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Gamow-Teller states in relativistic nuclear models

Haruki Kurasawd, Toshio Suzuk?, and Nguyen Van Gidi
1Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522, Japan
2Department of Applied Physics, Fukui University, Fukui 910-8507, Japan and RIKEN, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
SInstitut de Physique Nucléaire, CNRS-IN2P3, 91406 Orsay Cedex, France
(Received 22 July 2003; published 31 December 2003

The Gamow-TelleKGT) states are investigated in relativistic models. The Landau-Migddl) parameter
is introduced in the Lagrangian as a contact term with the pseudovector coupling. In the relativistic model the
total GT strength in the nucleon space is quenched by about 12% in nuclear matter and by about 6% in finite
nuclei, compared with the Ikeda-Fujii-Fujita sum rule. The quenched amount is taken by nucleon-antinucleon
excitations in the timelike region. Because of the quenching, the relativistic model requires a larger value of the
LM parameter than nonrelativistic models in describing the GT excitation energy. On the other hand, the effect
of the Pauli blocking terms is not important for the GT states.
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[. INTRODUCTION (RPA) correlations are described using the basis given by this
mean field, and they are assumed to be induced through the

For the last 30 years it has been shown that phenomen
logical relativistic models work very well to explain various
nuclear phenomengl]. Most of them assume that the
nucleus is a relativistic system composed of Dirac particles — Os— ., —
moving in Lorentz scalar and vector potentials. L==gylV o, m + E‘/’Fiﬁ'ﬂ‘/’rui‘/’ (1)

In the present paper, we study the excitation energy and
strength of the Gamow-Tellg6T) states in these relativistic With
models. As far as we are aware of, the GT states have not
been studied so far in detail in this framewdgq. We will f £ \2
discuss them mainly in nuclear matter, since we can obtain I*=ysy*7, 0,=—, 0s= (—”) g'.
analytic expressions of the excitation energy and strength My My
which make clear the structure of the results and the differThe first term stands for the usual pseudove¢R¥) cou-
ence between the relativistic and nonrelativistic models. pling between the pion and the nucleon, and the second

In the following section we will present our relativistic term corresponds to a contact interaction whose strength
framework to discuss the GT states. The Landau-Migdals governed by the LM parametgt [4]. Although the way
(LM) parameter will be introduced in the Lagrangian as ato introduceg’ in the relativistic model is not unique we
contact term to take into account particle-hole correlationswill show that the above Lagrangian yields the known
In Sec. Ill the transverse correlation function will be calcu-expression for the excitation energy of the GT state in the
lated explicitly, from which an analytic expression of the nonrelativistic limit. The first term, in fact, is not relevant
excitation energy will be obtained in Sec. IV. In Sec. V, thefor the GT states in nuclear matter. It is, however, kept in
GT strength will be calculated. We will show that the total order to show later that if the LM parameter is put into the
GT strength is quenched by about 12% in nuclear matter angheson propagator, one cannot describe the GT state.
by about 6% in finite nuclei, compared with the nonrelativ-  For the Lagrangian Eql), the RPA correlation function
istic sum rule value. The quenched strength is taken by thgl.., is written in terms of the mean field onH, [5],
nucleon-antinucleon excitations in the timelike region, which
cannot be excited with charge-exchange reactions. Effects of
the Pauli blocking terms on the excitation energy and

Yagrangian

Hrpa(T'a ') =11(I'a, I'g)

strength will be shown to be negligible in Sec. IV and V. In + (DI A, T - IIgpaT; - g, )
Sec. VI, we will show that the way to add the LM parameter u
to the relativistic meson propagator, which has been fre- + x5 (U, T rpa(T i T'e), ()

quently used in describing high-momentum transfer reacyhere the following notations are employed:
tions[3], cannot describe the GT states. The last section will

be devoted to a brief summary of the present work. 5
(=3 1 __ 9
Il. RELATIVISTIC MODEL Xm 2m3mi-g?-ie’ X5~ om3

We assume that the mean field consists of Lorentz scaldfor isospin-dependent excitations, the mean field correla-
and vector potentials. The random phase approximatiotion function is given by
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1 TABLE |. The structure of the correlation functidd(I'2, FE).
nr,, I‘B):—Efd4pTr(,Tr,.[1"aGF(p+q)F,gGD(p) The first column and row indicate the values afand b of
m II(I'3, T®). The open boxes mean thEtI?, I'?) has nonzero value.

