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The Gamow-Teller(GT) states are investigated in relativistic models. The Landau-Migdal(LM ) parameter
is introduced in the Lagrangian as a contact term with the pseudovector coupling. In the relativistic model the
total GT strength in the nucleon space is quenched by about 12% in nuclear matter and by about 6% in finite
nuclei, compared with the Ikeda-Fujii-Fujita sum rule. The quenched amount is taken by nucleon-antinucleon
excitations in the timelike region. Because of the quenching, the relativistic model requires a larger value of the
LM parameter than nonrelativistic models in describing the GT excitation energy. On the other hand, the effect
of the Pauli blocking terms is not important for the GT states.
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I. INTRODUCTION

For the last 30 years it has been shown that phenomeno-
logical relativistic models work very well to explain various
nuclear phenomena[1]. Most of them assume that the
nucleus is a relativistic system composed of Dirac particles
moving in Lorentz scalar and vector potentials.

In the present paper, we study the excitation energy and
strength of the Gamow-Teller(GT) states in these relativistic
models. As far as we are aware of, the GT states have not
been studied so far in detail in this framework[2]. We will
discuss them mainly in nuclear matter, since we can obtain
analytic expressions of the excitation energy and strength
which make clear the structure of the results and the differ-
ence between the relativistic and nonrelativistic models.

In the following section we will present our relativistic
framework to discuss the GT states. The Landau-Migdal
(LM ) parameter will be introduced in the Lagrangian as a
contact term to take into account particle-hole correlations.
In Sec. III the transverse correlation function will be calcu-
lated explicitly, from which an analytic expression of the
excitation energy will be obtained in Sec. IV. In Sec. V, the
GT strength will be calculated. We will show that the total
GT strength is quenched by about 12% in nuclear matter and
by about 6% in finite nuclei, compared with the nonrelativ-
istic sum rule value. The quenched strength is taken by the
nucleon-antinucleon excitations in the timelike region, which
cannot be excited with charge-exchange reactions. Effects of
the Pauli blocking terms on the excitation energy and
strength will be shown to be negligible in Sec. IV and V. In
Sec. VI, we will show that the way to add the LM parameter
to the relativistic meson propagator, which has been fre-
quently used in describing high-momentum transfer reac-
tions [3], cannot describe the GT states. The last section will
be devoted to a brief summary of the present work.

II. RELATIVISTIC MODEL

We assume that the mean field consists of Lorentz scalar
and vector potentials. The random phase approximation

(RPA) correlations are described using the basis given by this
mean field, and they are assumed to be induced through the
Lagrangian

L = − gpcGi
mc]mpi +

g5

2
cGi

mccGmic s1d

with

Gi
m = g5gmti, gp =

fp

mp

, g5 = S fp

mp
D2

g8.

The first term stands for the usual pseudovectorsPVd cou-
pling between the pion and the nucleon, and the second
term corresponds to a contact interaction whose strength
is governed by the LM parameterg8 f4g. Although the way
to introduceg8 in the relativistic model is not unique we
will show that the above Lagrangian yields the known
expression for the excitation energy of the GT state in the
nonrelativistic limit. The first term, in fact, is not relevant
for the GT states in nuclear matter. It is, however, kept in
order to show later that if the LM parameter is put into the
meson propagator, one cannot describe the GT state.

For the Lagrangian Eq.(1), the RPA correlation function
PRPA is written in terms of the mean field one,P [5],

PRPAsGA, GBd = PsGA, GBd

+ xpsqdPsGA, Gi ·qdPRPAsGi ·q, GBd

+ x5PsGA, Gi
mdPRPAsGmi, GBd, s2d

where the following notations are employed:

xpsqd =
gp

2

s2pd3

1

mp
2 − q2 − i«

, x5 =
g5

s2pd3 .

For isospin-dependent excitations, the mean field correla-
tion function is given by
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PsGa, Gbd = −
1

2pi
E d4pTrsTrtfGaGFsp + qdGbGDspd

+ GaGDsp + qdGbGFspd + GaGDsp + qdGbGDspd

+ GaGFsp + qdGbGFspdg, s3d

where we have defined the isospin operatorta,

t± =
tx ± ity

Î2
, t0 = tz,

and the propagator,

GHsqd = GFsqd + GDsqd,

GDsqd = Gskp;qd
1 − tz

2
+ Gskn;qd

1 + tz

2
,

with

GFsqd =
q” + M*

q2 − M*2 + i«
,

Gski ;qd =
ip

Eq
sq” + M*ddsq0 − Eqduq

sid, si = p, nd.

