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Recent analysis of multifragmentation data in terms of Fisher’s droplet model has led to the extraction of the
nuclear liquid-vapor phase diagram. A similar analysis of Coniglio-Klein clusters of thed=3 Ising model
shows an equivalently good Fisher’s scaling which can be used to obtain the Ising phase diagram, thus
supporting the claim of the nuclear multifragmentation analysis in terms of a phase transition.
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Nuclear multifragmentation is a process occurring at the
limits of nuclear excitation, and, as such, portrays a deep
richness and complexity. While the fundamental problem of
dynamics vs statistics is still debated, it appears ever more
clearly that many thermal/statistical features underlie the em-
pirical body of data. In particular, two features associated
with the fragment multiplicities are found to be quite perva-
sive in all multifragmentation reactions. They have been
named “reducibility” and “thermal scaling”[1–4].

Reducibility is the property that the probability of observ-
ing n fragments of a given size is expressible in terms of an
elementary one-fragment probability. This property indicates
that the fragments are created independently from one an-
other. Both binomial, and its limiting form, Poissonian re-
ducibilities have been extensively documented experimen-
tally for nuclear multifragmentation[1–4].

Thermal scaling is the linear dependence of the logarithm
of the one-fragment probability with 1/T, most directly ob-
served in an Arrhenius plot. It indicates that the emission
probability for a fragment of typei has a Boltzmann depen-
dence

pi = p0e
−Bi/T, s1d

where Bi is a “barrier” corresponding to the production
process.

The combination of these two empirical features power-
fully attests to a statistical mechanism of multifragmentation
in general, and to liquid-vapor coexistence specifically[4].

Both features are found in the Fisher’s droplet model
[5–8] which describes the vapor clusterization in equilibrium
with its liquid. An analysis in terms of Fisher’s droplet model
has been performed recently on several sets of nuclear mul-
tifragmentation data[4,9,10]. A remarkable agreement with
this model has been observed, and the corresponding liquid-
vapor phase diagram has been extracted[9,10]. These con-
clusions are still the subject of some debate[11] and the
work presented in this paper continues that debate.

Many statistical models have been proposed as an expla-
nation for multifragmentation. It is our intention to identify a
model which, while as simple as possible, still captures the
essential features observed in the experiments. Percolation in
its many varieties has been widely used[12–15]. However,
while being simple, it does not lend itself to a nontrivial
thermal study[16]. The three-dimensional Ising model satis-
fies both the criteria of simplicity in its Hamiltonian and
lends itself to a thermal treatment with nontrivial results.

While the Ising model has been widely studied in terms of
its continuous phase transition[17–26] and, in the guise of
the lattice gas, has even been used to study nuclear systems
[27–37], the problem of clusterization has received relatively
little attention.

We will show that this model contains both the features of
reducibility and thermal scaling observed in nuclear multi-
fragmentation. In showing the features of thermal scaling we
will demonstrate that for temperatures below the critical tem-
perature, the slopes of the Arrhenius plots associated with the
individual sizes of the clusters, or the barriers, portray a de-
pendence on the cluster sizeA of the formB~As, wheres is
a critical exponent which relates the size to the cluster sur-
face. In addition, the individual Arrhenius plots for each
cluster size can be absorbed into a single scaling function
identical to that of Fisher’s droplet model[5–8], which de-
fines the liquid-vapor coexistence line up to the critical tem-
perature.

The Hamiltonian of the Ising model has two terms: the
interaction between nearest-neighborsnnd spins in a fixed
lattice and the interaction between the fixed spins and an
external applied fieldHext:

H = − J o
i,j=hnnj

sisj − Hexto
i

si , s2d

whereJ is the strength of the spin-spin interaction. In the
absence of an external magnetic field, the system exhibits
a first-order phase transition for temperatures up to the
critical point at which it exhibits a continuous phase tran-
sition. The critical temperature for the three-dimensional
Ising model has not been determined analytically; how-*Present address: Marietta College, Marietta, OH 45750.
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ever, high temperature expansion techniques have yielded
a value ofTc=4.511 52±0.000 04J/kB f38g.

The zero-field Ising model is isomorphous with the lattice
gas model[39,40]. The positive spins are mapped to unoc-
cupied sites in a lattice gas and the negative spins are
mapped to occupied sites. The phase transition is then analo-
gous to a liquid-vapor phase transition. If a correspondence
is observed between features of the Ising model and nuclear
multifragmentation, it could strengthen the case for nuclear
multifragmentation being the signature for a liquid-gas phase
transition of excited nuclei.