+T',Gp(p + QI sGr(p) + I',Gp(p + I sGp(p) Table(a) is for g+ 0, while (b) for g=0.

+ oGP+ QT 4Ge(p)], 3) @ ©
where we have defined the isospin operator -1 0 1 2 3 -1 0 1 2 3
i -1 0o 0 -1 0 O 0
Ty T I T,
n="" n=q, 0 0 0 0 0 0 0
V2 1 o0 1 0 0 0o 0
and the propagator, 2 0 0 O 0o 2 0 0 O 0
3 0 0 0 O 3 0 0 0 O

Gn(q) = Gg(a) + Gp(a),

(g, T2) = Tp(I'3, T2) + (I3, T7), (5
1+
Gp(q) = G(ky; q) +G(kn, ) ZTZ. they are obtained as
i 8(po - Ep) *(p, )
with II Fa Fb :J 4 0 P ( - n)
D( +1 —) dp Ep (p+q)2_M 2+i80§3
g+M’ b(p —
GO =F——%—, + t*(p, - Q) D)
g°—-M~“+ie (p_q)Z_M*2+i8 p
— + —
im ) N +I77Jd4p5(p0 Ep)d(Po+ Ao~ Epsg)
Glki;a) = =@+ M )8 -Eby. (i=p.n). ExEpiq
q
ab () o(p)
Here, we have also used the abbreviation for the step X AP, Q" O )
function: ¢)'=6(k—|q|), k, and k, being the Fermi mo- 1 ab
menta of the protons and neutrons, respectively. More-j (2, Fb)— fd4 . - _t (P, 9) . —
over, E, is equal to\M™Z+g2, where the Lorentz scalar (pT-M“+ig)((p+ Q) -M*“+ig)
potential is included in the nucleon effective mags. (7)

The Lorentz vector potential does not show up explicitly
in the present discussion of nuclear matter. In 8, the
first three terms are density dependent, including the Pauli i V(N2 m Ley? _ AVl
blocking terms, while the last one is density independent t(p, o) = 4g" (M +p*+p- ) - 20p" - p“a” = p'e’],
and divergent. The last term is usually neglecfé{l but (8
we keep it for later discussion. Effects of the Pauli block-
ing terms on the excitation energy and strength of the GT t™*(p, ) = q,t*"(p, @) = 4g"(M"? + p?) - p*(¢® + 2p - )],
state will be also discussed later. (9)
For ther, excitations, the RPA correlation function in Eq.
(2) is described as

wheret®(p, q) is given by

1 p, ) =4P(M2 +p) -p-a@®+2p-g)]. (10

gpa(T2, ) = [U™ 2 TI(Ty, ,, T), (4) If we choose the spatial axes such tiagt(gp, o, 0, 0,

. . . we can show thall(T2, FE) has a structure as shown in Table
whereU d_er'motes the dimesic function represented by thq(a), where open boxes medh(I™®, ) to be nonzero. Thus,
5X(5 matrix: the transverse parts oK1, I'?) are decoupled from the pion

U= g [I(T2, T?) (a=-1)-, time (a=0)-, and longitudinala=1) ones. In the
9" Xl - present paper, we are interested in the GT states excited at

with the notations fom=-1,0, ..., 3, g=0. In this case, the longitudinal part is also decoupled
from the pion and time-componeiiPT), as in Table (b).
a v-q Xm a=-1 Consequently, the determinant of the dimesic function is fac-
Ii=yy'r, ¥= w Xt azu torized into four parts,

In the above equationg® is defined asg®’=1(a=b= detU = - (D1)?D; Dpr, (11)

-1), g*"(a=u, b=v) andg™#=g*'=0. where the transverse, longitudinal, and PT dimesic func-
The calculation of the mean field correlation function isjons are written as

straightforward. SeparatindI(I'?,T°) into the density-

dependent and density-independent parts, Dr=1+xsII(I'2,T?, D, =Dr, (12)
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DPT: [1 _X’JTH(F:]-! 1“:1)][1 _XSH(I‘EI F?)]
— xsX AL IO, I7H. (13)