Here, we have also used the abbreviation for the step
function: uq

sid=uski − uqud, kp and kn being the Fermi mo-
menta of the protons and neutrons, respectively. More-
over, Eq is equal toÎM*2 +q2, where the Lorentz scalar
potential is included in the nucleon effective massM* .
The Lorentz vector potential does not show up explicitly
in the present discussion of nuclear matter. In Eq.s3d, the
first three terms are density dependent, including the Pauli
blocking terms, while the last one is density independent
and divergent. The last term is usually neglectedf6g, but
we keep it for later discussion. Effects of the Pauli block-
ing terms on the excitation energy and strength of the GT
state will be also discussed later.

For thet± excitations, the RPA correlation function in Eq.
(2) is described as

PRPAsG+
a, G−

bd = fU−1gab8PsGb8+, G−
bd, s4d

whereU denotes the dimesic function represented by the
535 matrix:

Uab = gab − xbPsG+
a, G−

bd

with the notations fora=−1, 0, . . . , 3,

G±
a = g5gat±, ga = Hg ·q

gm , xa = Hxp, a = − 1

x5, a = m.

In the above equation,gab is defined asgab=1sa=b=
−1d, gmnsa=m, b=nd and g−1m=gm−1=0.

The calculation of the mean field correlation function is
straightforward. SeparatingPsG+

a, G−
bd into the density-

dependent and density-independent parts,

PsG+
a, G−

bd = PDsG+
a, G−

bd + PFsG+
a, G−

bd, s5d

they are obtained as

PDsG+
a, G−

bd =E d4p
dsp0 − Epd

Ep
S tabsp, qd

sp + qd2 − M*2 + i«
up

snd

+
tabsp, − qd

sp − qd2 − M*2 + i«
up

spdD
+ ipE d4p

dsp0 − Epddsp0 + q0 − Ep+qd
EpEp+q

3 tabsp, qdup
sndup+q

spd , s6d

PFsG+
a, G−

bd =
1

ip
E d4p

tabsp, qd
sp2 − M*2 + i«dssp + qd2 − M*2 + i«d

,

s7d

where tabsp, qd is given by

tmnsp, qd = 4fgmnsM*2 + p2 + p ·qd − 2pmpn − pmqn − pnqmg,

s8d

t−1nsp, qd = qmtmnsp, qd = 4fqnsM*2 + p2d − pnsq2 + 2p ·qdg,

s9d

t−1−1sp, qd = 4fq2sM*2 + p2d − p ·qsq2 + 2p ·qdg. s10d

If we choose the spatial axes such thatqm=sq0, qx, 0, 0d,
we can show thatPsG−

a, G+
bd has a structure as shown in Table

I(a), where open boxes meanPsG−
a, G+

bd to be nonzero. Thus,
the transverse parts ofPsG−

a, G+
bd are decoupled from the pion

sa=−1d–, time sa=0d–, and longitudinalsa=1d ones. In the
present paper, we are interested in the GT states excited at
q=0. In this case, the longitudinal part is also decoupled
from the pion and time-component(PT), as in Table I(b).
Consequently, the determinant of the dimesic function is fac-
torized into four parts,

det U = − sDTd2DLDPT, s11d

where the transverse, longitudinal, and PT dimesic func-
tions are written as

DT = 1 +x5PsG+
2, G−

2d, DL = DT, s12d

TABLE I. The structure of the correlation functionPsG−
a, G+

bd.
The first column and row indicate the values ofa and b of
PsG−

a, G+
bd. The open boxes mean thatPsG−

a, G+
bd has nonzero value.

Table (a) is for qÞ0, while (b) for q=0.

(a) (b)
−1 0 1 2 3 −1 0 1 2 3

−1 0 0 −1 0 0 0
0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
2 0 0 0 0 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
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DPT = f1 − xpPsG+
−1, G−

−1dgf1 − x5PsG+
0, G−

0dg

− x5xpPsG+
−1, G−

0dPsG+
0, G−

−1d. s13d

III. THE TRANSVERSE CORRELATION FUNCTION

In this section we derive a more explicit form of the trans-
verse correlation function atq=0 which is used for describ-
ing the GT states. First, we will calculate the real and imagi-
nary parts of the density-dependent transverse correlation
function separately, and next the density-independent part.