In the present study, the calculations were performed via a
code using standard Monte Carlo techniques[41]. For each
lattice configuration, a random initial configuration of spins
and a temperature were selected. Thermalization was reached
via the Swendsen-Wang cluster spin-flip algorithm[23] us-
ing the Hoshen-Kopelman algorithm for cluster identifica-
tion. After the system was thermalized, “geometric” clusters,
i.e., nearest-neighbor-like spins, were identified(also using
the Hoshen-Kopelman algorithm) and then the Coniglio-
Klein algorithm [19] was used to break the geometric clus-
ters into “physical” clusters. The code was tested against the
published results both in Ref.[41] and in other literature.
Since we are interested in studying liquid-vapor coexistence,
all calculations are performed at zero external fieldsHext

=0d. The lattice contains 503 spins, and periodic boundary
conditions are used to minimize finite size effects. The use of
the Swendsen-Wang algorithm and Coniglio-Klein clusters
gives us hope that the clusters analyzed in this work are most
closely related to the physical clusters observed in fluids and
do not suffer from problems such as the percolating critical
point reached away from the thermal critical point or the
presence of the Kertész line[13,21].

Our intent in this paper is not to study large(or not so
large) Ising lattices to increase the already vast accumulation
of large lattice Ising simulation papers. Rather it is to show
that like the experimental nuclear multifragmentation yields,
the Ising model contains reducibility and thermal scaling and
(approximately) obeys the scaling inherent in the Fisher
droplet model(which also contains reducibility and thermal
scaling). To do this we chose a reasonably large lattice with
periodic boundary conditions to free ourselves(as much as
possible) from the complicating effects of finite size, but not
so large a lattice that computation time would be prohibitive.

We now proceed to analyze the cluster yields in the same
way as has been done with nuclear multifragmentation data
[1–4]. We shall consider first whether the multiplicity distri-
butions for individual clusters manifest Poissonian reducibil-
ity. Figure 1 shows the multiplicity distributions for a sample
of cluster sizes and temperatures. The solid lines represent
Poisson distributions calculated from the corresponding
mean multiplicities. The distributions are nearly Poissonian
not only for the cases shown, but for all sizes and all tem-
peratures. Poissonian reducibility is empirically verified in
the Ising model.

This signifies that the probability of findingm clusters of
sizeA depends only on the probability of finding one cluster
of that size and is nearly independent of the probability of

finding clusters of any other size. This feature is also ob-
served in percolation models and nuclear fragmentation[4].

If the cluster distributions exhibit thermal scaling, the dis-
tributions must be of the form given in Eq.(1). Thus in an
Arrhenius plot[a semilog graph of the number of clusters of
sizeA snAd vs 1/T], the distributions should be linear.

As shown in Fig. 2, this is indeed the case over a wide
range of temperaturess0,T,Tcd and cluster sizes. While
we have shown distributions for clusters up to sizeA=100,
the trend continues for larger clusters, but with poorer statis-
tics. This linearity extends over more than four orders of

FIG. 1. The probability distributions for obtainingm clusters of
sizeA at the three temperatures indicated. The solid lines are Pois-
son distributions with means given by the Monte Carlo data.

FIG. 2. (Color online) Arrhenius plots of the cluster distribu-
tions. A statistical error bar is shown when it exceeds the size of the
data point. The lines are fits of the form given in Eq.(1). The
critical temperature is indicated by the dashed line.
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magnitude. This behavior is consistent with the form of Eq.
(1) and the changing slopes of the Arrhenius plots indicate
that the independent thermal formation of clusters is con-
trolled by a dominant size-dependent barrier. This feature has
been amply verified in nuclear multifragmentation[1–4]. By
fitting the linear regions of the cluster distributions below the
critical temperature, the barriers can be extracted. The barri-
ers for each cluster size are shown in Fig. 3.

These barriers find their origin in the number of broken
bonds associated with a cluster which should be proportional
to the surface area of the cluster itself. Therefore for large
enoughA, they should be well described by a power law:

BsAd = c0A
s, s3d

with s.2/3. The extracted barriers obey the relationship
B=s12.77±0.04dJAs0.723±0.008d. The fit is shown in Fig. 3.
Errors are only those returned from the fitting procedure.
An estimate of the systematic errors is given below.

The value fors determined from the barriers is close to
2/3, the value one would expect for spherical clusters of
closely packed spherical objects[22]. Previous studies have
determineds from scaling relations between critical expo-
nents based on Fisher’s droplet model and suggest a value of
s,0.64 [5,6,18,22]. Duflot et al. used a cluster method to
determines for an Ising model[36] and obtained values that
are consistent with those found in this study.

This picture leads naturally to the interpretation ofc0 as a
surface energy coefficient. The value ofc0 obtained above is
in good agreement with other estimates of the surface energy
coefficient based on the analysis of the nucleation rate in the
d=3 Ising model[42] and suggests that the clusters are ap-
proximately cubical in shape. The surface tension in thed
=3 Ising model is 2J so that the surface energy coefficient of
cubical clusters would then be 12J.

