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Nuclear isospin diffusivity
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The isospin diffusion and other irreversible phenomena are discussed for a two-component nuclear Fermi
system. The set of Boltzmann transport equations, such as that employed for reactions, is linearized, for weak
deviations of a system from uniformity, in order to arrive at nonreversible fluxes linear in the nonuniformities.
Besides the diffusion driven by a concentration gradient, also the diffusion driven by temperature and pressure
gradients is considered. Diffusivity, conductivity, heat-conduction, and shear-viscosity coefficients are formally
expressed in terms of the responses of distribution functions to the nonuniformities. The linearized Boltzmann-
equation set is solved, under the approximation of constant form factors in the distribution-function responses,
to find concrete expressions for the transport coefficients in terms of weighted collision integrals. The coeffi-
cients are calculated numerically for nuclear matter, using experimental nucleon-nucleon cross sections. The
isospin diffusivity is inversely proportional to the neutron-proton cross section and is also sensitive to the
symmetry energy. At low temperatures in symmetric matter, the diffusivity is directly proportional to the
symmetry energy.
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I. INTRODUCTION ductivity. Danielewicz[7] derived results for those coeffi-

A e o . cients valid in a wide range of nuclear densities and tempera-
The availability of beams largely differing in isospin con- . : .
. . . . . tures. Hakim and Morna$9] studied different transport
tent in nuclear reactions has dramatically increased the inter-_ "= . - ;
. . . e coefficients within the Walecka model following the
est in phenomena associated with the variation of that con- T L
i . . relaxation-time approximation.
tent. In the context of peripheral reactions, this includes oo . -
) . : . : Our derivation of diffusion coefficients follows the gen-
interest in changes of the nuclear density profiles with the
isospin content. In central reactions, the attention has fo(—aral strategy of C.:ha_pman. and Enskpg], but here for a
) ' Fermi system, with inclusion of mean-field effects such as
ré’ppropriate for a nuclear system. In the following section, we
: ) . Ciscuss the diffusion coefficient concept qualitatively and
would permit an extrapolation of the nuclear equation Ofi ke simple estimates for the nuclear matter. The modifica-
state to the neutron matter linfit]. The isospin asymmetry ion of the Boltzmann equation to extend it to fermions has
has been used in central reactions for projectile-target tagseen first discussed by Uhlenbeck and Uehljag,13. In
ging in the investigation of stoppin?]. ~Sec. lll, we formally solve the set of Boltzmann equations
This paper deals with the irreversible transport of isospirfor a binary system of fermions to find thermodynamic fluxes
and other quantities in a nuclear system, as pertinent fodriven by specific thermodynamic forces and to find general
reactions, for small deviations from equilibrium. In that but formal expressions for the diffusion and other transport
limit, the irreversible transport acquires universal featuresoefficients. The transport coefficients weigs we founa
and is characterized in terms of transport coefficients thafirst considered for fermions by Hellund and Uhlenb&tH];
include the isospin-diffusion coefficients. The coefficientscompared to them, our notation here adheres more to what is
are derived here for the dynamics described in terms of aow customary for nuclear reactions. Closely related to the
Boltzmann-equation set such as used in reaction simulatiordiffusivity is the electrical conductivity that is included in
[3,4]. The main diffusion coefficient or diffusivity, character- our considerations. In Sec. IV, we obtain more specific re-
izing isospin diffusion driven by the gradient of asymmetry, sults for the coefficients on assuming deviations from equi-
is evaluated using free neutron-proton cross sections. In thérium suggested by the Boltzmann-equation set, for spe-
past, other transport coefficients, viscosity and heat conducific thermodynamic forces present. Numerical results for the
tivity, have been investigated for nuclear maft&+9]. It was  coefficients are obtained in Sec. V, using free nucleon-
subsequently found that conclusions from comparisons ofucleon cross sections. We also estimate there the pace of
reaction simulations to data on stopping can be universallysospin equilibration in reactions. We summarize our results
formulated in terms of the nuclear viscosftyQ]. It is hoped in Sec. VI. More technical mathematical details and some
that the diffusivity can be of such utility as that other coef- reference information are provided in five appendixes. In se-
ficient, for the systems with a varying isospin content. guence, these appendices are devoted to the definitions of
The past studies of irreversible linear transport for nucleamacroscopic quantities, the continuity equations, the conti-
matter were primarily directed at momentum and energy. Tonuity equations for an ideal fluid, the transformations in the
monaga[5] and Galitskiiet al. [6] obtained the low- and driving force for diffusion, and to the algebra of collision
high-temperature limits for the shear viscosity and heat conbrackets.
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II. DIFFUSION IN A BINARY SYSTEM Jv (1 -v)
. . . . Fl:_n Dl_ and F2:_n D2—. (4)
Diffusion and other irreversible transport processes occur ar ar

when a system is b_rought'out of equilibrium. The dlrectlc.mThese are the so-called Fick’s laws. Notably, the stability
of those processes is to bring the system back to the equilib-

rium. For small perturbations, in terms of constraints thatOf an equilibrium state require®;>0. Since m I'y
: ’ - o +m, I',=0, we havem; D;=m, D,. For the differential

may be set externally, the system response is linear in t ow. we have

perturbation. The coefficient of proportionality between the '

induced flux and the perturbation is the transport coefficient.

In a multicomponent system with no net mass flow, irre- v d(1-v) X
versible particle flows result if particle concentrations are Is=-n Dlﬁ +nD, ———=-nD; ar
nonuniform. ForN components, there afd—1 independent
flows andN-1 independent concentratiogsince the con- Here, the differential coefficient iB s=(D1+D,)/2.
centrations need to sum up tg. The flows are then related ~ So far, we assumed a system at a uniform pressure and
to the gradients of the concentrations with @h-1)x (N  temperature, with just concentration changing with position.
—1) matrix of diffusion coefficients. In a binary system, only If the variations in a system are more complex, other non-
a single coefficient of diffusion, or diffusivity, relates the equilibrium forces than the concentration gradient can drive
irreversible particle flow to the nonuniformity in concentra- the diffusion. This will be explored later in the paper. Gen-
tion. However, as we shall see, nonuniformities in othereral guidance regarding the forces which can contribute is
quantities than concentration can induce a dissipative particlerovided by the Curie principle. This principle exploits sym-
flow as well. metry and states that the driving forces must have the same

Our focus, obviously, is the binary system of neutrons andensor rank and parity as the flux they generate.
protons. However, for the sake of utility of the results else- For the system of neutrons and protons, the differential
where and for the ability to examine various limits, we shallconcentrations becomes a concentration of the isospin and
consider a general two-component system of fermions. Athe differential flow becomes the isospin flog=T",. More-
extension of those results to bosons, outside of a condensaver, the differential diffusion coefficient becomes an isospin

(5

tion, will be trivial. diffusion coefficient,Ds=D,, and for equal masses we ex-
The two components will be denoted 1 and 2. Then, fopectD;=Dp=Dp. o o
the particlei, the density igy=N;/V, whereN, is the particle It is popular to relate the concept of a diffusion coefficient

number in some infinitesimal volumé. With net densityn to a diffusion equation. Indeed, if we consider a uniform
=n,+n,, the particle concentration for 1issny/nand for 2 it ~ system of protons and neutrons at rest, but with the nucleon
is 1-v=n,/n. Moreover, withm representing the mass of concentration changing in space, then, from the continuity
particle i, the net mass density is=p;+p,=my n+m, n,,  equation for the differential density
and the mass concentration fois ¢;=m ni/p. The differen-
tial particle concentration i§=(n;—n,)/n. The different con-
centrations are obviously related and thus we hawél =-V.I,, (6)
+8)/2 andc;=my (1+8)/[my (1+8)+my, (1-8)]. Later in the Jt
paper, we shall primari_ly use the differential concentraon ;¢ get the familiar equation
as an independent variable.