According to Eq. (6), the real part of the density-
dependent transverse correlation function is written as

Re PDsG+
2, G−

2d = J22skn, q0d + J22skp, − q0d, s14d

whereJ22ski, qd represents

J22ski, qd =E d4p
dsp0 − Epd

Ep

t22sp, qd
sp + qd2 − M*2 up

sid. s15d

Since t22 at q=0 is given by

t22sp, qd = − 4s2M*2 + Epq0 + 2py
2d, s16d

the real part Eq.s14d becomes

RePDsG+
2, G−

2d = −
4

q0
E d3p

M*2 + py
2

Ep
2 sup

snd − up
spdd

− 4E d3p
p2 − py

2

Ep
2 S up

snd

2Ep + q0
+

up
spd

2Ep − q0
D .

s17d

The imaginary part of the density-dependent correlation
function atq=0 is given by Eq.s6d as

Im PDsG+
a, G−

bd = − pE d4p
dsp0 − Epd

Ep
Ftabsp, qddsq0

2

+ 2p0q0dup
snd + tabsp, − qddsq0

2 − 2p0q0dup
spd

−
dsq0d
Ep

tabsp, qdup
sndup

spdG .

Using

dsq0
2 ± 2p0q0d =

1

2p0
fdsq0d + dsq0 ± 2p0dg,

the above equation is rewritten as

Im PDsG+
a, G−

bd = − pdsq0d E d4p
dsp0 − Epd

2Ep
2 ftabsp, qdup

snd

+ tabsp, − qdup
spd − 2tabsp, qdup

sndup
spdg + RNN.

The last termRNN comes from theN-N excitations,

RNNsq0d = − pE d4p
dsp0 − Epd

2Ep
2 ftabsp, qddsq0 + 2Epdup

snd

+ tabsp, − qddsq0 − 2Epdup
spdg.

Inserting Eq.s16d into the above equations, the imaginary
part of the density-dependent transverse correlation func-
tion is obtained as

Im PDsG+
2, G−

2d = 4pdsq0d E d3p
M*2 + py

2

Ep
2 sup

snd + up
spd

− 2up
sndup

spdd + RNN, s18d

whereRNN is given by

RNN = − 4pE d3p
p2 − py

2

Ep
2 fdsq0 + 2Epdup

snd + dsq0 − 2Epdup
spdg.

s19d

From Eqs.s17d, s18d, ands19d, the density-dependent part
of the transverse correlation function is described as

PDsG+
2, G−

2d = − 4E d3p
M*2 + py

2

Ep
2 Sup

snds1 − up
spdd

q0 + i«

−
up

spds1 − up
sndd

q0 − i«
D

− 4E d3p
p2 − py

2

Ep
2 S up

spd

2Ep − q0 − i«

+
up

snd

2Ep + q0 − i«
D . s20d

The density-independent part of the transverse correlation
function is calculated in the same way. From Eqs.(7) and
(16), we obtain

PFsG+
2, G−

2d = 4E d3p
p2 − py

2

Ep
2 S 1

2Ep − q0 − i«

+
1

2Ep + q0 − i«
D . s21d

The sum of Eqs.(20) and (21) provides us with the full
transverse correlation functionPsG−

2, G+
2d. It is also expressed

as a sum of contributions from particle-hole andN-N exci-
tations,

PsG+
2, G−

2d = PphsG+
2, G−

2d + PNNsG+
2, G−

2d, s22d

where each term is described as

PphsG+
2, G−

2d = − 4E d3p
M*2 + py

2

Ep
2 Sup

snds1 − up
spdd

q0 + i«

−
up

spds1 − up
sndd

q0 − i«
D , s23d
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PNNsG+
2, G−

2d = 4E d3p
p2 − py

2

Ep
2 S 1 − up

spd

2Ep − q0 − i«

+
1 − up

snd

2Ep + q0 − i«
D . s24d

IV. THE EXCITATION ENERGY OF THE GT STATE

The eigenvalues of the excitation energies are given by
the real part of the dimesic function,

det ReU = 0. s25d

The excitation energy of the GT state is evaluated by us-
ing the transverse part of the dimesic function in Eq.(12).
The real part of the transverse correlation function, which we
need in the dimesic function, is obtained from Eqs.
(22)–(24).

