tﬁgndition does not hold anymore, and the target may now be
crossing of Re,(K) through an integer valué. We could 4t of as a ball partially or totally opaque at the center,
thus have several resonances lying on the same trajectonynq yith a semitransparent shell at the border. Accordingly,
But, as we shall show below, this is not the case. In fact, Ong,e potential acquires an imaginary part. The structure of the
can show numerical examples of trajectories produced b¥jngularities becomes much more complicated than in the
Yukawian potentials that leave very soon the reakis, then  pne-channel case. In fact, the structure of the singularities is
turn back toward the left half of tha pIane, and do not a Superposition of cuts Starting at every threshﬁl}q Vi
exhibit an interpolation of resonanc¢8]. Furthermore, it |abeling the channels. In spite of these difficulties, we can
can be proved5,9 that each trajectory, produced by the still, roughly speaking, continue the trajectory of the pole in
Yukawian potential, necessarily turns back toward the lefthe complex angular momentum plane with the only caution
half of the A plane. Therefore, if a pole trajectony,(k), of avoiding the use of the elastic unitarity conditioto).
moving with positive derivativel Re \,(k)/dk, goes through Moreover, when the energy increases, the effects of the ex-
an integer valuef [i.e., Ren,(K=¢] and produces a reso- change forces, which are a pure quantum effect, tend to van-
nance, then, after having turned back to the left, it musish. Therefore we can still retain approximati@t6), which
necessarily pass through the same integer véjusut now represents the elastic scattering, but now its physical inter-
with negative derivative. This latter crossing is not associ{retation must be appropriately modified. We have seen that
ated with a time delay, but with an advance of the outgoingh€ width of the rotational resonances increases with the en-
wave. Thus the peak in the cross section is not a resonanc®/9y; accordinglySz=Im X increases. It follows that when

but comes from the downward passage of the phase shiftk=R€\ crosses an integer value, b is not much
through /2, i.e., it corresponds to an antiresonance. Let u$maller than one, we do not observe sharp peaks in the cross

, ) . N - ) .
now suppose that a pole trajectory(k), moving with posi-  Section sincésin(mag+iBr)|™*=exp~mf:}: we have diffrac-
tive derivatived Re \,(k)/dk, crosses several integer values tive effects. These phenomena can be very well described by

and describes a sequence of resonances, ordered according@§!ming to formula(16), which can now be conveniently

the increasing values of the angular momentum. Then, th@itten in the following form:
same trajectory, after having turned back to the left half of - _
the N plane, should necessarily describe the corresponding HE, 6) = CE)P\g (- cosh). (30
antiresonances in inverse order. One would have at a smallém this way the amplitude is factorized into two terms: the
value of the energy the antiresonances which correspond first one, C(E), gives the amplitude a#=7 as a function
the resonances with higher angular momentum. To an omf E [in fact, P,(1)=1]; the second factor describes the
dered sequence of resonanc¢tee order being given by the backward angular distribution at fixe. This second
angular momentuirit would correspond a sequence of anti- term may be easily interpreted by recalling the asymptotic
resonances ordered inversely. This is manifestly contradidsehavior of P,(—cos 6) for large values ofA|. In fact, it
tory. We can thus conclude that it is not possible to describéolds|[7] that, for 0< <,
with a pole trajectoryn,(k) the ordered sequences of reso- . .
nancespand aJntiresxg\r?ances within the Cf]ramework of the g (1A= 0=mla] 4 gl 0)ld]
Yukawian potentials. (2m\ sin 6)*?