The dissipative particle flowk; are defined relative to the

local mass velocity, X0
y_/ E = D| V25 (7)
Li=n (vi-v), (1)
Here, forD,, we have assumed a weak dependence on the
wherey; is the local velocity ofith component and concentrations.
Before turning to a derivation of rigorous results for the
V =(py Vi +pa Vo)lp. (2) diffusion and other transport coefficients, it may be instruc-

We might consider other flows such as defined relative t0t|ve to produce simple mean-free-path estimates for those

the localparticle velocity, but those flows are combinations (r:noaejs:mtﬁgf.bféoﬁecsog&gﬁr: ﬁgmnpoc:rrf;}itja?igﬁqggéﬁ' I(]icmiBent in
of I' andI';. Moreover, everl’; and[I’; are redundant and G that may be factoredpc)ualnd consider the gradient
we might just usd™; as an independent flow with the flow of Y nay S . 9

. . - : of concentration along theaxis, in the medium at rest. If we
2, as easily seen, given dy,=—-m; I'y/m,. Another option

might be to use as independent the differential flow definec}ake th_e three_coordmate axes, then 1/6 of '?1” part|cle§ .W'” be
as primarily moving along one of those axes in the positive or

negative direction, with an average thermal velociy
[=T.=T.. 3) :\ﬁn for the d_is_tance of t_he (_)rder of one_mean-free path
om 1l T2 \, without a collision. Considering the particles 1 moving
If the system is at uniform pressure and temperature, buhrough the plane at=0, they will be reflecting density at a
there is a small concentration gradient present, the fluxedistancex away. Including the particles moving up and down
develop linear in the gradient, enabling us to write, e.g., through the plane, we find for the flux
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1 1 ang cant; notably, at those temperatures Fermi effects also
= g[nl(x— N —n(x+ M)V = - IV need to play a role.
The isospin diffusion induced by mechanical forces has
With Eq. (4), we then get for the diffusion coefficient analogy in an electric current induced by the electric fields.
Indeed, for large enough systems, the Coulomb interactions
1 1 T can contribute currents altering the concentration and, for
D~ §>\ V~—n1\/3= (8) completeness, we evaluate the conductivity for nuclear
no V3m . ; . ?
matter, relating the isospin flux to the electric field,
with A ~1/(no). A more thorough investigation shows that
it is the cross sectiomr, for interactionbetweenthe two I'=o0eé&, (11)
species that enters the diffusion coefficient. where€& is the local electric field.

Let us now evaluate the magnitude of the isospin diffu-
sion coefficient. At temperature~60 MeV and normal den-
sity np=0.16 fnT3, with ¢;,,~40 mb, we findD,;~0.2 fmc.
We will see this to be in a rough agreement with thorough A. Coupled Boltzmann equations
calculations.

Similarly to the above, one could employ the mean-free-,
path arguments to determine the better investigated coeff
cients shear viscosity; and heat conductior. One finds

~§n mV \ and K~—n V \ ¢y, Wherecy is the specific heat
per particle. ForT~ 60 MeV and 0~40 mb, we find »
~30 MeV/(fm?%) and x~0.06/fm2. Up to factors, the h(r,t) = (2ﬂ-ﬁ)3fdp x(@f(p,r,v), (12)
shear-viscosity and heat-conduction coefficients play the role
of diffusion coefficients in the diffusion equation for velocity whereg is the intrinsic degeneracy factor. Different stan-
vorticity and in the heat-conduction Fourier equation identi-dard expressions for macroscopic quantities in termg of
cal in form to the diffusion equation. such as pressure and heat flow, are listed in Appendix A.

In the estimates above, we just considered the free motion The components are assumed to follow the set of coupled
of particles in-between collisions. If self-consistent meanfermion Boltzmann equations,
fields produced by the particles depend on concentration,
then this dependence, on its own, contributes to the diffusion. B ﬁ N ‘9_f| _— (13)

In the case of nuclear matter, the interaction energy per &t m ar Yop TV

nucleon may be well approximated in the form quadratic in .

isospin asymmetryE'=al’ &, where 5=(n)-n,)/n anda/’ is Trr:e term_sfog thf Itehft—hand adé?s)f account ;o: the .

the interaction contribution to the asymmetry coefficignt changes ini; due 1o the movement of quasiparticles an

At normal density, the coefficient & ~14 MeV. The naive their acceleratlon under t_he |anL_Jence o_f mean-flelql and
: . . . - . external forces, included if;, while the right-hand side

expe_ctanon for two-body mte_ractlons IS tlﬁ.t Is linear in rhs) accounts for the changes i due to collisions. In

dens!ty. At cc_)nstant net density, the quadratic dependence e following, we shall often denote the lhs of a Boltz-

thi mger?ctlon energy 9”5 _Ieads to the forceFy, mann equation a®;. With do/d() andv™ representing the

=4 g/n“ony/or, of opposite sign on protons and neutrons. jigterential cross section and relative velocity, respec-

Th_e dlr_ectl_on_of th_e force for positive;’ is to redl_Jce noN- ively, the collision integral for particle 1 is

uniformity in isospin. Under the influence of this force, a

proton accelerates for a typical time between collisidis

=MV and then, in a collision, resets its velocity. The de- Ji=Jii+Jip= Z(Zﬂﬁ)afdspla dQ’

scribed polarization effect augments then the proton flow by

lll. FLUXES FROM THE BOLTZMANN-EQUATION SET

The two components of the binary system will be de-
scribed in terms of the quasiparticle distribution functions
h(p,r,t) The local macroscopic quantitig€r,t) are ex-
pressed as momentum integralsfof

dow) = r
4aln, N dn, Xv* a0 (f1 fla f1 fla=f1 fia 1 f10)

N T T ©
Comparing with Eq(8), after correcting for the local cen- (27,—;;)3 f d°p, A0’
ter of_mass motion, we find that the polarization increases do .
the diffusion coefficient by X0 ( o ) (fl f2 £ fh—fy £, 1 ).
Dl ~(1- 52)%? D7, (10) (14)

Here, f=1-f is the Pauli principle factor. The factor of
whereD? represents the previous estimate in E8). Itis  1/2 in front of the first rhsl;; term, compared to thé,,
apparent that the contribution of the polarization effect isterm, compensates for the double counting of final states
negligible for temperature¥>a;. However, at tempera- when integration is done over the full spherical angle in
tures comparable ta], the contribution could be signifi- scattering of identical particles. The subscrgpnd the
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primes in combination with the particle subscripts 1 and 2consistent with the Euler equation®7). Notably, the
are used to keep track of incoming and outgoing particlevanishing of the collision integrals is frequently exploited
for a collision. Other than in the context of particle com- in deriving the form of the equilibrium functions, leading

ponents, such as here, the 1 and 2 subscripts will not bg, the requirement thatt/f; is given by the exponential of

utilized in the paper. The collision integra} for particles 5 |inear combination of the conserved quantities. In the

2 follows from Eq.(14) upon interchange of the indices 1 context of specific transport coefficients, the boundary

and 2. As it stands, the set of the Boltzmann equationggngitions for the Euler equatiori®7) may be chosen to

(13), with Eq. (14), preserves the number of each speciesgenerate just those irreversible fluxes, and forces driving
In the macroscopic quantitigd2), the distribution func-  thgse fluxes, that are of interest.

tion f gets multiplied by the degeneracy factpWhen con- The equation sefl6) can be solved by iteration, order by

sidering changes of macroscopic quantii¢g) dictated by  order ine, requiring

the Boltzmann equatiofl3), the changing distribution func-

tion f continues to be multiplied bg. In the equation, the

factor of f for the other particle in the collision integralis Dk =g, (18

accompanied by its own factor gf As a consequence, in the © _ ) ) @

variety of physical quantities we derive, the factorfofs ~ Thus, fi” may be introduced int@;, producingD;™ and

always accompanied by the factor gfwhile, howeverf is ~ allowing to f'nd_fJ(l)' L\Iext, insertingf|" into 1; yields D”

not. To simplify the notation, in the derivations that follow, that allows to findf{? and so on.

we suppress the factors gf only to restore those factors For finding the coefficients of linear transport, only one

towards the end of the derivations. iteration above is necessary, sirfti‘:]é, as linear in gradients,
When the Boltzmann-equation set is used to study thgield dissipative fluxes that are linear in those gradients. The

temporal changes of densities of the quantities conserved il@cal equilibrium functions on their own produce no dissipa-

collisions, i.e., number of species, energy, and momentuntjve fluxes, as the species’ local velocitiésand heat fluxQ

local conservation laws follow. Those conservation laws areanish, while the kinetic pressure tendois diagonal,

discussed in Appendix B.

