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The isospin diffusion and other irreversible phenomena are discussed for a two-component nuclear Fermi
system. The set of Boltzmann transport equations, such as that employed for reactions, is linearized, for weak
deviations of a system from uniformity, in order to arrive at nonreversible fluxes linear in the nonuniformities.
Besides the diffusion driven by a concentration gradient, also the diffusion driven by temperature and pressure
gradients is considered. Diffusivity, conductivity, heat-conduction, and shear-viscosity coefficients are formally
expressed in terms of the responses of distribution functions to the nonuniformities. The linearized Boltzmann-
equation set is solved, under the approximation of constant form factors in the distribution-function responses,
to find concrete expressions for the transport coefficients in terms of weighted collision integrals. The coeffi-
cients are calculated numerically for nuclear matter, using experimental nucleon-nucleon cross sections. The
isospin diffusivity is inversely proportional to the neutron-proton cross section and is also sensitive to the
symmetry energy. At low temperatures in symmetric matter, the diffusivity is directly proportional to the
symmetry energy.
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I. INTRODUCTION

The availability of beams largely differing in isospin con-
tent in nuclear reactions has dramatically increased the inter-
est in phenomena associated with the variation of that con-
tent. In the context of peripheral reactions, this includes
interest in changes of the nuclear density profiles with the
isospin content. In central reactions, the attention has fo-
cussed, in particular, on the dependence of isospin symmetry
energy on density. The determination of that dependence
would permit an extrapolation of the nuclear equation of
state to the neutron matter limit[1]. The isospin asymmetry
has been used in central reactions for projectile-target tag-
ging in the investigation of stopping[2].

This paper deals with the irreversible transport of isospin
and other quantities in a nuclear system, as pertinent for
reactions, for small deviations from equilibrium. In that
limit, the irreversible transport acquires universal features
and is characterized in terms of transport coefficients that
include the isospin-diffusion coefficients. The coefficients
are derived here for the dynamics described in terms of a
Boltzmann-equation set such as used in reaction simulations
[3,4]. The main diffusion coefficient or diffusivity, character-
izing isospin diffusion driven by the gradient of asymmetry,
is evaluated using free neutron-proton cross sections. In the
past, other transport coefficients, viscosity and heat conduc-
tivity, have been investigated for nuclear matter[5–9]. It was
subsequently found that conclusions from comparisons of
reaction simulations to data on stopping can be universally
formulated in terms of the nuclear viscosity[10]. It is hoped
that the diffusivity can be of such utility as that other coef-
ficient, for the systems with a varying isospin content.

The past studies of irreversible linear transport for nuclear
matter were primarily directed at momentum and energy. To-
monaga[5] and Galitskii et al. [6] obtained the low- and
high-temperature limits for the shear viscosity and heat con-

ductivity. Danielewicz[7] derived results for those coeffi-
cients valid in a wide range of nuclear densities and tempera-
tures. Hakim and Mornas[9] studied different transport
coefficients within the Walecka model following the
relaxation-time approximation.

Our derivation of diffusion coefficients follows the gen-
eral strategy of Chapman and Enskog[11], but here for a
Fermi system, with inclusion of mean-field effects such as
appropriate for a nuclear system. In the following section, we
discuss the diffusion coefficient concept qualitatively and
make simple estimates for the nuclear matter. The modifica-
tion of the Boltzmann equation to extend it to fermions has
been first discussed by Uhlenbeck and Uehling[12,13]. In
Sec. III, we formally solve the set of Boltzmann equations
for a binary system of fermions to find thermodynamic fluxes
driven by specific thermodynamic forces and to find general
but formal expressions for the diffusion and other transport
coefficients. The transport coefficients were(as we found)
first considered for fermions by Hellund and Uhlenbeck[14];
compared to them, our notation here adheres more to what is
now customary for nuclear reactions. Closely related to the
diffusivity is the electrical conductivity that is included in
our considerations. In Sec. IV, we obtain more specific re-
sults for the coefficients on assuming deviations from equi-
librium suggested by the Boltzmann-equation set, for spe-
cific thermodynamic forces present. Numerical results for the
coefficients are obtained in Sec. V, using free nucleon-
nucleon cross sections. We also estimate there the pace of
isospin equilibration in reactions. We summarize our results
in Sec. VI. More technical mathematical details and some
reference information are provided in five appendixes. In se-
quence, these appendices are devoted to the definitions of
macroscopic quantities, the continuity equations, the conti-
nuity equations for an ideal fluid, the transformations in the
driving force for diffusion, and to the algebra of collision
brackets.
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II. DIFFUSION IN A BINARY SYSTEM

Diffusion and other irreversible transport processes occur
when a system is brought out of equilibrium. The direction
of those processes is to bring the system back to the equilib-
rium. For small perturbations, in terms of constraints that
may be set externally, the system response is linear in the
perturbation. The coefficient of proportionality between the
induced flux and the perturbation is the transport coefficient.

In a multicomponent system with no net mass flow, irre-
versible particle flows result if particle concentrations are
nonuniform. ForN components, there areN−1 independent
flows andN−1 independent concentrations(since the con-
centrations need to sum up to 1). The flows are then related
to the gradients of the concentrations with ansN−1d3sN
−1d matrix of diffusion coefficients. In a binary system, only
a single coefficient of diffusion, or diffusivity, relates the
irreversible particle flow to the nonuniformity in concentra-
tion. However, as we shall see, nonuniformities in other
quantities than concentration can induce a dissipative particle
flow as well.

Our focus, obviously, is the binary system of neutrons and
protons. However, for the sake of utility of the results else-
where and for the ability to examine various limits, we shall
consider a general two-component system of fermions. An
extension of those results to bosons, outside of a condensa-
tion, will be trivial.

The two components will be denoted 1 and 2. Then, for
the particlei, the density isni=Ni/V, whereNi is the particle
number in some infinitesimal volumeV. With net densityn
=n1+n2, the particle concentration for 1 isn=n1/n and for 2 it
is 1−n=n2/n. Moreover, withmi representing the mass of
particle i, the net mass density isr=r1+r2=m1 n1+m2 n2,
and the mass concentration fori is ci=mi ni/r. The differen-
tial particle concentration isd=sn1−n2d/n. The different con-
centrations are obviously related and thus we haven=s1
+dd/2 and c1=m1 s1+dd/fm1 s1+dd+m2 s1−ddg. Later in the
paper, we shall primarily use the differential concentrationd
as an independent variable.

The dissipative particle flowsGi are defined relative to the
local mass velocityv,

Gi = ni svi − vd, s1d

wherevi is the local velocity ofith component and

v = sr1 v1 + r2 v2d/r. s2d

We might consider other flows such as defined relative to
the localparticle velocity, but those flows are combinations
of G1 andG2. Moreover, evenG1 andG2 are redundant and
we might just useG1 as an independent flow with the flow of
2, as easily seen, given byG2=−m1 G1/m2. Another option
might be to use as independent the differential flow defined
as

Gd = G1 − G2. s3d

If the system is at uniform pressure and temperature, but
there is a small concentration gradient present, the fluxes
develop linear in the gradient, enabling us to write, e.g.,

G1 = − n D1

] n

] r
and G2 = − n D2

] s1 − nd
] r

. s4d

These are the so-called Fick’s laws. Notably, the stability
of an equilibrium state requiresDi .0. Since m1 G1
+m2 G2=0, we havem1 D1=m2 D2. For the differential
flow, we have

Gd = − n D1

] n

] r
+ n D2

] s1 − nd
] r

= − n Dd

] d

] r
. s5d

Here, the differential coefficient isDd=sD1+D2d/2.
So far, we assumed a system at a uniform pressure and

temperature, with just concentration changing with position.
If the variations in a system are more complex, other non-
equilibrium forces than the concentration gradient can drive
the diffusion. This will be explored later in the paper. Gen-
eral guidance regarding the forces which can contribute is
provided by the Curie principle. This principle exploits sym-
metry and states that the driving forces must have the same
tensor rank and parity as the flux they generate.

For the system of neutrons and protons, the differential
concentrationd becomes a concentration of the isospin and
the differential flow becomes the isospin flow,Gd;GI. More-
over, the differential diffusion coefficient becomes an isospin
diffusion coefficient,Dd;DI, and for equal masses we ex-
pectDI=Dp=Dn.

It is popular to relate the concept of a diffusion coefficient
to a diffusion equation. Indeed, if we consider a uniform
system of protons and neutrons at rest, but with the nucleon
concentration changing in space, then, from the continuity
equation for the differential density

] sn dd
] t

= − ¹ · GI , s6d

we get the familiar equation

] d

] t
= DI ¹2d. s7d

Here, forDI, we have assumed a weak dependence on the
concentrationd.

Before turning to a derivation of rigorous results for the
diffusion and other transport coefficients, it may be instruc-
tive to produce simple mean-free-path estimates for those
coefficients. Let us consider components of equal mass(the
mass then becomes a simple normalization coefficient in
density that may be factored out) and consider the gradient
of concentration along thex axis, in the medium at rest. If we
take the three coordinate axes, then 1/6 of all particles will be
primarily moving along one of those axes in the positive or
negative direction, with an average thermal velocityV
=Î3T/m, for the distance of the order of one mean-free path
l, without a collision. Considering the particles 1 moving
through the plane atx=0, they will be reflecting density at a
distancel away. Including the particles moving up and down
through the plane, we find for the flux
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G1 <
1

6
fn1sx − ld − n1sx + ldgV < −

1

3
lV

] n1

] x
.