Therefore, if we want to describe the ordered sequences (31)
of resonances and antiresonances, like those produced by
rotational bands, we are forced to refer to a larger class ofhese exponentials correspond to the surface waves ex-
potentials, like the nonlocal ones, introduced previously. Axited at the periphery of the target by the grazing rays.
we have seen, this class of potentials admit poles in thdhese rays undergo at the point of tangency a splitting:
fourth quadrant, which are proper for describing antireso-one ray leaves the targéwhich is supposed, for simplic-
nances in view of the fact that their imaginary part is negaity, to be a spheretangentially, while the other one propa-
tive, and therefore can describe a time advance instead ofgates along the edge; finally, if the blackbody limit is not
time delay. yet reached, we may also have a refracted ray which pen-

P, (- cos ) «
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etrates the weakly absorbing region. Moreover, the sur<a)
face ray undergoes at any point the same splitting de-
scribed above; also the refracted ray, after emerging at the
surface, undergoes the same splitting, sending off tangen
tial rays. However, these latter rays are in phase and uni:
directional only in the direct forward and backward direc-
tions. The factor (sin 9 Y2 describes precisely this
focusing effect ath=0, and 6=

In order to have the exact expression of the surface FIG. 2. Diffracted rays emerging along the directi@na With-
waves, excited by the grazing rays at the periphery of th@Ut taking any shortcutb) Taking one shortcut.
target, we must introduce the surface ané%) in place of
the scattering anglé. The relationship is as follows:

Fig. 2). In this caseCy is not a constant since it must take
into account the contributions of various components: the
6,(ms+) =9+27m (m=0,1,2,..), (323 diff_racted rays which do not undergo any shortcut and the
critically refracted rays which take one or two shortcuts
before emerging. These various contributions interfere,
o) = 2m— 0+ 2mm, (32b)  producing an oscillating pattern. But, as the momentum
here 659 refers to th terclockwise traveli increases, the radius of the central opaque core increases
w gre o refers to the counterc O_C wise trave '”9 faYS: {00, and the shortcuts are progressively suppressed; there-
while ¢ corresponds to the clockwise ones. By using for-fore the amplitude of these oscillations is damped and
mula (31) it can be shown that the Legendre function ongs to vanish towards the blackbody limit. In order to fit
P\(-cos#) can be gegejrated by the superposition of expothjs oscillating pattern, we use a function of the following
nentials of the forn€m", representing surface waves creep-form: [1+A sin(wk+ ¢)]. Accordingly, we shall fit the ex-
ing around the targdtl0]. Coming back to formul&l6), we  perimental datdsee Sec. Y with the following formula:
recall that the latter is logarithmically divergentét0, but it q
is not at#=+. This different behavior is in agreement with Kl — L~ A3ack :
the fact that the damping factor of the surface waves is given kz(dﬂ>6t7T Cok™e™™ (1 +Asin(wk+ ¢)]. (34)

Im A4 ' ' -

by ™™ *m". Then, forwards, where the damping factor is| et us finally note that the complex angular momentum
nearly equal to 1, an infinity of creeping waves contribute topoles which are connected to resonances and those which
the total amplitude: we have a divergence. On the contraryzre associated with surface waves present remarkable dif-
the creeping wave approximation works better backwardsierences. We can, indeed, speak of two different classes of
since ImA H(Hf‘t) is larger. poles[9]. The poles of the first class are located near the

In order to evaluate the ter@(E), let us suppose that the real axis of the complex plane, and are associated with
blackbody limit has been reached. Then the grazing ray atesonances. The poles of the second class lie along a line
the tangency point will split into two branches only: a sur-which is nearly parallel to the imaginary axis: they are
face ray which describes a geodesic around the target, andsensitive to the behavior of the potential in the inner
another ray which leaves the surface tangentially. The pointegion, and are associated with surface wd@sFurther,
where diffraction takes place may be regarded as an interathe poles of the second class move nearly parallel to the
tion vertex, characterized by a coupling constant, while theeal axis when the energy increases.
line joining two vertices may be regarded as a propagator. To these different classes of poles we can associate two
The coupling constants are the diffraction coefficients; thedifferent physical models: vortices and surface waves pro-
propagator, for a surface ray describing an arc Ienﬁﬁ, duced by diffracted rays. In order to summarize rapidly the

o AS) i i
takes the forme*’m™. Next, we suppose that the so-called hydrodynamical model of the vortices, we move back to the
expression of the current density, introduced in Sec. lll: i.e.,