A. The excitation energy in the nucleon space

In this section, we will calculate the excitation energy of
the GT state, neglecting perfectly the antinucleon degrees of
freedom. In this case, according to Eqs.(12) and (23), the
real part of the transverse dimesic function is given by

Re DT = 1 +x5 Re PphsG+
2, G−

2d,

Re PphsG+
2, G−

2d = −
16p

3

Qsknd − Qskpd
q0

, s26d

whereQskid is given by

Qskid =
3

4p
E

0

ki

d3p
M*2 + py

2

Ep
2 =

ki
3

3
+ 2kiM

*2 − 2M*3 tan−1 ki

M* .

s27d

From ReDT=0, we obtain the relativistic expression of
the excitation energy in nuclei withkn.kp,

v0 =
2g5

3p2fQsknd − Qskpdg. s28d

Relativistic effects on Eq.(28) can be seen more transpar-
ently by defining the Fermi momentumkF as usual,

kn
3 =

2N

A
kF

3, kp
3 =

2Z

A
kF

3. s29d

This yields a relation forsN−Zd/A!1,

kn − kp <
2

3
kF

N − Z

A
. s30d

By using the equation

Q8skFd =
dQskFd

dkF
=

kF
2s3M*2 + kF

2d
M*2 + kF

2 = 3kF
2S1 −

2

3
vF

2D ,

s31d

vF =
kF

ÎM*2 + kF
2
,

we can expandfQsknd−Qskpdg in Eq. (28) up to first order in
skn−kpd. Then, replacingskn−kpd by Eq. (30) we obtain the
relativistic expression of the GT energy:

v0 < S1 −
2

3
vF

2Dg5

8kF
3

3p2

N − Z

2A
. s32d

The first factor depending on the Fermi velocityvF shows
relativistic effects on the excitation energy.

In the nonrelativistic limitvF
2!1 the GT energy is

v0 = g5

8kF
3

3p2

N − Z

2A
. s33d

This result can be also obtained without using the approxi-
mation Eq.s30d. In the non-relativistic limitp2!M*2, Eq.
s27d becomes

Qskid < ki
3. s34d

This, together with Eqs.s28d and s29d, yields the same
result as Eq.s33d.

Equation(33) is just the result obtained previously in non-
relativistic models withg5=g8sfp/mpd2 [7]. In relativistic
models, the excitation energy of the GT state in nuclear mat-
ter is thus given by the transverse part of the dimesic func-
tion, and it is independent of the pion exchange, even when
its energy dependence is taken into account.

We will show later that the relativistic factors1−2vF
2/3d in

Eq. (32) stems from the quenching of the GT strength in the
nucleon space. In most of the relativistic models the nucleon
effective mass is about 0.6M [8], which yieldsvF=0.43 for
kF=1.36 fm−1. This value implies that we must use a value of
g8 larger by 14% in the relativistic model than that in non-
relativistic models. Nonrelativistic models require the value
of g8 to be about 0.6 in order to reproduce experimental data
[9]. In this case the relativistic model needsg8=0.68.

B. Effects of the Pauli blocking term

It is known in the relativistic model that the antinucleon
degrees of freedom play an important role for some physical
quantities[10,11]. Even in the RPA based on the mean field
approximation, a part of the antinucleon excitations should
be taken into account in order to satisfy the continuity equa-
tion [5]. It is the density-dependent part in the antinucleon
excitations which is usually called the Pauli blocking term.
Without the Pauli blocking term, for example, the orbital part
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of the magnetic moment and the multipole giant resonances
are not described correctly[10,11]. In the case of the GT
state atq=0, it is not clear whether or not the Pauli blocking
term does play an important role. Here, we examine its ef-
fects on the excitation energy of the GT state.

The Pauli blocking term in the present case is given by
the density-dependent parts of Eq.(24):

PPaulisG+
2, G−

2d = − 4E d3p
p2 − py

2

Ep
2 S up

spd

2Ep − q0 − i«

+
up

snd

2Ep + q0 − i«
D .

Its real part is written as

Re PPaulisG+
2, G−

2d =
16p

3
k, k = − PNskn, q0d − PNskp, − q0d,

s35d

where we have defined

PNskF, q0d =
3

4p
E

0

kF d3p

Ep
2

p2 − py
2

2Ep + q0
. s36d

For q0!M*, as in the GT state,PN is approximately given
by

PNskF, q0d < PskFd

=
3

4p
E

0

kF d3p

Ep
2

p2 − py
2

2Ep

= EF
2S3

2
vF − vF

3 −
3

4
s1 − vF

2dln
1 + vF

1 − vF
D

= kF
2vF

3

5 S1 +
3

7
vF

2 + ¯D , s37d

whereEF denotesÎM*2 +kF
2. Using this result to evaluate

Eq. s26d, the excitation energy of the GT state is obtained
as

v0 <
1 −

2

3
vF

2

1 +
2g5

3p2k

g5

8kF
3

3p2

N − Z

2A
. s38d

This result shows that, when we use the parameter values
as mentioned at the end of the preceding section the effect
of the Pauli blocking terms is negligible, being less than
0.5% of theexcitation energy.