With Eq. s4d, we then get for the diffusion coefficient

D ,
1

3
l V ,

1

n s
Î T

3m
s8d

with l,1/snsd. A more thorough investigation shows that
it is the cross sections12 for interactionbetweenthe two
species that enters the diffusion coefficient.

Let us now evaluate the magnitude of the isospin diffu-
sion coefficient. At temperatureT,60 MeV and normal den-
sity n0=0.16 fm−3, with snp,40 mb, we findDI,0.2 fm c.
We will see this to be in a rough agreement with thorough
calculations.

Similarly to the above, one could employ the mean-free-
path arguments to determine the better investigated coeffi-
cients: shear viscosityh and heat conductionk. One finds
h, 1

3n mV l andk, 1
3n V l cV, wherecV is the specific heat

per particle. ForT,60 MeV and s,40 mb, we find h
,30 MeV/sfm2cd and k,0.06c/fm2. Up to factors, the
shear-viscosity and heat-conduction coefficients play the role
of diffusion coefficients in the diffusion equation for velocity
vorticity and in the heat-conduction Fourier equation identi-
cal in form to the diffusion equation.

In the estimates above, we just considered the free motion
of particles in-between collisions. If self-consistent mean
fields produced by the particles depend on concentration,
then this dependence, on its own, contributes to the diffusion.
In the case of nuclear matter, the interaction energy per
nucleon may be well approximated in the form quadratic in
isospin asymmetry,EI

v=aI
v d2, whered=snp−nnd/n and aI

v is
the interaction contribution to the asymmetry coefficientaI.
At normal density, the coefficient isaI

v<14 MeV. The naive
expectation for two-body interactions is thataI

v is linear in
density. At constant net density, the quadratic dependence of
the interaction energy ond leads to the forceFp,n

=74 aI
v/n2]np/]r , of opposite sign on protons and neutrons.

The direction of the force for positiveaI
v is to reduce non-

uniformity in isospin. Under the influence of this force, a
proton accelerates for a typical time between collisionsDt
=l/V and then, in a collision, resets its velocity. The de-
scribed polarization effect augments then the proton flow by

DGp = np Dvp = −
4 aI

v np

n

l

2 m V

] np

] r
. s9d

Comparing with Eq.s8d, after correcting for the local cen-
ter of mass motion, we find that the polarization increases
the diffusion coefficient by

DI8 , s1 − d2d
aI

v

T
DI

0, s10d

whereDI
0 represents the previous estimate in Eq.s8d. It is

apparent that the contribution of the polarization effect is
negligible for temperaturesT@aI

v. However, at tempera-
tures comparable toaI

v, the contribution could be signifi-

cant; notably, at those temperatures Fermi effects also
need to play a role.

The isospin diffusion induced by mechanical forces has
analogy in an electric current induced by the electric fields.
Indeed, for large enough systems, the Coulomb interactions
can contribute currents altering the concentration and, for
completeness, we evaluate the conductivitysE for nuclear
matter, relating the isospin flux to the electric field,

GI = sE E, s11d

whereE is the local electric field.

III. FLUXES FROM THE BOLTZMANN-EQUATION SET

A. Coupled Boltzmann equations

The two components of the binary system will be de-
scribed in terms of the quasiparticle distribution functions
fisp, r , td. The local macroscopic quantitieshsr , td are ex-
pressed as momentum integrals off,

hsr , td =
g

s2p"d3 E dp xspdfsp, r , td, s12d

whereg is the intrinsic degeneracy factor. Different stan-
dard expressions for macroscopic quantities in terms off,
such as pressure and heat flow, are listed in Appendix A.

The components are assumed to follow the set of coupled
fermion Boltzmann equations,

] f i

] t
+

p

mi
·
] f i

] r
+ Fi ·

] f i

] p
= Ji . s13d

The terms on the left-hand sideslhsd account for the
changes inf i due to the movement of quasiparticles and
their acceleration under the influence of mean-field and
external forces, included inFi, while the right-hand side
srhsd accounts for the changes inf i due to collisions. In
the following, we shall often denote the lhs of a Boltz-
mann equation asDi. With ds/dV andvp representing the
differential cross section and relative velocity, respec-
tively, the collision integral for particle 1 is

J1 = J11 + J12 =
g

2s2p"d3 E d3p1a dV8

3vpSds11

dV
D s f̃1 f̃1a f18 f1a8 − f1 f1a f18̃ f1a8̃ d

+
g

s2p"d3 E d3p2 dV8

3vpSds12

dV
D s f̃1 f̃2 f18 f28 − f1 f2 f18̃ f28̃d.

s14d

Here, f̃ =1−f is the Pauli principle factor. The factor of
1/2 in front of the first rhsJ11 term, compared to theJ12
term, compensates for the double counting of final states
when integration is done over the full spherical angle in
scattering of identical particles. The subscripta and the
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primes in combination with the particle subscripts 1 and 2
are used to keep track of incoming and outgoing particles
for a collision. Other than in the context of particle com-
ponents, such as here, the 1 and 2 subscripts will not be
utilized in the paper. The collision integralJ2 for particles
2 follows from Eq.s14d upon interchange of the indices 1
and 2. As it stands, the set of the Boltzmann equations
s13d, with Eq. s14d, preserves the number of each species.

In the macroscopic quantities(12), the distribution func-
tion f gets multiplied by the degeneracy factorg. When con-
sidering changes of macroscopic quantities(12) dictated by
the Boltzmann equation(13), the changing distribution func-
tion f continues to be multiplied byg. In the equation, the
factor of f for the other particle in the collision integralJ is
accompanied by its own factor ofg. As a consequence, in the
variety of physical quantities we derive, the factor off is

always accompanied by the factor ofg, while, however,f̃ is
not. To simplify the notation, in the derivations that follow,
we suppress the factors ofg, only to restore those factors
towards the end of the derivations.

When the Boltzmann-equation set is used to study the
temporal changes of densities of the quantities conserved in
collisions, i.e., number of species, energy, and momentum,
local conservation laws follow. Those conservation laws are
discussed in Appendix B.

B. Strategy for solving the Boltzmann-equation set

Irreversible transport takes place when the system is
brought out of equilibrium such as in effect of external con-
straints. Aiming at the transport coefficients, we shall assume
that the deviations from the equilibrium are small, of the
order of some parametere that sets the scale for temporal
and spatial changes in the system. Then the distribution func-
tions may be expanded in the power series ine [11,15],

f = f s0d + f s1d + f s2d + ¯ , s15d

where f skd represent the consecutive terms of expansion
and f s0d is the strict local equilibrium solution. The terms
of expansion inf may be nominally found by expanding
the collision integrals ine, following Eq. s15d, expanding,
simultaneously, the derivative terms in the equations and
by demanding a consistency,

Di
s1d + Di

s2d + ¯ = Ji
s0d + Ji

s1d + Ji
s2d + ¯ . s16d

Here, we recognize that the derivatives, themselves, bring
in a power ofe into the equations and, thus, the derivative
series starts with a first-order term ine.

While we nominally included the zeroth-order term in the
expansion of the collision integralJi, the integral vanishes
for the equilibrium functions

f j
s0d =

1

exp1 sp − mj vd2

2mj
− m j

T
2 + 1

, s17d

wherem j, v, andT are the local kinetic chemical potential,
velocity, and temperature which are functions ofr and t,

consistent with the Euler equationssB7d. Notably, the
vanishing of the collision integrals is frequently exploited
in deriving the form of the equilibrium functions, leading

to the requirement thatf j/ f̃ j is given by the exponential of
a linear combination of the conserved quantities. In the
context of specific transport coefficients, the boundary
conditions for the Euler equationssB7d may be chosen to
generate just those irreversible fluxes, and forces driving
those fluxes, that are of interest.

The equation set(16) can be solved by iteration, order by
order ine, requiring

Di
skd = Ji

skd. s18d

Thus, f j
s0d may be introduced intoDi, producingDi

s1d and
allowing to find f j

s1d. Next, insertingf j
s1d into Di yieldsDi

s2d

that allows to findf j
s2d and so on.

For finding the coefficients of linear transport, only one
iteration above is necessary, sincefi

s1d, as linear in gradients,
yield dissipative fluxes that are linear in those gradients. The
local equilibrium functions on their own produce no dissipa-
tive fluxes, as the species’ local velocitiesV j and heat fluxQ

vanish, while the kinetic pressure tensorP% is diagonal,

ni V i
s0d =E d3p

s2p"d3

p

mi
fi

s0dsp, r , td = 0, s19ad

Qs0d = o
j
E d3p

s2p"d3

p2

2mj

p

mj
f j

s0dsp, r , td = 0, s19bd

P%s0d = o
j
E d3p

s2p"d3

p p%

mj
f j

s0dsp, r , td =
2

3
n E 1% ,

s19cd

in the frame where the local velocity vanishesvsr , td=0, with
E representing the local kinetic energy per particle. The
above fluxes reduce the local continuity equations to the
ideal-fluid Euler equations.