localization principleholds true: the phenomena which occur = VYo'V h is th funci |
for large energy, on the periphery of the interaction region) =X VX ~X Vx}, wherex is the wave functiorsee also

are independent of the inner structure of the target. Thereforgef' [1]). Assuming a semiclassical approximation, we write

we take for Im\ (which characterizes the propagatoas X=(A/N2)€®(A=cons}; accordingly, we havg=A?V®. Then
well as for the coupling constarthe diffraction coefficient ~We introduce a velocity field/, regarding® as a velocity
an energy dependence as the one calculated for a Whomptenual in the hypothesis of irrotational flow=V@. First,

transparent spheffd1]. Then, the formula for the cross sec- W€ represent the incoming beam as an irrotational flow
tion at #= is given by[11,4 streaming around the target. Then the trapping proper of the

resonance can be depicted as a rotational flogiven by
7 ( do — L -ABack @= VXV .
2laal T Cok™™e (c=cons}, (33 The diffracted rays which generate surface waves are due

o=m to a completely different process. Regarding the diffraction

whereC, is a constant beyond the blackbody limit. Before as an obstacle problem in a Riemannian space with bound-
reaching the blackbody limit, the grazing rays may un-ary, we can consider the edge of the diffracting body as the
dergo a critical refraction, penetrate the weakly absorbindoundary of the ambient space. Then the determination of
region, and then emerge after one or two shortdsee the geodesics by their initial tangai@auchy problemis not
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unique: when a ray grazes a boundary surface, the ray spliteries except for their threshold behavior.

in two parts, one keeps going as an ordinary ray, whereas the The functionsag(E), Br(E), aa(E), and BA(E) in formula
other part travels along the surface. This is precisely th€28) are parametrized as follows:

mechanism which generates diffracted rays and surface

waves[10]. We thus call the first class of poles associated ar(E)[ar(E) + 1] = 2IE + «a, (353
with vortices, and representing resonances, Regge poles;

while the name Sommerfeld poles is reserved for the second Br(E) = bl\s“E, (35b)
class of poles, in view of the fact that they have been dis-

covered by Sommerfel@] in connection with the diffrac- an(E) = a,EY*, (350

tion of radio waves around the Earth.

BA(E) = go(1 - € FF0) + g, E + g,E?, (35d)

where |=uR? is the moment of inertiau is the reduced
mass,R is the interparticle distance, arilis the center of

The a-« elastic scattering is certainly a good laboratorymass energy. Formulé35a for the resonant component
for testing the theory, since it is a system of two identicalag(E) simply gives the angular momentum of the two-
spinless particles which clearly displays rotational bandsparticle system viewed, in first approximation, as a rotator;
The data, which we analyze, are the experimental phas®rmula(35b) states for3(E) a growth which is fast for low
shifts, taken from Refs[12-16, the range of energies ex- energy, but slower for higher energy; this behavior suits the
tending up to 40 MeV in the center of mass system. In thisanalysis done in Sec. IV concerning the evolution of the
range of energies, in addition to the elastic channel that weesonances into surface waves for sufficiently large energy.
here considefnotice that to obtain formulé28) the unitary  For what concerng,(E) in formula (35d), the role of the
elastic condition was assumed to hpldhere are several exponential term is just to make a smooth, though rapid,
other inelastic and reaction channels: for instance, the readransition of 8A(E) from zero to the constamgg, so as to have
tion channelp+Li’, whose threshold energy is 17.25 MeV a regular behavior at very low energy. Unfortunately, a
[17]. Therefore, the experimental phase shifts contain nonvamodel which prescribes the growth propertiesagfE) and
nishing imaginary parts, and even their real part is affecteq@@,(E) is, at present, missing. This would require a refined
by these channels. For this reason considering only the reéheory able to describe the evolution toward semiclassical
part of the experimental phase shifts, as we do in the followand classical phenomena. The quantities,, by, a3, 9o, 91,
ing, is admittedly an approximation. Nevertheless, we asandg, should be regarded as fitting parameters. In what fol-
sume that the effects of the nonelastic channels on the redws, we will consider phenomena occurring only above
part of the experimental phase shifts is negligible within thethreshold; therefore we do not analyze w0 phase shift,
considered energy range, and we compare the phase shiftdich is ruled by the low-energy behavior of the trajectories
computed by the theory presented in the previous sections,(E) and B,(E). In particular, the resonance-antiresonance
with the real part of the experimental phase shifts. Finallycorrespondence is missing in the0 phase shift, and to date
instead of fitting the differential cross section, we prefer to fitthis makes it difficult to reproduce this phase shift in the
the phase shifts so that the action of the Coulomb potentidramework of our model.
can be subtracted. However, in connection with the interfer- In Fig. 3a) the fits of the experimental phase shifts, ob-
ence effects related to the Coulomb subtraction, the followtained by means of E¢28), for =2, 4 are shown, while Fig.
ing two remarks should be made. 3(c) shows the effect of the antiresonance on tk& phase