Ill. THE TRANSVERSE CORRELATION FUNCTION
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Ep
R =~ 7 | d‘*p%
+1%%(p, - ) &(qo — 2E,) 6]

Inserting Eq.(16) into the above equations, the imaginary
part of the density-dependent transverse correlation func-

[t%%(p, q) 8(qp + 2E,) 6

In this section we derive a more explicit form of the trans-tion is obtained as

verse correlation function af=0 which is used for describ-
ing the GT states. First, we will calculate the real and imagi-
nary parts of the density-dependent transverse correlation
function separately, and next the density-independent part.
According to Eg. (6), the real part of the density-

dependent transverse correlation function is written as

Rellp(I', I'%) = FP2(ky, o) + P2k, o), (14)

where J*(k;, q) represents

E) t?pa
P 6. (15

(o
J?? ki,q) = f d*
( q) P Ep (p + Q)Z -M

Sincet?? at q=0 is given by
t?2(p, ) =~ 42M"2 + EyGo + 2p)), (16)

the real part Eq(14) becomes

M2+ p2
2 y(aén) _ gfop))

4
Rly(I2 1) = - j dp
Jdo

- (n) )
fdspp Zpy( &, % )
E 2E,+do  2E,— Qo

(17)

The imaginary part of the density-dependent correlatio

function atq=0 is given by Eq.(6) as

5(p Ep)
Im TIp(I'2, %) = - °E 2| t2%p, q) 8(q3
P
+ 2pofo) 6 + t%°(p, — ) 803 — 2poQlo) 6
P
- %t”(p, 6 Gﬁf’)} :
P
Using
, 1
80y * 2pgo) = 2_;30[5(%) + (0o £ 2po) ],

the above equation is rewritten as

Im HD(F b) =- ’775((',]0) J d4 T)

[t*(p. q) 6"
+%p, - 6 - 2t%°(p, ) 6" 6] + R

The last termR\xy comes from theN-N excitations,

Im IIp(T2, T?) = 478(q) f dp py(e“‘ o
=260 0) + R, (18)

whereRyy is given by

R N=—47de3 P’ _py[a(q0+ 2E,) 6 + 8(ap - 2E,) 6],
p
(19

From Eqgs.(17), (18), and(19), the density-dependent part
of the transverse correlation function is described as

M2 +p2 (61 - 6P)
o, 12y -4 [ ap B B
P

q0+i8
(1 — g
_pa ﬂp”>)
qo_iS
2 )
4fd3pp2_pY< aé’p
E2 \2E,-qo-
%'
+2Ep+q0—is)' (20

The density-independent part of the transverse correlation

r]function is calculated in the same way. From E@&. and

(16), we obtain

2 2
2 12y - 3, P " Py 1
1%, 19 =4 [ o : (ZEp_qo_is

o)
. (22)
2E,+qp—ie
The sum of Eqs(20) and(21) provides us with the full
transverse correlation functidi(I'2, T'2). It is also expressed

as a sum of contributions from particle-hole aNeN exci-
tations,

(% T2) =13, T2 + (T3, T2), (22

where each term is described as

n) P
th(ri,ré):_4f =~ py(6‘ (1-6”)
p

qo+|8
)
qo_iS ’

(23

064311-3



HARUKI KURASAWA, TOSHIO SUZUKI, AND NGUYEN VAN GIAI PHYSICAL REVIEW C 68, 064311(2003

2_ 2 (o) -
p-p 1-6 2 N-Z
H—FZ,F2=4Jd3 y( P— kn— ko~ 2K 30

NN( + —) p Eg 2Ep_q0_|8 n kp 3F A ( )

1-6M By using the equation
+—F (24)
o Q' = 3D KM+ kD) _ o 22
F = dkF - M*Z T k|2: - E 3U|: ’
(31)

IV. THE EXCITATION ENERGY OF THE GT STATE
The eigenvalues of the excitation energies are given by ke

v —_—

FF T3
VM2 + 12

we can expand@Q(k,)-Q(ky)] in Eq. (28) up to first order in
(ka—ky). Then, replacingk,—k;) by Eq. (30) we obtain the
relativistic expression of the GT energy:

2 8EN-Z

~ =2 —_r__ =
o (1 3”F>g53ﬂ2 oA

the real part of the dimesic function,

det ReU =0. (25)

The excitation energy of the GT state is evaluated by us
ing the transverse part of the dimesic function in ELR).
The real part of the transverse correlation function, which we
need in the dimesic function, is obtained from Egs.