B. Strategy for solving the Bolt -equati t d®
rategy for solving the Boltzmann-equation se O - p % fO(p,r,t)=0, (199

Irreversible transport takes place when the system is L (2h)*
brought out of equilibrium such as in effect of external con-
straints. Aiming at the transport coefficients, we shall assume
that the deviations from the equilibrium are small, of the o N S
order of some parameterthat sets the scale for temporal Q ZE f (2mh)3 om m fi (p,r,)=0, (190
and spatial changes in the system. Then the distribution func- ) P
tions may be expanded in the power serieg 11,15,

f=fO+fO 4@y ... (15)

— dp pp 2 -
P(O):EJ psﬂffo)(p,r,t):—nEl,
where f®¥ represent the consecutive terms of expansion i (2mh)> 3

and f© is the strict local equilibrium solution. The terms (190

of expansion inf may be nominally found by expanding ) . .

simultaneously, the derivative terms in the equations an& representing the local kinetic energy per particle. The
by demanding a consistency, above fluxes reduce the local continuity equations to the

ideal-fluid Euler equations.
'Dl(l) +'Di(2) + .. :‘]i(O) +‘]i(1) +‘]i(2)+ cee, (16)

Here, we recognize that the derivatives, themselves, bring C. Boltzmann set in the linear approximation

in a power ofe into the equations and, thus, the derivative ] ) ] o
series starts with a first-order term i We now consider the terms linear in derivatives around a

While we nominally included the zeroth-order term in the 9\Ven point, i.e., the case ok=1 in Eq. (18), for the
expansion of the collision integral, the integral vanishes Boltzmann-equation set. On representing the distribution

for the equilibrium functions functions asf;=f{"+f", we expand the collision integrals
to get termsJ¥ linear in f{. Upon representing® as f{"

£0 — 1 17 =f97F9 4 we get for thek=1i=1 version of Eq(18):
J (p-m; v)® ’ i % :
Tom M
A I . A 9t 5§0 P
T AFSN A ST G ,
ot m, ar Y ap 1(¢) = 112(¢), (20)

whereu;, v, andT are the local kinetic chemical potential,
velocity, and temperature which are functionsrondt, where
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1 d3pja 995\ o) <0 0 %0 the heat conduction, one expects the driving force to distort
() = J o VU vl IR R £ * FR the distributions of the two species in a similar way in the
1+6; ) (2m) dQ o
same direction.
X(¢+ dja— & — dja), (21) Regarding the antisymmetric driving force in Eg4), we

and where we have utilized the property of the equilib-may note that for conservative forces we have

rium functions J

o~ 0 Fi=-—"Uy. (25
fO £ £ §9" =19 19 £ £ (22) '
We can combine then the first term with the second term
on the rhs of Eq.(24) by introducing the net chemical

potentialsu=u;+U; and getting

The result fori=2, analogous to Eq(20), is obtained
through an interchange of the indices 1 and 2.

The lhs of Eq(20) contains the derivatives of equilibrium
distribution functions with respect 9 r, andp. These de- p1 pz[ 9 Mtl Mtz s s\ aT
rivatives can be expressed in terms of the parameters de-  di»,= —(—— —) + (— - —) —} (26)
scribing functiong17)), i.e., w;, T, andv. Through the use Jrimg my M/ dr
of the Euler equationéAppendix B) and equilibrium identi-  For a constant temperatufg the driving force behind
ties (Appendix O, moreover, the temporal derivatives may diffusion is the gradient of difference between the chemi-

be eliminated to yleld for the rescaled |hs of 132(0)) cal potentia|s per unit mas%ELZ:Iu&/ml_MtZ/mZ as ex-
5 Pe— pected from phenomenological consideratiph6]. How-
T PO = (p_ o )L T N @_i\H Py ever, the temperature gradient can contribute to the
0 70 2m, 3=/mT ar myar p, >  diffusion as well, which is known as the thermal diffusion

or Soret effect. We note that the vector driving forces in
(23 Eqg. (23) vanish when the temperature and the difference

Here, a symmetrized traceless tensor is definedt; thnZtSCygfénn'qcm potentials per mass are uniform through-
=3(Xy+yX)-3(x-y)1, and Given the typical constraints on a system, it can be more
== 3 convenient to obtain the driving forces in terms of the net
dip= P1 Pz[(_ R _2) +T _< o ﬁ) pressureP!, temperaturel, and concentratior, rather than
P m M ar\im T mpT ut, and T. Thus, on expressing the potential difference as
5 (El E2> aT] wi,=ubo(PL T, 8), we get
+ — — - = —_
3T\m my,/ ar 9wl t v
dpp= (thz) dPt+(L12> dT+< “12) ds
:w[(_i+i>+i(ﬂ_&> IP /15 IT Jpis 30 /pit
p m M/ dr\mg m (27
T
+(i—i) —}, (24 2and
m my) ar
, . . _P1P2 P opt, T s
where s, is the entropy per particle for specids s dip= (I, VP + 11, VT +111, Vo), (28)
=(5Ei/3-w)/T. The result for species 2 in the Boltzmann P
equation is obtained by interchanging the indices 1 and avhich we will utilize further on. The coefficient functions
in Egs.(23) and(24). Note thatd,;=-d;,. are
Representatiorf23) for the |hs of the linearized Boltz- .
mann equatiori20) exhibits the thermodynamic forces driv- P = d o (293
ing the dissipative transport in a medium. Thus, we have the 12 JP Ts

tensor of velocity gradient$d/or)v contracted in Eq(23)

with the tensor fr_om pa_rticle momentum_. The distor';ion of T 07,4312 S S

the momentum distribution associated with the velocity gra- Hy,= T Tl (29b)
dients gives rise to the tensorial dissipative momentum flux PLo
in a medium. As to the vectorial driving forces, they all
couple to the momentum in E@23) and they all can con- s _ [ 9M12

tribute to the vector fluxes in the medium, i.e., the particle Iy, = 96 | (299

and heat fluxes, as permitted by the Curie law. The criterion P

that we, however, employed in separating the driving vectoand specific expressions for those functions in the nuclear-
forces in Eq(23) was that of symmetry under particle inter- matter case are given in Appendix D. Notably, however, the
change. When considering the diffusion in a binary systemg¢oncentrationd may not be a convenient variable in the
with the two components flowing in opposite directions in aphase transition region where the transformation between the
local frame, one expects the driving force to be of an oppochemical potential difference andlis generally not invert-
site sign on the two species. On the other hand, in the case dfle.
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With the Ihs of the linearized Boltzmann 9@0) linear in  the lowest terms yield a predominant contribution to the co-
the driving forces exhibited on the rhs of E&3), and with  efficients[11].
the collision integrals linear in the deviation form factabs
the form factors need to be linear in the driving forces,
D. Formal results for transport coefficients

$1=—A1-VT-B:Vv-Cy-dyy, Before solving Eqs(31)—(33), we shall obtain formal re-
(30) (3: : .
_ o sults for the transport coefficients, assuming that solutions to
$o==Ay-VT-B:Vv-C;-dyy, (31)«(33) exist. We shall start with the diffusion. The veloc-

= ity for species 1 is
whereA, B, andC do not depend on the forces. On inserting y P

Eq. (30) into Eq.(20), we get the following equations, when

keeping alternatively a selected exclusive driving force fi- 1 dp p
nite: Vi=— 5 — of
n,J (2ah)° my
P f ?(10):|11(C)+|12(C), (31a _ 1 &°p £0 0
pr T " (27]%)3 o d)l f
R A RPN =T f G 4101140 +120)]
hen keepi T &
when eeplngilf, =-VT _f Y A -[114(C) +1,5(C)]
P ~ = =
01 =111(B) + 11(B), (32)

_|

T p
my _dlzéfm Ci-[111(C) +1(C)], (35

and another one, with indices 1 and 2 interchanged, when Where we have utilized Eq€30) and (34). The contribu-
keeplnng, and, finally, tion of a tensorial driving force to the vector flow drops
9 out under the integration over momentum, as required by
(p_ - §E ) P fOFO= | (A)+1,5A), (33 the Curie principle. With a result fov, analogous to Eq.