(i) In view of the long range of the Coulomb force, the shift. The resulting numerical values of the fitting parameters
exchange part of the Coulomb interaction does not affecare given in the figure legend. It is clear that the phase shifts
greatly the scattering wave functigeee Ref.[18] and the obtained by using Eq28) reproduce rather well the experi-
references therejri19]. mental data. In particular, they are notably better than the

(i) For the sake of preciseness, one should distinguish thenes obtained previously in Ref3], where a hard-core
quasinuclearphase shifts, from the purely nuclearphase model of the repulsive part of the interaction was imple-
shifts &,, which are those associated with the scattering bemented, and whose phase shifts turned out to be not adequate
tween the same particles, with the same strong properties biar representing the nonresonant part of the phase shifts over
without the Coulomb interactiof21]. It is rather intuitive, a sufficient energy rangésee also Refs[14,19). Table |
and can be rigorously provef21,22, that they differ by = summarizes the results of the analysis for what concerns the
quantities proportional to the Sommerfeld parametgr 2" and 4 resonances. The agreement with the experimental
=Z,Z,€lhv. Even thoughy can be significantly large at low values appears quite good, but for a slight discrepancy in the
energies, nevertheless, this fact does not prevent the phag&total widthI". However, as will be discussed later in this
shifts §, from being treated as corresponding to a short rangsection, care must be taken in the interpretation of the reso-
potential and retaining the main properties of interest for ounance widths. It is worth remarking that some experimental
analysis. The reader interested in a rigorous mathematicahdications of a 6 state aEg~28 MeV and of an 8state at
analysis of the Coulomb effects &t0 is referred to Ref. Eg~57 MeV have been reportg@4]. Pushing forward our
[23], where it is proved that an additional Coulomb potentialanalysis, and computing, from Eq.(28) even for£=6 and
does not affect the general properties of the Regge’s trajed*=8, we obtain a resonancé @t Ex~27.2 MeV, and a 8

V. PHENOMENOLOGICAL ANALYSIS

A. Rotational band in a-« elastic scattering

064606-9



ENRICO DE MICHELI AND GIOVANNI ALBERTO VIANO PHYSICAL REVIEW C 68, 064606(2003

I=4
25| . ] 2r

FIG. 3. a-a elastic scattering.a) Experimen-
tal phase shifts for the partial wavés2, {=4,
and corresponding fitésolid lineg [see formula
(28)], vs the center of mass energyExperimen-
tal data are taken from Ref§l2-1§. The nu-
merical values of the fitting parameters gsee
text): 1=0.76 (MeV)™, ap=1.6, b;=1.06
X101 (MeV)™2 a,=1.03 (MeV) 4 g,=0.72,
g;=-7.5x 1072 (MeV)™}, g,=2.0x 10°° (MeV)™?,
Ey=4.1 MeV. (b) Total cross section computed
by using the phase shifts {@) [see formulg29)].
(c) Phase shift for the partial wavise=2. The solid
line indicates the phase shift computed by using
formula (28), which takes into account both the
resonance and antiresonance terms. The dashed
line shows the phase shift computed by using
only the resonance terifsee formula(22)]. (d)
Comparison between the total cross section com-
puted by accounting for both the resonance and
antiresonance termgolid line), and that com-
puted by using only the resonance tefdashed
line).