(32

(22)<(24).

A. The excitation energy in the nucleon space

In this section, we will calculate the excitation energy of
the GT state, neglecting perfectly the antinucleon degrees of

freedom. In this case, according to E@$2) and (23), the
real part of the transverse dimesic function is given by

ReDy=1+ys Rell,(T%,T?),

_ 167 Qk,) - Qlky)

Rell (T2, T?) = 2
€ ph( +1 —) 3 qo ’ ( 6)
whereQ(k;) is given by
3 ki M*Z + p2 k3 k
)= — 3 y — 1 M2 _ *3 ~1 N
Q(k)) 47Tfo d°p £ 3 +2kM™? - 2M™ tant— .
(27)

From ReD:=0, we obtain the relativistic expression of
the excitation energy in nuclei witk,> ki,

2
0= 5 5[Q(k) = Qlky)] (29

Relativistic effects on Eq28) can be seen more transpar-
ently by defining the Fermi momentuka as usual,

(29)

This yields a relation fo(N-2)/A<1,

The first factor depending on the Fermi velocity shows
relativistic effects on the excitation energy.
In the nonrelativistic Iimitv§<1 the GT energy is

_ 8KN-Z
079532 A
This result can be also obtained without using the approxi-

mation Eq.(30). In the non-relativistic limitp?<M™?, Eq.
(27) becomes

(33

Qk) =K. (34)

This, together with Eqs(28) and (29), yields the same
result as Eq(33).

Equation(33) is just the result obtained previously in non-
relativistic models withgs=g'(f,/m,)? [7]. In relativistic
models, the excitation energy of the GT state in nuclear mat-
ter is thus given by the transverse part of the dimesic func-
tion, and it is independent of the pion exchange, even when
its energy dependence is taken into account.

We will show later that the relativistic factgt—202/3) in
Eq. (32 stems from the quenching of the GT strength in the
nucleon space. In most of the relativistic models the nucleon
effective mass is about V6 [8], which yieldsvg=0.43 for
ke=1.36 fniL. This value implies that we must use a value of
g’ larger by 14% in the relativistic model than that in non-
relativistic models. Nonrelativistic models require the value
of g’ to be about 0.6 in order to reproduce experimental data
[9]. In this case the relativistic model neegls=0.68.

B. Effects of the Pauli blocking term

It is known in the relativistic model that the antinucleon
degrees of freedom play an important role for some physical
quantities[10,17. Even in the RPA based on the mean field
approximation, a part of the antinucleon excitations should
be taken into account in order to satisfy the continuity equa-
tion [5]. It is the density-dependent part in the antinucleon
excitations which is usually called the Pauli blocking term.
Without the Pauli blocking term, for example, the orbital part

064311-4
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of the magnetic moment and the multipole giant resonances A. The GT strength in nuclear matter

are not described correctpt0,11. In the case of the GT g total GT strength is calculated by integrating the re-
state ag=0, it is not clear whether or not the Pauli blocking sonse functiorR over the excitation energy. The relation-
term does play an important role. Here, we examine its efgpi, of the response function to the correlation funciibis