V. THE GT STRENGTH

In this section, first we will discuss the total GT strength
in nuclear matter where we can obtain its analytic expression
and understand the structure of the relativistic results. Next
we will investigate the finite size effects by studying the case
of nuclei.

A. The GT strength in nuclear matter

The total GT strength is calculated by integrating the re-
sponse functionR over the excitation energy. The relation-
ship of the response function to the correlation functionP is
given by [5]

R=
3

16p2

A

kF
3 Im P.

First, we investigate the total GT strength in the mean
field approximation without the RPA correlations. For this
purpose we can employ the imaginary parts of Eqs.
s22d–s24d. The total strength for theb− transitions in the
nucleon space is given by the first term in the parentheses
of Eq. s23d,

Sph
− =

3

4p

A

kF
3 E d3p

M*2 + py
2

Ep
2 sup

snd − up
spdd =

A

kF
3 fQsknd − Qskpdg.

s39d

When we expandQ in terms of skn−kpd as before, we
obtain the value of the total strength in the nucleon space,

Sph
− < S1 −

2

3
vF

2D2sN − Zd. s40d

In the present definition of the GT operators,

F± = o
i

A

st±sydi ,

the Ikeda-Fujii-Fujita sum rule in nonrelativistic models
f12g becomes

kuF+F−ul − kuF−F+ul = 2sN − Zd. s41d

This is nothing but the result of the commutation relation:

ft+sy, t−syg = 2tz.

If we assume that there is no ground-state correlation,

F+ul = 0, s42d

we have simply from Eq.s41d

kuF+F−ul = 2sN − Zd s43d

in nonrelativistic models. Comparing Eq.s40d with the
above equation, it is seen that the relativistic sum value is
quenched by the factors1−2vF

2/3d, which is about 0.88 for
the previous valuevF=0.43.

The strength of theb+ transition in the nucleon space is
given by the second term in the parentheses of Eq.(23) with
replacingq0 by −q0, but its value is zero forkn.kp as in Eq.
(42). The quenched strength in the nucleon space in Eq.(40)
is not taken by theb+ transition, but by the antinucleon de-
grees of freedom. This fact is shown as follows. According to
the first term of Eq.(24), the strength of theb− transition in
the nucleon-antinucleon excitations is given by
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SNN
− =

3

4p

A

kF
3 E d3p

p2 − py
2

Ep
2 s1 − up

spdd, s44d

while that of theb+ transition is provided by the second
term with replacingq0 by −q0,

SNN
+ =

3

4p

A

kF
3 E d3p

p2 − py
2

Ep
2 s1 − up

sndd. s45d

The above two equations are both divergent, but their dif-
ference is finite:

SNN
− − SNN

+ =
3

4p

A

kF
3 E d3p

p2 − py
2

Ep
2 sup

snd − up
spdd. s46d

The sum of the above equation and Eq.s39d provides us
with sum rule corresponding to Eq.s41d,

Sph
− + SNN

− − SNN
+ = 2sN − Zd. s47d

The interpretation of this result is the following. In order
to obtain the sum rule value 2sN−Zd, we need a complete set
of the nuclear wave functions. This fact requires both the
nucleon and the antinucleon space in relativistic models.
Since the nucleon-antinucleon states are in the timelike re-
gion, the GT strength for charge-exchange reactions which
excite nuclear states in the spacelike region is quenched by
the amount of Eq.(46). This quenching can be also discussed
by calculating GT matrix elements directly, as we have done
in Ref. [13].

Next, we calculate the RPA strength of the GT state, using
the RPA correlation functionPRPAsG+

2, G−
2d. Using the short-

hand notations PRPAsG+
2, G−

2d=PRPAsq0d and PsG+
2, G−

2d
=Psq0d, PRPAsq0d is written as

PRPAsq0d =
Psq0d
DTsq0d

, DTsq0d = 1 +x5Psq0d.

ExpandingDTsq0d at q0=v0, we have

PRPAsq0d = SdDT

dv0
D−1 Psq0d

q0 − v0 + i«
.

Keeping only the density-dependent part of the correlation
function, the imaginary part of the above equation gives
the strength of the GT state,

SGT =
A

kF
3

Qsknd − Qskpd
f1 + 2g5k/s3p2dg2 <

1 − 2vF
2/3

f1 + 2g5k/s3p2dg22sN − Zd.

s48d

The k-dependent term stems from the Pauli blocking ef-
fects, and it is negligible as mentioned before. Thus, all
the strength in the nucleon space is contained in the GT
state. Comparing Eq.s28d with the above equation, we can
see that the factors1−2vF

2/3d in the expression of the ex-
citation energy Eq.s32d is due to the quenching of the GT
strength in the nucleon space, but not from the relativistic
kinematics.