2m 3='/m T2 (35), we get for the difference of average velociti@si-
and another one, with 1 and 2 interchanged, when keepinzed for the sake of particular symmetry between the
VT (while d;,=0). components

The linearized collision integral§; cannot change the
tensorial character of objects upon which they operate. T e
Moreover, the only vector that can be locally utilized in the V.= _UT o f p _
object construction is the momentup This implies, then, VimVo=-VT { (27h)® A1-[112(C) +11(C)]
the following representation within sé€80):

d3
+ f : DAy [122<c>+|21<c>]}

Ci=c(p 2, (343 (@mh)?
Pi d3p
—dp g{J 2t C1-[112(C) +1,C)]
pP° 5 P
=a(p )( E) —, (34b) d
om 37/ m T [ o Co 112 + |21<c>]}
B=b(p)pP. (349 =- g({A, C}VT+{C, Cld;y), (36)

Here, the tensorial factors are enforced by construction. The

factorization of the scalar factors is either suggested by thevhere the brace produdt, -} is an abbreviation for the
respective linearized Boltzmann equation or serves convantegral combinations of vectos andC, multiplying the
nience later on. The unknown functioasb, andc can be  driving forces. The brace product was first introduced for
principally found by inserting Eq(34) into Eqs.(31)«33). a classical gag11]. The fermion generalization of the
The resulting equations are, however, generally quite comproduct and its properties are discussed in Appendix E;
plicated and analytic solutions are only known in some spesee also Ref[14].

cial cases. In practical calculations, we shall contend our- The diffusion coefficient is best defined with regard to the
selves with a power expansion for the unknown functions. ltmost common conditions under which the diffusion might
has been shown that any termination of the expansion wilbccur, i.e., at uniform pressure and temperature, but varying
produce lower bounds for the transport coefficients and thatoncentration. We have then, cf. E§),
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) While our primary aim is to obtain coefficients character-

Ds Vo, izing the dissipative particle transport, due to the generality

of our results we can also obtain the coefficients for the

(37)  transport of energy and momentum. Thus, starting with ex-

pressionAlE) in a local frame and proceeding as in the case
of Egs.(35) and(36), we get, with Eq(33),

p pnm
Vi-V,= 5=~
(M +my) Ny ny pP1 P2

where my, is the reduced mass, ri{,=1/m;+1/m,. Re-
spectively, whenP' and T vary, with d;, given by Eq.
(28), we write the rhs of Eq(36) as

pn M " Q,+0Q :—I({A AIVT+{C, Ald,,)
Vl_V = - D§ V6+_5 VPt‘l‘kTVT , (38) 1 2 3 ! ! 1
- P1 P2 I
where, simplifying the notation, we dropped the subscripts + §(E1 n, V,-E,n, Vy)
12 on coefficientsIl. The diffusion coefficient in the 3 -

above is given by T
=-5((A AJVT+{C, AJdy)

T I 2
D5:3——<plp2) {c.c) (39)
M N P 5(BE1 Ez\ p1p2
d o\ (V1-Vy), (42
an 3 m m

.

ke = N + 1 »r AC (40) where in the second step we make use of the condition on

TTI°  M° pyp, {C.C} local velocitiesp; V,+p, V,=0. The standard procedure

. . [16] in coping with the heat flux is to break it into a
We can note that the expressions above confdfin contribution that can be associated with the net movement

denominators. Normally, positive nature of derivative : . ;
(299 is ensured by the demand of the system stability.Of particles and into a remnant, driven by the temperature

However. across the redion of a phase transition the Corgradient, representing the heat conduction. With this, the
' 9 P driving forced,, needs to be eliminated from the heat flux

Sggggﬁ,ﬂdgoer:]irtéllsxgctuzggiséYvwﬁéh?hghfgﬁ%gﬁg:“allsn favor of the species velocities. Using E®6), we find
above is the one we are after as the standard one in de- { 2

scribing diffusion, in the phase transition region it can be T C,A

beneficial to resort to the description of diffusion as re- QutQe=-VT §<{A’A}_ {c,c} ) FVamva
sponding to the gradient of the potential difference in Eq.

(28). Notably, as explained in Appendix E, the brace prod- « F(E _ 2) ppz G, A}} 43)
uct{C, C} in Eq. (39) is positive definite. This ensures the 3\mp my/ p {c,c}|

positive nature oDz away from the phase transition and,

in general, ensures that, at a constant temperature, t
irreversible asymmetry flux flows in the direction from a

higher potential difference.), to lower. T {C, A
As to the Soret effect, i.e., diffusion driven by temperature k= 3 {A A} - c.ct/)

gradient, described in Eqg38)—(40), it has its counterpart in

the heat flow driven by a concentration gradient, termed Dutelating the heat flow to the temperature gradient, is the

four effect. Transport coefficients for counterpart effects ardeat-conduction coefficient. From E¢44) and consider-

related through Onsager relatiofi&/] that are also borne out ations in Appendix E, it follows thak given by Eq.(44)

by our results. The diffusion driven by pressure is rarely ofis positive definite.

interest, because of the usually short times for reaching me- The final important coefficient that we will obtain, for

chanical equilibrium in a system, compared to the equilib-completeness, is the viscosity. The modification of the mo-

rium with respect to temperature or concentration. Howevermentum flux tensofA1D), on account of the distortion of

an irreversible particle flux may be further driven by externalmomentum distributions described by Eg0), is

forces, such as due to an electric figldWith the flux in-

H@e coefficient

(44)

d'u'ced k?y the fi_eld given' bjgzoE ¢, WhereaE is conduc- _ &p pp &p pp
tivity, with the first equality in Eq(37), and with Eqs(36) p = 5 — Of+ 5 — Of,
and(24), we find for the conductivity (2mh)> my (2mh)” M,
3 el o
T (pip\ (% = _d PP (By:Vv) O FO
o= |5 (i) €0 @ty my T
*p PP == .03
2 di) N _ | =r F¥ 5. (0) 50
i} (E i E) e O (49 @t m, PV 2T
o 3 Sl
whereq; is charge of specieis We see that conductivity is - _} vy ( dp = bP £0 50
closely tied to diffusivity. 5 @mh)?® tm Ot
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The coefficient of proportlonallty between the shear cor-
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straints are met becomes actually irrelevant for results on the
transport coefficientsbecausethe linearized integrals and
correspondingly brace products nullify the conserved quan-
tities.

rection to the pressure tensor and the tensor of velocity Given cross sections and equilibrium particle distribu-
derivatives is, up to a factor of 2, the shear-viscosity co<ions, the set of equation31)—<33) may be principally

efficient

T
10

[

7=--{B, (46)
As with other results for coefficients, from Appendix E it
follows that the result forp above is positive definite, as
physically required 16].

On account of symmetry considerations within the linear

solved. However, such a solution is generally complicated
and would likely not produce clear links between the out-
come and input to the calculations. On the other hand, the
experience has been that when expanding the form-factor
functions,a, b, andc in Eq. (34), in power series irp?, the
lowest-order results represent excellent approximations to
the complete results and are quite transparent, e.g.,[Ref.
Thus, we adopt here the latter strategy and test the accuracy
Tof our results in a few selected cases.

theory, the changes in temperature or concentration do not
affect the pressure tensor. However, the situation changes if

one goes beyond the linear approximation. For a general dis-

cussion of different higher-order effects see Héfl]. As a
next step, we need to find the form factors in E8Q); that
requires finding the functiong, b, and c in Eq. (34) by
solving Eqgs.(31)—(33).

IV. TRANSPORT COEFFICIENTS IN TERMS OF
CROSS SECTIONS
A. Constraints on deviations from equilibrium

Since the zeroth-order, in derivative expansion,

local-

B. Diffusivity

If we insert Eq.(34a with ¢;(p?) =c; into the local velocity
constraint(47a), we get the requirement

f e " =0
(48)

After partial integrations, we find that this is equivalent to
the requirement;=-c,=c.
Wheng; is constant within each species, thenis up to a

f e

equilibrium distributions are constructed to produce the locafactor equal to momentum and, thus, gets nullified by the
particle densities, net velocity, and net energy, corrections t@inearized collision integralvithin each species;(C)=0. To
the distributions cannot alter those macroscopic quantitiegbtain a value foc, we multiply the first of Eqs(31) by C;

Thus, we have locally the constraints

6fi=0, (476)

“| Gty

dp dp
0= [ s o+ [ o o=

(47b)

~ pz d3p p2 ~
o092 G am, 4| ot m, 720
(4790

With driving forces being independent of each other and with

form factors in Eq.(30) being independent of the forces,

each of the form factor sets must separately meet the con-
straints. By inspection, however, one can see that the density

and energy constraints are met automatically with fo(@4#
of form factors. Moreover, the tensorial distortié84c) sat-

and the second b{,, add the equations side by side, and
integrate over momenta. With this, we get an equation where
both sides are explicitly positive definite and, in particular,
the lhs is similar to the Ihs of Eq48), but with an opposite
sign between the component terms. That side of the equation
can be integrated out employing the explicit formf6f from

Eq. (17). The other side of the resulting equation represents
{C, C} where only the interspecies integrals survive. On solv-
ing the equation foc, we find