fects on the excitation energy of the GT state. given by[5]
The Pauli blocking term in the present case is given by
the density-dependent parts of £84): 3 A
R=——=—=ImII.
2_p2 e 1677 ki
Mp (T2 r2)=—4fd3pp py( >
Pauli + = - E: \2E,-qo-is First, we investigate the total GT strength in the mean
" field approximation without the RPA correlations. For this
+ % ) purpose we can employ the imaginary parts of EQs.
2B, +qp—ie (22)—(24). The total strength for thg™ transitions in the
. . nucleon space is given by the first term in the parentheses
Its real part is written as
of Eq. (23),
Re MpaufT2, 1) = o0, 1=~ Pk Go) = Pi(Kp, = o) 3A M2 + p2 A
aultt +1 4 — ' n ' !
3 " Sn= 713 | o0~ ) = 5[Q(ky) ~ Q).
(35 4 i E k2
(39
where we have defined ]
When we expandQ in terms of (k,—k;) as before, we
3 (Y d%p p?- p§ obtain the value of the total strength in the nucleon space,
PRk, do) = — f o o (36)
4m)y B 2E,+qo
~ _Z,2 -
Forgp<M*, as in the GT statePy is approximately given Son =~ (1 3UF>2(N 2). (40
b
Y In the present definition of the GT operators,
Px(Ke, o) = P(Kg) .
_ 3 [*dpp’-p Fo= (royh,
4w), E; 2E, !
3 3 140 the Ikeda-Fujii-Fujita sum rule in nonrelativistic models
=B 2y -3 - 2(1 =12 |n_F) [12] becomes
F(va UF 4( vE) 1-op
vE 3 ([FiF-)) = (F-Fy=2(N-2). (41)
=1+ Zp2+ e (37)
F5 7 ' This is nothing but the result of the commutation relation:

where E¢ denotesyM™ +k2. Using this result to evaluate

, 70y = 27,
Eq. (26), the excitation energy of the GT state is obtained [0y, 7-0y] =27,

as If we assume that there is no ground-state correlation,
2, F.)=0, (42
173%F gen-z
2 .
~ F _ 38 we have simply from Eq(41)
@0 L2 932 2A (38)
3" (F.F_y=2(N-2) (43)

This result shows that, when we use the parameter valugs nonrelativistic models. Comparing E440) with the

as mentioned at the end of the preceding section the effe@bove equation, it is seen that the relativistic sum value is
of the Pauli blocking terms is negligible, being less thanquenched by the factdd - 202/3), which is about 0.88 for
0.5% of theexcitation energy. the previous value:=0.43.

The strength of thes* transition in the nucleon space is
given by the second term in the parentheses of(Z8). with
replacingq, by —qo, but its value is zero fok,>k; as in Eq.

In this section, first we will discuss the total GT strength (42). The quenched strength in the nucleon space in(4H).
in nuclear matter where we can obtain its analytic expressiois not taken by thed" transition, but by the antinucleon de-
and understand the structure of the relativistic results. Nexgirees of freedom. This fact is shown as follows. According to
we will investigate the finite size effects by studying the casehe first term of Eq(24), the strength of thgg™ transition in
of nuclei. the nucleon-antinucleon excitations is given by

V. THE GT STRENGTH
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3 A B. The GT strength in finite nuclei

J p2_ p2 0( )
= i | A= (-6, (44)
A 4arkd E; P

We have shown analytically that the GT strength is
. o ) quenched by about 12% in nuclear matter. The quenched
while that of theﬁ+ transition is provided by the second gmount, however, depends on the momentum distribution
term with replacinggo by —qo, and the value of the nucleon effective mass near the nuclear
surface, as seen in E¢39). Therefore, we now proceed to

- iﬁ @@ p?- p32,(1 _ 0(“)) (45) estimate numerically the GT strength in finite nuclei, in the
S = 477k,3_l P E,ZJ p mean field approximation without RPA correlations.
) ) .. We write the four-component nucleon spinor as
The above two equations are both divergent, but their dif-
ference is finite: iG,(r), .
——leim)
_ 3 A p?-p? Yam= :
i Sw=—3 | Fe=2 e -4P). (46 am= R -
S~ S\w 477ng p Eg ( ) p) (46) : ar()|€lm>
The sum of the above equation and Eg89) provides us ] -
with sum rule corresponding to E¢41), where a stands for the quantum numbefis¢j}, and € is
given by {=j+1/2=¢+1 for j=¢£1/2. We define the GT

S S +N: 2(N-2). (47) strength as

The interpretation of this result is the following. In order _ .y 2_ 2,0 N2
to obtain thepsum rule valug!2-2), we need a cor%plete set Tear(0,) =22 (@'Y |0 Jam)f* = 3|<€ llofl€5rel®
of the nuclear wave functions. This fact requires both the

nucleon and the antinucleon space in relativistic modelsusing the notations

Since the nucleon-antinucleon states are in the timelike re-

mn!

gion, the GT strength for charge-exchange reactions which €'l all€)er= See (i |lofl€]a(a, @")
excite nuclear states in the spacelike region is quenched by + S0)'||o|€i)F(a, &),

the amount of Eq46). This quenching can be also discussed
by calculating GT matrix elements directly, as we have done
in Ref. [13].