C. Boltzmann set in the linear approximation

We now consider the terms linear in derivatives around a
given point, i.e., the case ofk=1 in Eq. (18), for the
Boltzmann-equation set. On representing the distribution
functions asf j= f j

s0d+ f j
s1d, we expand the collision integralsJi

to get termsJi
s1d linear in f j

s1d. Upon representingf j
s1d as f j

s1d

= f j
s0d f̃ j

s0d fj, we get for thek=1 i=1 version of Eq.(18):

] f1
s0d

] t
+

p

m1
·
] f1

s0d

] r
+ F1 ·

] f1
s0d

] p
= − I11sfd − I12sfd, s20d

where
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I ijsfd =
1

1 + di j
E d3pja

s2pd3 dV8 vpSdsi j

dV
D f i

s0d f ja
s0d f̃ i

s0d8 f̃ ja
s0d8

3sfi + f ja − fi8 − f ja8 d, s21d

and where we have utilized the property of the equilib-
rium functions

f i
s0d f ja

s0d f̃ i
s0d8 f̃ ja

s0d8 = f̃ i
s0d f̃ ja

s0d f i
s0d8 f ja

s0d8. s22d

The result for i =2, analogous to Eq.s20d, is obtained
through an interchange of the indices 1 and 2.

The lhs of Eq.(20) contains the derivatives of equilibrium
distribution functions with respect tot, r , andp. These de-
rivatives can be expressed in terms of the parameters de-
scribing functions(17)), i.e., mi, T, andv. Through the use
of the Euler equations(Appendix B) and equilibrium identi-
ties (Appendix C), moreover, the temporal derivatives may
be eliminated to yield for the rescaled lhs of Eq.(20)

T

f1
s0d f̃1

s0d
Ds1d = S p2

2m1
−

5

3
ED p

m1 T
·
] T

] r
+

pp%̊

m1
:

]

] r
v +

p

r1
·d12.

s23d

Here, a symmetrized traceless tensor is defined asx y%̊

= 1
2sx y%+y x%d− 1

3sx ·yd1%, and

d12 =
r1 r2

r
FS−

F1

m1
+

F2

m2
D + T

]

] r S m1

m1 T
−

m2

m2T
D

+
5

3T
SE1

m1
−

E2

m2
D ] T

] r G
=

r1 r2

r
FS−

F1

m1
+

F2

m2
D +

]

] r Sm1

m1
−

m2

m2
D

+ S s1

m1
−

s2

m2
D ] T

] r G , s24d

where si is the entropy per particle for speciesi, si
=s5Ei/3−mid/T. The result for species 2 in the Boltzmann
equation is obtained by interchanging the indices 1 and 2
in Eqs. s23d and s24d. Note thatd21=−d12.

Representation(23) for the lhs of the linearized Boltz-
mann equation(20) exhibits the thermodynamic forces driv-
ing the dissipative transport in a medium. Thus, we have the

tensor of velocity gradientss]/]r dv% contracted in Eq.(23)
with the tensor from particle momentum. The distortion of
the momentum distribution associated with the velocity gra-
dients gives rise to the tensorial dissipative momentum flux
in a medium. As to the vectorial driving forces, they all
couple to the momentum in Eq.(23) and they all can con-
tribute to the vector fluxes in the medium, i.e., the particle
and heat fluxes, as permitted by the Curie law. The criterion
that we, however, employed in separating the driving vector
forces in Eq.(23) was that of symmetry under particle inter-
change. When considering the diffusion in a binary system,
with the two components flowing in opposite directions in a
local frame, one expects the driving force to be of an oppo-
site sign on the two species. On the other hand, in the case of

the heat conduction, one expects the driving force to distort
the distributions of the two species in a similar way in the
same direction.

Regarding the antisymmetric driving force in Eq.(24), we
may note that for conservative forces we have

Fi = −
]

] r
Ui . s25d

We can combine then the first term with the second term
on the rhs of Eq.s24d by introducing the net chemical
potentialsmi

t=mi +Ui and getting

d12 =
r1 r2

r
F ]

] r Sm1
t

m1
−

m2
t

m2
D + S s1

m1
−

s2

m2
D ] T

] r G . s26d

For a constant temperatureT, the driving force behind
diffusion is the gradient of difference between the chemi-
cal potentials per unit mass,m12

t =m1
t /m1−m2

t /m2, as ex-
pected from phenomenological considerationsf16g. How-
ever, the temperature gradient can contribute to the
diffusion as well, which is known as the thermal diffusion
or Soret effect. We note that the vector driving forces in
Eq. s23d vanish when the temperature and the difference
of net chemical potentials per mass are uniform through-
out a system.

Given the typical constraints on a system, it can be more
convenient to obtain the driving forces in terms of the net
pressurePt, temperatureT, and concentrationd, rather than
m12

t and T. Thus, on expressing the potential difference as
m12

t =m12
t sPt, T, dd, we get

dm12
t = S ] m12

t

] Pt D
T,d

dPt + S ] m12
t

] T
D

Pt,d

dT+ S ] m12
t

] d
D

Pt,T

dd

s27d

and

d12 =
r1 r2

r
sP12

P ¹Pt + P12
T ¹T + P12

d ¹dd, s28d

which we will utilize further on. The coefficient functions
are

P12
P = S ] m12

t

] Pt D
T,d

, s29ad

P12
T = S ] m12

t

] T
D

Pt,d

+ S s1

m1
−

s2

m2
D , s29bd

P12
d = S ] m12

t

] d
D

Pt,T

, s29cd

and specific expressions for those functions in the nuclear-
matter case are given in Appendix D. Notably, however, the
concentrationd may not be a convenient variable in the
phase transition region where the transformation between the
chemical potential difference andd is generally not invert-
ible.
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With the lhs of the linearized Boltzmann set(20) linear in
the driving forces exhibited on the rhs of Eq.(23), and with
the collision integrals linear in the deviation form factorsf,
the form factors need to be linear in the driving forces,

f1 = − A1 ·¹T − B%1:¹v%̊ − C1 ·d12,
s30d

f2 = − A2 ·¹T − B%2:¹v%̊ − C2 ·d12,

whereA, B%, andC do not depend on the forces. On inserting
Eq. (30) into Eq. (20), we get the following equations, when
keeping alternatively a selected exclusive driving force fi-
nite:

p

r1 T
f1

s0d f̃1
s0d = I11sCd + I12sCd, s31ad

−
p

r2 T
f2

s0d f̃2
s0d = I22sCd + I21sCd, s31bd

when keepingd12,

p p%̊

m1 T
f1

s0d f̃1
s0d = I11sB%d + I12sB%d, s32d

and another one, with indices 1 and 2 interchanged, when

keeping¹v%̊, and, finally,

S p2

2m
−

5

3
E1D p

m1 T2 f1
s0d f̃1

s0d = I11sAd + I12sAd, s33d

and another one, with 1 and 2 interchanged, when keeping
¹T swhile d12=0d.

The linearized collision integralsIij cannot change the
tensorial character of objects upon which they operate.
Moreover, the only vector that can be locally utilized in the
object construction is the momentump. This implies, then,
the following representation within set(30):

Ci = cisp2d
p

ri
, s34ad

A i = aisp2dS p2

2mi
−

5

3
EiD p

mi T2 , s34bd

B% = bisp2dp p%̊ . s34cd

Here, the tensorial factors are enforced by construction. The
factorization of the scalar factors is either suggested by the
respective linearized Boltzmann equation or serves conve-
nience later on. The unknown functionsa, b, andc can be
principally found by inserting Eq.(34) into Eqs.(31)–(33).
The resulting equations are, however, generally quite com-
plicated and analytic solutions are only known in some spe-
cial cases. In practical calculations, we shall contend our-
selves with a power expansion for the unknown functions. It
has been shown that any termination of the expansion will
produce lower bounds for the transport coefficients and that

the lowest terms yield a predominant contribution to the co-
efficients[11].

D. Formal results for transport coefficients

Before solving Eqs.(31)–(33), we shall obtain formal re-
sults for the transport coefficients, assuming that solutions to
(31)–(33) exist. We shall start with the diffusion. The veloc-
ity for species 1 is

V1 =
1

n1
E d3p

s2p"d3

p

m1
df1

=
1

n1
E d3p

s2p"d3

p

m1
f1 f1

s0d f̃1
s0d

= TE d3p

s2p"d3 f1 fI11sCd + I12sCdg

= − ¹T
T

3
E d3p

s2p"d3 A1 · fI11sCd + I12sCdg

− d12

T

3
E d3p

s2p"d3 C1 · fI11sCd + I12sCdg, s35d

where we have utilized Eqs.s30d and s34d. The contribu-
tion of a tensorial driving force to the vector flow drops
out under the integration over momentum, as required by
the Curie principle. With a result forV2 analogous to Eq.
s35d, we get for the difference of average velocitiessuti-
lized for the sake of particular symmetry between the
componentsd

V1 − V2 = − ¹T
T

3HE d3p

s2p"d3 A1 · fI11sCd + I12sCdg

+E d3p

s2p"d3 A2 · fI22sCd + I21sCdgJ
− d12

T

3HE d3p

s2p"d3 C1 · fI11sCd + I12sCdg

+E d3p

s2p"d3 C2 · fI22sCd + I21sCdgJ
= −

T

3
shA, Cj¹T + hC, Cjd12d, s36d

where the brace producth·, ·j is an abbreviation for the
integral combinations of vectorsA andC, multiplying the
driving forces. The brace product was first introduced for
a classical gasf11g. The fermion generalization of the
product and its properties are discussed in Appendix E;
see also Ref.f14g.