o1 = 30 0" 16 20 = 30 40

Gbl

0" 16 2 30 4
E [MeV]

resonance aEg~47 MeV. Then, with a single pair of pole rives from the effect of the antiresonance which deforms the
trajectories(one for resonances and one for antiresonancedell-shaped symmetry of the resonance peak. Further, we

this rotational band of resonances can be fitted quite accumust note the following. _ _
rately. (i) In the present theory, formulg@3) provides an esti-
From formula(29) the total cross section can be com- Mate of the pure resonance widik, which must be under-

puted from the phase shifts of Fig3 the result is shown stopd as the width ‘_)f the resonance in the absence of the
in Fig. ab), while in Fig. 3d) the total cross sections com- antiresonance effejct, as expla|r_1ed in Sec. Ill an_analogous
BN . : _ stimate for theantiresonance width' is hardly definable.
puted with and without the antiresonance term are compared. i) | the fit of the experimental cross section within the
The analysis of the total cross section arouses the issugreit-Wigner theory, the estimate fis obtained by adding
regarding the definition of the resonance parameters, in pafy the pure resonance a background term, which is supposed
ticular of the widthI" of the resonance. The extraction of the g pe generated by the so-called potential scattering. One
resonance parameters is model dependent, and many waysdbtains a purely phenomenological result.
proceed in practice have been presented in the literésees Reverting to our theory, in order to give a phenomeno-
for instance, Refs[25,2§ and the references thergifThe |ogical estimate of the widtH", two different situations
estimate ofI" presents several difficult questions in the should be distinguished.
framework of the present theory as well as in the Breit- (1) The effect of the antiresonance is a small perturbation
Wigner formalism. In both theories the main difficulty de- to the pure resonanagee, for instance, the leftmost reso-

TABLE I. a-« elastic scattering. In the present work the resonance eiigggssociated with the angular
momentuny¥, is defined as the energy of the upwart2 crossing of the corresponding phase s8ifE). The
purely resonani g indicates the width of the resonance peak computed without the antiresonance contribu-
tion, while thetotal I" stands for the width of the resonance peak accounting also for the antiresonance term.
ASISresindicates the relative increase of skewness of the resonance peak when the antiresonance contribu-
tion is added to the pure resonant term; héris evaluated by means Gien

JP Er(MeV) Er(MeV) I'r(MeV) I'(MeV) I'(MeV) AS/SRes
(Present work (Ref. [24]) Purely resonant Total (Ref. [24])

2" 3.23 3.27 1.04 2.58 1.50 20.53

4* 12.6 11.6+0.3 4.33 491 4.0+0.4 2.35
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FIG. 4. 7"-p elastic scattering.a) Total cross section. The experimental datats are taken from Refi31]. The solid line indicates the
total cross section computed by means of 8§), and taking into account the contributions of both the resonance and antiresonance poles
generatingé@” [formula(40)], and the resonance pole generatﬂ‘;@. The dashed line shows the total cross section computed by accounting
only for the resonance poles generatiﬁii‘j’ and 52'), respectively. The fitting parameters gsze Eqs(40), (41), and (428—42f)] af;)
=6.89x 107, a”=9.2x107 (MeV)? b{’=9.0x1075 (MeV)™?, by'=1.4x107 (MeV)? c=-0.5, ¢;=5.0x107 (MeV)2 gp=2.0
X 10 (MeV)2, g,=3.0x 10722 (MeV)™, a{’=6.4x 107 (MeV) 2 b{'=1.25x10* (MeV)L. (b) Differential cross section ¥s-cos6), at
s=E?=10.66 (GeV)2. The experimental dataots are taken from Refi27]. The solid line shows the differential cross section computed by
means of Eq43). The fitting parameters are Re=7.1, ImA=1.3,B,=1.61ub (fm)?, B,=8.0X10* ub (fm)2. (c) Differential cross section
vs (-cos6), at s=E?> =14.04 (GeV)?. The fitting parameters are: Re=9.2, Im\=1.2, By=0.778ub (fm)?, B;=1.6X10"° ub (fm)2. (d)
Differential cross section ai=m vs k. The experimental datalots are taken from Ref{28]. The solid line shows the differential cross
section computed by means of E&4). The fitting parameters a€,=1.85x 1(f ub (fm)?3, c=5.5 (fm)3, A=-9.3X 1072, »=5.4 fm, ¢
=0.84. The dashed line shows the differential cross section computed by means of f@8&wia which the oscillating term is absent.