Next, we calculate the RPA strength of the GT state, using

g(a:a’) :J drG,(r)G, (r), f(a:a’) :f drF,(r)F(r).
0 0
the RPA correlation functiomlzpa(T'2,T'2). Using the short-

hand notations Igpa(l'2 ) =Igpa(qy) and (I T?) If we calculate the strengths for the transition frgm¢
=11(qp), rpa(p) is Written as +1/2 to j’=€+1/2(n"=n) only, as in nonrelativistic models
for closed subshell nuclei, the sum of the GT strengths is
T1(q) given by
Hepa(do) = 57—+ Dr(do) =1 +xsll(qp).
R D" T T ST )_4(€+1)(2€+3)( 20 +1 )2
ExpandingD1(q,) at gp=w,, We have " O TP YY) %" or+3'
TR gL LGS
rrA(Qo) = dwo) Go-wo+ic 3(2¢ + 1)

Keeping only the density-dependent part of the correlatiotfVith
function, the imaginary part of the above equation gives _ .
the strength of the GT state, 9:=9(n, €, €+ 1/2n, £, 172,

A Q(kn)_Q(kp) 1_20'2:/3 fo=f(n, €, €+1/2n,¢, €+ 1/2).
TI[1 + 205/ (37 P T+ 2g5K/(3772)]22(N ~2). Assuming the same wave functions for neutrons and pro-

(48) tons we havey, +f,=1 from the normalization of the wave
functions. Moreover, it seems reasonable to assume that

The k-dependent term stems from the Pauli blocking ef-g_~1-f,. Then, the sum of the GT strengths is approxi-
fects, and it is negligible as mentioned before. Thus, alimately given by
the strength in the nucleon space is contained in the GT
state. Comparing Ed28) with the above equation, we can .
see that the factoﬁ’l—2v§/3) in the expression of the ex- 2 Taar(0,) =~ 2(2) + 1)(1 _§f+)'
citation energy Eq(32) is due to the quenching of the GT a
strength in the nucleon space, but not from the relativisticSince most of the relativistic models provides us with
kinematics. ~0.02, theabove equation shows that the GT strength is

Sor
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TABLE II. The GT strength of the single-particle transitions in us now briefly discuss the structure of the pion and the time
48Ca. The top table shows the results obtained using neutron wavgomponent, mainly in order to study the way to ugein
functions for the initial and final states, while the bottom one thoseye|ativistic models.
using the proton wave functions for final states. The value in the Since atq=0, the correlation functions satisfy
parentheses following the single-particle quantum number is the
single-particle energy in MeVly is the value of the GT strength, H(F—l F—l) — qZH(FO I‘O) H(F—l FO) =q H(I‘O FO)
andg(a:a’) and f(a:a’) show the overlap of the radial wave func- A Ol L e A
tions, as defined in the text. ThaLues underlined do not contrib- the pion and the time component of the dimesic function
ute to the GT strength. Eq. (13) can be rewritten in terms dfi(I'%, T'?),

n¢j n'¢'j’ Taa glaa’) f(a:a’) Dpr=1- 2 )3(95 gﬁmzqo )H(FE, o).
1ps(-39.49) 2p3(—3.97 0.001  0.0110 -0.0110
1p3/2(_3941) 1f5/2(_209 0.002 OL765 -0.0175
1p3(—39.49) 2p1A(~2.74) 0.004  0.0323 -0.0091
1p;A(-36.23  2pyy(-3.97  0.001 -0.0128  0.0116 9(p, 6) = 4[2M"2 - E,(2E, + o).
1py»(—36.23 2p15(—2.74) 0.001 0.0102 -0.0102
1f4,,(—10.00 1f5(—2.09 8.411 0.9592 -0.0150 Taking into account the density-dependent parts only, we
1f;/,(-10.00 1f;/,(-10.00 6.390 0.9805 0.0195 have the real part of the time component as