The diffusion coefficient is best defined with regard to the
most common conditions under which the diffusion might
occur, i.e., at uniform pressure and temperature, but varying
concentration. We have then, cf. Eq.(3),
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V1 − V2 =
r

sm1 + m2d n1 n2
Gd = −

r n m12

r1 r2
Dd ¹d,

s37d

where m12 is the reduced mass, 1/m12=1/m1+1/m2. Re-
spectively, whenPt and T vary, with d12 given by Eq.
s28d, we write the rhs of Eq.s36d as

V1 − V2 = −
r n m12

r1 r2
DdS¹d +

PP

Pd ¹Pt + kT ¹TD , s38d

where, simplifying the notation, we dropped the subscripts
12 on coefficientsP. The diffusion coefficient in the
above is given by

Dd =
T

3m12

Pd

n
Sr1 r2

r
D2

hC, Cj s39d

and

kT =
PT

Pd +
1

Pd

r

r1 r2

hA, Cj
hC, Cj

. s40d

We can note that the expressions above containPd in
denominators. Normally, positive nature of derivative
s29cd is ensured by the demand of the system stability.
However, across the region of a phase transition the con-
centration generally changes while the chemical potentials
generally do not, so thatPd=0. While the coefficientDd

above is the one we are after as the standard one in de-
scribing diffusion, in the phase transition region it can be
beneficial to resort to the description of diffusion as re-
sponding to the gradient of the potential difference in Eq.
s28d. Notably, as explained in Appendix E, the brace prod-
uct hC, Cj in Eq. s39d is positive definite. This ensures the
positive nature ofDd away from the phase transition and,
in general, ensures that, at a constant temperature, the
irreversible asymmetry flux flows in the direction from a
higher potential differencem12

t to lower.
As to the Soret effect, i.e., diffusion driven by temperature

gradient, described in Eqs.(38)–(40), it has its counterpart in
the heat flow driven by a concentration gradient, termed Du-
four effect. Transport coefficients for counterpart effects are
related through Onsager relations[17] that are also borne out
by our results. The diffusion driven by pressure is rarely of
interest, because of the usually short times for reaching me-
chanical equilibrium in a system, compared to the equilib-
rium with respect to temperature or concentration. However,
an irreversible particle flux may be further driven by external
forces, such as due to an electric fieldE. With the flux in-
duced by the field given byGd=sE E, wheresE is conduc-
tivity, with the first equality in Eq.(37), and with Eqs.(36)
and (24), we find for the conductivity

sE =
T

3m12
Sr1 r2

r
D2 S q2

m2
−

q1

m1
D hC, Cj

= S q2

m2
−

q1

m1
D n

Pd Dd, s41d

whereqi is charge of speciesi. We see that conductivity is
closely tied to diffusivity.

While our primary aim is to obtain coefficients character-
izing the dissipative particle transport, due to the generality
of our results we can also obtain the coefficients for the
transport of energy and momentum. Thus, starting with ex-
pression(A1E) in a local frame and proceeding as in the case
of Eqs.(35) and (36), we get, with Eq.(33),

Q1 + Q2 = −
T

3
shA, Aj¹T + hC, Ajd12d

+
5

3
sE1 n1 V1 − E2 n2 V2d

= −
T

3
shA, Aj¹T + hC, Ajd12d

+
5

3
SE1

m1
−

E2

m2
D r1 r2

r
sV1 − V2d, s42d

where in the second step we make use of the condition on
local velocitiesr1 V1+r2 V2=0. The standard procedure
f16g in coping with the heat flux is to break it into a
contribution that can be associated with the net movement
of particles and into a remnant, driven by the temperature
gradient, representing the heat conduction. With this, the
driving forced12 needs to be eliminated from the heat flux
in favor of the species velocities. Using Eq.s36d, we find

Q1 + Q2 = − ¹T
T

3ShA, Aj −
hC, Aj2

hC, Cj D + sV1 − V2d

3F5

3
SE1

m1
−

E2

m2
D r1 r2

r
+

hC, Aj
hC, CjG . s43d

The coefficient

k =
T

3ShA, Aj −
hC, Aj2

hC, Cj D , s44d

relating the heat flow to the temperature gradient, is the
heat-conduction coefficient. From Eq.s44d and consider-
ations in Appendix E, it follows thatk given by Eq.s44d
is positive definite.

The final important coefficient that we will obtain, for
completeness, is the viscosity. The modification of the mo-
mentum flux tensor(A1D), on account of the distortion of
momentum distributions described by Eq.(30), is

P%s1d =E d3p

s2p"d3

p p%

m1
df1 +E d3p

s2p"d3

p p%

m2
df2

= −E d3p

s2p"d3

p p%

m1
sB%1:¹v%̊d f1

s0d f̃1
s0d

−E d3p

s2p"d3

p p%

m2
sB%1:¹v%̊d f2

s0d f̃2
s0d

= −
1

5
¹v%̊ SE d3p

s2p"d3 B%1:
p p%

m1
f1

s0d f̃1
s0d
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+E d3p

s2p"d3 B%2:
p p%

m2
f2

s0d f̃2
s0dD = −

T

5
¹v%̊hB%, B%j.

The coefficient of proportionality between the shear cor-
rection to the pressure tensor and the tensor of velocity
derivatives is, up to a factor of 2, the shear-viscosity co-
efficient

h =
T

10
hB%, B%j. s46d

As with other results for coefficients, from Appendix E it
follows that the result forh above is positive definite, as
physically requiredf16g.

On account of symmetry considerations within the linear
theory, the changes in temperature or concentration do not
affect the pressure tensor. However, the situation changes if
one goes beyond the linear approximation. For a general dis-
cussion of different higher-order effects see Ref.[11]. As a
next step, we need to find the form factors in Eq.(30); that
requires finding the functionsa, b, and c in Eq. (34) by
solving Eqs.(31)–(33).

IV. TRANSPORT COEFFICIENTS IN TERMS OF
CROSS SECTIONS

A. Constraints on deviations from equilibrium

Since the zeroth-order, in derivative expansion, local-
equilibrium distributions are constructed to produce the local
particle densities, net velocity, and net energy, corrections to
the distributions cannot alter those macroscopic quantities.
Thus, we have locally the constraints

dni =E d3p

s2p"d3 df i = 0, s47ad

dsr Vd =E d3p

s2p"d3 p df1 +E d3p

s2p"d3 p df2 = 0,

s47bd

dsn Ed =E d3p

s2p"d3

p2

2m1
df1 +E d3p

s2p"d3

p2

2m2
df2 = 0.

s47cd

With driving forces being independent of each other and with
form factors in Eq.(30) being independent of the forces,
each of the form factor sets must separately meet the con-
straints. By inspection, however, one can see that the density
and energy constraints are met automatically with forms(34)
of form factors. Moreover, the tensorial distortion(34c) sat-
isfies all the constraints. At a general level, the ability to
meet the constraints while solving Eqs.(31)–(33) relies on
the fact that the linearized collision integralsIij [in Eqs.(20)
and(21)] nullify quantities conserved in collisions, so a com-
bination of the conserved quantities may be employed in
constructing the form factorsfi, ensuring that the constraints
are met. When the transport coefficients get expressed in
terms of the brace products, though, ensuring that the con-

straints are met becomes actually irrelevant for results on the
transport coefficients,becausethe linearized integrals and
correspondingly brace products nullify the conserved quan-
tities.

Given cross sections and equilibrium particle distribu-
tions, the set of equations(31)–(33) may be principally
solved. However, such a solution is generally complicated
and would likely not produce clear links between the out-
come and input to the calculations. On the other hand, the
experience has been that when expanding the form-factor
functions,a, b, andc in Eq. (34), in power series inp2, the
lowest-order results represent excellent approximations to
the complete results and are quite transparent, e.g., Ref.[7].
Thus, we adopt here the latter strategy and test the accuracy
of our results in a few selected cases.

B. Diffusivity

If we insert Eq.(34a) with cisp2d=ci into the local velocity
constraint(47a), we get the requirement

c1

r1
E d3p

s2p"d3 p2 f1
s0d f̃1

s0d +
c2

r2
E d3p

s2p"d3 p2 f2
s0d f̃2

s0d = 0.

s48d

After partial integrations, we find that this is equivalent to
the requirementc1=−c2;c.

Whenci is constant within each species, thenCi is up to a
factor equal to momentum and, thus, gets nullified by the
linearized collision integralwithin each species IiisCd=0. To
obtain a value forc, we multiply the first of Eqs.(31) by C1
and the second byC2, add the equations side by side, and
integrate over momenta. With this, we get an equation where
both sides are explicitly positive definite and, in particular,
the lhs is similar to the lhs of Eq.(48), but with an opposite
sign between the component terms. That side of the equation
can be integrated out employing the explicit form offs0d from
Eq. (17). The other side of the resulting equation represents
hC, Cj where only the interspecies integrals survive. On solv-
ing the equation forc, we find

c =
6 r1 r2

r x12
, s49d

where

x12 = g2E d3p1

s2p"d3

d3p2

s2p"d3 dVvp

3Sds12

dV
D sp1 − p81d2 f1

s0d f2
s0d f̃1

s0d8 f̃2
s0d8. s50d

The integral stems from a transformed brace product
hC, Cj and we resurrect here the degeneracy factorsg. For
the brace product itself, we find

hC, Cj =
c2

2 S r

r1 r2
D2

x12 =
18

x12
. s51d

On inserting this into diffusivitys39d, we obtain
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Dd =
6T

m12

Pd

n x12
Sr1 r2

r
D2

. s52d

In the above, we see that the diffusion coefficient depends
both on the equation of state, through the factorPd, and
on the cross section for collisions between the species,
through x12. The collisions between the species are
weighted with the momentum transfer squared. Only those
collisions between species that are characterized by large
momentum transfers suppress the diffusivity and help lo-
calize the species. The marginalization of collisions with
low momentum transfers is a common feature of all trans-
port coefficients.