6
i “)
12
where
d’p;  d’p,
2 *
X229 | 5o myd AW
d o
x(—dfgz) (py—pry)? £ IO FO . (50)

isfies all the constraints. At a general level, the ability toThe integral stems from a transformed brace product

meet the constraints while solving Eq81)—(33) relies on
the fact that the linearized collision integrafs[in Egs.(20)
and(221)] nullify quantities conserved in collisions, so a com-

bination of the conserved quantities may be employed in

constructing the form factorg;, ensuring that the constraints

are met. When the transport coefficients get expressed in

{C, C} and we resurrect here the degeneracy faagoiSor
the brace product itself, we find

2 2
) X12=

2

2

18

X12

p
P1 P2

{C,C}=

(51)

terms of the brace products, though, ensuring that the cor®n inserting this into diffusivity(39), we obtain
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D

6T II° [pyp,)\2 eter with the isospin asymmetric parameter, neither of
a:m— n (—) (52 which has a significant temperature dependence. Thus,
12 1 X2\ P here consistently we find @2 divergence of the diffusiv-
In the above, we see that the diffusion coefficient dependsty at low temperatures. Moreover, the fact@r+Fg) is
both on the equation of state, through the fadit and  nothing else but a rescaled symmetry energy, viAgbe-
on the cross section for collisions between the speciedng the ratio of the interaction to the kinetic contribution
through x;,. The collisions between the species areto the energy19]. Thus, here consistently we find a pro-
weighted with the momentum transfer squared. Only thos@ortionality of the diffusivity to the symmetry energy at
collisions between species that are characterized by largew temperatures.
momentum transfers suppress the diffusivity and help lo- To summarize the above results on diffusivity, we find
calize the species. The marginalization of collisions withthat the diffusivity is inversely proportional to the cross sec-
low momentum transfers is a common feature of all transtion between species for high momentum transfers. More-
port coefficients. over, whether at low or high temperature, the diffusivity is
At high temperatures the Fermi gas reduces to the Boltzsensitive to the symmetry energy in the mean fields. The
mann gas. In absence of mean-field effects, we fiffti mean-field sensitivity is associated with the factor
~2T/mfor small asymmetries. The integrgd, is then of the

order n? o, p¥m~n? o ym T. Together, these yield; o= Mz, i(ﬁ _ 2) _Opmp 43
~1/n o1,/ T/Im. The precise higF result for isotropic cross T 98 9s\mp my) 46 m’
sections in the interaction of species with equal mass . .
[11,15 where the last equality pertains tc_) the sy_stem of r_weut.rons
and protons andy represents the interaction contribution
3 [T to the symmetry energy at the relevant density.
5= 8noL, - (53 While we obtained the diffusivity here assuming constant

¢ in Eg. (348, we will show that the next-order term in the
The square-root dependence on temperature will be eviexpansion of; increases the diffusion coefficiebts only by
dent in our numerical results at high With an inclusion 2% or less in our case of interest.

of the mean field, with the net energy quadratic in asym-

metry, the derivativell’ gets modified intoIl°~2(T C. Heat conductivity

+2a)im. Thus, the mean field enhances the diffusion. Evaluation of the heat-conduction and shear-viscosity co-

ST :
At low temperatures, the derivatiiéd® is simply propor efficients requires similar methodology to that utilized for

tional to the symmetry energyl°~4a/m. As to the colli- e : . .
sional denominator of the diffusion coefficient, at low tem- the diffusivity. While these coefficients have been obtained

peratures the collisions take place only in the immediatén.th.e past for a one component Fermi systafh it can be
vicinity of the Fermi surface. We can write the product of still important to find them for the two-component system.

e . . o If we assumeg;(p?)=a, in Eq. (34b), then, interestingly,
equilibrium functions in the collision integral as we find that the momentum constraidi7a is automatically

0 §0 FO FO — kK. K’ K (54) satisfied. To obtain the values faf, we multiply Eq.(33) on
122 1h2 2 both sides byA; and integrate over momenta and we multi-
where ply the equation analogous to E®3) by A, and also inte-
grate over momenta. As a consequence, we get a set of equa-
K. = 1 tions for g; of the form
i~ 2 '
p .
2_|'ni_lui L]:AJ]_ a1+Aj2 82,121,2, (56)
2 cosh— where 4; are coefficients independent af

and, at lowT, Ki~27m T@(pz—pﬁi). The integration in

1
Eq. (50) yields x1,~ o1, m? T3 n%/pt. In consequence, we Aii = g (LA, Ali +[AL Al

find that the diffusion coefficient diverges asT#/at low (57)
temperatures. For the spin diffusion coefficient, one finds
within the low-temperature Landau Fermi-liquid theory A= Ap = 2 2 [A1, Az,
[18]
) cf. Appendix E, and
v
D,= 5 (L+FY) m, (55) 1 , 25

where ve is Fermi velocity, F§ is a spin-antisymmetric
Landau coefficient, andy, is a characteristic relaxation where E? and (Ej)2 are, respectively, the average local
time that scales asp~ T2 The isospin diffusivity for square‘l%metic energy of specigand square average local
symmetric matter should differ from the spin diffusivity in kinetic energy of the species.

the replacement of the spin-antisymmetric Landau param- The solution to se56) is
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ap=(Ap L1~ Ap L)/IA,, =010 '
(59) I |||\|\ / ———-O.SIIO
= (A Lo— A Ly)IA 081 :: l.\l I 58 ?18 ]
where the determinant is = |'. ‘|\\| // — — 3.0ng -7
g
Ajg=As Ap— A%z- (60) :;
The brace producfA, A} for use in calculating the heat-
conduction coefficienk in Eq. (44) is
{A,A}:al L1+a2 L2. (61) 00-
The producf{C, A} in Eq. (44) can be calculated given the 0 20 40 60 80 100
values ofa andc, and{C, C} was already obtained before. T (MeV)

i ) FIG. 1. Isospin diffusion coefficierd, in symmetric matter, for
D. Shear viscosity U;=0, at different indicated densities, as a function of the tempera-

Evaluatlon Of the Shear_\nscosrty CoefﬁClem fOIIOWS ture T. In the high-temperature ||m|t, the diffusion coefficient ex-
similar steps to those involved in the evaluationkofThus, hibits the behaviob, «<\T/n. Correspondingly, at high temperatures
we assumeb;(p?)=b; in Eq. (340. To find the coefficient in the figure, the largest coefficient values are obtained for the low-

| lute both sid f 2 with o d est densities and the lowest coefficient values are obtained for the
values, we convolute both sides of H@2) with pp an highest densities. In the low-temperature limit, the diffusion coeffi-

integrate over the momenf‘ and we do the same with g exhibits the behavidd, «n®4T? and the order of the results in
other constraint equation f@. The lhs integrations produce density reverses.

s V. QUANTITATIVE RESULTS
i ipozpfﬁ £O 50 A. Transport coefficients
mT) @r#h)B" " P '

' 5 We next calculate the transport coefficients as a function
2 dp 050 £ 62) of density and temperature, using experimentally measured
3 mTJ) 2mh)?d prhim = 3 i Si- nucleon-nucleon cross sections. The cross sections may be

altered in matter, compared to free space, but the modifica-

With the above, we get the set of equations lbgr tions are presumably more important at low than at the high
20 momentum transfers important for the transport coefficients.

_ . With regard to the diffusivity, we first ignore any mean-field

3P Ei=Bubi+Bpb, j=1.2, (63 contribution to the chemical potential difference between

. ) species. This yields a reference diffusivity to which the dif-

where the coefficient® are given by fusivity affected by mean fields may be compared.

. . . . The diffusivity for the experimental cross sections and no
Bi=[pp, PR +[(PPi (PPl interaction contributions to the symmetry energy is shown at

(64) 6=0 and different densities in Fig. 1, as a function of
temperaturel. At low temperatures, the diffusivity diverges

B12=Bor=[(FP)1, (D D)2z
12= B =[PPl (P P2l due to a suppression of collisions by the Pauli principle. At

Solving the set fob, we find high temperatures, compared to the Fermi energy, the role of
the Pauli principle is diminished and the diffusivity acquires

_ 20 a characteristic'T dependence. At moderate temperatures

b, = 3T8(p1 Ei Byo=p2 B2 B, (65 and densities in the vicinity and above normal, the diffusion

coefficient turns out to be in the vicinity of our original es-
timate ofD,~0.2 fmc.
b :ﬂ( E, By py E; By It should be mentioned that, for symmetric matter, the
27 3Ag P2 Z2 P~ P15 P12 factors for temperature and pressure gradients in the thermo-
dynamic forced;, (28) vanish, II°=0 andII"=0, and the
brace product in Eq(40) vanishes,{A, C}=0, yielding k;
) =0 in Eqg.(38). As physically required, the temperature and
Ap =By By = Bi,. (66) pressure gradients produce no relative motion of neutrons
d protons for the symmetric matter.
The diffusivity at normal density at different asymmetries
is next shown in Fig. 2 as a function of temperature. Because
20 of charge symmetry, the diffusivity does not depend on the
= sign of 4. At low temperatures the diffusivity is generally
{B,B}= 3 Prr Bt b po B). (67) expected to behave as

where the determinant is

The brace product for calculating the shear-viscosity co&"
efficient »=T/10{B, B} becomes
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FIG. 2. Isospin diffusion coefficier®, at normal densityn=n, T (MeV)
=0.16 fn® and different indicated asymmetries for U;=0, as a o .
function of the temperatur. An increase in the asymmetry gen-  FIG. 3. Thermal conductivity in symmetric nuclear matter, at

erally causes a decrease in the coefficient, as discussed in the teflifferent indicated densities in units of, as a function of tempera-
ture T. The conductivity increases as density increases.