Total 14.810

The functiont®(p, q) at q=0 in II(T'%,I'% is calculated
according to Eq(8) as

n—p Re H(FE, F?) = ‘Joo(km QO) + Joo(kpl - qO)v (49)
1psA-39.4)  2py(-1.09 0000 -0.0113 -0.0116 WhereJ®is given by
1p3/2(_39.4]) 1f5/2(_1-16 0.002 M4 -0.0180 i
13623 2pad-109 0005 -0030 00117 oq oy 4 f o g am f & &
1f,5-10.00  1fgf(-1.16 8629 09715 —-0.0148 0 E2(2E, + )
1f,5-10.00  1f,-9.59 6361  0.9787  0.0200 (50
Total 14.997

For go<M’, neglecting theg, dependence of the second
term, we obtain

quenched by about 5%, compared with the nonrelativistic
sum value 22j+1).

In realistic situations there are other transitions even in
closed subshell nuclei such 4&a. Table Il shows their
contributions to the total GT strength. The calculations arévith
done with the effective Lagrangian NL-§H4] chosen as an
example. We calculate only the transitions between bound Py(k )___f
states. Contributions from the continuum states are expected OV 2E3
to be small. In the table, the top one shows the results in
using the neutron wave functions for the initial and final _ke  Eftke
states, and the bottom one those obtained using the proton T Ee M
wave functions for the final states. These calculations are 3
performed to see the effects of the Coulomb force. The non- -— E(l + §02 + ) (52)
relativistic sum value foféCa is 16 in the present definition. 3 ’

The table shows that the relativistic sum value is quenched

by about 6%, compared with the nonrelativistic one. This 1 K 243
reduction of the quenched amount, compared with the one inQ (k) = - —2f dp p2 F _F2
nuclear matter, was expected from the value of the nucleon 2mM E, 'V' 3M
effective mass near the nuclear surface, as mentioned before. (53)
Since the total GT strength in the nucleon space is quenched

in the mean field approximation, we expect that the sum ofrom the above equations, the real partIdf?,I?) is
the RPA strengths in finite nuclei is also quenched, as in théescribed as

case of nuclear matter.

Qo(ki)

0

J%%Kk;, qo) = 8wM*2< + Po(ki)), (52)

0 1-0 *2 Kn = kp -,
Rell(I'}, I'2) = 167M =( Po(kg) + Qo(ke) |,
VI. THE PION AND THE TIME PART OF THE 20o
CORRELATION FUNCTION (54)

In the preceding sections we have discussed the problenvghereQ((kr) denotes the derivative @q(kg) with respect
related to the transverse part of the correlation function. Leto kg,
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2k¢ 2vp 0 0 1 f 00
Ke) =~ —5 5 =~ —. RelI(I'%, 1% = —— | d®p== (6" - ¢V
QO(kF) M*2E|2: 1 _U|2: (55) ( ) qo+ ie DZES( p p )
Finally, the real part of the PT dimesic function is given 87M"?
by P ’ = v 110k = Qoll]
2M*2 ¢ This shows that the terr®y(kg) in Eq. (54) comes from
ReDpr=1- <g5+ o — 2) the Pauli blocking terms. The effects of the Pauli blocking
cs mz— o terms are not small in the present case, compared with
kn— Ko those in the transverse mode. In fact, the relationship be-
X (Po(k,:) + 2 Q(’)(k,:)). (56) tween the contributions from the particle-hole terms to the
o

Pauli blocking one is given by

The structure of R®py is similar to ReD+ in Eq. (26) to 5

which Eg. (35) is added. Equation§52) and (55), how- ! v 1
ever, show that the second parentheses of B6) are Qolke) = =207, Polke) = 3 6vFQO(kF)
negative. Therefore, the excitation energy given by, o
Re Dp7=0 should be higher than the pion magg>m... in the present case, while in the transverse mode, we have
The first parenthesis of E¢56) may be obtained by the from Eas.(31) and(37)
insertion ofg’ into the pion propagator as 03 L3
. . , Q'(ke) = 3KE,  Plke) ~ ke =~ Q" (k).
+ 2 (57)