At high temperatures the Fermi gas reduces to the Boltz-
mann gas. In absence of mean-field effects, we findPd

,2T/m for small asymmetries. The integralx12 is then of the
order n2 s12 p3/m,n2 s Îm T3. Together, these yieldDd

,1/n s12
ÎT/m. The precise high-T result for isotropic cross

sections in the interaction of species with equal massm is
[11,15]

Dd =
3

8ns12
Î T

pm
. s53d

The square-root dependence on temperature will be evi-
dent in our numerical results at highT. With an inclusion
of the mean field, with the net energy quadratic in asym-
metry, the derivativePd gets modified into Pd,2sT
+2aI

vd/m. Thus, the mean field enhances the diffusion.
At low temperatures, the derivativePd is simply propor-

tional to the symmetry energy,Pd,4aI/m. As to the colli-
sional denominator of the diffusion coefficient, at low tem-
peratures the collisions take place only in the immediate
vicinity of the Fermi surface. We can write the product of
equilibrium functions in the collision integral as

f1
s0d f2

s0d f̃1
s0d8 f̃2

s0d8 = K1 K2 K81 K82, s54d

where

Ki =
1

2 cosh

p2

2mi
− mi

T

,

and, at lowT, Ki ,2p m T dsp2−pFi
2 d. The integration in

Eq. s50d yields x12,s12 m2 T3 n2/pF
3. In consequence, we

find that the diffusion coefficient diverges as 1/T2 at low
temperatures. For the spin diffusion coefficient, one finds
within the low-temperature Landau Fermi-liquid theory
f18g

Ds =
vF

2

3
s1 + F0

ad tD, s55d

where vF is Fermi velocity, F0
a is a spin-antisymmetric

Landau coefficient, andtD is a characteristic relaxation
time that scales astD,T−2. The isospin diffusivity for
symmetric matter should differ from the spin diffusivity in
the replacement of the spin-antisymmetric Landau param-

eter with the isospin asymmetric parameter, neither of
which has a significant temperature dependence. Thus,
here consistently we find aT−2 divergence of the diffusiv-
ity at low temperatures. Moreover, the factors1+F0

ad is
nothing else but a rescaled symmetry energy, withF0

a be-
ing the ratio of the interaction to the kinetic contribution
to the energyf19g. Thus, here consistently we find a pro-
portionality of the diffusivity to the symmetry energy at
low temperatures.

To summarize the above results on diffusivity, we find
that the diffusivity is inversely proportional to the cross sec-
tion between species for high momentum transfers. More-
over, whether at low or high temperature, the diffusivity is
sensitive to the symmetry energy in the mean fields. The
mean-field sensitivity is associated with the factor

Pd =
] m12

] d
+

]

] d
SU1

m1
−

U2

m2
D =

] mnp

] d
+

4aI
v

m
,

where the last equality pertains to the system of neutrons
and protons andaI

v represents the interaction contribution
to the symmetry energy at the relevant density.

While we obtained the diffusivity here assuming constant
ci in Eq. (34a), we will show that the next-order term in the
expansion ofci increases the diffusion coefficientDd only by
2% or less in our case of interest.

C. Heat conductivity

Evaluation of the heat-conduction and shear-viscosity co-
efficients requires similar methodology to that utilized for
the diffusivity. While these coefficients have been obtained
in the past for a one component Fermi system[7], it can be
still important to find them for the two-component system.

If we assumeaisp2d=ai in Eq. (34b), then, interestingly,
we find that the momentum constraint(47a) is automatically
satisfied. To obtain the values forai, we multiply Eq.(33) on
both sides byA1 and integrate over momenta and we multi-
ply the equation analogous to Eq.(33) by A2 and also inte-
grate over momenta. As a consequence, we get a set of equa-
tions for ai of the form

Lj = A j1 a1 + A j2 a2, j = 1, 2, s56d

whereA ji are coefficients independent ofa,

Aii =
1

ai
2 sfA, Agii + fA i, A ig12d,

s57d

A12 = A21 =
1

a1 a2
fA1, A2g12,

cf. Appendix E, and

Lj =
1

mj T
S7 nj Ej

2 −
25

3
nj sEjd2D , s58d

where Ej
2 and sEjd2 are, respectively, the average local

square kinetic energy of speciesj and square average local
kinetic energy of the species.

The solution to set(56) is
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a1 = sA22 L1 − A12 L2d/DA,
s59d

a2 = sA11 L2 − A12 L1d/DA,

where the determinant is

DA = A11 A22 − A12
2 . s60d

The brace producthA, Aj for use in calculating the heat-
conduction coefficientk in Eq. s44d is

hA, Aj = a1 L1 + a2 L2. s61d

The producthC, Aj in Eq. s44d can be calculated given the
values ofa andc, andhC, Cj was already obtained before.

D. Shear viscosity

Evaluation of the shear-viscosity coefficienth follows
similar steps to those involved in the evaluation ofk. Thus,
we assumebisp2d=bi in Eq. (34c). To find the coefficient

values, we convolute both sides of Eq.(32) with p p%̊ and
integrate over the momenta and we do the same with the

other constraint equation forB%. The lhs integrations produce

1

mi T
E d3p

s2p "d3p p%̊:p p%̊ f i
s0d f̃ i

s0d

=
2

3 mi T
E d3p

s2p "d3 p4 f i
s0d f̃ i

s0d =
20

3
ri Ei . s62d

With the above, we get the set of equations forbi,

20

3
r j Ej = B j1 b1 + B j2 b2, j = 1, 2, s63d

where the coefficientsB are given by

Bii = fp p%̊, p p%̊gii + fsp p%̊di, sp p%̊dig12,
s64d

B12 = B21 = fsp p%̊d1, sp p%̊d2g12.

Solving the set forb, we find

b1 =
20

3DB
sr1 E1 B22 − r2 E2 B12d, s65d

b2 =
20

3DB
sr2 E2 B11 − r1 E1 B12d,

where the determinant is

DB = B11 B22 − B12
2 . s66d

The brace product for calculating the shear-viscosity co-

efficient h=T/10hB%, B%j becomes

hB%, B%j =
20

3
sb1 r1 E1 + b2 r2 E2d. s67d

V. QUANTITATIVE RESULTS

A. Transport coefficients

We next calculate the transport coefficients as a function
of density and temperature, using experimentally measured
nucleon-nucleon cross sections. The cross sections may be
altered in matter, compared to free space, but the modifica-
tions are presumably more important at low than at the high
momentum transfers important for the transport coefficients.
With regard to the diffusivity, we first ignore any mean-field
contribution to the chemical potential difference between
species. This yields a reference diffusivity to which the dif-
fusivity affected by mean fields may be compared.

The diffusivity for the experimental cross sections and no
interaction contributions to the symmetry energy is shown at
d=0 and different densitiesn in Fig. 1, as a function of
temperatureT. At low temperatures, the diffusivity diverges
due to a suppression of collisions by the Pauli principle. At
high temperatures, compared to the Fermi energy, the role of
the Pauli principle is diminished and the diffusivity acquires
a characteristicÎT dependence. At moderate temperatures
and densities in the vicinity and above normal, the diffusion
coefficient turns out to be in the vicinity of our original es-
timate ofDI,0.2 fm c.

It should be mentioned that, for symmetric matter, the
factors for temperature and pressure gradients in the thermo-
dynamic forced12 (28) vanish, PP=0 and PT=0, and the
brace product in Eq.(40) vanishes,hA, Cj=0, yielding kT
=0 in Eq. (38). As physically required, the temperature and
pressure gradients produce no relative motion of neutrons
and protons for the symmetric matter.

The diffusivity at normal density at different asymmetries
is next shown in Fig. 2 as a function of temperature. Because
of charge symmetry, the diffusivity does not depend on the
sign of d. At low temperatures the diffusivity is generally
expected to behave as

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

D
I
(f
m

c)

T (MeV)

0.1 n0
0.5 n0
1.0 n0
2.0 n0
3.0 n0
4.0 n0

FIG. 1. Isospin diffusion coefficientDI in symmetric matter, for
Ui=0, at different indicated densities, as a function of the tempera-
ture T. In the high-temperature limit, the diffusion coefficient ex-
hibits the behaviorDI~ÎT/n. Correspondingly, at high temperatures
in the figure, the largest coefficient values are obtained for the low-
est densities and the lowest coefficient values are obtained for the
highest densities. In the low-temperature limit, the diffusion coeffi-
cient exhibits the behaviorDI~n3/2/T2 and the order of the results in
density reverses.
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DI ~
"3 pF

2

m3 T2 s
, s68d

while at high temperatures in the manner prescribed by
Eq. s53d. With the respective behaviors serving as a guid-
ance, we provide a parametrization of our numerical re-
sults for Dd as a function ofn, T, andd,

DI = s1 − 0.19d2dF11.34

T2.38 S n

n0
D1.54

+
1.746

T
S n

n0
D0.56

+ 0.005 85T0.913Sn0

n
DG . s69d

Here, the temperatureT is in MeV and the diffusivityDI is
in fm c. The parametrization describes the numerical re-
sults to an accuracy better than 4% within the region of
thermodynamic parameters of 1.0øn/n0ø4.0, 10 MeV
øTø100 MeV anduduø0.4.This is, generally, the param-
eter region of interest in intermediate-energy reactions
f20g.