nance peak in Fig.(4) in connection with ther*-p elastic  composite structurénonelementarineysof the interacting
scattering. This means that the reference baseline of the purgatrticles, we take the statistical skewnegg, of the distri-
resonance peak and that of the observed cross séctiom  bution, defined a8~ ,u3/,u§’2, whereu, and u; are, respec-
prising both resonance and antiresonaraencide within a  tively, the second and third central moments of the distribu-
good approximation. tion (see Table Il for the numerical values related to the
In this case we can proceed operatively as follows. Firstz/*-p elastic scattering This procedure works reasonably
from formula(23) we obtain the estimate dfz. Then, from  well as far as the asymmetry of the resonance peak is not too
the plot of the cross section generated by only the pure resdarge and can be regarded as a small perturbation of the pure
nant term, i.e., obtained by using only the pole singularityresonance effect, as in the case 0fzﬁh$§ %) resonance in the
lying in the first quadrant of th& plane, we can recover the *-p elastic scattering, which will be treated in the following
reference baseline of this almost symmetric bell-shaped dissubsection.
tribution by equating its second central moment to the the (Il) The asymmetry of the bell-shaped peak is very large,
value ofI'g [evaluated by means of E(R23)]. Next, keeping and the antiresonance effect cannot be regarded as a small
fixed this baseline, we evaluate the second central moment gierturbation to the pure resonarisee Figs. @) and 3d) in
the distribution which fits the experimental cross-sectionconnection with then-« elastic scattering In this case the
peak(i.e., accounting also for the antiresonant terile can  increase of the cross section corresponding to the downward
take as an estimate of the total widththe value of this crossing ofn/2 of the phase shift is relevant and deforms
second moment. As a measure of the degree of asymmetry obnsiderably the shape of the pure resonant peak. Moreover,
the resonance peak, which can be ultimately ascribed to thihe reference baseline of the pure resonance peak and that of
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the observed experimental cross section differ significantly, §0) = ezm‘(‘) (37b)

so that a statistical approach as the one described in the pre- ¢ '

vious casel) cannot be adopted. We are forced to follow adﬁ being the phase shift associated with the partial wave
more pragmatic attitude. Since the asymmetry due to theiith total angular momenturji=¢+3. The differential cross
antiresonance effect sets in just after the resonance maxgection is given by

mum, we can regartl as the full width at half maximum of dor

the resonance peak, like in the Breit-Wigner theory. From the — =1f]2+]g|?, (39

plot of the pure resonance cross section we obtain a bell- dQ

ShaDEd distribution whose full width at half maximum agreesf the proton target is unpo]arized, and if the Coulomb
with the value ofl'; evaluated by formul&23). Then we can  scattering is neglected, as it is admissible at energy suffi-
give an estimate of the total width by evaluating the full  ciently high. Let us note that the Sommerfeld parameter
width at half maximum of the curve fitting the experimental »=e?/4v at E=1200 MeV [close to the energy of the
cross section(i.e., including both resonance and antireso—A(g, g) resonanceis of the order 00.04. Next, integrating
nance terms In this case the asymmetry of the resonanceover the angles and taking into account the orthogonality
peak can be estimated by usingphenomenological skew- of the spherical harmonics, we obtain for the total cross
nessSpnen defined as follows: first we compute the differ- section the following expression:

ence between the two half-maximum semiwidths, measured 2

with respect to thg energy of resonarE,g then the dggree Otot = FE (2 + 1)sir? O (39

of asymmetrySyenis defined as the ratio between this value it

and the full widthI" (see Table | for numerical values related

. . wherej=€+21 8, :=6; ¢z1/2 8 =81, 8 p_1p=8V.
to the a-« elastic scattering J 20 S0~ P02 B2 T oSG2 T