B. The GT strength in finite nuclei

We have shown analytically that the GT strength is
quenched by about 12% in nuclear matter. The quenched
amount, however, depends on the momentum distribution
and the value of the nucleon effective mass near the nuclear
surface, as seen in Eq.(39). Therefore, we now proceed to
estimate numerically the GT strength in finite nuclei, in the
mean field approximation without RPA correlations.

We write the four-component nucleon spinor as

cam=1
iGasrd

r
u, jml

−
Fasrd

r
u, jml 2 ,

where a stands for the quantum numbershn, jj, and , is
given by ,= j ±1/2=,±1 for j =,±1/2. We define the GT
strength as

Taa8ssmd = 2o
mm8

uka8m8usmuamlu2 =
2

3
uk,8 j8uusuu, jlrelu2,

using the notations

k,8 j8uusuu, jlrel = d,,8k, j8uusuu, jlgsa, a8d

+ d,,8k, j8uusuu, jlfsa, a8d,

gsa:a8d =E
0

`

drGasrdGa8srd, fsa:a8d =E
0

`

drFasrdFa8srd.

If we calculate the strengths for the transition fromj=,
+1/2 to j8=,±1/2sn8=nd only, as in nonrelativistic models
for closed subshell nuclei, the sum of the GT strengths is
given by

o
a8

Taa8ssmd =
4s, + 1ds2, + 3d

3s2, + 1d Sg+ −
2, + 1

2, + 3
f+D2

+
16,s, + 1d
3s2, + 1d

g−
2,

with

g± = gsn, ,, , + 1/2:n, ,, , ± 1/2d,

f± = fsn, ,, , + 1/2:n, ,, , ± 1/2d.

Assuming the same wave functions for neutrons and pro-
tons we haveg++ f+=1 from the normalization of the wave
functions. Moreover, it seems reasonable to assume that
g−<1− f+. Then, the sum of the GT strengths is approxi-
mately given by

o
a8

Taa8ssmd < 2s2j + 1dS1 −
8

3
f+D .

Since most of the relativistic models provides us withf+
,0.02, theabove equation shows that the GT strength is
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quenched by about 5%, compared with the nonrelativistic
sum value 2s2j +1d.

In realistic situations there are other transitions even in
closed subshell nuclei such as48Ca. Table II shows their
contributions to the total GT strength. The calculations are
done with the effective Lagrangian NL-SH[14] chosen as an
example. We calculate only the transitions between bound
states. Contributions from the continuum states are expected
to be small. In the table, the top one shows the results in
using the neutron wave functions for the initial and final
states, and the bottom one those obtained using the proton
wave functions for the final states. These calculations are
performed to see the effects of the Coulomb force. The non-
relativistic sum value for48Ca is 16 in the present definition.
The table shows that the relativistic sum value is quenched
by about 6%, compared with the nonrelativistic one. This
reduction of the quenched amount, compared with the one in
nuclear matter, was expected from the value of the nucleon
effective mass near the nuclear surface, as mentioned before.
Since the total GT strength in the nucleon space is quenched
in the mean field approximation, we expect that the sum of
the RPA strengths in finite nuclei is also quenched, as in the
case of nuclear matter.

VI. THE PION AND THE TIME PART OF THE
CORRELATION FUNCTION

In the preceding sections we have discussed the problems
related to the transverse part of the correlation function. Let

us now briefly discuss the structure of the pion and the time
component, mainly in order to study the way to useg8 in
relativistic models.

Since atq=0, the correlation functions satisfy

PsG+
−1, G−

−1d = q0
2PsG+

0, G−
0d, PsG+

−1, G−
0d = q0PsG+

0, G−
0d,

the pion and the time component of the dimesic function
Eq. s13d can be rewritten in terms ofPsG+

0, G−
0d,

DPT = 1 −
1

s2pd3Sg5 + gp
2 q0

2

mp
2 − q0

2DPsG+
0, G−

0d.

The function t00sp, qd at q=0 in PsG+
0, G−

0d is calculated
according to Eq.s8d as

t00sp, qd = 4f2M*2 − Eps2Ep + q0dg.