The heat conductivity is shown for symmetric matter at
different densities in Fig. 3, as a function of temperature. The
results are similar to those in Ref.[7], though there the two-
component nature of nuclear matter was ignored and the
isospin-averaged nucleon-nucleon cross sections have been
used. A closer examination of results in Secs. IV C and IV D
indicates that the use of the isospin-averaged cross sections
is, actually, justified for symmetric matter, when calculating
the heat-conduction and shear-viscosity coefficients. Other-
wise, however, Fig. 3 has been based on a more complete set
of cross sections than results in Ref.[7]. As in the case of
diffusivity, the heat conductivity diverges at low tempera-
tures and tends to a classical behavior at high temperatures,
exhibiting there no density dependence and being propor-
tional to velocity,k~ÎT. As in the case of diffusivity, we
next provide a parametrization of our numerical results for
the heat conductivityk as a function ofn, T, andd,

k = s1 + 0.10d2dF0.235

T0.755 S n

n0
D0.951

− 0.0582S n

n0
D0.0816

+ 0.0238T0.5627S n

n0
D0.0171G . s70d

Here,T is again in MeV andk is in c/fm2. The parametri-
zation agrees with the numerical results to an accuracy
better than 4% within the range of thermodynamic param-
eters indicated in the case ofDI.

The shear-viscosity coefficienth is shown for symmetric
matter at different densities, as a function of temperature, in
Fig. 4. Again, the results are similar to those in Ref.[7]. At
high temperatures, the dependence on density weakens and
the viscosity becomes proportional to velocity. The numeri-
cal results forh are well described, to an accuracy better than
4% within the before-mentioned range, by

FIG. 2. Isospin diffusion coefficientDI at normal densityn=n0

=0.16 fm−3 and different indicated asymmetriesd, for Ui=0, as a
function of the temperatureT. An increase in the asymmetry gen-
erally causes a decrease in the coefficient, as discussed in the text.

FIG. 3. Thermal conductivityk in symmetric nuclear matter, at
different indicated densities in units ofn0, as a function of tempera-
ture T. The conductivity increases as density increases.

FIG. 4. Shear viscosityh in symmetric nuclear matter, at differ-
ent indicated densities in units ofn0, as a function of temperatureT.
The viscosity increases as density increases.
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h = s1 + 0.10d2dF 856

T1.10 S n

n0
D1.81

−
240.9

T0.95 S n

n0
D2.12

+ 2.154T0.76G . s71d

Here,h is in MeV/fm2 c and T is in MeV.
We note in Eqs.(69)–(71), that the diffusion coefficient

weakly drops with increasing magnitude of asymmetryudu,
while the viscosity and heat-conduction coefficients weakly
increase. Given the weaknesses of the dependencies, the be-
haviors exhibited in parametrizations represent, in practice,
averages over the considered independent-parameter regions.
Overall, the drop and rise in the respective coefficients with
udu is characteristic for a situation where the local flux of a
component grows faster than the concentration of that com-
ponent. That type of growth, with the magnitude of asymme-
try, typifies a mixture of degenerate fermion gases. The gen-
eral trends can be deduced following the mean-free-path
arguments from Sec. II. When the average velocity rises with
asymmetry, so do the heat-conduction and shear-viscosity
coefficients. Additional rise for those coefficients, in the case
at hand, can result from the Pauli principle effects and from
the difference between cross sections for like and unlike par-
ticles. Regarding the diffusion coefficient, though, one needs
to consider an irreversible part of relative particle flux, under
the condition of the concentration varying with position. If,
starting with a given configuration of concentration gradi-
ents, one introduces uniform changes of concentration on
top, not just the overall relative flux undergoes change but
also the reversible flux of concentration gets altered. The rise
in the relative flux associated with the velocity of a dominant
component rising with concentration is normally more than
compensated by the rise in reversible flux, leading to a re-
duction in the irreversible flux and producing a reduction in
diffusivity with particle asymmetry. A mean-field example
where the reversible flux eats into the net flux reducing the
diffusivity with increasing asymmetry is the estimate in Eq.
(10), obtained there without invoking the particle Fermi sta-
tistics.

As is found in Secs. III C and IV B, the dependence of
mean fields on species enters the diffusivity through the fac-
tor Pd resulting from the variable change in thermodynamic
driving force, from the difference of chemical potentials per
mass to asymmetry. The simplest case where one can con-
sider the impact of the mean fields is that of the symmetric
nuclear matter, atd=0. In this case, the factor may be repre-
sented as

Pd =
1

m
Sn

j
+ 4aI

vD , s72d

where ji =]ni/]mi ;j scf. Appendix Cd. At high tempera-
tures, we have approximatelyji <ni/T, so thatn/j<2T.
The naive expectation is thataI

v has a linear dependence
on the net density,aI

v=aI
v0sn/n0dn, whereaI

v0=14 MeV and
n=1. The mean-field amplification factor R
=PdsaI

vd/Pdsai
v=0d for the diffusion coefficient, assuming

the linear and also quadratic density dependence ofaI
vsn

=1 and 2d is shown in Fig. 5. The quadratic dependence
gives higher amplification factors atn.n0, than the linear
dependence, while the opposite is true atn,n0. At low
temperatures and moderate to high densities the amplifi-
cation is very strong suggesting that the diffusion could be
used to probe the symmetry energy, aside from the in-
medium neutron-proton cross sections.

B. Testing the form-factor expansion

The calculations of transport coefficients above have been
done assuming that the functionsai, bi, andci in Eqs. (34)
can be approximated by constants. In the more general case,
the functions can be expanded in the series inp2, e.g.,

cisp2d = ci
s1d + ci

s2d p2 + ci
s3d p4 + ¯ . s73d

The coefficients of the expansion can be found by consid-
ering moments of the form-factor equationss31d–s33d.
With the more general form of the form-factor functions,
the transport coefficients generally increase, but their rise
is generally very limited.

To illustrate the magnitude of higher-order effects, we
provide in Table I results for the diffusivity obtained in the
standard first-order and in the higher-order calculations at
sample densities and temperatures. In the indicated cases, the
second-order calculations never increase the diffusion coef-
ficient by more than 3% above the first-order calculations.
The efficiency of our Monte Carlo procedure employed to
evaluate the integrals for coefficients worsens as the order of
our calculations increases and, correspondingly, we provide
only a single third-order result for illustration.

C. Isospin equilibration

To test the sensibility of the results on diffusivity and to
gain an elementary insight into the process of isospin equili-

0 20 40 60 80 100

1

2

3

4

Linear
Quadratic

n = 2n0

n = n0
n = 2n0

R

T (MeV)

FIG. 5. Mean-field enhancement factor of the diffusion coeffi-
cient in symmetric nuclear matter,R;DIsUid/DIsUi=0d, at a fixed
density n, as a function of temperatureT. The solid and dashed
lines, respectively, represent the factors for the assumed linear and
quadratic dependence of the interaction symmetry energy on den-
sity. The lines from top to bottom are for densitiesn
=2 n0, n0, 0.5n0, and 0.1n0, respectively. At normal density the
results for the two dependencies coincide.
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bration in a reaction, we carry out a schematic consideration
of the equilibration. For definiteness, and to ensure a level of
applicability for our consideration, we take the case of a
96Ra+96Zr reaction atElab/A=100 MeV. Densities in the cen-
tral region of the reaction are not far from normal. Following
the degenerate Fermi-gas limit, the temperature in the central
region can be estimated withT,ÎElab/s2ad,20 MeV using
a<A/s8 MeVd; deviations from the degenerate limit yield a
bit higher value. Under those conditions, basing on Figs. 1
and 5, we estimate the streaming contribution to the diffusiv-
ity in the central region at 0.21 fmc and the mean-field con-
tribution at 0.20 fmc, for a netDI<0.41 fmc.

Considering the direction perpendicular to the plane of
contact between the nuclei, with nuclei extending a distance
L,sA/n0d1/3,8 fm both ways from the interface, we may
use the one-dimensional diffusion equation to estimate the
isospin equilibration

] d

] t
= DI

]2d

] x2 , s74d

wherex is the direction perpendicular to the interface, cf.
Eq. s7d. With isospin flux vanishing at the boundaries of
the regionf−L, Lg, the solution to Eq.s74d is

dsx, td = d` + o
n=1

`

an sin kn x exps− DI kn
2 td

+ o
n=1

`

bn cosqn x exps− DI qn
2 td, s75d

where kn L= sn− 1
2

d p and qn L=n p. The coefficientsan
andbn are determined by the initial conditions and, in the
case in question,bn=0.

The different terms in expansion(75) correspond to the
different levels of detail in the distribution of concentration,
as characterized by the different wave vectors. We see that
the greater the detail the faster the information is erased, with
the erasure rates proportional to wave vectors squared. The

overall distribution tends towardsd` ast→`. The late-stage
approach to equilibrium is governed by the rate for the term
with the lowest wavevector, i.e.,a1. Defining the isospin
equilibration timetH as one for which the original isospin
asymmetry between the nuclei is reduced by half, we get
from Eq. (75) an estimate for the reaction

tH <
ln 2

DI k1
2 =

4 ln 2 L2

p2 DI
, 44 fm c, s76d

for the case above. When we carry out the full respective
Boltzmann-equation simulations of the 100MeV/nucleon
96Ru+96Zr reactions, at the impact parameter ofb=5 fm
*L/2 sto ensure a neck comparable to that in the consid-
erationd, we find that, indeed, the nuclei need to be in
contact for about 40 fmc for the isospin asymmetry to
drop to the half of original value.