2_ 2 . 2_ 2
mz—q m;-q~ g
which was frequently used in relativistic description of VIl. SUMMARY

high-momentum transfer reaction$]. Equation (56), About 15 years ago, analytic expressions of the excitation
however, shows that this way to pgf in the meson gnergies for the giant monopole and quadrupole resonance
propagator cannot describe the GT states. In order to shoWates were derived in the relativistic mog®6]. When they
this fact, we have used the La_grang_ian Et)., although “are expressed in terms of the Landau-Migda¥l) param-

the GT state can be described just with the contact term iers; they are formally equal to the nonrelativistic expres-
nuclear matter. The above modification of the mesongigng, in spite of the fact that the LM parameters are strongly
propagator in Eq(57) was introduced from nonrelativistic jominated by relativistic effects. In this paper, we have ob-
models. Those models use a static potential and modifysined the relativistic expression of the excitation energy for
the meson propagator so as to cancel the short range paffe Gamow-Teller(GT) state in nuclear matter. It is de-
of the interaction as scribed in terms of the LM parametgt which is introduced

in the Lagrangian as a contact term. Compared with the cor-
responding nonrelativistic one, the relativistic expression has
an additional factor of1-2v%/3), ve being the Fermi veloc-

) i ) ity. This means that in order to reproduce the same excitation
Equation(57), however, is not a reasonable extension ofgnergy as in nonrelativistic models, the present relativistic
Eq. (58) for the GT state. model requires a value @f to be larger by this factor.

The latter statement, of course, does not mean that the The ahove relativistic factor comes from the quenching of
Lagrangian form in Eq(1) provides us with a correct four- he GT strength in the nucleon space. A part of the GT
momentum dependence gf. In nonrelativistic models also  gyengih is taken by the nucleon-antinucleon states in the
we do not know the momentum dependence so WESl.  (inelike region which are not excited in usual charge-
The Lagrangian form in Eq1) can describe the GT state at gychange reactions. This quenching is thus peculiar to the
q=0, and cancel the short range part of the interaction, but ifg|ativistic models. The quenched amount is estimated to be
yields an additional four-momentum transfer dependence of2o; of the classical Ikeda-Fujii-Fujita sum rule value in
the dimesic function. In fact, the dimesic function, except forp, ,cjear matter, and 6% in finite nuclei. We have found that
the transverse part, is written at the static limjt0 as the Pauli blocking terms are not important for discussions of

the GT states.
~Dpry = (1 = xsI1%[1 + (x5 = x0T We have also discussed whether or not it is appropriate
2\ (17102 for the relativistic model to insert the LM parametgrinto
+ xs(xs = Xa@) (117, (59 the meson propagator. This method was frpequentltfemployed
where we have used the abbreviatidff°=II(I'3, T°). for the study of high-momentum reactions, but we have
More detailed investigations og’ are necessary for dis- shown that this method cannot describe the GT states.
cussions of high-momentum transfer phenomena. Finally it may be worthwhile noting future problems. The

Finally we mention the effects of the Pauli blocking quenching phenomena of the GT strength have been dis-
terms. When we take into account the particle-hole excitacussed for a long time in nonrelativistic mod¢ls/]. Most
tions only, we have recent experiments have observed 90% of the classical sum

2 2

q —
2 2 2 2
mz+q m;+q

-g'. (58)
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rule value in®°Zr [18] with nonrelativistic analysis. So far all some quenching of the GT strength. This fact may imply that
the quenching of 10% has been considered to be due to thRe value ofg}, would become smaller than the above

coupling of the particle-hole states wittihole states. Under quoted value, and consequently the critical density would be
this assumption, the LM parametgfy for the coupling is lower. For more detailed investigations, on the one hand,
estimated to be about 0.2-0.3, depending on the nonrelatiexperimental data should be analyzed in the relativistic
istic models[9]. The determination of the value @f,y is  framework, for example, by using a multipole decomposition
very important for studies of nuclear magnetic momentsmethod with relativistic wave functions. On the other hand, a
spin-dependent response functions, and pion condensatiogpnsistent relativistic model is required to discuss the pion
In particular, the critical density of the pion condensation iSqndensation including\ degrees of freedom, although a

dominated by the values @fyy as well asg’. It has been ¢, attempts are found in the literatui@20.
shown that if the values af}, andg’ are about 0.2 and 0.6,

respectively, a rough nonrelativistic calculation yields the
E[I;I]CBJ density to be about two times of the normal density ACKNOWLEDGMENT
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