Taking into account the density-dependent parts only, we
have the real part of the time component as

Re PsG+
0, G−

0d = J00skn, q0d + J00skp, − q0d, s49d

whereJ00 is given by

J00ski, q0d = −
4

q0
E d3p

p2

Ep
2up

sid − 4M*2 E d3p
up

sid

Ep
2s2Ep + q0d

.

s50d

For q0!M* , neglecting theq0 dependence of the second
term, we obtain

J00ski, q0d < 8pM*2SQ0skid
q0

+ P0skidD , s51d

with

P0skFd = −
1

2p
E

0

kF

d3p
1

2Ep
3

=
kF

EF
− ln

EF + kF

M*

= −
vF

3

3 S1 +
3

5
vF

2 + ¯D , s52d

Q0skFd = −
1

2pM*2E
0

kF

d3p
p2

Ep
2 = 2kF − 2M* tan−1 kF

M* −
2kF

3

3M*2 .

s53d

From the above equations, the real part ofPsG+
0, G−

0d is
described as

Re PsG+
0, G−

0d < 16pM*2SP0skFd +
kn − kp

2q0
Q08skFdD ,

s54d

whereQ08skFd denotes the derivative ofQ0skFd with respect
to kF,

TABLE II. The GT strength of the single-particle transitions in
48Ca. The top table shows the results obtained using neutron wave
functions for the initial and final states, while the bottom one those
using the proton wave functions for final states. The value in the
parentheses following the single-particle quantum number is the
single-particle energy in MeV.Taa8 is the value of the GT strength,
and gsa:a8d and fsa:a8d show the overlap of the radial wave func-
tions, as defined in the text. TheVALUES underlined do not contrib-
ute to the GT strength.

n→n
n,j n8,8j8 Taa8 gsa:a8d fsa:a8d

1p3/2s−39.41d 2p3/2s−3.97d 0.001 0.0110 −0.0110
1p3/2s−39.41d 1f5/2s−2.09d 0.002 0.7765I −0.0175
1p3/2s−39.41d 2p1/2s−2.74d 0.004 0.0323 −0.0091I
1p1/2s−36.23d 2p3/2s−3.97d 0.001 −0.0128 0.0116I
1p1/2s−36.23d 2p1/2s−2.74d 0.001 0.0102 −0.0102
1f7/2s−10.00d 1f5/2s−2.09d 8.411 0.9592 −0.0150I
1f7/2s−10.00d 1f7/2s−10.00d 6.390 0.9805 0.0195

Total 14.810
n→p

1p3/2s−39.41d 2p3/2s−1.09d 0.000 −0.0113 −0.0116
1p3/2s−39.41d 1f5/2s−1.16d 0.002 0.8084I −0.0180
1p1/2s−36.23d 2p3/2s−1.09d 0.005 −0.0360 0.0117I
1f7/2s−10.00d 1f5/2s−1.16d 8.629 0.9715 −0.0148I
1f7/2s−10.00d 1f7/2s−9.59d 6.361 0.9787 0.0200

Total 14.997
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Q08skFd = −
2kF

4

M*2EF
2 = −

2vF
4

1 − vF
2 . s55d

Finally, the real part of the PT dimesic function is given
by

Re DPT < 1 −
2M*2

p2 Sg5 + gp
2 q0

2

mp
2 − q0

2D
3 SP0skFd +

kn − kp

2q0
Q08skFdD . s56d

The structure of ReDPT is similar to ReDT in Eq. s26d to
which Eq. s35d is added. Equationss52d and s55d, how-
ever, show that the second parentheses of Eq.s56d are
negative. Therefore, the excitation energy given by
Re DPT=0 should be higher than the pion mass,q0.mp.

The first parenthesis of Eq.(56) may be obtained by the
insertion ofg8 into the pion propagator as

1

mp
2 − q2 → 1

mp
2 − q2 +

g8

q2 , s57d

which was frequently used in relativistic description of
high-momentum transfer reactionsf3g. Equation s56d,
however, shows that this way to putg8 in the meson
propagator cannot describe the GT states. In order to show
this fact, we have used the Lagrangian Eq.s1d, although
the GT state can be described just with the contact term in
nuclear matter. The above modification of the meson
propagator in Eq.s57d was introduced from nonrelativistic
models. Those models use a static potential and modify
the meson propagator so as to cancel the short range part
of the interaction as

q2

mp
2 + q2 → q2

mp
2 + q2 − g8. s58d

Equations57d, however, is not a reasonable extension of
Eq. s58d for the GT state.