We put at the center of our analysis th ,g) resonance.

It is considered the first member of a family of resonances
. . . P H H 7 11+ 15+ 19
B. Resonances and surface waves in*-p elastic scattering whoseJ® values are precisely given By, Z*, 3, 2*, 2*. It

. . . ) has been suggest¢@l9] that this sequence could correspond
In the analysis of ther’-p scattering the spin of the pro- 1 an even rotational band of the proton states whose angular
ton must be taken into account. Therefore, we start recalling,omentum is given by.=0%, 2*, 4%, 6%, 8*. We could as well

rapidly the main formulas for the scattering amplitude in thenave an odd rotational band of proton states with angular

case of spin-0—spin-collision. In particular, we have the momentumL=1",3",.... But, in ther*-p elastic scattering,
spin-non-flip amplitude and the spin-flip amplitude, which, we observe only one resonance wilR=3", which could
respectively, read correspond to the first membére., L=1") of this odd rota-

tional band[30] (see Ref[29)]).
1 Let us now focus on the first family of resonances. In our
f(k, 0) = = > [(€ +1)(S{” - 1) + €(S” - 1)]P,(cos 6), model they should be fitted by the trajectory of one pole
2iki= lying in the first quadrant of the complex angular momentum
(363 plane. But, since the proton and the pion are composite par-
ticles, the antiresonances should play a role. Accordingly, we
should add the contribution of a pole in the fourth quadrant
1= of the complex angular momentum plane. Furthermore, since
gk, 6) = 5(2 (07 - st PM(cos 6), (36b) the spin of the proton is fixed, we limit ourselves to perform
¢=0 the analytic continuation of the partial waves from integers
to complex values of the angular momentdmTherefore,
we shall fit the resonances belonging to the family whose

first member isA(Z, 2), by writing for &, ..1,=46," the fol-

where Pél)(cos 0) is the associated Legendre function, and

stH = 29 (378  lowing expression:
|
9o gpil 17D k(2aR’+ 1)
‘ 2 {[(t-a)2+ (BN + i) + 12+ (BR) 22
_J1-(-1" - B 2ay) + 1)
e { 2 {{(0=a@d?+ (B + o) + D2+ (B2 ) 0

(Let us note that the fact¢—(-1)]/2 in formula(40) and in the next formul#41), instead of1+(-1)¢])/2, is due to the fact
that we interpolate odd values 6f)

We can now pass to consider the second family of resonances, whose first metde3)isBut, as mentioned above, this
resonance is the sole member of this sequence which is phenomenologically observed in elastic scattering. We thus introduce
a second trajectory of a pole lying in the first quadrant. In view of the small effect of this resonance on the total cross section,

we neglect the corresponding antiresonance pole. Then, with obvious meaning of the notations, we W{m&@?é(_),
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(=1 (20
5<{—>=sin—1{1 €D Pr (205 *+1) } (41

2 {l(e-aR+ (B + ) + D2+ (B

We then fit the total cross section parametrizm@, (Rﬂ, the resonance peaks is due to the antiresonances, whose ef-
o, and g as follows: fect tends to disappear dsincreasegsee also Table | for a
similar behavior in connection with the-a scattering.
ay =al) +aP(E2-E)), (428 As shown in Fig. 4a) we can fit the total cross section up
to a value ofE of the order of 2000 MeV. At higher energy,
,3(R+) - b(f)w/EZfE(% b(2+)(E2 _ E(Z)), (42h) the elastic unitarity condition is largely violated, and the fit-

ting formula should be modified accordingly. Furthermore,
the resonanc:e%;r’+ and 179“ do not display sharp peaks in the