1 p
D *x—F——, (68) 0.235/ n \0-951 n \0.0816
m> T o K:(1+O.1C52)|:W(n—) —0.058<n—>
while at high temperatures in the manner prescribed by 0 0
Eq. (53). With the respective behaviors serving as a guid- seor N\0Ht
. o . i +0.02338° — . (70)
ance, we provide a parametrization of our numerical re o
sults forDg as a function of, T, and 6,
1.54 0.56 Here, T is again in MeV andk is in ¢/fm2. The parametri-
11.34( n 1.746( n - . .
D,=(1-0.196% —3 | — — | — zation agrees with the numerical results to an accuracy
T Mo T Mo better than 4% within the range of thermodynamic param-

No eters indicated in the case BX.

+0.005 8570913 (F) (69) The shear-viscosity coefficient is shown for symmetric
matter at different densities, as a function of temperature, in

Here, the temperaturBis in MeV and the diffusivityD, is  Fig. 4. Again, the results are similar to those in R&f. At

in fm c. The parametrization describes the numerical re-igh temperatures, the dependence on density weakens and

sults to an accuracy better than 4% within the region ofthe viscosity becomes proportional to velocity. The numeri-

thermodynamic parameters of &0/n;<4.0, 10 MeV  cal results fory are well described, to an accuracy better than

<T=<100 MeV and 8 <0.4.This is, generally, the param- 4% within the before-mentioned range, by

eter region of interest in intermediate-energy reactions

[20].

The heat conductivity is shown for symmetric matter at
different densities in Fig. 3, as a function of temperature. The
results are similar to those in R¢f], though there the two-
component nature of nuclear matter was ignored and the
isospin-averaged nucleon-nucleon cross sections have been
used. A closer examination of results in Secs. IV C and IV D
indicates that the use of the isospin-averaged cross sections
is, actually, justified for symmetric matter, when calculating
the heat-conduction and shear-viscosity coefficients. Other-
wise, however, Fig. 3 has been based on a more complete set
of cross sections than results in RET]. As in the case of
diffusivity, the heat conductivity diverges at low tempera- 0
tures and tends to a classical behavior at high temperatures,
exhibiting there no density dependence and being propor-
tional to velocity, k<\T. As in the case of diffusivity, we FIG. 4. Shear viscosityy in symmetric nuclear matter, at differ-
next provide a parametrization of our numerical results forent indicated densities in units o§, as a function of temperatufle
the heat conductivityk as a function ofh, T, and 6, The viscosity increases as density increases.

100

o2
<

D
jed

N
<

n (MeV/ (fm2 c))

[\S}
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0 20 40 60 80 100
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(l+01052){856<n>1'81 4 . . ; ;
n= : =T -~
%\ n, N Linear
- — - dratic
240.9/ n \212 > Qua
—W(—) +2.154T%701 (71) 3t N 1
Ng ~ o -
Here, 5 is in MeV/fm? c and T is in MeV. . T ~10=2np
We note in Eqs(69)—<71), that the diffusion coefficient 2 n=2n, =
weakly drops with increasing magnitude of asymmetly n=ng
while the viscosity and heat-conduction coefficients weakly - _
increase. Given the weaknesses of the dependencies, the be- e == = ———————
haviors exhibited in parametrizations represent, in practice,

averages over the considered independent-parameter regions. T N S
Overall, the drop and rise in the respective coefficients with 0 20 40 60 80 100
|8| is characteristic for a situation where the local flux of a
component grows faster than the concentration of that com- rG. 5. Mean-field enhancement factor of the diffusion coeffi-
ponent. That type of growth, with the magnitude of asymme-ient in symmetric nuclear matteR=D,(U;)/D,(U;=0), at a fixed
try, typifies a mixture of degenerate fermion gases. The gendensity n, as a function of temperature The solid and dashed
eral trends can be deduced following the mean-free-patlines, respectively, represent the factors for the assumed linear and
arguments from Sec. Il. When the average velocity rises witlguadratic dependence of the interaction symmetry energy on den-
asymmetry, so do the heat-conduction and shear-viscositity. The lines from top to bottom are for densities
coefficients. Additional rise for those coefficients, in the case=2 ng, n;, 0.5n,, and 0.1n,, respectively. At normal density the
at hand, can result from the Pauli principle effects and fronresults for the two dependencies coincide.
the difference between cross sections for like and unlike par-
ticles. Regarding the diffusion coefficient, though, one needs1 and 2 is shown in Fig. 5. The quadratic dependence
to consider an irreversible part of relative particle flux, undergives higher amplification factors at>n,, than the linear
the condition of the concentration varying with position. If, dependence, while the opposite is truenat ny,. At low
starting with a given configuration of concentration gradi-temperatures and moderate to high densities the amplifi-
ents, one introduces uniform changes of concentration ogfation is very strong suggesting that the diffusion could be
top, not just the overall relative flux undergoes change buused to probe the symmetry energy, aside from the in-
also the reversible flux of concentration gets altered. The risgedium neutron-proton cross sections.
in the relative flux associated with the velocity of a dominant
component rising with concentration is normally more than B. Testing the form-factor expansion
compensated by the rise in reversible flux, leading to a re-
duction in the irreversible flux and producing a reduction in
diffusivity with particle asymmetry. A mean-field example :
. ) . can be approximated by constants. In the more general case,
where the reversible flux eats into the net flux reducing th%he functions can be expanded in the series?ne
diffusivity with increasing asymmetry is the estimate in Eq. P Fie.g.,
g_i(t).)(,:sobtained there without invoking the particle Fermi sta- c(p?) = Ci(l) + Ci(z) P+ Ci(3> Pl e 73
istics.
As is found in Secs. Il C and IV B, the dependence of The coefficients of the expansion can be found by consid-
mean fields on species enters the diffusivity through the facering moments of the form-factor equatiori81)—(33).
tor I1° resulting from the variable change in thermodynamicWith the more general form of the form-factor functions,
driving force, from the difference of chemical potentials perthe transport coefficients generally increase, but their rise
mass to asymmetry. The simplest case where one can coi$ generally very limited.
sider the impact of the mean fields is that of the symmetric To illustrate the magnitude of higher-order effects, we
nuclear matter, af=0. In this case, the factor may be repre- provide in Table | results for the diffusivity obtained in the
sented as standard first-order and in the higher-order calculations at
sample densities and temperatures. In the indicated cases, the
second-order calculations never increase the diffusion coef-
= 1 (E +4au> (72) ficient by more than 3% above the first-order calculations.
'3 ) The efficiency of our Monte Carlo procedure employed to
where &=on/ou = £ (cf. Appendix Q. At high tempera- evaluate the integrals for coefficients worsens as the order of

tures, we have approximatelij=n/T, so thatn/é=2T. our calculations increases and, correspondingly, we provide

The naive expectation is thaf has a linear dependence only a single third-order result for illustration.
on the net densitya’ =a’%(n/ny)”, wherea’®=14 MeV and
v=1. The mean-field amplification factor R
=11%a)/T1°(a’=0) for the diffusion coefficient, assuming To test the sensibility of the results on diffusivity and to

the linear and also quadratic density dependence/of  gain an elementary insight into the process of isospin equili-

The calculations of transport coefficients above have been
done assuming that the functioas b;,, andc; in Egs. (34)