The latter statement, of course, does not mean that the
Lagrangian form in Eq.(1) provides us with a correct four-
momentum dependence ofg8. In nonrelativistic models also
we do not know the momentum dependence so well[15].
The Lagrangian form in Eq.(1) can describe the GT state at
q=0, and cancel the short range part of the interaction, but it
yields an additional four-momentum transfer dependence of
the dimesic function. In fact, the dimesic function, except for
the transverse part, is written at the static limitq0=0 as

− DPTL = s1 − x5P00df1 + sx5 − xpqx
2dP11g

+ x5sx5 − xpqx
2dsP10d2, s59d

where we have used the abbreviationPab=PsG+
a, G−

bd.
More detailed investigations ong8 are necessary for dis-
cussions of high-momentum transfer phenomena.

Finally we mention the effects of the Pauli blocking
terms. When we take into account the particle-hole excita-
tions only, we have

Re PsG+
0, G−

0d =
1

q0 + i«
E d3p

t00

2Ep
2 sup

snd − up
spdd

=
8pM*2

q0 + i«
fQ0sknd − Q0skpdg.

This shows that the termP0skFd in Eq. s54d comes from
the Pauli blocking terms. The effects of the Pauli blocking
terms are not small in the present case, compared with
those in the transverse mode. In fact, the relationship be-
tween the contributions from the particle-hole terms to the
Pauli blocking one is given by

Q08skFd < − 2vF
4, P0skFd < −

vF
3

3
<

1

6vF
Q08skFd

in the present case, while in the transverse mode, we have
from Eqs.s31d and s37d

Q8skFd < 3kF
2, PskFd < kF

2vF
3

5
<

vF
3

15
Q8skFd.

VII. SUMMARY

About 15 years ago, analytic expressions of the excitation
energies for the giant monopole and quadrupole resonance
states were derived in the relativistic model[16]. When they
are expressed in terms of the Landau-Migdal(LM ) param-
eters, they are formally equal to the nonrelativistic expres-
sions, in spite of the fact that the LM parameters are strongly
dominated by relativistic effects. In this paper, we have ob-
tained the relativistic expression of the excitation energy for
the Gamow-Teller(GT) state in nuclear matter. It is de-
scribed in terms of the LM parameterg8 which is introduced
in the Lagrangian as a contact term. Compared with the cor-
responding nonrelativistic one, the relativistic expression has
an additional factor ofs1−2vF

2/3d, vF being the Fermi veloc-
ity. This means that in order to reproduce the same excitation
energy as in nonrelativistic models, the present relativistic
model requires a value ofg8 to be larger by this factor.

The above relativistic factor comes from the quenching of
the GT strength in the nucleon space. A part of the GT
strength is taken by the nucleon-antinucleon states in the
timelike region which are not excited in usual charge-
exchange reactions. This quenching is thus peculiar to the
relativistic models. The quenched amount is estimated to be
12% of the classical Ikeda-Fujii-Fujita sum rule value in
nuclear matter, and 6% in finite nuclei. We have found that
the Pauli blocking terms are not important for discussions of
the GT states.

We have also discussed whether or not it is appropriate
for the relativistic model to insert the LM parameterg8 into
the meson propagator. This method was frequently employed
for the study of high-momentum reactions, but we have
shown that this method cannot describe the GT states.

Finally it may be worthwhile noting future problems. The
quenching phenomena of the GT strength have been dis-
cussed for a long time in nonrelativistic models[17]. Most
recent experiments have observed 90% of the classical sum
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rule value in90Zr [18] with nonrelativistic analysis. So far all
the quenching of 10% has been considered to be due to the
coupling of the particle-hole states withD-hole states. Under
this assumption, the LM parametergDN8 for the coupling is
estimated to be about 0.2–0.3, depending on the nonrelativ-
istic models[9]. The determination of the value ofgDN8 is
very important for studies of nuclear magnetic moments,
spin-dependent response functions, and pion condensation.
In particular, the critical density of the pion condensation is
dominated by the values ofgDN8 as well asg8. It has been
shown that if the values ofgDN8 andg8 are about 0.2 and 0.6,
respectively, a rough nonrelativistic calculation yields the
critical density to be about two times of the normal density
[19].

In the present relativistic model, it has been shown that
the nucleon-antinucleon excitations are also responsible for

some quenching of the GT strength. This fact may imply that
the value of gDN8 would become smaller than the above
quoted value, and consequently the critical density would be
lower. For more detailed investigations, on the one hand,
experimental data should be analyzed in the relativistic
framework, for example, by using a multipole decomposition
method with relativistic wave functions. On the other hand, a
consistent relativistic model is required to discuss the pion
condensation includingD degrees of freedom, although a
few attempts are found in the literature[3,20].
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