(+) — 2 2 . .
ap’ =Co+ C1(E* - Ep), (429 (otal cross section. This means that the resonances evolve
into surface waves in the sense described in Sec. IV. At these
,BX'):gO(EZ—ES)+gl(E2—E§)2, (420) energies the partial-wave analysis cannot be properly ap-
plied, nor has it the meaning to separate #i¢from the &
- - raj ries. As explained in AV, w n try two differen
Ol(R):a(l)(Ez‘Ecz)), (420 trajectories. As explained in Sec. IV, we can try two different

types of fits:(i) at fixed energyyii) at fixed angle, i.e.p
=. We start with the first type of fit. With this in mind we
By =b\E?-E}, (42f)  approximate the differential cross section in the backward

whereE is the energy in the center of mass frame, &gds direction with the following formula:

the rest mass of the*-p system.

Substituting the valuesé(f) [formulas (40), (41), and
(42a—(42f)] in formula(39) we can fit the total cross section =
(the data are taken from Regf31]). The result is shown in k=dQ
Fig. 4a), wh_ere the total cross sections computed Wdtlid |, formula (43) we introduce the ternBl|P§1)(—cosa)|2,
line) and without(dashed ling the antiresonance term are \yhich gives the contribution to the differential cross sec-
comparedsee the figure legend for numerical detpilBhe  tion of the spin-flip amplitude[see formulas(36)]. In
fit is very satisfactory, and shows with clear evidence theFigs. 4b) and 4c) we present two fits of the differential
effect of the antiresonance corresponding to the resonan¢gass section in the backward angular region 0.8
A(3,3). The difference between the two curves reveals the-_cosg<1.0, atfixed energy. The fits are satisfactory,

composite structure of the interact-ing partic[8g]. L and B, turns out to be negligible, compared By. Let us
7|n3Tab|lel |3! thelaga!yss for family of reso_nanceég, é)'_ moreover note that the values of Rebtained by these

A5, 3), A3, 3), A5, 5) is summarized. In particular we give fits indicate that we do not have resonances®at>* and

the energy location, the purely resonant and total widths, angpzli%, but backward peaks due to creeping wave effects,

the skewness ascribable to the antiresonance phenomenonylich can be described by the Sommerfeld poles, instead

should be remarked that the values of tkig, 3) resonance, of by the Regge'’s ones.

which is not visible in Fig. da), have been extrapolated by  Finally, in Fig. 4d) we present a fit at fixed angle=.

computingé‘g;)5 with the parameters obtained from the analy-The fit is performed by means of formu(&4), derived in

sis of theA(3,3) and A(4, 2) resonancegsee the legend of Sec. IV. It presents a clear evidence of an oscillating pattern

Fig. 4). It is worth noticing from the last column in Table Il due to the interference of grazing rays which undergo a dif-

that the degree of asymmetry associated with the resonanéerent number of shortcuts. As the energy increases, the ra-

peaks decreases notably when the angular momefitumsn  dius of the central core increases too, and the shortcuts are

creases. This behavior was expected since the asymmetry pfogressively suppressed: the oscillating pattern is damped.

 do
= By|P,(~ cos 6)]>+ B,|P\V(- cos 9)|2.  (43)

TABLE Il. 7*-p elastic scattering. Notice that, in the rightmost coludis evaluated by means k.,
For the other definitions, see the legend of Table I.

JP Mass(MeV) Mass(MeV) I'r(MeV) I'(MeV) I'(MeV) AS/ Sres
(Present work (Ref. [31]) Purely resonant Total (Ref. [31])

g* 1231 1230-1234 84 117 115-125 4.40

%* 1941 1940-1960 273 308 290-350 3.80

171" 2445 2300-2500 374 410 300-500 3.24

%‘ 1655 1615-1675 147 120-180
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