VI. SUMMARY

Diffusion and other irreversible transport phenomena
have been discussed for a binary Fermi system close to equi-
librium. For weak nonuniformities, the irreversible fluxes are
linear in the uniformities, with the characteristic transport
proportionality coefficients dependent only on the equilib-
rium system. It is hoped that, in an analogy to how the
nuclear equation of state and symmetry energy are em-
ployed, the coefficient of diffusion can be employed to char-
acterize reacting nuclear systems with respect to isospin
transport.

Following a qualitative discussion of the irreversible
transport in the paper, the set of coupled Boltzmann-
Uhlenbeck-Uehling equations was considered for a binary
system, assuming slow macroscopic temporal and spatial
changes. The slow changes allow to solve the equation set by
iteration, with the lowest-order solution being the local equi-
librium distributions. In the next order, corrections to those
distributions were obtained, linear in the thermodynamic
driving forces associated with the system nonuniformities.
These corrections produce irreversible fluxes linear in the
forces. The transport coefficients have been formally ex-
pressed in terms of brace products of the responses of distri-
bution functions to the driving forces. The considered coef-
ficients include diffusivity, conductivity, heat conduction,
and shear viscosity.

The set of the linearized Boltzmann equations was, fur-
ther, explicitly solved under the assumption of simplified
distribution-function responses to the thermodynamic driving
forces. The solutions to the equations led to explicit expres-
sions for the transport coefficients, with the diffusivity given
in terms of the collision integral for collisions between the
two species weighted by the momentum transfer squared.
Besides associated sensitivity to the cross section for colli-
sions between the species, the diffusivity is also sensitive to
the dependence of mean fields on the species. The collisions
between the speciesare those that inhibit the relative motion
of the species; the difference between mean fields affects the
relative acceleration and, in combination with the collisions,
the stationary diffusive flux that is established.

TABLE I. Diffusion coefficientDI obtained within different or-
ders of calculation, using experimentalnp cross sections, at sample
densitiesn and temperaturesT in symmetric nuclear matter, for
species-independent mean fields. The numerical errors of the results
on DI are indicated in parentheses for the least-significant digits.
The last column, gives, the relative change in the result for the
highest calculated order compared to the first order and the error for
that change, separated by the “±” sign.

n T DI Relative
First order Second order Third order change

sfm−3d (MeV) sfm cd s%d
0.016 10 0.29949(15) 0.3055(12) 2.0±0.4
0.016 60 2.3891(18) 2.390(14) 0.0±0.6
0.16 10 0.27964(21) 0.2800(29) 0.2809(25) 0.5±0.9
0.16 60 0.29591(24) 0.2965(19) 0.2±0.7
0.32 10 0.4446(15) 0.4465(26) 0.4±0.7
0.32 60 0.18187(15) 0.1827(13) 0.5±0.7
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We calculated the isospin diffusivity for nuclear matter,
using experimental nucleon-nucleon cross sections for
species-independent mean fields. At low temperatures and
high densities, the diffusivity diverges due a suppression of
collisions by the Pauli principle. At high temperatures, the
diffusivity is roughly proportional to the average velocity
and is inversely proportional to the density. The diffusivity
weakly decreases with an increase in the absolute magnitude
of asymmetry. We provided an analytic fit to our numerical
results. For completeness, we also calculated the heat-
conduction and shear-viscosity coefficients and provided fits
to those. Moreover, we calculated the diffuseness mean-field
enhancement factor for symmetric matter, assuming a couple
of dependencies of the symmetry energy on density. At low
temperatures, the enhancement factor is simply proportional
to the net symmetry energy divided by the kinetic symmetry
energy. Considering the expansion of the form factors in
distribution-function responses, we demonstrated that correc-
tions to the Boltzmann-equation transport coefficients, be-
yond the approximations we employed, are small. Finally,
we produced an elementary estimate for isospin equilibration
in a low impact-parameter collision.
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APPENDIX A: MACROSCOPIC QUANTITIES
We shall consider different types of macroscopic quanti-

ties, either net or for separate components, either in the gen-
eral frame of observation or in a local frame. For a single
componenti in the observation frame, the densityni, mean
velocity vi, mean kinetic energyei, momentum flux tensorp%i,
and kinetic energy fluxqi are given in terms of the distribu-
tion fi, respectively, as

nisr , td =
g

s2p"d3 E d3p fisp, r , td, sA1ad

ni vi =
g

s2p"d3 E d3p
p

mi
fisp, r , td, sA1bd

ni ei =
g

s2p"d3 E d3p
p2

2mi
fisp, r , td, sA1cd

p%i =
g

s2p"d3 E d3p
p p%

mi
fisp, r , td, sA1dd

qi =
g

s2p"d3 E d3p
p2

2mi

p

mi
fisp, r , td. sA1ed

The net quantities result from combining the component con-
tributions. Thus, the net density isn=n1+n2, the net mass
density isr=r1+r2=m1 n1+m2 n2, while the net velocityv is

obtained fromr v=r1 v1+r2 v2. The kinetic energye aver-
aged over all particles is given byn e=n1 e1+n2 e2, the net
momentum flux isp%=p%1+p%2, and the net kinetic energy flux
is q=q1+q2.

Local quantities are those calculated with momenta trans-
formed to the local mass frame, i.e., following the substitu-
tion p→p−mi v. To distinguish local quantities from those in
the observation frame, when the frame matters, the local
quantities will be capitalized. The local momentum flux ten-

sor P% is the kinetic pressure tensor and the local kinetic en-
ergy flux Q is the heat flux.

APPENDIX B: CONTINUITY EQUATIONS
The collisions in the Boltzmann equation set(13) con-

serve the quasiparticle momentum and energy and the spe-
cies identity. This leads to local conservation laws for the
corresponding macroscopic quantities.

Let xjspd represent one of the quasiparticle quantities con-
served in collisions,xjspd=dij , p, or p2/2mj. For those quan-
tities, the integration with collision integrals produces

o
j
E d3p x j Jj = 0. sB1d

As a consequence, from the Boltzmann equation set, we
obtain

o
j
E d3p

s2p"d3 x j S ] f j

] t
+

p

mj
·
] f j

] r
+ F j ·

] f j

] p D = 0.

sB2d

After a partial integration, we get from the above

]

] t
snxd +

]

] r
·Sn

p

m
xD − n F ·

] x

] p
= 0, sB3d

where the averages are defined with

n x = o
j
E d3p

s2p"d3 x j f jsp, r , td. sB4d

Substituting for x j the conserved quantitiesfx jspd
=di j , p, or p2/2mjg, we get the respective continuity
equations:

] ni

] t
+

]

] r
· sni vid = 0, sB5ad

]

] t
sr vd +

]

] r
· p% − n1 F1 − n2 F2 = 0, sB5bd

]

] t
sn ed +

]

] r
·q − n1 v1 ·F1 − n2 v2 ·F2 = 0. sB5cd

Here, we made yet no use of the local frame.
The local frame is useful when one wants to make use of

the assumption of local equilibrium that imposes restrictions
on local quantities. On representing the average velocities as
vi=V i+v in the equations above, we obtain the following set:
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] ni

] t
+

]

] r
· sni vd +

]

] r
· sni V id = 0, sB6ad

] r

] t
+

]

] r
· sr vd = 0, sB6bd

]

] t
srvd +

]

] r
· sr v vd% +

]

] r
· P% − n1 F1 − n2 F2 = 0,

sB6cd

]

] t
sn Ed +

]

] r
· sn E vd + P%:

]

] r
v +

]

] r
·Q − n1 V1 F1

− n2 V2 F2 = 0. sB6dd

The equation for mass density in the set above follows from
combining the equations for particle densities.

The above equations significantly simplify when the as-
sumption of a strict local equilibrium is imposed. Under that
assumption, the local species’ velocities and the heat flow
vanish,V i=0 andQ=0, and the kinetic pressure tensor be-

comes diagonal,P%= 2
3 n E 1%. The equations reduce then to the

Euler set

] ni

] t
+

]

] r
· sni vd = 0, sB7ad

]

] t
srvd +

]

] r
· sr v v%d +

2

3

] sn Ed
] r

− n1 F1 − n2 F2 = 0,

sB7bd

]

] t
sn Ed + v ·

]

] r
sn Ed +

5

3
n E

]

] r
·v = 0. sB7cd

APPENDIX C: SPACE-TIME DERIVATIVES FOR AN
IDEAL FLUID

In an ideal fluid, all local quantities can be expressed in
terms of the local temperatureT and the local kinetic chemi-
cal potentialmi. If we consider changes of the densitiesni or
of the local kinetic energiesEi with respect to a parameterx
representing some spatial coordinate or time, or their combi-
nation, we find

] ni

] x
= ji T

] ai

] x
+

3

2
ni

] b

] x
,

sC1d
] sni Eid

] x
=

3

2
ni T

] ai

] x
+

5

2
ni Ei

] b

] x
,

whereai =mi/T, b=ln T, andji =s]ni/]midT. With the trace
derivative defined as

d

dt
=

]

] t
+ v ·

]

] r
,

a particular version of the above relations is

dni

dt
= ji T

dai

dt
+

3

2
ni

db

dt
,

sC2d

dsni Eid
dt

=
3

2
ni T

dai

dt
+

5

2
ni Ei

db

dt
.

A combination of the above trace-derivative relations with
the Euler equations from Appendix B yields the following
simple results:

dai

dt
= 0, sC3ad

db

dt
= −

2

3

]

] r
·v, sC3bd

the consistency of which with Eqs.(C2) and (B7) is easy to
verify. The results(C3) express basic features of the isentro-
pic ideal-fluid evolution of a mixture. The entropy per par-
ticle in speciesi depends only onai, while the ratio of the
densities of speciesn1/n2 depends both ona1 and a2. The
conservation ofai for both species is equivalent to the con-
servation of entropy per particle and of relative concentra-
tion. Finally, the density for speciesi is proportional toT3/2

multiplying a function ofai, which is equivalent to the sec-
ond of the results above, given the continuity equation for
species and the conservation ofai.