As mentioned above, the features of reducibility and ther-
mal scaling discussed above can be found united in Fisher’s
droplet model for the cluster abundance in a vapor as a func-
tion of cluster size and temperature. The formula is

nAsTd = q0A
−t expSADm

T
DexpS−

c0A
s«

T
D , s4d

where q0 is a normalization constant,t is a topological
critical exponent,Dm is the difference in chemical poten-
tial of the system and the liquid,c0 is the surface energy
coefficient, and«=sTc−Td/Tc. The formula is valid for
temperatures up to the critical point, at which point the
surface free energy of a clustersc0A

s«d vanishes. The pa-
rametrization used in Fisher’s droplet model is only one
example of a more general form of the scaling assumption
nA=A−tfsXd andX=As«f where fsXd is some general scal-
ing function which: is valid on both sides of the critical
point; will vary, for small X sT,Tc and small Ad and
«.0, as exps−Xd with s=1/sbdd=1/sg+bd,0.64 for
three-dimensional Ising systems, 8/15 for two-dimensional
Ising systems, or,0.45 for three-dimensional percolation
systems andf=1; and will vary, for largeX sT far from Tc
or largeAd and «.0, as exps−Xd with s=sd−1d/d for all
d-dimensional systems and withf=2n, wheren,0.63 for
three-dimensional Ising systems,n=1 for two-dimensional
Ising systems, andn,0.88 for three-dimensional percola-
tion lattices. However, this more general scaling function
fsXd does not lend itself as easily to a physical interpreta-
tion as does the parametrization given by Fisher’s droplet
model and it is this physical interpretation which is im-
portant to the application of this method to the nuclear
data.

Fisher’s droplet model contains thermal scaling up toTc
and the dependence of the barrier on the cluster size through
the critical exponents [5,6]. Working at coexistence, so
Dm=0, we rewrite Eq.(4) and group the temperature depen-
dent terms giving

nAsTd = q0A
−t expSc0A

s

Tc
DexpS−

c0A
s

T
D=B0 expS− BsAd

T
D .

s5d

It is apparent that Fisher’s droplet model exhibits reduc-
ibility. The distribution in dropletsclusterd size is Poisso-
nian by construction: each component of droplet sizeA is
an ideal gas without the canonical constraint of overall
constituent conservation. The resulting grand canonical
distribution is Poissonian.

In addition to the linear behavior of the Arrhenius plots
below the critical temperature, the Fisher droplet model also
predicts that the cluster size distribution at the critical point
must follow a power law

nAsTcd = q0A
−t. s6d

If one considers clusters of both spin directions and one
assumes that Eq.s4d is valid for all cluster sizesswhich is
not true, however not grossly incorrectd, the normalization
q0 is fixed by

FIG. 3. The upper panel shows the extracted “barriers” from the
fits to the cluster distributions. The line is a fit of the form given in
Eq. (3). The lower panel shows the power law behavior of the
cluster distribution atkBT/J=4.515. The line is a fit of the form
given in Eq.(6). In both panels, error bars are smaller than the data
point.
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q0 =

o
A=1

`

nAsTcdA

o
A=1

`

A1−t

. s7d

Away from the critical temperature, the cluster distribu-
tion should not follow a pure power law. Thus, to determine
t without a prior knowledge of the critical temperature, fits
to the cluster distributions were determined for all tempera-
tures witht and q0 as free parameters. At the critical tem-
perature, the fit should have the lowestxn

2 and thust andq0
are fixed by the fit. The best power law fit of the cluster
abundances is shown in the lower panel of Fig. 3. The criti-
cal temperature was found to bekBTc/J=4.52±0.01 with a
best fit of the formnAsTcd=s30 000±5 000dAs−2.30±0.08d. Errors
are only those returned from the fitting procedure. An esti-
mate of the systematic errors is given below. This value of
the critical temperature is consistent with the value deter-
mined for infinite systemss4.511 52±0.000 04J/kBd. The
value oft is close to the expected value for an infinite sys-
tem (2.21) and is consistent with the value found by Wang
(2.27) for a larger lattice[22]. The value ofq0 can be com-
pared to Eq.(7) which yields 27566.