C. Isospin equilibration
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TABLE |. Diffusion coefficientD, obtained within different or-  overall distribution tends toward$, ast—o. The late-stage
ders of calculation, using experimented cross sections, at sample approach to equilibrium is governed by the rate for the term
densitiesn and temperature§ in symmetric nuclear matter, for ith the lowest wavevector, i.eq,. Defining the isospin
species-independent mean fields. The numerical errors of the resulé‘é]uilibration timet, as one for which the original isospin

on D, are indicated in parentheses for the least-significant digitsagsymmetry between the nuclei is reduced by half, we get
The last column, gives, the relative change in the result for thergm Eq.(75) an estimate for the reaction
highest calculated order compared to the first order and the error for

that change, separated by the “+” sign.
g P y 9 N2 41Iln2L?

thy~ ——=—5—
n T D Relative "D k2 @D
First order Second order Third order change

~ 44 fmec, (76)

for the case above. When we carry out the full respective

(fm™=3) (MeV) (fm ) (%) Boltzmann-equation simulations of the 1B@&V/nucleon
0.016 10 0.299495) 0.305512) 2.0+£0.4  %Ru+%Zr reactions, at the impact parameter w#5 fm
0.016 60 2.38918  2.39014) 0.0+0.6  =L/2 (to ensure a neck comparable to that in the consid-
0.16 10 0.2796@21) 0.280@29) 0.280925) 0.5+0.9  eration, we find that, indeed, the nuclei need to be in
0.16 60 0.2959@4) 0.296519) 0.2+0.7 contact for about 40 fnec for the isospin asymmetry to
0.32 10  0.444@5 0.446526) 0.4+0.7 drop to the half of original value.
0.32 60 0.1818@5 0.182713) 0.5+0.7

VI. SUMMARY

bration in a reaction, we carry out a schematic consideration Diffusion and other irreversible transport phenomena

of the equilibration. For definiteness, and to ensure a level ohave been discussed for a binary Fermi system close to equi-
applicability for our consideration, we take the case of ajibrium. For weak nonuniformities, the irreversible fluxes are
%Ra+%°Zr reaction af,,/A=100 MeV. Densities in the cen- |inear in the uniformities, with the characteristic transport
tral region of the reaction are not far from normal. Following proportionality coefficients dependent only on the equilib-
the degenerate Fermi-gas limit, the temperature in the centrgum system. It is hoped that, in an analogy to how the
region can be estimated wiffi~ \E4,/(2a)~20 MeV using  nuclear equation of state and symmetry energy are em-
a~A/(8 MeV); deviations from the degenerate limit yield a ployed, the coefficient of diffusion can be employed to char-
bit higher value. Under those conditions, basing on Figs. Jacterize reacting nuclear systems with respect to isospin
and 5, we estimate the streaming contribution to the diffusiviransport.
ity in the central region at 0.21 fmand the mean-field con- Following a qualitative discussion of the irreversible
tribution at 0.20 fmc, for a netD,;~0.41 fmc. transport in the paper, the set of coupled Boltzmann-
Considering the direction perpendicular to the plane ofUhlenbeck-Uehling equations was considered for a binary
contact between the nuclei, with nuclei extending a distancgystem, assuming slow macroscopic temporal and spatial
L~ (A/ny)*3~8 fm both ways from the interface, we may changes. The slow changes allow to solve the equation set by
use the one-dimensional diffusion equation to estimate thieration, with the lowest-order solution being the local equi-

isospin equilibration librium distributions. In the next order, corrections to those
distributions were obtained, linear in the thermodynamic

36 _ ) driving forces associated with the system nonuniformities.

E'D' ax2’ (74 These corrections produce irreversible fluxes linear in the

) ) ) ] ) forces. The transport coefficients have been formally ex-
wherex is the direction perpendicular to the interface, cf. yressed in terms of brace products of the responses of distri-
Eq. (7). With isospin flux vanishing at the boundaries of pion functions to the driving forces. The considered coef-
the region[-L, L], the solution to Eq(74) is ficients include diffusivity, conductivity, heat conduction,
and shear viscosity.

The set of the linearized Boltzmann equations was, fur-
ther, explicitly solved under the assumption of simplified

o

(X, 1) =68, + >, a,sink, xexp— D, K2 1)

=1 ..
. " distribution-function responses to the thermodynamic driving
5 forces. The solutions to the equations led to explicit expres-
+ n% b, cosq, x exp—=D; a; t), (79 sjons for the transport coefficients, with the diffusivity given

in terms of the collision integral for collisions between the

where k, L=(n—%) 7 and g, L=n . The coefficientsa, two species weighted by the momentum transfer squared.
andb, are determined by the initial conditions and, in the Besides associated sensitivity to the cross section for colli-
case in questiony,=0. sions between the species, the diffusivity is also sensitive to

The different terms in expansiair5) correspond to the the dependence of mean fields on the species. The collisions
different levels of detail in the distribution of concentration, between the speciese those that inhibit the relative motion
as characterized by the different wave vectors. We see thaff the species; the difference between mean fields affects the
the greater the detail the faster the information is erased, withelative acceleration and, in combination with the collisions,
the erasure rates proportional to wave vectors squared. Thhe stationary diffusive flux that is established.
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We calculated the isospin diffusivity for nuclear matter, obtained fromp v=p; v;+p, v,. The Kkinetic energye aver-
using experimental nucleon-nucleon cross sections foaged over all particles is given hye=n, e;+n, ,, the net
species-independent mean fields. At low temperatures andomentum flux ip=p;+p,, and the net kinetic energy flux
high densities, the diffusivity diverges due a suppression ofs q=q;+ds.
collisions by the Pauli principle. At high temperatures, the Local quantities are those calculated with momenta trans-
diffusivity is roughly proportional to the average velocity formed to the local mass frame, i.e., following the substitu-
and is inversely proportional to the density. The diffusivity tion p—p—m v. To distinguish local quantities from those in
weakly decreases with an increase in the absolute magnitudee observation frame, when the frame matters, the local
of asymmetry. We provided an analytic fit to our numericalquantities will be capitalized. The local momentum flux ten-
results. For completeness, we also calculated the healyp js the kinetic pressure tensor and the local kinetic en-
conduction and shear-viscosity coefficients and provided fitgrgy flux Q is the heat flux.
to those. Moreover, we calculated the diffuseness mean-field
enhancement_factor for symmetric matter, assuming a couple APPENDIX B: CONTINUITY EQUATIONS
of dependencies of the symmetry energy on density. At low Th llisi in the Bolt i 4B i
temperatures, the enhancement factor is simply proportional € collisions in the boltzmann equation 44B) con
to the net symmetry energy divided by the kinetic symmetrysgrve. the.qua3|part|cle momentum and energy and the spe-
energy. Considering the expansion of the form factors in'cs |dent|t)_/. This leads tp local qqnservatlon laws for the
distribution-function responses, we demonstrated that Correcc_orrespondmg macroscopic quant|t|e§. : .
tions to the Boltzmann-equation transport coefficients, be- Leth(p) represent on_e of the qua215|part|cle quantities con-
yond the approximations we employed, are small. Finallysfe.rved in collisionsy;(p)=4;, p, or p/2m;. For those quan-
we produced an elementary estimate for isospin equilibratioHt'eS’ the integration with collision integrals produces
in a low impact-parameter collision.
2 fd3p x; J;j=0. (B1)
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APPENDIX A: MACROSCOPIC QUANTITIES (B2)
We shall consider different types of macroscopic quanti-After a partial integration, we get from the above
ties, either net or for separate components, either in the gen-
eral frame of observation or in a local frame. For a single
component in the observation frame, the density mean
velocity v;, mean kinetic energg, momentum flux tensqp,, ] ]
and kinetic energy flux;; are given in terms of the distribu- Where the averages are defined with

T+ (nP ) -nE-Xo0 (B3
ot X7 gy m_X ap

tion f;, respectively, as "
P
g n )_(: 2 J (2ﬂ'ﬁ)3 Xi fj(p’ I',t). (B4)
(2m#) Substituting for x; the conserved quantitiedy;(p)
=6, p,or p%2m;], we get the respective continuity
-9 fda P P (Ab) equations:
I’h YI - (27%)3 p mi i pl » Y 5
ﬁ+i-(n- vi)=0 (B5a)
g p? gt gr =0
e = 3h £
e (zm)Sf P o filP.1 0. (ALO a a
. - SV P Fi-np Fp=0,  (BSb)
D = 3, 7 7 ¢
I (th)3 J d p m f|(py r, t)1 (Ald) ; ;
g P> p ﬁ(ng)Jra_r'q_n1¥1'Fl"”2¥2'F2:0- (B5¢)
9= 2 J d’p 2m m filp, 1, 1). (Ale)  Here, we made yet no use of the local frame.