APPENDIX D: VARIABLE TRANSFORMATION
The driving forces for diffusion are naturally expressed in

terms of the gradients of temperature and of chemical poten-
tial difference per unit massm12

t . However, given the typical
constraints on systems, it can be convenient to express the
chemical potential in terms of other quantities that are easier
to assess or control, such as the differential concentrationd,
temperatureT, and net pressurePt. A transformation of the
variables for the driving forces has been employed, at a for-
mal level, in Sec. III C. Here, we show, though, how the
transformation can be done in practice for the interaction
energy per particle specified in terms of the particle densityn
and concentrationd, Ev=Evsn, dd. With the nuclear applica-
tion in mind, we limit ourselves to the case ofm1=m2=m.

The transformation can exploit straightforward relations
between different differentials. One of those to exploit is the
Gibbs-Duhem relation

dPt = n1 dm1
t + n2 dm2

t + n s dT

= n dmt +
mnd

2
dm12

t + n s dT. sD1d

Here,s is the entropy per particle andmt=sm1
t +m2

t d/2 is the
median chemical potential. Two other relations stem from
the differentiations of equilibrium particle distributions,
already utilized in Appendix C,
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dni = ji dmi +
3
2ni − ji mi

T
dT; ji dmi + S ] ni

] T
D

mi

dT.

sD2d

With mi
v=]sn Evd/]ni, on adding and subtracting the two

si =1, 2d relations side by side, we find

dn= sj1 + j2dFdmt − S ] mv

] n
D

d

dn− S ] mv

] d
D

n

ddG
+

m

2
sj1 − j2dFdm12

t − S ] m12
v

] n
D

d

dn− S ] m12
v

] d
D

n

ddG
+ FS ] n1

] T
D

m1

+ S ] n2

] T
D

m2

G dT sD3d

and

d dn+ n dd = sj1 − j2dFdmt − S ] mv

] n
D

d

dn− S ] mv

] d
D

n

ddG
+

m

2
sj1 + j2dFdm12

t − S ] m12
v

] n
D

d

dn

− S ] m12
v

] d
D

n

ddG + FS ] n1

] T
D

m1

− S ] n2

] T
D

m2

G dT.

sD4d

Those two equations have the structure

Gkn dn= Gkm dmt + Gkd dm12
t + Gkd dd + GkT dT,

sD5d

wherek=1, 2 and where the coefficientsG can be worked
out from Eqs.sD3d and sD4d. On multiplying the sides of
the first sk=1d equation byG2n and the sides of the second
sk=2d equation byG1n and on subtracting the equations
side by side, we can eliminate thedn differential obtaining

0 = sG2n G1m − G1n G2md dmt + sG2n G1d − G1n G2dd dm12
t

+ sG2n G1d − G1n G2dd dd + sG2n G1T − G1n G2Td dT

; Rm dmt + Rd dm12
t + Rd dd + RT dT. sD6d

On eliminating next thedmt differential using the Gibbs-
Duhem relation, we find

P12
P = S ] m12

t

] Pt D
T,d

=
Rm

n SRm

md

2
− RdD , sD7ad

P12
T = S ] m12

t

] T
D

Pt,d

=
Rm s− RT

Rd − Rm

md

2

, sD7bd

P12
d = S ] m12

t

] d
D

Pt,T

=
Rd

Rm

md

2
− Rd

. sD7cd

APPENDIX E: BRACE ALGEBRA
The brace products are employed in finding the transport

coefficients within linear approximation to the Boltzmann
equation. The brace product of two scalar quantitiesA andB
associated with the colliding particles is defined as

hA, Bj =E d3p

s2pd3 A1 I11sBd +E d3p

s2pd3 A1 I12sBd

+E d3p

s2pd3 A2 I21sBd +E d3p

s2pd3 A2 I22sBd

= fA, Bg11 + fA, Bg12 + fA, Bg22, sE1d

where, in the last step, we have broken the brace product
into square-bracket products representing contributions
from collisions within species 1, from collisions between
species 1 and 2 and from collisions within species 2, re-
spectively.

We will first show that the square-bracket product is sym-
metric. Thus, we have explicitly

fA, Bgii =
1

2
E d3pa

s2pd3

d3pb

s2pd3 dV vp Sdsii

dV
D f ia

s0d f ib
s0d f̃ ia

s0d8 f̃ ib
s0d8

3 Aia sBia + Bib − Bia8 − Bib8 d

=
1

8
E d3pa

s2pd3

d3pb

s2pd3 dV vp Sdsii

dV
D f ia

s0d f ib
s0d f̃ ia

s0d8 f̃ ib
s0d8

3 sAia + Aib − Aia8 − Aib8 d

3sBia + Bib − Bia8 − Bib8 d, sE2d

where, to get the last result, we have first utilized an in-
terchange of the particles in the initial state of a collision
and then an interchange of the initial and final states
within a collision. It is apparent that the rhs of Eq.sE2d is
symmetric under the interchange ofA and B. Moreover,
we can see that a square bracket forB=A, fA, Agii , is non-
negative and that it vanishes only whenA is conserved in
collisions.

We next consider the contribution from collisions between
different species,

fA, Bg12 =E d3p1

s2pd3

d3p2

s2pd3 dV vp Sds12

dV
D f1

s0d f2
s0d f̃1

s0d8 f̃2
s0d8

3 sA1 + A2d sB1 + B2 − B18 − B28d

=
1

2
E d3p1

s2pd3

d3p2

s2pd3 dV vp Sds12

dV
D f1

s0d f2
s0d f̃1

s0d8 f̃2
s0d8

3 sA1 + A2 − A18 − A28d sB1 + B2 − B18 − B28d. sE3d

Here, we again utilized an interchange between the initial
and final states and we again observe a symmetry between
A and B on the rhs. Thus, indeed, all square brackets are
symmetric. Moreover, forB=A, we see thatfA, Ag12ù0
and that the zero is only reached ifA is conserved.

Combining the results, we find that the brace product(E1)
is symmetric. Moreover, we find that the brace product of
quantityA with itself is nonnegative,hA, Ajù0, and vanishes
only whenA is conserved. As the brace product has features
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of a pseudoscalar product, a version of the Cauchy-Schwarz-
Buniakowsky(CSB) inequality [21] holds,

hA, AjhB, Bj ù shA, Bjd2. sE4d

All the results from this appendix remain valid, in an ob-
vious manner, when the brace productsE1d is generalized

to the pairs of tensors of the same rank associated with the
particles, when requiring that the tensor indices are con-
voluted between the two tensors in the brace, as, e.g., in
Eq. s36d. The positive definite nature of the brace product
is important in ensuring that expressions for transport co-
efficients, obtained in the paper, yield positive values for
the coefficients that in this case represent a stable system.

[1] J. M. Lattimer and M. Prakash, Astrophys. J.550, 426(2001).
[2] F. Ramiet al., Phys. Rev. Lett.84, 1120(2000).
[3] G. F. Bertsch and S. Das Gupta, Phys. Rep.160, 189 (1988).
[4] J. Aichelin, Phys. Rep.202, 233 (1991).
[5] S. Tomonaga, Z. Phys.110, 573 (1938).
[6] V. M. Galitskii et al., Yad. Fiz. 30, 778 (1979) [Sov. J. Nucl.

Phys. 30, 401 (1979)].
[7] P. Danielewicz, Phys. Lett.146B, 168 (1984).
[8] R. Hakim, L. Mornas, P. Peter, and H. D. Sivak, Phys. Rev. D

46, 4603(1992).
[9] R. Hakim and L. Mornas, Phys. Rev. C47, 2846(1993).

[10] P. Danielewicz, Acta Phys. Pol. B33, 45 (2002).
[11] S. Chapman and T. G. Cowling,The Mathematical Theory of

Non-Uniform Gases(Cambridge, New York, 1964).
[12] E. A. Uehling and G. E. Uhlenbeck, Phys. Rev.43, 552

(1933).
[13] E. A. Uehling, Phys. Rev.46, 917 (1934).

[14] E. J. Hellund and E. A. Uehling, Phys. Rev.56, 818 (1939).
[15] R. L. Liboff, Kinetic Theory, Classical, Quantum, and Relativ-

istic Descriptions(Prentice Hall, Englewood Cliffs, New Jer-
sey, 1990).

[16] L. D. Landau and E. M. Lifshitz,Fluid Mechanics, Course of
Theoretical PhysicsVol. 6 (Addison-Wesley, Reading, 1959).

[17] S. R. De Groot and P. Mazur,Non-Equilibrium Thermodynam-
ics (North-Holland, Amsterdam, 1962).

[18] G. Baym and C. Pethick,Landau Fermi-Liquid Theory(Wiley,
New York, 1991).

[19] V. Greco, M. Colonna, M. Di Toro, and F. Matera, Phys. Rev.
C 67, 015203(2003).

[20] S. J. Yennelloet al., Phys. Lett. B321, 15 (1994); H. Johnston
et al., ibid. 371, 186 (1996); H. Johnstonet al., Phys. Rev. C
56, 1972(1997).

[21] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series,
and Products(Academic, New York, 1979).

NUCLEAR ISOSPIN DIFFUSIVITY PHYSICAL REVIEW C68, 064604(2003)

064604-17