For the present calculations withHext=0 and an uncon-
strained magnetization, the system exists on the coexistence
curve forT,Tc. Thus, the chemical potentials of the liquid
and gas phases are equalsDm=0d, and Eq.(4) can be rewrit-
ten as

nAsTdAt/q0 = exps− c0A
s«/Td. s8d

Therefore, a graph of the scaled cluster distributions
fnAsTdAt/q0g as a function ofc0A

s«/T should collapse the
distributions of all cluster sizes onto a single curve. This
scaling behavior can clearly be seen in Fig. 4. This col-
lapse below the critical temperature extends over six or-
ders of magnitude for a broad range of cluster sizes and is
very linear. Thus the clustering in the three-dimensional
Ising model can be described by Fisher’s droplet model.
The scaling is paralleled by experimental nuclear multi-
fragmentation data which are also shown in Fig. 4. Here
the nuclear multifragmentation yields have been scaled by
a factor of 100 to offset the data from the Ising cluster
yields and scaled by another factor to account for the Cou-
lomb energy presentssee Refs.f9,10g for detailsd. Agree-
ment between Fisher’s droplet model and thed=2 Ising
model has been observed to a limited extent previously
f43g although that work did not use the same cluster defi-
nition as we do.

The clusters constructed here can be properly thought of
as “vapor” in equilibrium with the “liquid.” Coexistence of
the two phases is determined by the observation that the
empirical scaling impliesDm=0. The fact that both the three-
dimensional Ising model and the experimental nuclear mul-
tifragmentation data obey the same scaling predicted by
Fisher’s droplet model indicates that nuclear multifragmen-
tation can indeed be identified as the clustering(nonideality)
in a nuclear vapor in equilibrium with the nuclear liquid[4].

The quality of the scaling for the Ising model and the
nuclear multifragmentation as data shown in Fig. 4 led us to
test our results by simultaneously fitting the Ising cluster
distributions in the Arrhenius plots using Fisher’s droplet
model [Eq. (5)] for temperatures up to the critical tempera-
ture. There are several methods for performing this fit. In one
case, the values oft andTc are fixed as determined in Fig. 3
while the values ofs, c0 , andq0 are free. Another method
allows all parameters(t, s, Tc, co, andq0) to be determined in
a single fit. The values obtained from both of these methods
are consistent with those determined from the multistep
method described earlier. Combining the results from all
three methods allows us to estimate the errors associated
with our technique giving systematic errors ins andc0/J of
±0.03 and ±1, respectively.

In order to further test the above results, we follow the
method described in Refs.[9,10] and determine the magne-
tization based on Eq.(5). The reduced density of clusters is
given by

r

rc
=

o
A

AnAsTd

o
A

AnAsTcd
=

o
A

A1−t exps− c0A
s«/Td

o
A

A1−t
s9d

and from this the magnetization per lattice site is simply

M = 1 −
r

rc
. s10d

Using the extracted values ofs, t, c0, and Tc in Eq. s9d,
Eq. s10d gives one branch of the magnetization curve, the

FIG. 4. (Color online) Scaling behavior of cluster distributions
for the Ising model and for nuclear multifragmentation data. The
nuclear multifragmentation yields have been scaled by a factor of
100 to offset the data from the Ising cluster yields and scaled by
another factor to account for the Coulomb energy present, see Refs.
[9,10] for details.
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branch for M .0. Since the magnetization is symmetric
about the origin, the points forM ,0 are reflections of the
points forM .0. The results are shown as the open circles
in Fig. 5. These results compare well with a parametriza-
tion for MsTd f44g sused as a “benchmark”d shown as a
solid line in Fig. 5. Better agreement with theMsTd pa-
rametrization is found when the values ofs
=0.639 46±0.0008,t=2.209±0.006sfrom the scaling rela-
tions in Fisher’s droplet model and values ofb
=0.326 53±0.000 10 andg=1.2373±0.002f44gd, c0=12J,

and Tc=4.511 52±0.000 04J/kB were used. Nearly perfect
results were observed whenc0 was “tuned” to 16 and the
more precise value ofTc and the scaling relation exponent
values were used. The agreement between the magnetiza-
tion values calculated via the sum in Eq.s10d and the
parametrization of Ref.f44g for 0,T,Tc suggests that
the ideal gas assumptions in Fisher’s droplet model allow
for an accurate description of the system even up to den-
sities as high asrc. This contradicts results presented else-
wheref11g.

In conclusion, we have shown that the clusterization in
the Ising model, such as nuclear multifragmentation, portrays
reducibility and thermal scaling. In addition, the Arrhenius
plots allow for the extraction of barriers which are found to
have a dependence ofB=c0A

s, wheres is a critical expo-
nent. The barrier coefficient from the Arrhenius plots is
equivalent to the surface energy coefficient of the clusters in
Fisher’s droplet model. The reducibility and thermal scaling
features in the Ising model can be incorporated into a Fisher-
like scaling withDm=0, which is obeyed over the explored
temperature range below the critical temperature. Thus the
observed clusters can be interpreted as a manifestation of the
nonideality of a vapor in equilibrium with a liquid. Finally,
nuclear multifragmentation, which is seen to share all the
scaling observed here, should be similarly interpreted as
characterizing the clusterization of a nuclear vapor in equi-
librium with its liquid.
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