The local frame is useful when one wants to make use of
The net quantities result from combining the component conthe assumption of local equilibrium that imposes restrictions
tributions. Thus, the net density is=n;+n,, the net mass on local quantities. On representing the average velocities as
density isp=p;+p,=m, N+, N, While the net velocity is  v;=V;+Vv in the equations above, we obtain the following set:
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&ni d
E"'a_ (n| V)+07 (n| V|) O, (863)
P pv)=0 (B6b)
gt gr LYY
o+ v+ By Fi-ny Fp=0
&t(PV) P pVvVv ar N Fp—Np k=0,
(B60)

P+ nEV)+
—(n — (N Vv .
Jt —  ar —

- Ny !2 F2:0. (BGd)

The equation for mass density in the set above follows from

combining the equations for particle densities.

The above equations significantly simplify when the as-
sumption of a strict local equilibrium is imposed. Under that

vanish,V;=0 angQ:O, a_nd the kinetic pressure tensor be

PHYSICAL REVIEW C68, 064604(2003

dni _eT dai + 3 dB
at ST g T Mg
(C2
d(ni El) _ 3 da’i 5 dB
ot 2" Ta 2" E

A combination of the above trace-derivative relations with
the Euler equations from Appendix B yields the following
simple results:

dai _, (C33)
d

B 2 9

VTN (C3b

the consistency of which with EqéC2) and(B7) is easy to
verify. The result§C3) express basic features of the isentro-

‘%ic ideal-fluid evolution of a mixture. The entropy per par-

ticle in species depends only ony, while the ratio of the

comes diagonaP=3 n E 1. The equations reduce then to the densities of species,/n, depends both oy, and a,. The

Euler set
M w=0 (B7a)
gt = gr WYED
a( )+a ( =)+2a(n§) . e o
gt PV T vV T a Ng k=N =0,

(B7b)
B v LB+ 2nE-L.v=0. (BT9
gt 2TV g BT NEG YRR ©

APPENDIX C: SPACE-TIME DERIVATIVES FOR AN
IDEAL FLUID

conservation ofy; for both species is equivalent to the con-
servation of entropy per particle and of relative concentra-
tion. Finally, the density for specidsis proportional toT®/?
multiplying a function ofq;, which is equivalent to the sec-
ond of the results above, given the continuity equation for
species and the conservation af

APPENDIX D: VARIABLE TRANSFORMATION
The driving forces for diffusion are naturally expressed in

terms of the gradients of temperature and of chemical poten-
tial difference per unit masg},. However, given the typical
constraints on systems, it can be convenient to express the
chemical potential in terms of other quantities that are easier
to assess or control, such as the differential concentraion
temperatureT, and net pressurB'. A transformation of the

In an ideal fluid, all local quantities can be expressed invariables for the driving forces has been employed, at a for-

terms of the local temperatufieand the local kinetic chemi-
cal potentialy;. If we consider changes of the densitig®r
of the local kinetic energieE; with respect to a parametgr

mal level, in Sec. Il C. Here, we show, though, how the
transformation can be done in practice for the interaction
energy per particle specified in terms of the particle demsity

representing some spatial coordinate or time, or their combiand concentratiod, EV'=E"(n, §). With the nuclear applica-

nation, we find

aai 3 &B

&ni
—=&T oMo

ax ax
(Cy
JnE) 3 da; 5 J
(|_|):_niTﬁ+_niEi_ﬂ,
dX 2 aX 2 — dX

where a;=w;/T, B=In T, and &=(dn/du;)t. With the trace

derivative defined as

d o d
—=—+V.-—,
dt ot ar

a particular version of the above relations is

tion in mind, we limit ourselves to the case wf=m,=m.

The transformation can exploit straightforward relations
between different differentials. One of those to exploit is the
Gibbs-Duhem relation

dP'=n, dul +n, dub+n s dT
‘ mné

Here,sis the entropy per particle and = (u}+u5)/2 is the
median chemical potential. Two other relations stem from
the differentiations of equilibrium particle distributions,
already utilized in Appendix C,
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& wi

3ni - an
dnl = gi d,u,l + T dT= gl d,LLl dT.

aT

Hi

With u{=d(n E’)/on;, on adding and subtracting the two

(i=1, 2 relations side by side, we find

p I p
dn:(fl"'fz){d“t_(o?_l:])&dn_( ;;)n dé}

'_'NIB

o7n <9n
1 T2> }dT
Jd 1

Jan

(D2)

oul oul
& 52){0'#12 (%) dn—( = ;2) da}
5 n

sdn+n d5:(§1—§2){d,ut—(a'uv) dn—(‘w) d5]
o (96 n

m d s
+ §(§1+ fz){d,“«tlz_ (0.,_;2)5 dn

- wiz) (,9_”> (ﬁ_n)
(aé ndé}{ T/, \oT/,

Those two equations have the structure

Gin dN= Gy, du' + Gyg duyp + Gys d+ Gy dT,

wherek=1, 2 and where the coefficienG can be worked
out from Egs.(D3) and (D4). On multiplying the sides of
the first(k=1) equation byG,, and the sides of the second
(k=2) equation byG;, and on subtracting the equations
side by side, we can eliminate tla differential obtaining

(D5)

0=(Gy, Gy, — Gup Gy,) du' + (Gyy Gig— Gy Gog) iy,
+ (G G5~ Gy Gyp) A6+ (Gyp Gir— Gy Gyp) dT

=R, du'+ Ry dug, + R; ds+ Ry dT.

On eliminating next thedu, differential using the Gibbs-

Duhem relation, we find

P 5/.1,5_2 _ RM
I3, t - '
P T mé
"R T
r (ﬁﬂtﬂ) R.s— Ry
20T ) s ms’
"Ry
e alutlz Rs
127\ 96 mé
PLT
n2

(D6)

(D7a)

(D7b)

(D7c)
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APPENDIX E: BRACE ALGEBRA
The brace products are employed in finding the transport
coefficients within linear approximation to the Boltzmann
equation. The brace product of two scalar quantifiesdB
associated with the colliding particles is defined as

d3 a3
(AB)= j e TANCE j s 1B

d’p d°p
+f W, Ay |21(B)+f W A; 11(B)
= [A, B]11+ [A! B]12+ [Av B]221 (El)

where, in the last step, we have broken the brace product
into square-bracket products representing contributions
from collisions within species 1, from collisions between
species 1 and 2 and from collisions within species 2, re-
spectively.

We will first show that the square-bracket product is sym-
metric. Thus, we have explicitly

dpa Py (ﬂ)
(2m)?® (2m)3 dQ

X Aa (Bia + Bip =~ Bjy — Bjy)

1( d®p, p, (d )
— Mo * (0) £(0) F(0)r F(0)r
f(z 5 400" (g ) 19 MRS

X (Aia +Ap — Ai’a - Ai’b)
X (Bla + Blb |b) (EZ)

where, to get the last result, we have first utilized an in-
terchange of the particles in the initial state of a collision
and then an interchange of the initial and final states
within a collision. It is apparent that the rhs of E&2) is
symmetric under the interchange Afand B. Moreover,
we can see that a square bracket BorA, [A, Al;i, is non-
negative and that it vanishes only whans conserved in
collisions.

We next consider the contribution from collisions between
different species,

£O £0 f(O)/ f(O

ia 'ib lia

[A ]II

d3p1 d3p2 (d 12)
A B _r dQ v (0) £(0)F(0)7 F(0)/
[A Bl (271')3 (277)3 dQ i

d®p; d*p, (d 12) =
(0) £(0)F(0)7 F(0)/
2m? 2 dQ o ) 77 17 )

Here, we again utilized an interchange between the initial

and final states and we again observe a symmetry between

A andB on the rhs. Thus, indeed, all square brackets are

symmetric. Moreover, foB=A, we see thafA, A];,=0

and that the zero is only reachedAfis conserved.
Combining the results, we find that the brace prod&d)

is symmetric. Moreover, we find that the brace product of

quantity A with itself is nonnegative{A, A}=0, and vanishes

only whenA is conserved. As the brace product has features
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of a pseudoscalar product, a version of the Cauchy-Schwarze the pairs of tensors of the same rank associated with the

Buniakowsky(CSB) inequality[21] holds, particles, when requiring that the tensor indices are con-
voluted between the two tensors in the brace, as, e.g., in
(A AMB, B! = ({A, B})2. (E4) Eq. (36). The positive definite nature of the brace product

is important in ensuring that expressions for transport co-
All the results from this appendix remain valid, in an ob- efficients, obtained in the paper, yield positive values for
vious manner, when the brace prod(gtl) is generalized the coefficients that in this case represent a stable system.
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